MICRON MT8LSDT3264AG-10E

256MB / 512MB (x64)
168-PIN SDRAM DIMMs
SYNCHRONOUS
DRAM MODULE
MT8LSDT3264A(I) - 256MB
MT16LSDT6464A(I) - 512MB
For the latest data sheet, please refer to the Micron Web
site: www.micron.com/moduleds
Features
Figure 1: 168-Pin DIMM (MO–161)
• PC100- and PC133-compliant
• JEDEC-standard 168-pin, dual in-line memory
module (DIMM)
• Unbuffered
• 256MB (32 Meg x 64), 512MB (64 Meg x 64)
• Single +3.3V ±0.3V power supply
• Fully synchronous; all signals registered on positive
edge of system clock
• Internal pipelined operation; column address can
be changed every clock cycle
• Internal SDRAM banks for hiding row access/precharge
• Programmable burst lengths: 1, 2, 4, 8, or full page
• Auto Precharge, including Concurrent Auto
Precharge, and Auto Refresh Modes
• 64ms, 8,192 cycle Auto Refresh cycle
• Self Refresh Mode
• LVTTL-compatible inputs and outputs
• Serial Presence-Detect (SPD)
OPTIONS
Standard
Low Profile
Table 2:
MARKING
• Package
Unbuffered
168-pin DIMM (gold)
• Operating Temperature Range
Commercial (0°C to +70°C)
Industrial (-40°C to +85°C)1
• Memory Clock/CAS Latency
(133 MHz)/CL = 2
(133 MHz)/CL = 3
(100 MHz)/CL = 2
A
32,64 Meg x 64 SDRAM DIMMs
SD8_16C32_64x64AG_C.fm - Rev. C 11/02
-13E
-133
-10E
2-2-2
2-2-2
2-2-2
2-2-2
3-3-3
NA
Part Numbers
PARTNUMBER1
MT8LSDT3264AG-13E_
MT8LSDT3264AG(I)-133_
MT8LSDT3264AG-10E_
MT16LSDT6464AG-13E_
MT16LSDT6464AG(I)-133_
MT16LSDT6464AG-10E_
Address Table
Refresh Count
Device Banks
Device Configuration
Row Addressing
Column Addressing
Module Banks
PC133
CL - tRCD - tRP
Table 3:
1. Consult Micron for availability; Industrial Temperature Option available in -133 speed only.
256MB
MODULE
8K
4 (BA0, BA1)
32 Meg x 8
8K (A0–A12)
1K (A0–A9)
1 (S0,S2)
PC100
CL - tRCD - tRP
None
I
NOTE:
Table 1:
MODULE
MARKINGS
G
-13E
-133
-10E
Timing parameters
512MB
MODULE
8K
4 (BA0, BA1)
32 Meg x 8
8K (A0–A12)
1K (A0–A9)
2 (S0,S2; S1,S3)
SYSTEM
CONFIGURATION BUS SPEED
32 Meg x 64
32 Meg x 64
32 Meg x 64
64 Meg x 64
64 Meg x 64
64 Meg x 64
133 MHz
133 MHz
100 MHz
133 MHz
133 MHz
100 MHz
NOTE:
1. The designators for component and PCB revision
are the last two characters of each part number.
Consult factory for current revision codes. Example:
MT8LSDT3264AG-133B1.
1
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2002, Micron Technology Inc.
256MB / 512MB (x64)
168-PIN SDRAM DIMMs
Table 4:
Pin Assignment, Standard
PCB (168-Pin DIMM Front)
Table 5:
PIN SYMBOL PIN SYMBOL PIN SYMBOL PIN SYMBOL
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
VSS
DQ0
DQ1
DQ2
DQ3
VDD
DQ4
DQ5
DQ6
DQ7
DQ8
VSS
DQ9
DQ10
DQ11
DQ12
DQ13
VDD
DQ14
DQ15
NC
22
NC
43
VSS
64
23
VSS
44
NC
65
24
NC
45
S2#
66
25
NC
46 DQMB2 67
26
VDD
47 DQMB3 68
27
WE#
48
NC
69
28 DQMB0 49
VDD
70
29 DQMB1 50
NC
71
30
S0#
51
NC
72
31
NC
52
NC
73
32
VSS
53
NC
74
33
A0
54
VSS
75
34
A2
55 DQ16 76
35
A4
56 DQ17 77
36
A6
57 DQ18 78
37
A8
58 DQ19 79
38
A10
59
VDD
80
39
BA1
60 DQ20 81
40
VDD
61
NC
82
41
VDD
62
NC
83
42
CK0
63
CKE1
84
Pin Assignment, Standard
PCB (168-Pin DIMM Back)
PIN SYMBOL PIN SYMBOL PIN SYMBOL PIN SYMBOL
VSS
DQ21
DQ22
DQ23
VSS
DQ24
DQ25
DQ26
DQ27
VDD
DQ28
DQ29
DQ30
DQ31
VSS
CK2
NC
NC
SDA
SCL
VDD
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
VSS
DQ32
DQ33
DQ34
DQ35
VDD
DQ36
DQ37
DQ38
DQ39
DQ40
VSS
DQ41
DQ42
DQ43
DQ44
DQ45
VDD
DQ46
DQ47
NC
106
NC
127
VSS
148
107
VSS
128 CKE0 149
108
NC
129
S3#
150
109
NC
130 DQMB6 151
110
VDD
131 DQMB7 152
111 CAS# 132
NC
153
112 DQMB4 133
VDD
154
113 DQMB5 134
NC
155
114
S1#
135
NC
156
115 RAS# 136
NC
157
116
VSS
137
NC
158
117
A1
138
VSS
159
118
A3
139 DQ48 160
119
A5
140 DQ49 161
120
A7
141 DQ50 162
121
A9
142 DQ51 163
122
BA0
143
VDD
164
123
A11
144 DQ52 165
124
VDD
145
NC
166
125
CK1
146
NC
167
126
A12
147
NC
168
VSS
DQ53
DQ54
DQ55
VSS
DQ56
DQ57
DQ58
DQ59
VDD
DQ60
DQ61
DQ62
DQ63
VSS
CK3
NC
SA0
SA1
SA2
VDD
Figure 2: PIN Locations (168-PIN DIMM)
Front View
U1
U2
U3
U4
U6
U7
U8
U9
U10
PIN 84
PIN 41
PIN 1
Back View (Populated only for 512MB module)
U11
U12
U13
U14
PIN 168
U16
U17
U19
PIN 85
PIN125
Indicates a VDD pin
U18
Indicates a VSS pin
See Figure 10, 256MB Module Dimensions, on page 23 and Figure 11, 512MB Module Dimensions, on
page 24 for module dimensions.
32,64 Meg x 64 SDRAM DIMMs
SD8_16C32_64x64AG_C.fm - Rev. C 11/02
2
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2002, Micron Technology Inc.
256MB / 512MB (x64)
168-PIN SDRAM DIMMs
Table 6:
Pin Descriptions
Pin numbers may not correlate with symbols. Refer to the Pin Assignment table for pin number and symbol information.
PIN NUMBERS
SYMBOL
TYPE
DESCRIPTION
27, 111, 115
Input
42, 79, 125, 163
RAS#, CAS#,
WE#
CK0-CK3
63, 128
CKE0, CKE1
Input
30, 45,114, 129
S0# -S3#
Input
28, 29, 46, 47, 112, 113, 130,
131
DQMB0-DQMB7
Input
39, 122
BA0, BA1
Input
33 - 38, 117 - 121, 123, 126
A0-A12
Input
83
SCL
Input
165-167
SA0-SA2
Input
2-5, 7-11, 13-17, 19-20, 55-58,
60, 65-67, 69-72, 74-77, 86-89,
91-95, 97-101, 103-104,
139-142, 144, 149-151,
153-156,158-161
82
DQ0-DQ63
Input/
Output
Command Inputs: RAS#, CAS#, and WE# (along with S#)
define the command being entered.
Clock: CK is driven by the system clock. All SDRAM input
signals are sampled on the positive edge of CK. CK also
increments the internal burst counter and controls the output
registers.
Clock Enable: CKE activates (HIGH) and deactivates (LOW) the
CK signal. Deactivating the clock provides PRECHARGE
POWER-DOWN and SELF REFRESH operation (all device banks
idle) or CLOCK SUSPEND OPERATION (burst access in
progress). CKE is synchronous except after the device enters
power- down and self refresh modes, where CKE becomes
asynchronous until after exiting the same mode. The input
buffers, including CK, are disabled during power-down and
self refresh modes, providing low standby power.
Chip Select: S# enables (registered LOW) and disables
(registered HIGH) the command decoder. All commands are
masked when S# is registered HIGH. S# is considered part of
the command code.
Input/Output Mask: DQMB is an input mask signal for write
accesses and an output enable signal for read accesses. Input
data is masked when DQMB is sampled HIGH during a WRITE
cycle. The output buffers are placed in a High-Z state (twoclock latency) when DQMB is sampled HIGH during a READ
cycle.
Bank Address: BA0 and BA1 define to which device bank the
ACTIVE, READ, WRITE, or PRECHARGE command is being
applied.
Address Inputs: Provide the row address for ACTIVE
commands, and the column address and auto prcharge bit
(A10) for READ/WRITE commands, to select one location out
of the memory arrary in the respective device bank. A10
sampled during a PRECHARGE command determines whether
the PRECHARGE applies to one device bank (A10 LOW, device
bank selected by BA0, BA1) or all device banks (A10 HIGH).
The address inputs also provide the op-code during a MODE
REGISTER SET command.
Serial Clock for Presence-Detect: SCL is used to synchronize
the presence-detect data transfer to and from the module.
Presence-Detect Address Inputs: These pins are used to
configure the presence-detect device.
Data I/O: Data bus.
32,64 Meg x 64 SDRAM DIMMs
SD8_16C32_64x64AG_C.fm - Rev. C 11/02
SDA
Input
Input/ Serial Presence-Detect Data: SDA is a bidirectional pin used to
Output transfer addresses and data into and out of the presencedetect portion of the module.
3
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2002, Micron Technology Inc.
256MB / 512MB (x64)
168-PIN SDRAM DIMMs
Table 6:
Pin Descriptions (Continued)
Pin numbers may not correlate with symbols. Refer to the Pin Assignment table for pin number and symbol information.
PIN NUMBERS
SYMBOL
TYPE
DESCRIPTION
6, 18, 26, 40, 41, 49, 59, 73,
84, 90, 102, 110, 124, 133,
143, 157, 168
1, 12, 23, 32, 43, 54, 64, 68,
78, 85, 96, 107, 116, 127, 138,
148, 152, 162
21-22, 24-25, 31, 44, 48,
50-53, 61-62, 80, 81, 105-106,
108-109, 132, 134-137,
145-147, 164
VDD
Supply
Power Supply: +3.3V ±0.3V.
VSS
Supply
Ground.
NC
–
32,64 Meg x 64 SDRAM DIMMs
SD8_16C32_64x64AG_C.fm - Rev. C 11/02
Not Connected: These pins are not connected on these
modules.
4
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2002, Micron Technology Inc.
256MB / 512MB (x64)
168-PIN SDRAM DIMMs
Figure 3: Functional Block Diagram
Single Bank Modules
S0#
DQMB0
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQMB4
DQM CS#
DQ
DQ
DQ
DQ U1
DQ
DQ
DQ
DQ
DQMB1
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
DQM CS#
DQ
DQ
DQ
DQ
U2
DQ
DQ
DQ
DQ
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
DQMB5
DQM CS#
DQ
DQ
DQ
DQ U3
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ
DQ
U4
DQ
DQ
DQ
DQ
DQ
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
S2#
DQMB2
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
DQMB6
DQM CS#
DQ
DQ
DQ
DQ U7
DQ
DQ
DQ
DQ
DQMB3
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
DQMB7
DQM CS#
DQ
DQ
DQ
DQ U9
DQ
DQ
DQ
DQ
RAS#
RAS#: SDRAMs
CAS#
CAS#: SDRAMs
CKE0
CKE0: SDRAMs
WE#
WE#: SDRAMs
A0-A11
BA0: SDRAMs
BA1
VDD
BA1: SDRAMs
SCL
WP
DQM CS#
DQ
DQ
DQ
DQ
U8
DQ
DQ
DQ
DQ
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
CK0
U1
U2
U3
U4
U5
CK2
U6
U7
U8
U9
A0-A11: SDRAMs
BA0
VSS
DQM CS#
DQ
DQ
DQ
DQ
U6
DQ
DQ
DQ
DQ
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
SDRAMs
3.3pF
SDRAMs
SPD
U10
A0 A1 A2
CK1, CK3
10pF
SDA
SA0 SA1 SA2
Notes:
All resistor values are 10W unless otherwise specified.
Per industry standard, Micron modules use various component speed grades as
referenced in the module part numbering guide at:
www.micron.com/numberguide.
32,64 Meg x 64 SDRAM DIMMs
SD8_16C32_64x64AG_C.fm - Rev. C 11/02
5
SDRAMs = MT48LC32M8A2TG, Commercial Temperature
SDRAMs = MT48LC32M8A2TG-75 IT, Industrial Temperature
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2002, Micron Technology Inc.
256MB / 512MB (x64)
168-PIN SDRAM DIMMs
Figure 4: Functional Block Diagram
Dual Bank Modules
S0#
S1#
DQMB0
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQMB4
DQM CS#
DQ
DQ
DQ
DQ
U1
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ
DQ
DQ U19
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ
DQ
DQ
U3
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ
DQ
DQ
U17
DQ
DQ
DQ
DQ
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
DQMB1
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
DQM CS#
DQ
DQ
DQ
U2
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ
DQ
DQ U18
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ
DQ
DQ
U4
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ
DQ
DQ U16
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ
DQ
DQ
U6
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ
DQ
DQ U14
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ
DQ
DQ
U8
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ
DQ
DQ U12
DQ
DQ
DQ
DQ
DQMB5
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
S2#
S3#
DQMB2
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
DQMB6
DQM CS#
DQ
DQ
DQ
DQ
U7
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ
DQ
DQ U13
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ
DQ
DQ
U9
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ
DQ
DQ U11
DQ
DQ
DQ
DQ
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
DQMB3
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
DQMB7
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
VDD
CKE1
10K Ω
CKE0
CKE: SDRAMs U1-U9
CAS#
CAS#: SDRAMs
RAS#
RAS#: SDRAMs
WE#
WE#: SDRAMs
A0-A11
CK0
U1
U2
U3
U4
U5
CK2
U6
U7
U8
U9
CKE: SDRAMs U11-U19
A0-A11: SDRAMs
BA0
BA0: SDRAMs
BA1
BA1: SDRAMs
VDD
SDRAMs
VSS
SDRAMs
3.3pF
SCL
WP
U15
U16
U17
U18
U19
CK1
U11
U12
U13
U14
CK3
3.3pF
SPD
U10
A0 A1 A2
SDA
SA0 SA1 SA2
Notes:
All resistor values are 10W unless otherwise specified.
SDRAMs = MT48LC32M8A2TG, Commercial Temperature
SDRAMs = MT48LC32M8A2TG-75 IT, Industrial Temperature
Per industry standard, Micron modules use various component speed grades as
referenced in the module part numbering guide at:
www.micron.com/numberguide.
32,64 Meg x 64 SDRAM DIMMs
SD8_16C32_64x64AG_C.fm - Rev. C 11/02
6
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2002, Micron Technology Inc.
256MB / 512MB (x64)
168-PIN SDRAM DIMMs
General Description
Serial Presence-Detect Operation
The MT8LSDT13264A(I) and MT16LSDT6464A(I)
are high-speed CMOS, dynamic random-access,
256MB and 512MB memory modules organized in x64
configurations. These modules use internally configured quad-bank SDRAMS with a synchronous interface (all signals are registered on the positive edge of
the clock signals CK0-CK3).
Read and write accesses to the SDRAM modules are
burst oriented; accesses start at a selected location and
continue for a programmed number of locations in a
programmed sequence. Accesses begin with the registration of an ACTIVE command, which is then followed by a READ or WRITE command. The address
bits registered coincident with the ACTIVE command
are used to select the device bank and row to be
accessed (BA0, BA1 select the device bank; A0–A12
select the device row). The address bits registered
coincident with the READ or WRITE command are
used to select the starting column location for the
burst access.
The modules provide for programmable READ or
WRITE burst length of 1, 2, 4, or 8 locations, or the full
page, with a burst terminate option. An AUTO PRECHARGE function may be enabled to provide a selftimed row precharge that is initiateda the end of the
burst sequence.
The modules use an internal pipelined architecture
to achieve high-speed operation. This architecture is
compatible with the 2n rule of prefetch architectures,
but it also allows the column address to be changed on
every clock cycle to achieve a high-speed, fully random
access. Precharging one device bank while accessing
one of the other three device banks will hide the precharge cycles and provide seamless, high-speed, random-access operation.
The modules are designed to operate in 3.3V, lowpower memory systems. An auto refresh mode is provided, along with a power-saving, power-down mode.
All inputs and outputs are LVTTL-compatible.
SDRAM modules offer substantial advances in
DRAM operating performance, including the ability to
syncronously burst data at a high data rate with automatic column-address generation, the ability to interleave between intenal banks in order to hide precharge
time and the capability to randomly change column
addresses on each clock cycle during a burst access.
For more information regarding SDRAM operation,
refer to the 256Mb SDRAM component data sheet.
32,64 Meg x 64 SDRAM DIMMs
SD8_16C32_64x64AG_C.fm - Rev. C 11/02
These modules incorporate serial presence-detect
(SPD). The SPD function is implemented using a
2,048-bit EEPROM. This nonvolatile storage device
contains 256 bytes. The first 128 bytes can be programmed by Micron to identify the module type and
various SDRAM organizations and timing parameters.
The remaining 128 bytes of storage are available for
use by the customer. System READ/WRITE operations
between the master (system logic) and the slave
EEPROM device (DIMM) occur via a standard I2C bus
using the DIMM’s SCL (clock) and SDA (data) signals,
together with SA (2:0), which provide eight unique
DIMM/EEPROM addresses.
SDRAM Functional Description
In general, the 256Mb SDRAMs are quad-bank
DRAMs that operate at 3.3V and include a synchronous interface (all signals are registered on the positive
edge of the clock signal, CLK). The four banks of the x8
configured devices used for these modules are configured as 8,192 bit-rows by 1,024 bit-columns, by 8
input/output bits.
Read and write accesses to the SDRAM are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a
programmed sequence. Accesses begin with the registration of an ACTIVE command, which is then followed by a READ or WRITE command. The address
bits registered coincident with the active command are
used to select the device bank and row to be accessed;
BA0 and BA1 select the device bank, A0–A12 select the
device row. The address bits A0–A9 registered coincident with the READ or WRITE command are used to
select the starting device column location for the burst
access.
Prior to normal operation, the SDRAM must be initialized. The following sections provide detailed information covering device initialization, register
definition, command descriptions and device operation.
Initialization
SDRAMS must be powered up and initialized in a
predefined manner. Operational procedures other
than those specified may result in undefined operation. Once power is applied to VDD and VDDQ (simultaneously) and the clock is stable (stable clock is defined
as a signal cycling within timing constrants specified
for the clock pin), the SDRAM requires a 100µs delay
prior to issuing any command other than a COM-
7
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2002, Micron Technology Inc.
256MB / 512MB (x64)
168-PIN SDRAM DIMMs
MAND INHIBIT or NOP. Starting at some point during
this 100µs period and continuing at least through the
end of this period, COMMAND INHIBIT or NOP commands should be applied.
Once the 100µs delay has been satisfied with at least
one COMMAND INHIBIT or NOP command having
been applied, a PRECHARGE command should be
applied. All device banks must then be precharged,
thereby placing the device in the all banks idle state.
Once in the idle state, two AUTO REFRESH cycles
must be performed. After the AUTO REFRESH cycles
are complete, the SDRAM is ready for mode register
programming. Because the mode register will power
up in an unknown state, it should be loaded prior to
applying any operational command.
Reserved states should not be used, as unknown
operation or incompatibility with future versions may
result.
When a READ or WRITE command is issued, a block
of columns equal to the burst length is effectively
selected. All accesses for that burst take place within
this block, meaning that the burst will wrap within the
block if a boundary is reached, as shown in the Burst
Definition Table. The block is uniquely selected by A1–
A9 when the burst length is set to two; A2–A9 when the
burst length is set to four; and by A3–A9 when the burst
length is set to eight. The remaining (least significant)
address bit(s) is (are) used to select the starting location within the block. Full-page bursts wrap within the
page if the boundary is reached, as shown in Table 7,
Burst Definitions, on page 9.
Mode Register Definition
The mode register is used to define the specific
mode of operation of the SDRAM. This definition
includes the selection of a burst length, a burst type, a
CAS latency, an operating mode and a write burst
mode, as shown in Figure 5, Mode Register Definition
Diagram, on page 8. The mode register is programmed
via the LOAD MODE REGISTER command and will
retain the stored information until it is programmed
again or the device loses power.
Mode register bits M0–M2 specify the burst length,
M3 specifies the type of burst (sequential or interleaved), M4–M6 specify the CAS latency, M7 and M8
specify the operating mode, M9 specifies the write
burst mode, and M10 and M11 are reserved for future
use.
The mode register must be loaded when all device
banks are idle, and the controller must wait the specified time before initiating the subsequent operation.
Violating either of these requirements will result in
unspecified operation.
Burst Type
Accesses within a given burst may be programmed
to be either sequential or interleaved; this is referred to
as the burst type and is selected via bit M3.
The ordering of the accesses within a burst is determined by the burst length, the burst type, and the
starting column adress, as shown in Table 7, Burst Definitions, on page 9.
Burst Length
Read and write accesses to the SDRAM are burst oriented, with the burst length being programmable, as
shown in Figure 5, Mode Register Definition Diagram,
on page 8. The burst length determines the maximum
number of column locations that can be accessed for a
given READ or WRITE command. Burst lengths of 1, 2,
4, or 8 locations are available for both the sequential
and the interleaved burst types, and a full-page burst is
available for the sequential type. The full-page burst is
used in conjunction with the BURST TERMINATE
command to generate arbitrary burst lengths.
Figure 5: Mode Register Definition
32,64 Meg x 64 SDRAM DIMMs
SD8_16C32_64x64AG_C.fm - Rev. C 11/02
8
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2002, Micron Technology Inc.
256MB / 512MB (x64)
168-PIN SDRAM DIMMs
Diagram
Table 7:
BURST
LENGTH
2
4
8
Full
Page
(y)
Burst Definitions
STARTING
COLUMN
ADDRESS
A0
0
1
A1 A0
0
0
0
1
1
0
1
1
A2 A1 A0
0
0
0
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
n= A0-A11/9/8
(location
0 - y)
ORDER OF ACCESSES WITHIN
A BURST
TYPE =
SEQUENTIAL
TYPE =
INTERLEAVED
0-1
1-0
0-1
1-0
0-1-2-3
1-2-3-0
2-3-0-1
3-0-1-2
0-1-2-3
1-0-3-2
2-3-0-1
3-2-1-0
0-1-2-3-4-5-6-7
1-2-3-4-5-6-7-0
2-3-4-5-6-7-0-1
3-4-5-6-7-0-1-2
4-5-6-7-0-1-2-3
5-6-7-0-1-2-3-4
6-7-0-1-2-3-4-5
7-0-1-2-3-4-5-6
Cn, Cn+1, Cn+2
Cn+3, Cn+4...
...Cn-1, Cn...
0-1-2-3-4-5-6-7
1-0-3-2-5-4-7-6
2-3-0-1-6-7-4-5
3-2-1-0-7-6-5-4
4-5-6-7-0-1-2-3
5-4-7-6-1-0-3-2
6-7-4-5-2-3-0-1
7-6-5-4-3-2-1-0
Not Supported
NOTE:
1. For full-page accesses: y = 1,024
2. For a burst length of two, A1–A9 select the block of
two burst; A0 selects the starting column within the
block.
3. For a burst length of four, A2–A9 select the block of
four burst; A0–A1 select the starting column within
the block.
4. For a burst length of eight, A3–A9 select the block
of eight burst; A0–A2 select the starting column
within the block.
5. For a full-page burst, the full row is selected and
A0–A9 select the starting column.
6. Whenever a boundary of the block is reached
within a given sequence above, the following
access wraps within the block.
7. For a burst length of one, A0–A9 select the unique
column to be accessed, and Mode Register bit M3 is
ignored. For a full-page burst, the full row is
selected and A0–A8 select the starting column.
32,64 Meg x 64 SDRAM DIMMs
SD8_16C32_64x64AG_C.fm - Rev. C 11/02
9
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2002, Micron Technology Inc.
256MB / 512MB (x64)
168-PIN SDRAM DIMMs
CAS Latency
Operating Mode
The CAS latency is the delay, in clock cycles,
between the registration of a READ command and the
availability of the first piece of output data. The latency
can be set to two or three clocks.
If a READ command is registered at clock edge n,
and the latency is m clocks, the data will be available
by clock edge n + m. The DQs will start driving as a
result of the clock edge one cycle earlier (n + m - 1),
and provided that the relevant access times are met,
the data will be valid by clock edge n + m. For example,
assuming that the clock cycle time is such that all relevant access times are met, if a READ command is registered at T0 and the latency is programmed to two
clocks, the DQs will start driving after T1 and the data
will be valid by T2, as shown in Figure 6, CAS Latency
Diagram. Table 8, CAS Latency Table, indicates the
operating frequencies at which each CAS latency setting can be used.
Reserved states should not be used as unknown
operation or incompatibility with future versions may
result.
The normal operating mode is selected by setting
M7 and M8 to zero; the other combinations of values
for M7 and M8 are reserved for future use and/or test
modes. The programmed burst length applies to both
READ and WRITE bursts.
Test modes and reserved states should not be used
because unknown operation or incompatibility with
future versions may result.
Write Burst Mode
When M9 = 0, the burst length programmed via M0–
M2 applies to both READ and WRITE bursts; when
M9 = 1, the programmed burst length applies to READ
bursts, but write accesses are single-location (nonburst) accesses.
Table 8:
ALLOWABLE OPERATING
CLOCK FREQUENCY (MHZ)
Figure 6: CAS Latency Diagram
T0
T1
T2
T3
READ
NOP
NOP
CLK
COMMAND
tLZ
CAS Latency Table
SPEED
CAS LATENCY = 2
CAS LATENCY = 3
-13E
-133
-10E
£ 133
£ 100
£ 100
£ 143
£ 133
NA
tOH
DOUT
DQ
tAC
CAS Latency = 2
T0
T1
T2
T3
T4
READ
NOP
NOP
NOP
CLK
COMMAND
tLZ
tOH
DOUT
DQ
tAC
CAS Latency = 3
DON’T CARE
UNDEFINED
32,64 Meg x 64 SDRAM DIMMs
SD8_16C32_64x64AG_C.fm - Rev. C 11/02
10
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2002, Micron Technology Inc.
256MB / 512MB (x64)
168-PIN SDRAM DIMMs
Commands
The Truth Table provides a quick reference of available commands. This is followed by written description of each command. For a more detailed descrip-
Table 9:
tion of commands and operations, refer to the 256Mb
SDRAM component data sheet.
Truth Table – SDRAM Commands and DQMB Operation
CKE is HIGH for all commands shown except SELF REFRESH; notes appear following the Truth Table
NAME (FUNCTION)
COMMAND INHIBIT (NOP)
NO OPERATION (NOP)
ACTIVE (Select bank and activate row)
READ (Select bank and column, and start READ burst)
WRITE (Select bank and column, and start WRITE
burst)
BURST TERMINATE
PRECHARGE (Deactivate row in bank or banks)
AUTO REFRESH or SELF REFRESH
(Enter self refresh mode)
LOAD MODE REGISTER
Write Enable/Output Enable
Write Inhibit/Output High-Z
CS#
RAS# CAS# WE# DQMB
ADDR
DQ
NOTES
H
L
L
L
L
X
H
L
H
H
X
H
H
L
L
X
H
H
H
L
X
X
X
L/H
L/H
X
X
Bank/Row
Bank/Col
Bank/Col
X
X
X
X
Valid
1
2
2
L
L
L
H
L
L
H
H
L
L
L
H
X
X
X
X
Code
X
Active
X
X
3
4, 5
L
–
–
L
–
–
L
–
–
L
–
–
X
L
H
Op-code
–
–
X
Active
High-Z
6
7
7
NOTE:
1. A0–A12 provide row address; BA0–BA1 determine which device bank is made active.
2. A0–A9 provide column address; A10 HIGH enables the auto-precharge feature (nonpersistent), while A10 LOW disables the auto-precharge feature; BA0-BA1 determine which device bank is being read from or written to.
3. A10 LOW: BA0–BA1 determine which device bank is being precharged. A10 HIGH: all device banks are precharged
and BA0, BA1 are “Don’t Care.”
4. This command is AUTO REFRESH if CKE is HIGH, SELF REFRESH if CKE is LOW.
5. Internal refresh counter controls row addressing; all inputs and I/Os are “Don’t Care” except for CKE.
6. A0–A11 define the op-code written to the mode register and A12 should be driven LOW.
7. Activates or deactivates the DQs during WRITEs (zero-clock delay) and READs (two-clock delay).
32,64 Meg x 64 SDRAM DIMMs
SD8_16C32_64x64AG_C.fm - Rev. C 11/02
11
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2002, Micron Technology Inc.
256MB / 512MB (x64)
168-PIN SDRAM DIMMs
Absolute Maximum Ratings
Stresses greater than those listed may cause permanent damage to the device. This is a stress rating only,
and functional operation of the device at these or any
other conditions above those indicated in the opera-
tional sections of this specification is not implied.
Exposure to absolute maximum rating conditions for
extended periods may affect reliability.
Voltage on VDD, VDDQ Supply
Relative to VSS . . . . . . . . . . . . . . . . . . . . . -1V to +4.6V
Voltage on Inputs NC or I/O Pins
Relative to VSS . . . . . . . . . . . . . . . . . . . . -1V to +4.6V
Operating Temperature
TA (Commercial) . . . . . . . . . . . . . . . . .. 0°C to +70°C
TA (Industrial). . . . . . . . . . . . . . . . . .. -40°C to +85°C
Storage Temperature (plastic) . . . . . . -55°C to +150°C
Power Dissipation, 256MB . . . . . . . . . . . . . . . . . . . . 8W
Power Dissipation, 512MB . . . . . . . . . . . . . . . . . . . 16W
Table 10: DC Electrical Characteristics and Operating Conditions – 256MB Module
Notes: 1, 5, 6; notes appear on page 17; VDD, VDDQ = +3.3V ±0.3V
PARAMETER/CONDITION
SYMBOL
MIN
MAX
UNITS
NOTES
SUPPLY VOLTAGE
INPUT HIGH VOLTAGE: Logic 1; All inputs
INPUT LOW VOLTAGE: Logic 0; All inputs
INPUT LEAKAGE CURRENT:
Command and Address
Any input 0V £ VIN £ VDD
Inputs, CKE
(All other pins not under test = 0V)
CK, S#
DQ, DQMB
OUTPUT LEAKAGE CURRENT: DQ pins are disabled;
0V £ VOUT £ VDDQ
OUTPUT LEVELS:
Output High Voltage (IOUT = -4mA)
Output Low Voltage (IOUT = 4mA)
VDD, VDDQ
VIH
VIL
3
2
-0.3
-40
3.6
VDD + 0.3
0.8
40
V
V
V
µA
22
22
33
IOZ
-20
-5
-5
20
5
5
µA
µA
µA
33
VOH
VOL
2.4
–
–
0.4
V
V
II
Table 11: DC Electrical Characteristics and Operating Conditions – 512MB Module
Notes: 1, 5, 6; notes appear on page 17; VDD, VDDQ = +3.3V ±0.3V
PARAMETER/CONDITION
SYMBOL
MIN
MAX
UNITS
NOTES
SUPPLY VOLTAGE
INPUT HIGH VOLTAGE: Logic 1; All inputs
INPUT LOW VOLTAGE: Logic 0; All inputs
INPUT LEAKAGE CURRENT:
Command and Address
Any input 0V £ VIN £ VDD
Inputs, CKE
(All other pins not under test = 0V)
CK, S#
DQ, DQMB
OUTPUT LEAKAGE CURRENT: DQ pins are disabled;
0V £ VOUT £ VDDQ
OUTPUT LEVELS:
Output High Voltage (IOUT = -4mA)
Output Low Voltage (IOUT = 4mA)
VDD, VDDQ
VIH
VIL
3
2
-0.3
-80
3.6
VDD + 0.3
0.8
80
V
V
V
µA
22
22
33
II
IOZ
-20
-10
-10
20
10
10
µA
µA
µA
33
VOH
VOL
2.4
–
–
0.4
V
V
32,64 Meg x 64 SDRAM DIMMs
SD8_16C32_64x64AG_C.fm - Rev. C 11/02
12
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2002, Micron Technology Inc.
256MB / 512MB (x64)
168-PIN SDRAM DIMMs
Table 12: IDD Specifications and Conditions – 256MB Module
Notes: 1, 5, 6, 11, 13; notes appear on page 17; VDD, VDDQ = +3.3v ±0.3v; SDRAM component values only
MAX
PARAMETER/CONDITION
SYMBOL
OPERATING CURRENT: Active Mode; Burst = 2; READ or WRITE;
t
RC = tRC (MIN)
STANDBY CURRENT: Power-Down Mode; All device device
banks idle; CKE = LOW
STANDBY CURRENT: Active Mode;CKE = HIGH; CS# = HIGH; All
device banks active after tRCD met; No accesses in progress
OPERATING CURRENT: Burst Mode; Continuous burst; READ or
WRITE; All device banks active
t
AUTO REFRESH CURRENT
RFC = tRFC (MIN)
CKE = HIGH; CS# = HIGH
t
RFC = 7.8125µs
SELF REFRESH CURRENT: CKE £ 0.2V
IDD1
-13E
-133
-10E
1,080 1,080 1,080
UNITS
NOTES
mA
3, 18,19, 22
IDD2
16
16
16
mA
22
IDD3
320
320
320
mA
3, 12, 19, 22
IDD4
1,080 1,080 1,080
mA
3, 18, 19, 22
IDD5
2,280 2,160 2,160
mA
3, 12
IDD6
28
28
28
mA
18, 19, 22, 31
IDD7
20
20
20
mA
4
Table 13: IDD Specifications and Conditions – 512MB Module
Notes: 1, 6, 11, 13; notes appear on page 17; VDD, VDDQ = +3.3V ±0.3V; SDRAM component values only
MAX
PARAMETER/CONDITION
SYMBOL
OPERATING CURRENT: Active Mode; Burst = 2; READ or WRITE;
RC = tRC (MIN)
STANDBY CURRENT: Power-Down Mode; All device device
banks idle; CKE = LOW
STANDBY CURRENT: Active Mode; CKE = HIGH; CS# = HIGH; All
device banks active after tRCD met; No accesses in progress
OPERATING CURRENT: Burst Mode; Continuous burst; READ or
WRITE; All device banks active
t
AUTO REFRESH CURRENT
RFC = tRFC (MIN)
IDD1a
-13E
-133
-10E
1,096 1,016 1,016
UNITS
NOTES
mA
3, 18,19, 22
t
CKE = HIGH; CS# = HIGH
t
RFC = 7.8125µs
SELF REFRESH CURRENT: CKE £ 0.2V
IDD2b
32
32
32
mA
22
IDD3a
336
336
336
mA
3, 12, 19, 22
mA
3, 18, 19, 22
IDD4a
1,096 1,096 1,096
IDD5b
4,560 4,320 4,320
mA
3, 12
b
56
56
56
mA
18, 19, 22, 31
IDD7b
40
40
40
mA
4
IDD6
NOTE:
a - Value calculated as one module bank in this condition, and all other module banks in Power-Down Mode (IDD2).
b - Value calculated reflects all module banks in this condition.
32,64 Meg x 64 SDRAM DIMMs
SD8_16C32_64x64AG_C.fm - Rev. C 11/02
13
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2002, Micron Technology Inc.
256MB / 512MB (x64)
168-PIN SDRAM DIMMs
.
Table 14: Capacitance – 256MB Module
Note 2; notes appear on page 17
PARAMETER
Input Capacitance: A0-A12, BA0, BA1, RAS#, CAS#, WE#
Input Capacitance: CK
Input Capacitance: S#
Input Capacitance: CKE
Input Capacitance: DQMB
Input/Output Capacitance: SCL, SA, SDA
Input/Output Capacitance: DQ
SYMBOL
MIN
MAX
UNITS
CI1
CI2
CI3
CI4
CI5
CI 6
CI0
20
13.3
10
20
2.5
–
4
30.4
17.3
15.2
30.4
3.8
10
6
pF
pF
pF
pF
pF
pF
pF
SYMBOL
MIN
MAX
UNITS
CI 1
CI 2
CI 3
CI 4
CI 5
CI 6
CIO
40
13.3
10
20
5
–
8
60.8
17.3
15.2
30.4
7.6
10
12
pF
pF
pF
pF
pF
pF
pF
Table 15: Capacitance – 512MB Module
Note 2; notes appear on page 17
PARAMETER
Input Capacitance: A0-A12, BA0, BA1, RAS#, CAS#, WE#
Input Capacitance: CK
Input Capacitance: S#
Input Capacitance: CKE
Input Capacitance: DQMB
Input/Output Capacitance: SCL, SA, SDA
Input/Output Capacitance: DQ
32,64 Meg x 64 SDRAM DIMMs
SD8_16C32_64x64AG_C.fm - Rev. C 11/02
14
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2002, Micron Technology Inc.
256MB / 512MB (x64)
168-PIN SDRAM DIMMs
Table 16: Electrical Characteristics and Recommended AC Operating Conditions
Notes: 5, 6, 8, 9, 11; notes appear on page 17
Module AC timing parameters comply with PC100 and PC133 Design Specs, based on component parameters
ACCHARACTERISTICS
-13E
PARAMETER
Access timefrom CLK (pos.edge)
SYMBOL
CL=3
t
AC(3)
CL=2
t
AC(2)
MIN
-133
MAX
MIN
5.4
-10E
MAX
MIN
5.4
5.4
6
MAX
UNITS
NOTES
6
ns
27
6
ns
Address hold time
t
AH
0.8
Address setup time
t
AS
1.5
1.5
2
ns
CLK high-level width
t
CH
2.5
2.5
3
ns
CLK low-level width
t
CL
2.5
2.5
3
ns
CK(3)
Clock cycle time
0.8
1
ns
CL=3
t
7
7.5
8
ns
23
CL = 2
t
7.5
10
10
ns
23
CK(2)
CKE hold time
t
CKH
0.8
0.8
1
ns
CKE setup time
t
CKS
1.5
1.5
2
ns
CS#, RAS#, CAS#, WE#, DQM hold time
t
CMH
0.8
0.8
1
ns
CS#, RAS#, CAS#, WE#, DQM setup time
t
CMS
1.5
1.5
2
ns
t
DH
0.8
0.8
1
ns
t
1.5
1.5
2
ns
Data-in hold time
Data-in setup time
Data-out high-impedance time
DS
CL = 3
t
5.4
5.4
6
ns
10
CL = 2
t
5.4
6
6
ns
10
HZ(3)
HZ(2)
Data-out low-impedance time
t
LZ
1
1
1
ns
Data-out hold time (load)
t
OH
3
3
3
ns
Data-out hold time (no load)
t
OHN
1.8
1.8
1.8
ns
28
ACTIVE to PRECHARGE command
t
ns
29
ACTIVE to ACTIVE command period
ACTIVE to READ or WRITE delay
t
RAS
37
t
RC
60
66
70
ns
RCD
15
20
20
ns
Refresh period (8,192 rows)
t
AUTOREFRESH period
t
44
64
REF
PRECHARGE command period
120,000
50
64
120,000
64
ms
RFC
66
66
70
ns
t
RP
15
20
20
ns
RRD
14
15
20
ns
ACTIVE bank a to ACTIVE bank b
command
Transition time
t
WRITE recovery time
t
Exit SELF REFRESH to ACTIVE command
t
32,64 Meg x 64 SDRAM DIMMs
SD8_16C32_64x64AG_C.fm - Rev. C 11/02
120,000
T
0.3
WR
1 CLK
+
7ns
14
67
t
XSR
1.2
0.3
1 CLK
+
7.5ns
15
75
15
1.2
0.3
1 CLK
+
7ns
15
80
1.2
ns
7
ns
24
ns
ns
25
20
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2002, Micron Technology Inc.
256MB / 512MB (x64)
168-PIN SDRAM DIMMs
.
Table 17: AC Functional Characteristics
Notes: 5, 6, 7, 8, 9, 11; notes appear on page 17
PARAMETER
SYMBOL
-13E
-133
-10E
CCD
1
1
t
READ/WRITE command to READ/WRITE command
UNITS
NOTES
1
t
17
14
CK
CKED
1
1
1
t
CKE to clock enable or power-down exit setup mode
t
PED
1
1
1
t
14
DQM to input data delay
t
DQD
0
0
0
t
17
DQM to data mask during WRITEs
t
DQM
0
0
0
t
17
DQMto data high-impedance during READs
t
DQZ
2
2
2
t
17
WRITE command to input data delay
t
t
CKE to clock disable or power-down entry mode
CK
CK
CK
CK
CK
DWD
0
0
0
t
17
Data-into ACTIVE command
t
DAL
4
5
4
t
15, 21
Data-into PRECHARGE command
t
DPL
2
2
2
t
16, 21
Last data-in to burst STOP command
t
BDL
1
1
1
t
17
Last data-in to new READ/WRITE command
t
1
1
1
t
17
Lastdata-into PRECHARGE command
t
RDL
2
2
2
t
16, 21
LOADMODEREGISTER command to ACTIVE or REFRESH
command
Data-out to high-impedance from PRECHARGE
CL = 3
command
CL = 2
t
MRD
2
2
2
t
26
t
ROH(3)
3
3
3
t
17
t
2
2
2
t
17
32,64 Meg x 64 SDRAM DIMMs
SD8_16C32_64x64AG_C.fm - Rev. C 11/02
CDL
ROH(2)
16
CK
CK
CK
CK
CK
CK
CK
CK
CK
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2002, Micron Technology Inc.
256MB / 512MB (x64)
168-PIN SDRAM DIMMs
Notes
1. All voltages referenced to VSS.
2. This parameter is sampled. VDD, VDDQ = +3.3V;
TA = 25°C; pin under test biased at 1.4; f = 1 MHz.
3. IDD is dependent on output loading and cycle
rates. Specified values are obtained with minimum cycle time and the outputs open.
4. Enables on-chip refresh and address counters.
5. The minimum specifications are used only to
indicate cycle time at which proper operation
over the full temperature range is ensured (Commercial Temperature: 0°C £ TA +70°C and Industrial Temperature: -40°C £ TA £ +85°C).
6. An initial pause of 100µs is required after power-up,
followed by two AUTO REFRESH commands, before
proper device operation is ensured. (VDD and VDDQ
must be powered up simultaneously. VSS and VSSQ
must be at same potential.) The two AUTO REFRESH
command wake-ups should be repeated any time
the tREF refresh requirement is exceeded.
7. AC characteristics assume tT = 1ns.
8. In addition to meeting the transition rate specification, the clock and CKE must transit between
VIH and VIL (or between VIL and VIH) in a monotonic manner.
9. Outputs measured at 1.5V with equivalent load:
16. Timing actually specified by tWR.
17. Required clocks are specified by JEDEC functionality and are not dependent on any timing parameter.
18. The IDD current will increase or decrease proportionally according to the amount of frequency
alteration for the test condition.
19. Address transitions average one transition every
two clocks.
20. CLK must be toggled a minimum of two times
during this period.
21. Based on tCK = 10ns for -10E, and tCK = 7.5ns for 133 and -13E.
22. VIH overshoot: VIH (MAX) = VDDQ + 2V for a pulse
width £ 3ns, and the pulse width cannot be
greater than one third of the cycle rate. VIL undershoot: VIL (MIN) = -2V for a pulse width £ 3ns.
23. The clock frequency must remain constant (stable
clock is defined as a signal cycling within timing
constraints specified for the clock pin) during
access or precharge states (READ, WRITE, including tWR, and PRECHARGE commands). CKE may
be used to reduce the data rate.
24. Auto precharge mode only. The precharge timing
budget (tRP) begins 7ns for -13E; 7.5ns for -133
and 7ns for -10E after the first clock delay, after
the last WRITE is executed. May not exceed limit
set for precharge mode.
25. Precharge mode only.
26. JEDEC and PC100 specify three clocks.
27. tAC for -133/-13E at CL = 3 with no load is 4.6ns
and is guaranteed by design.
28. Parameter guaranteed by design.
29. The value of tRAS used in -13E speed grade module SPDs is calculated from tRC - tRP = 45ns.
30. For -10E, CL= 2 and tCK = 10ns; for -133, CL = 3
and tCK = 7.5ns; for -13E, CL = 2 and tCK = 7.5ns.
31. CKE is HIGH during refresh command period
t
RFC (MIN) else CKE is LOW. The IDD6 limit is
actually a nominal value and does not result in a
fail value.
32. Leakage number reflects the worst-case leakage
possible through the module pin, not what each
memory device contributes.
33. Leakage number reflects the worst-case leakage
possible through the module pin, not what each
memory device contributes.
Q
50pF
10. tHZ defines the time at which the output achieves
the open circuit condition; it is not a reference to
VOH or VOL. The last valid data element will meet
t
OH before going High-Z.
11. AC timing and IDD tests have VIL = 0V and VIH =
3V, with timing referenced to 1.5V crossover point.
If the input transition time is longer than 1ns,
then the timing is referenced at VIL (MAX) and VIH
(MIN) and no longer at the 1.5V crossover point.
12. Other input signals are allowed to transition no
more than once every two clocks and are otherwise at valid VIH or VIL levels.
13. IDD specifications are tested after the device is
properly initialized.
14. Timing actually specified by tCKS; clock(s) specified as a reference only at minimum cycle rate.
15. Timing actually specified by tWR plus tRP; clock(s)
specified as a reference only at minimum cycle
rate.
32,64 Meg x 64 SDRAM DIMMs
SD8_16C32_64x64AG_C.fm - Rev. C 11/02
17
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2002, Micron Technology Inc.
256MB / 512MB (x64)
168-PIN SDRAM DIMMs
SPD Clock and Data Conventions
SPD Acknowledge
Data states on the SDA line can change only during
SCL LOW. SDA state changes during SCL HIGH are
reserved for indicating start and stop conditions (as
shown in Figure 7 and Figure 8).
Acknowledge is a software convention used to indicate successful data transfers. The transmitting device,
either master or slave, will release the bus after transmitting eight bits. During the ninth clock cycle, the
receiver will pull the SDA line LOW to acknowledge
that it received the eight bits of data (as shown in
Figure 9).
The SPD device will always respond with an
acknowledge after recognition of a start condition and
its slave address. If both the device and a WRITE operation have been selected, the SPD device will respond
with an acknowledge after the receipt of each subsequent eight bit word. In the read mode the SPD device
will transmit eight bits of data, release the SDA line and
monitor the line for an acknowledge. If an acknowledge is detected and no stop condition is generated by
the master, the slave will continue to transmit data. If
an acknowledge is not detected, the slave will terminate further data transmissions and await the stop
condition to return to standby power mode.
SPD Start Condition
All commands are preceded by the start condition,
which is a HIGH-to-LOW transition of SDA when SCL
is HIGH. The SPD device continuously monitors the
SDA and SCL lines for the start condition and will not
respond to any command until this condition has been
met.
SPD Stop Condition
All communications are terminated by a stop condition, which is a LOW-to-HIGH transition of SDA when
SCL is HIGH. The stop condition is also used to place
the SPD device into standby power mode.
Figure 7: Data Validity
Figure 8: Definition of Start and Stop
SCL
SCL
SDA
SDA
DATA STABLE
DATA
CHANGE
DATA STABLE
START
BIT
STOP
BIT
Figure 9: Acknowledge Response From Receiver
SCL from Master
8
9
Data Output
from Transmitter
Data Output
from Receiver
Acknowledge
32,64 Meg x 64 SDRAM DIMMs
SD8_16C32_64x64AG_C.fm - Rev. C 11/02
18
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2002, Micron Technology Inc.
256MB / 512MB (x64)
168-PIN SDRAM DIMMs
Table 18: EEPROM Device Select Code
The most significant bit (b7) is sent first
DEVICE TYPE IDENTIFIER
Memory Area Select Code (two arrays)
Protection Register Select Code
CHIP ENABLE
RW
b7
b6
b5
b4
b3
b2
b1
b0
1
0
0
1
1
1
0
0
SA2
SA2
SA1
SA1
SA0
SA0
RW
RW
Table 19: EEPROM Operating Modes
MODE
RW BIT
WC
BYTES
Current Address Read
RandomAddressRead
1
0
VIH or VIL
1
VIH or VIL
Sequential Read
Byte Write
Page Write
1
1
0
0
VIH or VIL
VIH or VIL
VIL
VIL
INITIAL SEQUENCE
Start, Device Select, RW = 1
Start, Device Select, RW= 0, Address
RESTART, Device Select, RW= 1
1
³1
1
£ 16
Similar to Current or Random Address Read
START, Device Select, RW = 0
START, Device Select, RW = 0
Table 20: SERIAL Presence-Detect EEPROM DC Operating Conditions
VDD = +3.3V ±0.3V; All voltages referenced to VSS
PARAMETER/CONDITION
SUPPLY VOLTAGE
INPUT HIGH VOLTAGE: Logic 1; All inputs
INPUT LOW VOLTAGE: Logic 0; All inputs
OUTPUT LOW VOLTAGE: IOUT = 3mA
INPUT LEAKAGE CURRENT: VIN = GND to VDD
OUTPUT LEAKAGE CURRENT: VOUT = GND to VDD
STANDBY CURRENT: SCL = SDA = VDD - 0.3V; All other
inputs = GND or 3.3V ±10%
POWER SUPPLY CURRENT:
SCL Clock frequency = 100 KHz
32,64 Meg x 64 SDRAM DIMMs
SD8_16C32_64x64AG_C.fm - Rev. C 11/02
19
SYMBOL
MIN
MAX
UNITS
VDD
VIH
VIL
VOL
ILI
ILO
ICCS
3
VDD x 0.7
-1
–
–
–
–
3.6
VDD + 0.5
VDD x 0.3
0.4
10
10
30
V
V
V
V
µA
µA
µA
ICC Write
ICC Read
–
–
3
1
mA
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2002, Micron Technology Inc.
256MB / 512MB (x64)
168-PIN SDRAM DIMMs
SPD EEPROM TIMING DIAGRAM
tF
t HIGH
tR
t LOW
SCL
t SU:STA
t HD:STA
t SU:DAT
t HD:DAT
t SU:STO
SDA IN
t DH
t AA
t BUF
SDA OUT
UNDEFINED
Table 21: Serial Presence-Detect EEPROM AC Operating Conditions
VDD = +3.3V ±0.3V; All voltages referenced to VSS
PARAMETER/CONDITION
SYMBOL
MIN
MAX
UNITS
SCL LOW to SDA data-out valid
t
AA
0.3
3.5
µs
Time the bus must be free before a new transition can
start
Data-out hold time
t
BUF
4.7
–
µs
t
300
DH
ns
300
t
SDA and SCL fall time
F
ns
Data-in hold time
t
HD:DAT
0
µs
Start condition hold time
t
HD:STA
4
µs
t
4
µs
ClockHIGHperiod
HIGH
100
ns
R
1
µs
SCL
100
KHz
t
Noise suppression time constant at SCL, SDA inputs
Clock LOW period
t
I
4.7
LOW
t
SDA and SCL rise time
f
SCL clock frequency
µs
SU:DAT
250
ns
Start condition setup time
t
SU:STA
4.7
µs
Stop condition setup time
t
SU:STO
4.7
µs
Data-in setup time
t
WRITE cycle time
t
WRC
NOTES
10
ms
1
NOTE:
1. The SPD EEPROM WRITE cycle time (tWRC) is the time from a valid stop condition of a write sequence to the end of
the EEPROM internal erase/program cycle. During the WRITE cycle, the EEPROM bus interface circuit is disabled, SDA
remains HIGH due to pull-up resistor, and the EEPROM does not respond to its slave address.
32,64 Meg x 64 SDRAM DIMMs
SD8_16C32_64x64AG_C.fm - Rev. C 11/02
20
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2002, Micron Technology Inc.
256MB / 512MB (x64)
168-PIN SDRAM DIMMs
Table 22: Serial Presence-Detect Matrix
VDD = +3.3V ±0.3V; “1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”
BYTE
0
1
2
3
4
5
6
7
8
9
ENTRY
(VERSION)
DESCRIPTION
MT8LSDT3264A(I) MT16LSDT6464A(I)
128
256
SDRAM
13
10
1 or 2
64
0
LVTTL
7ns (-13E)
7.5ns (-133)
8ns (-10E)
5.4ns (-13E/-133)
6ns (-10E)
80
08
04
0D
0A
01
40
00
01
70
75
80
54
60
80
08
04
0D
0A
02
40
00
01
70
75
80
54
60
NONPARITY
7.8125µs/SELF
8
NONE
1
00
82
08
00
01
00
82
08
00
01
SDRAM CYCLE TIME , tCK
(CAS LATENCY = 2) 10 (-133/-10E) A0
1, 2, 4, 8, PAGE
4
2, 3
0
0
UNBUFFERED
0E
7.5ns (13E)
10ns (-133/-10E)
8F
04
06
01
01
00
0E
75
A0
8F
04
06
01
01
00
0E
75
A0
24
SDRAMACCESSFROMCLK, tAC
(CAS LATENCY = 2)
5.4ns (-13E)
6ns (-133/-10E)
54
60
54
60
25
SDRAM CYCLE TIME, tCK
(CAS LATENCY = 1)
00
00
26
SDRAM ACCESS FROM CLK, tAC
(CAS LATENCY = 1)
00
00
27
MINIMUM ROW PRECHARGE TIME, tRP
28
MINIMUM ROW ACTIVE TO ROW ACTIVE, tRRD
29
MINIMUM RAS# TO CAS# DELAY, tRCD
30
MINIMUM RAS# PULSE WIDTH, tRAS (See note 1)
0F
14
0E
0F
14
0F
14
2D
2C
32
0F
14
0E
0F
14
0F
14
2D
2C
32
10
11
12
13
14
15
16
17
18
19
20
21
22
23
NUMBER OF BYTES USED BY MICRON
TOTAL NUMBER OF SPD MEMORY BYTES
MEMORY TYPE
NUMBER OF ROWADDRESSES
NUMBER OF COLUMN ADDRESSES
NUMBER OF MODULE BANKS
MODULE DATA WIDTH
MODULE DATA WIDTH (continued)
MODULE VOLTAGE INTERFACE LEVELS
SDRAM CYCLE TIME, tCK
(CAS LATENCY = 3)
SDRAM ACCESS FROM CLK, tAC
(CAS LATENCY = 3)
MODULE CONFIGURATION TYPE
REFRESH RATE/TYPE
SDRAM WIDTH (PRIMARY SDRAM)
ERROR-CHECKING SDRAM DATA WIDTH
MINIMUM CLOCK DELAY FROM BACK-TO-BACK
RANDOM COLUMN ADDRESSES,tCCD
BURST LENGTHS SUPPORTED
NUMBER OF BANKS ONS DRAM DEVICE
CAS LATENCIES SUPPORTED
CS LATENCY
WE LATENCY
SDRAM MODULE ATTRIBUTES
SDRAM DEVICE ATTRIBUTES:GENERAL
32,64 Meg x 64 SDRAM DIMMs
SD8_16C32_64x64AG_C.fm - Rev. C 11/02
21
15ns (-13E)
20ns (-133/-10E)
14ns (-13E)
15ns (-133)
20ns (-10E)
15ns (-13E)
20ns (-133/-10E)
45ns (-13E)
44ns (133)
50ns (-10E)
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2002, Micron Technology Inc.
256MB / 512MB (x64)
168-PIN SDRAM DIMMs
Table 22: Serial Presence-Detect Matrix (Continued)
VDD = +3.3V ±0.3V; “1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”
BYTE
ENTRY
(VERSION)
DESCRIPTION
31
32
MODULE BANK DENSITY
33
COMMAND AND ADDRESS HOLD TIME, tAH, tCMH
34
DATA SIGNAL INPUT SETUP TIME, tDS
35
DATA SIGNAL INPUT HOLD TIME, tDH
COMMAND AND ADDRESS SETUP TIME, tAS, tCMS
36-61
62
63
RESERVED
SPD REVISION
CHECKSUM FOR BYTES 0-62
64
65-71
72
73-90
91
92
93
94
95-98
99-125
126
MANUFACTURER’S JEDEC ID CODE
MANUFACTURER’S JEDEC ID CODE(CONT.)
MANUFACTURING LOCATION
MODULE PART NUMBER (ASCII)
PCB IDENTIFICATION CODE
IDENTIFICATION CODE (CONT.)
YEAR OF MANUFACTURE IN BCD
WEEK OF MANUFACTURE IN BCD
MODULE SERIAL NUMBER
MANUFACTURER-SPECIFIC DATA (RSVD)
SYSTEM FREQUENCY
127
256MB
1.5ns (-13E/-133)
2ns (-10E)
0.8ns (-13E/-133)
1ns (-10E)
1.5ns (-13E/-133)
2ns (-10E)
0.8ns (-13E/-133)
1ns (-10E)
REV. 1.2
(-13E)
(-133)
(-10E)
MICRON
0
100 MHz (-13E/
-133/-10E)
SDRAM COMPONENT & CLOCK DETAIL
MT8LSDT3264A(I) MT16LSDT6464A(I)
40
15
20
08
10
15
20
08
10
00
12
8B
D1
19
2C
FF
01 - 06
Variable Data
01-04
00
Variable Data
Variable Data
Variable Data
40
15
20
08
10
15
20
08
10
00
12
8C
D2
1A
2C
FF
01 - 06
Variable Data
01-04
00
Variable Data
Variable Data
Variable Data
64
64
AF
FF
NOTE:
1. The value of tRAS used for -13E modules is calculated from tRC - tRP. Actual device spec. value is 37ns.
32,64 Meg x 64 SDRAM DIMMs
SD8_16C32_64x64AG_C.fm - Rev. C 11/02
22
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2002, Micron Technology Inc.
256MB / 512MB (x64)
168-PIN SDRAM DIMMs
Figure 10: 256MB Module Dimensions
STANDARD PCB
FRONT VIEW
.125 (3.18)
MAX
5.256 (133.50)
5.244 (133.20)
.079 (2.00) R
(2X)
U1
U2
U4
U3
U7
U6
U8
U9
.118 (3.00)
(2X)
1.380 (35.05)
1.370 (34.80)
.700 (17.78)
TYP
U10
.118 (3.00) TYP
.250 (6.35) TYP
.118 (3.00)
TYP
1.661 (42.18)
2.625 (66.68)
.054 (1.37)
.046 (1.17)
.128 (3.25)
(2X)
.118 (3.00)
.039 (1.00)R (2X)
.039 (1.00)
TYP
.050 (1.27)
TYP
PIN 84 (PIN 168 ON BACKSIDE)
PIN 1 (PIN 85 ON BACKSIDE)
4.550 (115.57)
LOW PROFILE PCB
.125 (3.18)
MAX
FRONT VIEW
5.256 (133.50)
5.244 (133.20)
.079 (2.00) R
(2X)
U10
U1
U2
U4
U3
U6
U7
U8
U9
1.131 (28.73)
.700 (17.78) 1.119 (28.42)
TYP
.118 (3.00)
(2X)
.118 (3.00) TYP
.250 (6.35) TYP
.118 (3.00)
TYP
1.661 (42.18)
.039 (1.00)R (2X)
2.625 (66.68)
PIN 1 (PIN 85 ON BACKSIDE)
.128 (3.25)
(2X)
.118 (3.00)
.039 (1.00)
TYP
.050 (1.27)
TYP
.054 (1.37)
.046 (1.17)
PIN 84 (PIN 168 ON BACKSIDE)
4.550 (115.57)
NOTE:
MAX
All dimensions in inches (millimeters) MIN or typical where noted.
32,64 Meg x 64 SDRAM DIMMs
SD8_16C32_64x64AG_C.fm - Rev. C 11/02
23
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2002, Micron Technology Inc.
256MB / 512MB (x64)
168-PIN SDRAM DIMMs
Figure 11: 512MB Module Dimensions
STANDARD PCB
FRONT VIEW
.157 (3.99)
MAX
5.256 (133.50)
5.244 (133.20)
.079 (2.00) R
(2X)
U3
U2
U1
U4
U7
U6
U8
U9
.118 (3.00)
(2X)
1.380 (35.05)
1.370 (34.80)
.700 (17.78)
TYP
U10
.118 (3.00) TYP
.250 (6.35) TYP
.118 (3.00)
TYP
1.661 (42.18)
.039 (1.00)R (2X)
2.625 (66.68)
.128 (3.25)
(2X)
.118 (3.00)
.039 (1.00)
TYP
.050 (1.27)
TYP
.054 (1.37)
.046 (1.17)
PIN 84
PIN 1
4.550 (115.57)
BACK VIEW
U12
U11
U13
U14
U17
U16
U18
U19
PIN 168
PIN 85
LOW PROFILE PCB
.157 (3.99)
MAX
FRONT VIEW
5.256 (133.50)
5.244 (133.20)
.079 (2.00) R
(2X)
U10
U1
U3
U2
U4
U6
U7
U8
U9
1.131 (28.73)
.700 (17.78) 1.119 (28.42)
TYP
.118 (3.00)
(2X)
.118 (3.00) TYP
.250 (6.35) TYP
.118 (3.00)
TYP
1.661 (42.18)
.039 (1.00)R (2X)
2.625 (66.68)
.128 (3.25)
(2X)
.118 (3.00)
.039 (1.00)
TYP
.050 (1.27)
TYP
.054 (1.37)
.046 (1.17)
PIN 84
PIN 1
4.550 (115.57)
BACK VIEW
U11
U12
U13
U14
U17
U16
PIN 168
U18
U19
PIN 85
NOTE:
MAX
All dimensions in inches (millimeters) MIN or typical where noted.
®
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900
E-mail: [email protected], Internet: http://www.micron.com, Customer Comment Line: 800-932-4992
Micron and the M logo are registered trademarks and the Micron logo is a trademark of Micron Technology, Inc.
32,64 Meg x 64 SDRAM DIMMs
SD8_16C32_64x64AG_C.fm - Rev. C 11/02
24
©2002, Micron Technology Inc.