MOSEL V61C3181024

■ Packages
– 32-pin TSOP
– 32-pin 300 mil SOJ
Features
■
■
■
■
■
■
■
PRELIMINARY
V61C3181024
128K X 8 HIGH SPEED
STATIC RAM
MOSEL VITELIC
High-speed: 10, 12, 15 ns
Fully static operation
All inputs and outputs directly TTL compatible
Three state outputs
Low data retention current (VCC = 2V)
Single 3.3V ± 0.3 Power Supply
Low CMOS Standby current of 5 mA max
Description
The V61C3181024 is a 1,048,576-bit static
random-access memory organized as 131,072
words by 8 bits. Inputs and three-state outputs are
TTL compatible and allow for direct interfacing
with common system bus structures. The
V61C3181024 is available in 32-pin SOJ and
TSOP.
Functional Block Diagram
A0
VCC
GND
Row
Decoder
Memory Array
A8
I/O0
Column I/O
Input
Data
Circuit
Column Decoder
I/O7
A9
CE1
CE2
OE
WE
A16
Control
Circuit
3181024 01
Device Usage Chart
Operating
Temperature
Range
0°C to 70°C
V61C3181024 Rev. 1.3 February 1999
Package Outline
Access Time (ns)
T
R
10
12
15
Temperature
Mark
•
•
•
•
•
Blank
1
V61C3181024
MOSEL VITELIC
Pin Descriptions
WE
Write Enable Input
An active LOW input, WE input controls read and
write operations. When CE and WE inputs are both
LOW, the data present on the I/O pins will be
written into the selected memory location.
A0–A16
Address Inputs
These 17 address inputs select one of the 128K x 8
bit segments in the RAM.
CE1, CE2 Chip Enable Inputs
CE1 is active LOW and CE2 is active HIGH. Both
chip enables must be active to read from or write to
the device. If either chip enable is not active, the
device is deselected and is in a standby power
mode. The I/O pins will be in the high-impedance
state when deselected.
I/O0–I/O7 Data Input and Data Output Ports
These 8 bidirectional ports are used to read data
from and write data into the RAM.
VCC
Power Supply
GND
Ground
Output Enable Input
OE
The Output Enable input is active LOW. When OE
is LOW with CE LOW and WE HIGH, data of the
selected memory location will be available on the
I/O pins. When OE is HIGH, the I/O pins will be in
the high impedance state.
Pin Configurations (Top View)
32-Pin SOJ
32-Pin TSOP-I
NC
1
32
VCC
A10
2
31
A11
A9
3
30
CE2
A8
4
29
WE
A7
5
28
A12
A6
6
27
A13
A5
7
26
A14
A4
8
25
A15
A3
9
24
OE
A2
10
23
A16
A1
11
22
CE1
A0
12
21
I/O7
I/O0
13
20
I/O6
I/O1
14
19
I/O5
I/O2
15
18
I/O4
GND
16
17
I/O3
A15
A14
A13
A12
WE
CE2
A11
VCC
NC
A10
A9
A8
A7
A6
A5
A4
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
3181024 03
3181024 02
V61C3181024 Rev. 1.3 February 1999
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2
OE
A16
CE1
I/O7
I/O6
I/O5
I/O4
I/O3
VSS
I/O2
I/O1
I/O0
A0
A1
A2
A3
V61C3181024
MOSEL VITELIC
Part Number Information
V
61
C
31
8
1024
–
MOSEL-VITELIC
TEMP.
OPERATING
VOLTAGE
SRAM
FAMILY
DENSITY
SPEED
BLANK = 0°C to 70°C
1024K
61 = HIGH SPEED
PKG
C = CMOS PROCESS
T = TSOP STANDARD
R = 300 mil SOJ
PWR.
31 = 3.3V
ORGANIZATION
10 ns
12 ns
15 ns
8 = 8-bit
BLANK = STANDARD
3181024 05
Absolute Maximum Ratings (1)
Symbol
Parameter
Commercial
Units
VN
Input Voltage
-0.5 to VCC + 0.5
V
VDQ
Input/Output Voltage Applied
VCC + 0.5
V
TBIAS
Temperature Under Bias
-10 to +125
°C
TSTG
Storage Temperature
-65 to +150
°C
NOTE:
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress
rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections
of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect
reliability.
Capacitance*
Truth Table
TA = 25°C, f = 1.0MHz
Symbol
Parameter
CIN
Input Capacitance
COUT
Output Capacitance
Max.
Unit
Mode
CE1
CE2
OE
WE
I/O
Operation
VIN = 0V
6
pF
Standby
H
X
X
X
High Z
VI/O = 0V
8
pF
Standby
X
L
X
X
High Z
Output Disable
L
H
H
H
High Z
Read
L
H
L
H
DOUT
Write
L
H
X
L
DIN
Conditions
NOTE:
1. This parameter is guaranteed by design and not tested.
NOTE:
X = Don’t Care, L = LOW, H = HIGH
V61C3181024 Rev. 1.3 February 1999
3
V61C3181024
MOSEL VITELIC
DC Electrical Characteristics (over all temperature ranges, VCC = 3.3V ± 0.3)
Symbol
Parameter
Min.
Typ.
Max.
Units
VIL
Input LOW Voltage(1,2)
-0.5
—
0.8
V
VIH
Input HIGH Voltage(1)
2.2
—
VCC + 0.3
V
IIL
Input Leakage Current
VCC = Max, VIN = 0V to VCC
-5
—
5
µA
IOL
Output Leakage Current
VCC = Max, CE1 = VIH, VOUT = 0V to VCC
-5
—
5
µA
VOL
Output LOW Voltage
IOL = 4mA
—
—
0.4
V
VOH
Output HIGH Voltage
IOH = -2mA
2.4
—
—
V
Symbol
Test Conditions
Parameter
Com.(4)
Units
ICC1
Average Operating Current, CE1 = VIL, CE2 = VIH, Output Open,
VCC = Max., f = fMAX(3)
100
mA
ISB
TTL Standby Current
CE1 ≥ VIH, CE2 ≤ VIL, VCC = Max.
25
mA
ISB1
CMOS Standby Current, CE1 ≥ VCC – 0.2V, CE2 ≤ 0.2V,
VIN ≥ VCC – 0.2V or VIN ≤ 0.2V, VCC = Max.
2
mA
NOTES:
1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
2. VIL (Min.) = -3.0V for pulse width < 20ns.
3. fMAX = 1/tRC.
4. Maximum values.
AC Test Conditions
Key to Switching Waveforms
Input Pulse Levels
0 to 3V
Input Rise and Fall Times
3 ns
Timing Reference Levels
1.5V
Output Load
WAVEFORM
see below
INPUTS
OUTPUTS
MUST BE
STEADY
WILL BE
STEADY
MAY CHANGE
FROM H TO L
WILL BE
CHANGING
FROM H TO L
MAY CHANGE
FROM L TO H
WILL BE
CHANGING
FROM L TO H
DON'T CARE:
ANY CHANGE
PERMITTED
CHANGING:
STATE
UNKNOWN
DOES NOT
APPLY
CENTER
LINE IS HIGH
IMPEDANCE
“OFF” STATE
AC Test Loads and Waveforms
3.3V
3.3V
480 Ω
480 Ω
I/O
Pins
225 Ω
DOUT
255 Ω
CL = 5 pF*
CL = 30 pF*
* Includes scope and jig
capacitance
3181024 06
V61C3181024 Rev. 1.3 February 1999
for tCLZ, tCHZ, tOLZ, tWZ,
tOW, and tOHZ
3181024 06B
4
V61C3181024
MOSEL VITELIC
Data Retention Characteristics
Symbol
VDR
Parameter
CE1 ≥ VCC – 0.2V, CE2 ≤ 0.2V,
VIN ≥ VCC – 0.2V, or VIN ≤ 0.2V
VCC for Data Retention
Min.
Typ.(2)
Max.
Units
2.0
—
5.5
V
ICCDR
Data Retention Current
CE1 ≥ VDR –0.2V, CE2 ≤ 0.2V,
VIN ≥ VCC – 0.2V, or VIN ≤ 0.2V
—
75
150
µA
tCDR
Chip Deselect to Data Retention Time
0
—
—
ns
—
—
ns
tR
Operation Recovery Time (see Retention Waveform)
tRC
(1)
NOTES:
1. tRC = Read Cycle Time
2. TA = +25°C.
Low VCC Data Retention Waveform (1) (CE1 Controlled)
Data Retention Mode
VCC
4.5V
VDR ≥ 2V
tCDR
CE1
2.2V
CE1 ≥ VCC – 0.2V
4.5V
tR
2.2V
3181024 07
Low VCC Data Retention Waveform (2) (CE2 Controlled)
Data Retention Mode
VCC
4.5V
VDR ≥ 2V
tCDR
CE2
V61C3181024 Rev. 1.3 February 1999
2.2V
4.5V
tR
CE2 ≤ 0.2V
5
2.2V
3181024 08
V61C3181024
MOSEL VITELIC
AC Electrical Characteristics
(over all temperature ranges)
Read Cycle
Parameter
Name
-10
Parameter
-12
-15
Min.
Max.
Min.
Max.
Min.
Max.
Unit
tRC
Read Cycle Time
10
—
12
—
15
—
ns
tAA
Address Access Time
—
10
—
12
—
15
ns
tACS1
Chip Enable Access Time
—
10
—
12
—
15
ns
tACS2
Chip Enable Access Time
—
10
—
12
—
15
ns
Output Enable to Output Valid
—
6
—
6
—
7
ns
tCLZ1
Chip Enable to Output in Low Z
3
—
3
—
3
—
ns
tCLZ2
Chip Enable to Output in Low Z
3
—
3
—
3
—
ns
tOLZ
Output Enable to Output in Low Z
0
—
0
—
0
—
ns
tCHZ
Chip Disable to Output in High Z
0
3
0
3
0
4
ns
tOHZ
Output Disable to Output in High Z
0
3
0
3
0
4
ns
tOH
Output Hold from Address Change
3
—
3
—
3
—
ns
tOE
Write Cycle
Parameter
Name
-10
Parameter
-12
-15
Min.
Max.
Min.
Max.
Min.
Max.
Unit
tWC
Write Cycle Time
10
—
12
—
15
—
ns
tCW1
Chip Enable to End of Write
8
—
10
—
13
—
ns
tCW2
Chip Enable to End of Write
8
—
10
—
13
—
ns
tAS
Address Setup Time
0
—
0
—
0
—
ns
tAW
Address Valid to End of Write
8
—
10
—
13
—
ns
tWP
Write Pulse Width
8
—
9
—
11
—
ns
tAH
Address Hold to End of Write
0
—
0
—
0
—
ns
tWHZ
Write to Output High-Z
0
5
0
5
0
5
ns
tWLZ
Write to Output Low Z
3
—
3
—
5
—
ns
tDW
Data Setup to End of Write
5
—
6
—
8
—
ns
tDH
Data Hold from End of Write
0
—
0
—
0
—
ns
V61C3181024 Rev. 1.3 February 1999
6
V61C3181024
MOSEL VITELIC
Switching Waveforms (Read Cycle)
Read Cycle 1(1, 2)
tRC
ADDRESS
tAA
OE
tOE
tOLZ
tOH
tOHZ(5)
I/O
3181024 09
Read Cycle 2(1, 2, 4)
tRC
ADDRESS
tAA
tOH
tOH
I/O
3181024 10
Read Cycle 3(1, 3, 4)
ADDRESS
CE1
tACS1
CE2
I/O
tACS2
tCHZ(5)
tCLZ1(5)
tCLZ2(5)
3181024 11
NOTES:
1. WE = VIH.
2. CE1 = VIL and CE2 = VIH.
3. Address valid prior to or coincident with CE1 transition LOW and/or CE2 transition HIGH.
4. OE = VIL.
5. Transition is measured ±500mV from steady state with CL = 5pF. This parameter is guaranteed and not 100% tested.
V61C3181024 Rev. 1.3 February 1999
7
V61C3181024
MOSEL VITELIC
Switching Waveforms (Write Cycle)
Write Cycle 1 (WE Controlled)(4)
tWC
ADDRESS
tAH(2)
(6)
tCW
CE1
tAW
CE2
tCW(6)
tAS
WE
tWP(1)
OUTPUT
tDW
tWHZ
tDH
INPUT
3181024 12
Write Cycle 2 (CE Controlled)(4)
tWC
ADDRESS
tAH(2)
tCW(6)
(4)
CE1
tAW
tCW(6)
CE2
tAS
WE
OUTPUT
High-Z
tDW
tDH
(5)
INPUT
3181024 13
NOTES:
1. The internal write time of the memory is defined by the overlap of CE1 and CE2 active and WE low. All signals must be active to
initiate and any one signal can terminate a write by going inactive. The data input setup and hold timing should be referenced to
the second transition edge of the signal that terminates the write.
2. tAH is measured from the earlier of CE1 or WE going high, or CE2 going LOW at the end of the write cycle.
3. During this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
4. OE = VIL or VIH. However it is recommended to keep OE at VIH during write cycle to avoid bus contention.
5. If CE1 is LOW and CE2 is HIGH during this period, I/O pins are in the output state. Then the data input signals of opposite phase
to the outputs must not be applied to them.
6. tCW is measured from CE1 going low or CE2 going HIGH to the end of write.
V61C3181024 Rev. 1.3 February 1999
8
V61C3181024
MOSEL VITELIC
Package Diagrams
32-Pin 300 mil SOJ
Units in inches
0.825 ± 0.005
32
17
0.300 ± 0.005
1
16
0.028 TYP. (0.032 MAX.)
0.133 TYP.
(0.140 MAX.)
0.335 ± 0.005
0.100 ± 0.005
SEATING
PLANE
0.050 TYP.
0.048 MAX.
0.018 ± 0.002
0.062 MIN.
0.267 TYP.
(0.276 MAX.)
0.004 MAX
32-Pin TSOP-I
Units in inches [mm]
0.787 ± 0.008
[19.99 ± 0.203]
Detail “A”
0.315 TYP.
(0.319 MAX.)
0.010 [.254]
0.800 TYP.
(0.810 MAX.)
0.024 ± 0.004
[0.610 ± 0.102]
0.724 TYP. (0.728 MAX.)
[18.39 TYP. (18.49 MAX)]
0.035 ± 0.002
[0.889 ± 0.051]
SEATING
PLANE
See Detail “A”
0.032 [0.813] TYP.
0.020 [0.508] MAX.
0.020 [0.508] SBC
0.005 MIN.
0.007 MAX.
0.003 [0.076] MAX.
0.127 MIN.
0.178 MAX.
V61C3181024 Rev. 1.3 February 1999
0.047 [1.19] MAX.
9
0.009 ± 0.002
[0.229 ± 0.051]
MOSEL VITELIC
WORLDWIDE OFFICES
V61C3181024
U.S.A.
TAIWAN
SINGAPORE
IRELAND & UK
3910 NORTH FIRST STREET
SAN JOSE, CA 95134
PHONE: 408-433-6000
FAX: 408-433-0952
7F, NO. 102
MIN-CHUAN E. ROAD, SEC. 3
TAIPEI
PHONE: 886-2-2545-1213
FAX: 886-2-2545-1209
10 ANSON ROAD #23-13
INTERNATIONAL PLAZA
SINGAPORE 079903
PHONE: 65-3231801
FAX: 65-3237013
BLOCK A UNIT 2
BROOMFIELD BUSINESS PARK
MALAHIDE
CO. DUBLIN, IRELAND
PHONE: +353 1 8038020
FAX: +353 1 8038049
1 CREATION ROAD I
SCIENCE BASED IND. PARK
HSIN CHU, TAIWAN, R.O.C.
PHONE: 886-3-578-3344
FAX: 886-3-579-2838
JAPAN
HONG KONG
19 DAI FU STREET
TAIPO INDUSTRIAL ESTATE
TAIPO, NT, HONG KONG
PHONE: 852-2665-4883
FAX: 852-2664-7535
WBG MARINE WEST 25F
6, NAKASE 2-CHOME
MIHAMA-KU, CHIBA-SHI
CHIBA 261-71
PHONE: 81-43-299-6000
FAX: 81-43-299-6555
GERMANY
(CONTINENTAL
EUROPE & ISRAEL )
71083 HERRENBERG
BENZSTR. 32
GERMANY
PHONE: +49 7032 2796-0
FAX: +49 7032 2796 22
U.S. SALES OFFICES
NORTHWESTERN
NORTHEASTERN
SOUTHWESTERN
3910 NORTH FIRST STREET
SAN JOSE, CA 95134
PHONE: 408-433-6000
FAX: 408-433-0952
SUITE 436
20 TRAFALGAR SQUARE
NASHUA, NH 03063
PHONE: 603-889-4393
FAX: 603-889-9347
SUITE 200
5150 E. PACIFIC COAST HWY.
LONG BEACH, CA 90804
PHONE: 562-498-3314
FAX: 562-597-2174
CENTRAL &
SOUTHEASTERN
604 FIELDWOOD CIRCLE
RICHARDSON, TX 75081
PHONE: 972-690-1402
FAX: 972-690-0341
NORTHEASTERN
SUITE 436
20 TRAFALGAR SQUARE
NASHUA, NH 03063
PHONE: 603-889-4393
FAX: 603-889-9347
© Copyright 1999,
1998, MOSEL VITELIC Inc.
The information in this document is subject to change without
notice.
MOSEL VITELIC makes no commitment to update or keep current the information contained in this document. No part of this
document may be copied or reproduced in any form or by any
means without the prior written consent of MOSEL-VITELIC.
MOSEL VITELIC
2/99
Printed in U.S.A.
MOSEL VITELIC subjects its products to normal quality control
sampling techniques which are intended to provide an assurance
of high quality products suitable for usual commercial applications. MOSEL VITELIC does not do testing appropriate to provide
100% product quality assurance and does not assume any liability for consequential or incidental arising from any use of its products. If such products are to be used in applications in which
personal injury might occur from failure, purchaser must do its
own quality assurance testing appropriate to such applications.
3910 N. First Street, San Jose, CA 95134-1501 Ph: (408) 433-6000 Fax: (408) 433-0952 Tlx: 371-9461