TI SN74LVC8T245

SN74LVC8T245
8-BIT DUAL-SUPPLY BUS TRANSCEIVER
WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
www.ti.com
SCES584A – JUNE 2005 – REVISED AUGUST 2005
FEATURES
•
Latch-Up Performance Exceeds 100 mA Per
JESD 78, Class II
ESD Protection Exceeds JESD 22
– 4000-V Human-Body Model (A114-A)
– 200-V Machine Model (A115-A)
– 1000-V Charged-Device Model (C101)
VCCA
DIR
A1
A2
A3
A4
A5
A6
A7
A8
GND
GND
1
24
2
23
3
22
4
21
5
20
6
19
7
18
8
17
9
16
10
15
11
14
12
13
VCCB
VCCB
OE
B1
B2
B3
B4
B5
B6
B7
B8
GND
DIR
A1
A2
A3
A4
A5
A6
A7
A8
GND
VCCB
RHL PACKAGE
(TOP VIEW)
DB, DBQ, DGV, OR PW PACKAGE
(TOP VIEW)
1
24
3
4
23 VCCB
22 OE
21 B1
5
6
20 B2
19 B3
7
8
18 B4
17 B5
9
10
16 B6
15 B7
2
14 B8
11
12
13
GND
•
•
VCCA
•
Control Inputs VIH/VIL Levels Are Referenced
to VCCA Voltage
VCC Isolation Feature – If Either VCC Input Is at
GND, All Are in the High-Impedance State
Fully Configurable Dual-Rail Design Allows
Each Port to Operate Over the Full 1.65-V to
5.5-V Power-Supply Range
GND
•
DESCRIPTION/ORDERING INFORMATION
This 8-bit noninverting bus transceiver uses two separate configurable power-supply rails. The SN74LVC8T245
is optimized to operate with VCCA and VCCB set at 1.65 V to 5.5 V. The A port is designed to track VCCA. VCCA
accepts any supply voltage from 1.65 V to 5.5 V. The B port is designed to track VCCB. VCCB accepts any supply
voltage from 1.65 V to 5.5 V. This allows for universal low-voltage bidirectional translation between any of the
1.8-V, 2.5-V, 3.3-V, and 5.5-V voltage nodes.
ORDERING INFORMATION
PACKAGE (1)
TA
–40°C to 85°C
TOP-SIDE MARKING
QFN – RHL
Tape and reel
SN74LVC8T245RHLR
NH245
SSOP – DBR
Tape and reel
SN74LVC8T245DBR
NH245
SSOP (QSOP) – DBQ
Tape and reel
SN74LVC8T245DBQR
NH245
Tube
SN74LVC8T245PW
Tape and reel
SN74LVC8T245PWR
Tape and reel
SN74LVC8T245DGVR
TSSOP – PW
TVSOP – DGV
(1)
ORDERABLE PART NUMBER
NH245
NH245
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2005, Texas Instruments Incorporated
SN74LVC8T245
8-BIT DUAL-SUPPLY BUS TRANSCEIVER
WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
www.ti.com
SCES584A – JUNE 2005 – REVISED AUGUST 2005
DESCRIPTION/ORDERING INFORMATION (CONTINUED)
The SN74LVC8T245 is designed for asynchronous communication between two data buses. The logic levels of
the direction-control (DIR) input and the output-enable (OE) input activate either the B-port outputs or the A-port
outputs or place both output ports into the high-impedance mode. The device transmits data from the A bus to
the B bus when the B-port outputs are activated, and from the B bus to the A bus when the A-port outputs are
activated. The input circuitry on both A and B ports is always active and must have a logic HIGH or LOW level
applied to prevent excess ICC and ICCZ.
The SN74LVC8T245 is designed so that the control pins (DIR and OE) are supplied by VCCA.
This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs,
preventing damaging current backflow through the device when it is powered down.
The VCC isolation feature ensures that if either VCC input is at GND, all outputs are in the high-impedance state.
To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup
resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
FUNCTION TABLE (1)
(EACH 8-BIT SECTION)
CONTROL INPUTS
OE
(1)
OUTPUT CIRCUITS
B PORT
OPERATION
DIR
A PORT
L
L
Enabled
Hi-Z
B data to A bus
L
H
Hi-Z
Enabled
A data to B bus
H
X
Hi-Z
Hi-Z
Isolation
Input circuits of the data I/Os are always active.
LOGIC DIAGRAM (POSITIVE LOGIC)
DIR
2
22
OE
A1
3
21
To Seven Other Channels
2
B1
SN74LVC8T245
8-BIT DUAL-SUPPLY BUS TRANSCEIVER
WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
www.ti.com
SCES584A – JUNE 2005 – REVISED AUGUST 2005
Absolute Maximum Ratings
(1)
over operating free-air temperature range (unless otherwise noted)
VCCA
VCCB
Supply voltage range
VI
Input voltage range (2)
MIN
MAX
–0.5
6.5
I/O ports (A port)
–0.5
6.5
I/O ports (B port)
–0.5
6.5
Control inputs
–0.5
6.5
A port
–0.5
6.5
B port
–0.5
6.5
A port
–0.5 VCCA + 0.5
B port
–0.5 VCCB + 0.5
UNIT
V
V
VO
Voltage range applied to any output
in the high-impedance or power-off state (2)
VO
Voltage range applied to any output in the high or low state (2) (3)
IIK
Input clamp current
VI < 0
–50
mA
IOK
Output clamp current
VO < 0
–50
mA
IO
Continuous output current
±50
mA
±100
mA
Continuous current through each VCCA, VCCB, and GND
θJA
Package thermal
impedance (4)
DB package
63
DBQ package
61
DGV package
86
PW package
88
RHL package
Tstg
(1)
(2)
(3)
(4)
Storage temperature range
V
V
°C/W
43
–65
150
°C
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
The output positive-voltage rating may be exceeded up to 6.5 V maximum if the output current rating is observed.
The package thermal impedance is calculated in accordance with JESD 51-7.
3
SN74LVC8T245
8-BIT DUAL-SUPPLY BUS TRANSCEIVER
WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
www.ti.com
SCES584A – JUNE 2005 – REVISED AUGUST 2005
Recommended Operating Conditions (1) (2) (3) (4)
VCCI
VCCA
VCCB
VCCO
Supply voltage
High-level
input voltage
Data inputs (5)
MAX
1.65
5.5
1.65
5.5
2.3 V to 2.7 V
1.7
3 V to 3.6 V
VCCI × 0.7
VCCI × 0.35
1.65 V to 1.95 V
VIL
Data inputs (5)
2.3 V to 2.7 V
0.7
3 V to 3.6 V
0.8
VCCA × 0.65
1.65 V to 1.95 V
High-level
input voltage
Control inputs
(referenced to VCCA) (6)
V
VCCI × 0.3
4.5 V to 5.5 V
VIH
V
V
2
4.5 V to 5.5 V
Low-level
input voltage
UNIT
VCCI × 0.65
1.65 V to 1.95 V
VIH
MIN
2.3 V to 2.7 V
1.7
3 V to 3.6 V
V
2
VCCA × 0.7
4.5 V to 5.5 V
VCCA × 0.35
1.65 V to 1.95 V
2.3 V to 2.7 V
0.7
3 V to 3.6 V
0.8
VIL
Low-level
input voltage
Control inputs
(referenced to VCCA) (6)
VI
Input voltage
Control inputs
0
5.5
V
Input/output
voltage
Active state
0
VCCO
V
0
5.5
V
VCCA × 0.3
4.5 V to 5.5 V
VI/O
IOH
3-State
High-level output current
1.65 V to 1.95 V
–4
2.3 V to 2.7 V
–8
3 V to 3.6 V
–24
4.5 V to 5.5 V
–32
1.65 V to 1.95 V
IOL
Low-level output current
∆t/∆v
TA
(1)
(2)
(3)
(4)
(5)
(6)
4
Input transition
rise or fall rate
Data inputs
Operating free-air temperature
V
mA
4
2.3 V to 2.7 V
8
3 V to 3.6 V
24
4.5 V to 5.5 V
32
1.65 V to 1.95 V
20
2.3 V to 2.7 V
20
3 V to 3.6 V
10
4.5 V to 5.5 V
5
–40
85
mA
ns/V
°C
VCCI is the VCC associated with the data input port.
VCCO is the VCC associated with the output port.
All unused or driven (floating) data inputs (I/Os) of the device must be held at logic HIGH or LOW (preferably VCCI or GND) to ensure
proper device operation and minimize power. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature
number SCBA004.
All unused control inputs must be held at VCCA or GND to ensure proper device operation and minimize power comsumption.
For VCCI values not specified in the data sheet, VIH min = VCCI × 0.7 V, VIL max = VCCI × 0.3 V.
For VCCA values not specified in the data sheet, VIH min = VCCA × 0.7 V, VIL max = VCCA × 0.3 V.
SN74LVC8T245
8-BIT DUAL-SUPPLY BUS TRANSCEIVER
WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
www.ti.com
SCES584A – JUNE 2005 – REVISED AUGUST 2005
Electrical Characteristics
(1) (2)
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
VOH
VOL
II
DIR
VCCA
VCCB
IOH = –100 µA,
TEST CONDITIONS
VI = VIH
1.65 V to 4.5 V
1.65 V to 4.5 V
IOH = –4 mA,
VI = VIH
1.65 V
1.65 V
1.2
IOH = –8 mA,
VI = VIH
2.3 V
2.3 V
1.9
IOH = –24 mA,
VI = VIH
3V
3V
2.4
IOH = –32 mA,
VI = VIH
4.5 V
4.5 V
3.8
IOL = 100 µA,
VI = VIL
1.65 V to 4.5 V
1.65 V to 4.5 V
0.1
IOL = 4 mA,
VI = VIL
1.65 V
1.65 V
0.45
IOL = 8 mA,
VI = VIL
2.3 V
2.3 V
0.3
IOL = 24 mA,
VI = VIL
3V
3V
0.55
IOL = 32 mA,
VI = VIL
4.5 V
4.5 V
1.65 V to 5.5 V
1.65 V to 5.5 V
±1
±2
0V
0 to 5.5 V
±1
±2
0 to 5.5 V
0V
±1
±2
1.65 V to 5.5 V
1.65 V to 5.5 V
±1
±2
1.65 V to 5.5 V
1.65 V to 5.5 V
15
5V
0V
15
0V
5V
–2
1.65 V to 5.5 V
1.65 V to 5.5 V
15
5V
0V
–2
0V
5V
15
1.65 V to 5.5 V
1.65 V to 5.5 V
25
VI = VCCA or GND
Ioff
A or B
port
VI or VO = 0 to 5.5 V
IOZ
A or B
port
VO = VCCO or GND,
OE = VIH
ICCA
VI = VCCI or GND,
ICCB
VI = VCCI or GND,
ICCA + ICCB
VI = VCCI or GND,
IO = 0
IO = 0
IO = 0
A port
One A port at VCCA – 0.6 V,
DIR at VCCA, B port = open
DIR
DIR at VCCA – 0.6 V,
B port = open,
A port at VCCA or GND
∆ICCB
B port
One B port at VCCB – 0.6 V,
DIR at GND, A port = open
Ci
Control
inputs
Cio
A or B
port
∆ICCA
(1)
(2)
MIN
TYP MAX
MIN MAX
UNIT
VCCO – 0.1
V
V
0.55
µA
µA
µA
µA
µA
µA
50
3 V to 5.5 V
µA
3 V to 5.5 V
50
3 V to 5.5 V
3 V to 5.5 V
VI = VCCA or GND
3.3 V
3.3 V
VO = VCCA/B or GND
3.3 V
3.3 V
50
µA
4
5
pF
8.5
10
pF
VCCO is the VCC associated with the output port.
VCCI is the VCC associated with the input port.
5
SN74LVC8T245
8-BIT DUAL-SUPPLY BUS TRANSCEIVER
WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
www.ti.com
SCES584A – JUNE 2005 – REVISED AUGUST 2005
Switching Characteristics
over recommended operating free-air temperature range, VCCA = 1.8 V ± 0.15 V (unless otherwise noted) (see Figure 1)
PARAMETER
tPLH
tPHL
tPLH
tPHL
tPHZ
tPLZ
tPHZ
tPLZ
tPZH
tPZL
tPZH
tPZL
VCCB = 1.8 V
± 0.15 V
FROM
(INPUT)
TO
(OUTPUT)
A
B
1.7
B
A
OE
MIN MAX
VCCB = 2.5 V
± 0.2 V
VCCB = 3.3 V
± 0.3 V
VCCB = 5 V
± 0.5 V
UNIT
MIN
MAX
MIN
MAX
MIN MAX
21.9
1.3
9.2
1
7.4
0.8
7.1
ns
0.9
23.8
0.8
23.6
0.7
23.4
0.7
23.4
ns
A
1.5
29.6
1.5
29.4
1.5
29.3
1.4
29.2
ns
OE
B
2.4
32.2
1.9
13.1
1.7
12
1.3
10.3
ns
OE
A
0.4
24
0.4
23.8
0.4
23.7
0.4
23.7
ns
OE
B
1.8
32
1.5
16
1.2
12.6
0.9
10.8
ns
Switching Characteristics
over recommended operating free-air temperature range, VCCA = 2.5 V ± 0.2 V (unless otherwise noted) (see Figure 1)
PARAMETER
tPLH
tPHL
tPLH
tPHL
tPHZ
tPLZ
tPHZ
tPLZ
tPZH
tPZL
tPZH
tPZL
6
FROM
(INPUT)
TO
(OUTPUT)
A
VCCB = 1.8 V
± 0.15 V
VCCB = 2.5 V
± 0.2 V
VCCB = 3.3 V
± 0.3 V
VCCB = 5 V
± 0.5 V
UNIT
MIN
MAX
MIN
MAX
MIN
MAX
MIN MAX
B
1.5
21.4
1.2
9
0.8
6.2
0.6
4.8
ns
B
A
1.2
9.3
1
9.1
1
8.9
0.9
8.8
ns
OE
A
1.4
9
1.4
9
1.4
9
1.4
9
ns
OE
B
2.3
29.6
1.8
11
1.7
9.3
0.9
6.9
ns
OE
A
1
10.9
1
10.9
1
10.9
1
10.9
ns
OE
B
1.7
28.2
1.5
12.9
1.2
9.4
1
6.9
ns
SN74LVC8T245
8-BIT DUAL-SUPPLY BUS TRANSCEIVER
WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
www.ti.com
SCES584A – JUNE 2005 – REVISED AUGUST 2005
Switching Characteristics
over recommended operating free-air temperature range, VCCA = 3.3 V ± 0.3 V (unless otherwise noted) (see Figure 1)
PARAMETER
tPLH
tPHL
tPLH
tPHL
tPHZ
tPLZ
tPHZ
tPLZ
tPZH
tPZL
tPZH
tPZL
VCCB = 1.8 V
± 0.15 V
FROM
(INPUT)
TO
(OUTPUT)
A
B
1.5
B
A
OE
VCCB = 2.5 V
± 0.2 V
MIN MAX
VCCB = 3.3 V
± 0.3 V
VCCB = 5 V
± 0.5 V
UNIT
MIN
MAX
MIN
MAX
MIN MAX
21.2
1.1
8.8
0.8
6.3
0.5
4.4
ns
0.8
7.2
0.8
6.2
0.7
6.1
0.6
6
ns
A
1.6
8.2
1.6
8.2
1.6
8.2
1.6
8.2
ns
OE
B
2.1
29
1.7
10.3
1.5
8.6
0.8
6.3
ns
OE
A
0.8
8.1
0.8
8.1
0.8
8.1
0.8
8.1
ns
OE
B
1.8
27.7
1.4
12.4
1.1
8.5
0.9
6.4
ns
Switching Characteristics
over recommended operating free-air temperature range, VCCA = 5 V ± 0.5 V (unless otherwise noted) (see Figure 1)
PARAMETER
tPLH
tPHL
tPLH
tPHL
tPHZ
tPLZ
tPHZ
tPLZ
tPZH
tPZL
tPZH
tPZL
FROM
(INPUT)
TO
(OUTPUT)
A
VCC = 1.8 V
± 0.15 V
VCC = 2.5 V
± 0.2 V
VCC = 3.3 V
± 0.3 V
VCC = 5 V
± 0.5 V
MIN MAX
UNIT
MIN
MAX
MIN
MAX
MIN
MAX
B
1.5
21.4
1
8.8
0.7
6
0.4
4.2
ns
B
A
0.7
7
0.4
4.8
0.3
4.5
0.3
4.3
ns
OE
A
0.3
5.4
0.3
5.4
0.3
5.4
0.3
5.4
ns
OE
B
2
28.7
1.6
9.7
1.4
8
0.7
5.7
ns
OE
A
0.7
6.4
0.7
6.4
0.7
6.4
0.7
6.4
ns
OE
B
1.5
27.6
1.3
11.4
1
8.1
0.9
6
ns
Operating Characteristics
TA = 25°C
PARAMETER
CpdA (1)
CpdB (1)
(1)
TEST
CONDITIONS
A-port input, B-port output
B-port input, A-port output
A-port input, B-port output
CL = 0,
f = 10 MHz,
tr = tf = 1 ns
B-port input, A-port output
VCCA =
VCCB = 1.8 V
VCCA =
VCCB = 2.5 V
VCCA =
VCCB = 3.3 V
VCCA =
VCCB = 5 V
TYP
TYP
TYP
TYP
2
2
2
3
12
13
13
16
13
13
14
16
2
2
2
3
UNIT
pF
Power dissipation capacitance per transceiver
7
SN74LVC8T245
8-BIT DUAL-SUPPLY BUS TRANSCEIVER
WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
www.ti.com
SCES584A – JUNE 2005 – REVISED AUGUST 2005
PARAMETER MEASUREMENT INFORMATION
2 × VCCO
S1
RL
From Output
Under Test
Open
GND
CL
(see Note A)
TEST
S1
tpd
tPLZ/tPZL
tPHZ/tPZH
Open
2 × VCCO
GND
RL
tw
LOAD CIRCUIT
VCCI
VCCI/2
Input
VCCO
CL
RL
VTP
1.8 V ± 0.15 V
2.5 V ± 0.2 V
3.3 V ± 0.3 V
5 V ± 0.5 V
15 pF
15 pF
15 pF
15 pF
2 kΩ
2 kΩ
2 kΩ
2 kΩ
0.15 V
0.15 V
0.3 V
0.3 V
VCCI/2
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VCCA
Output
Control
(low-level
enabling)
VCCA/2
VCCA/2
0V
tPZL
VCCI
Input
VCCI/2
VCCI/2
0V
tPLH
Output
tPHL
VCCO/2
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
VOH
VCCO/2
VOL
tPLZ
VCCO
Output
Waveform 1
S1 at 2 × VCCO
(see Note B)
VCCO/2
VOL + VTP
VOL
tPZH
Output
Waveform 2
S1 at GND
(see Note B)
tPHZ
VCCO/2
VOH − VTP
VOH
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR10 MHz, ZO = 50 Ω, dv/dt ≥ 1 V/ns.
D. The outputs are measured one at a time, with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
H. VCCI is the VCC associated with the input port.
I. VCCO is the VCC associated with the output port.
J. All parameters and waveforms are not applicable to all devices.
Figure 1. Load Circuit and Voltage Waveforms
8
PACKAGE OPTION ADDENDUM
www.ti.com
5-Jul-2010
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package
Drawing
Pins
Package Qty
Eco Plan
(2)
Lead/
Ball Finish
MSL Peak Temp
(3)
Samples
(Requires Login)
74LVC8T245DBQRG4
ACTIVE
SSOP/QSOP
DBQ
24
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
Request Free Samples
74LVC8T245RHLRG4
ACTIVE
QFN
RHL
24
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
Request Free Samples
SN74LVC8T245DBQR
ACTIVE
SSOP/QSOP
DBQ
24
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
Request Free Samples
SN74LVC8T245DBR
ACTIVE
SSOP
DB
24
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
Request Free Samples
SN74LVC8T245DBRE4
ACTIVE
SSOP
DB
24
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
Request Free Samples
SN74LVC8T245DBRG4
ACTIVE
SSOP
DB
24
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
Request Free Samples
SN74LVC8T245DGVR
ACTIVE
TVSOP
DGV
24
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
Request Free Samples
SN74LVC8T245DGVRG4
ACTIVE
TVSOP
DGV
24
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
Request Free Samples
SN74LVC8T245DWR
ACTIVE
SOIC
DW
24
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
Request Free Samples
SN74LVC8T245DWRG4
ACTIVE
SOIC
DW
24
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
Request Free Samples
SN74LVC8T245NSR
ACTIVE
SO
NS
24
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
Purchase Samples
SN74LVC8T245NSRG4
ACTIVE
SO
NS
24
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
Purchase Samples
SN74LVC8T245PW
ACTIVE
TSSOP
PW
24
60
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
Purchase Samples
SN74LVC8T245PWE4
ACTIVE
TSSOP
PW
24
60
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
Purchase Samples
SN74LVC8T245PWG4
ACTIVE
TSSOP
PW
24
60
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
Purchase Samples
SN74LVC8T245PWR
ACTIVE
TSSOP
PW
24
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
Request Free Samples
SN74LVC8T245PWRE4
ACTIVE
TSSOP
PW
24
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
Request Free Samples
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
5-Jul-2010
Status
(1)
Package Type Package
Drawing
Pins
Package Qty
Eco Plan
(2)
Lead/
Ball Finish
MSL Peak Temp
(3)
Samples
(Requires Login)
SN74LVC8T245PWRG4
ACTIVE
TSSOP
PW
24
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
Request Free Samples
SN74LVC8T245RHLR
ACTIVE
QFN
RHL
24
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
Request Free Samples
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF SN74LVC8T245 :
• Enhanced Product: SN74LVC8T245-EP
NOTE: Qualified Version Definitions:
• Enhanced Product - Supports Defense, Aerospace and Medical Applications
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
11-Mar-2008
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
SN74LVC8T245DBQR
Package Package Pins
Type Drawing
SSOP/
QSOP
SPQ
Reel
Reel
Diameter Width
(mm) W1 (mm)
A0 (mm)
B0 (mm)
K0 (mm)
P1
(mm)
W
Pin1
(mm) Quadrant
DBQ
24
2500
330.0
16.4
6.5
9.0
2.1
8.0
16.0
Q1
SN74LVC8T245DBR
SSOP
DB
24
2000
330.0
16.4
8.2
8.8
2.5
12.0
16.0
Q1
SN74LVC8T245DGVR
TVSOP
DGV
24
2000
330.0
12.4
7.0
5.6
1.6
8.0
12.0
Q1
SN74LVC8T245DWR
SOIC
DW
24
2000
330.0
24.4
10.75
15.7
2.7
12.0
24.0
Q1
SN74LVC8T245NSR
SO
NS
24
2000
330.0
24.4
8.2
15.4
2.5
12.0
24.0
Q1
SN74LVC8T245PWR
TSSOP
PW
24
2000
330.0
16.4
6.95
8.3
1.6
8.0
16.0
Q1
SN74LVC8T245RHLR
QFN
RHL
24
1000
180.0
12.4
3.8
5.8
1.2
8.0
12.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
11-Mar-2008
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
SN74LVC8T245DBQR
SSOP/QSOP
DBQ
24
2500
346.0
346.0
33.0
SN74LVC8T245DBR
SSOP
DB
24
2000
346.0
346.0
33.0
SN74LVC8T245DGVR
TVSOP
DGV
24
2000
346.0
346.0
29.0
SN74LVC8T245DWR
SOIC
DW
24
2000
346.0
346.0
41.0
SN74LVC8T245NSR
SO
NS
24
2000
346.0
346.0
41.0
SN74LVC8T245PWR
TSSOP
PW
24
2000
346.0
346.0
33.0
SN74LVC8T245RHLR
QFN
RHL
24
1000
190.5
212.7
31.8
Pack Materials-Page 2
MECHANICAL DATA
MPDS006C – FEBRUARY 1996 – REVISED AUGUST 2000
DGV (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
24 PINS SHOWN
0,40
0,23
0,13
24
13
0,07 M
0,16 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
0°–8°
1
0,75
0,50
12
A
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,08
14
16
20
24
38
48
56
A MAX
3,70
3,70
5,10
5,10
7,90
9,80
11,40
A MIN
3,50
3,50
4,90
4,90
7,70
9,60
11,20
DIM
4073251/E 08/00
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
Falls within JEDEC: 24/48 Pins – MO-153
14/16/20/56 Pins – MO-194
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001
DB (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
28 PINS SHOWN
0,38
0,22
0,65
28
0,15 M
15
0,25
0,09
8,20
7,40
5,60
5,00
Gage Plane
1
14
0,25
A
0°–ā8°
0,95
0,55
Seating Plane
2,00 MAX
0,10
0,05 MIN
PINS **
14
16
20
24
28
30
38
A MAX
6,50
6,50
7,50
8,50
10,50
10,50
12,90
A MIN
5,90
5,90
6,90
7,90
9,90
9,90
12,30
DIM
4040065 /E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-150
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DLP® Products
www.dlp.com
Communications and
Telecom
www.ti.com/communications
DSP
dsp.ti.com
Computers and
Peripherals
www.ti.com/computers
Clocks and Timers
www.ti.com/clocks
Consumer Electronics
www.ti.com/consumer-apps
Interface
interface.ti.com
Energy
www.ti.com/energy
Logic
logic.ti.com
Industrial
www.ti.com/industrial
Power Mgmt
power.ti.com
Medical
www.ti.com/medical
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
RFID
www.ti-rfid.com
Space, Avionics &
Defense
www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions www.ti.com/lprf
Video and Imaging
www.ti.com/video
Wireless
www.ti.com/wireless-apps
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated