DATA SHEET BIPOLAR ANALOG INTEGRATED CIRCUITS µPC8119T, µPC8120T VARIABLE GAIN AMPLIFIER SILICON MMIC FOR TRANSMITTER AGC OF DIGITAL CELLULAR TELEPHONE DESCRIPTION The µPC8119T and µPC8120T are silicon monolithic integrated circuits designed as variable gain amplifier. Due to 100 MHz to 1.9 GHz operation, these ICs are suitable for RF transmitter AGC stage of digital cellular telephone. Two types of gain control let users choose in accordance with system design. 3 V supply voltage and mini mold package contribute to make system lower voltage, decreased space and fewer components. The µPC8119T and µPC8120T are manufactured using NEC’s 20 GHz fT NESATTM III silicon bipolar process. This process uses silicon nitride passivation film and gold electrodes. These materials can protect chip surface from external pollution and prevent corrosion / migration. Thus, this IC has excellent performance, uniformity and reliability. FEATURES • Recommended operating frequency : f = 100 MHz to 1.92 GHz • Supply voltage : VCC = 2.7 to 3.3 V • Low current consumption : ICC = 11 mA TYP. @ VCC = 3.0 V • Gain control voltage : VAGC = 0.6 to 2.4 V (recommended) • Two types of gain control : µPC8119T = VAGC up vs. Gain down µPC8120T = VAGC up vs. Gain up (Forward control) (Reverse control) • AGC control can be constructed by external control circuit. • High-density surface mounting APPLICATIONS • 1.9 GHz cordless telephone (PHS base-station and so on) • 800 MHz to 900 MHz or 1.5 GHz Digital cellular telephone (PDC800M, PDC1.5G and so on) ORDERING INFORMATION Part Number Package Marking Supplying Form Gain Control Type µPC8119T-E3 6-pin minimold C2M Embossed tape 8 mm wide. 1, 2, 3 pins face to perforation side of the tape. Qty 3 kp/reel. Forward control µPC8120T-E3 Remark C2N Reverse control To order evaluation samples, please contact your local NEC sales office. (Part number for sample order: µPC8119T, µPC8120T) Caution Electro-static sensitive devices The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Document No. P11027EJ2V0DS00 (2nd edition) Date Published October 1998 N CP(K) Printed in Japan The mark shows major revised points. © 1996 µPC8119T, µPC8120T PIN CONNECTIONS 3 2 1 (Bottom View) C2M (Top View) 4 4 Pin No. Pin Name 1 INPUT 2 GND 3 GND 4 OUTPUT 5 VCC 6 VAGC 3 5 5 2 6 6 1 Marking is a example for µPC8119T. VARIABLE GAIN AMPLIFIER PRODUCT LINE-UP Part No. VCC (V) ICC (mA) VAGC (V) VAGC up vs.Gain f (GHz) µPC2723T 4.5 to 5.5 15 3.3 to 5.0 down up to 1.1 –4 µPC8119T 2.7 to 3.3 11 0.6 to 2.4 down 0.1 to 1.92 +3 µPC8120T 2.7 to 3.3 11 0.6 to 2.4 up 0.1 to 1.92 +3 µPC8130TA 2.7 to 3.3 11 0.6 to 2.4 up 0.8 to 1.5 +5 Low distortion µPC8131TA 2.7 to 3.3 11 0 to 2.4 down 0.8 to 1.5 +5 Low distortion Remark PO (1 dB) Features Excellent VCC fluctuation Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail. To know the associated product, please refer to each latest data sheet. SYSTEM APPLICATION EXAMPLE LNA RX I Q DEMO ÷N SW PLL PLL µPC8119T or µPC8120T I 0° φ TX PA 90° Q 2 µPC8119T, µPC8120T PIN EXPLANATION Pin No. Pin Name 1 IN 2 3 4 GND OUT Applied Voltage V – 0 Pin Voltage V Function and Applications Internal Equivalent Circuit Note 1.2 – Voltage as same as VCC through external inductor – RF input pin. This pin should be coupled with capacitor (eg 1000 pF) for DC cut. This pin can be input from 50 Ω impedance signal source without matching circuit. Ground pin. This pin should be connected to system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible. 5 4 Control circuit 1 Bias circuit RF output pin. This pin is designed as open collector of high impedance. This pin must be externally equipped with matching circuits. 5 VCC 2.7 to 3.3 – Supply voltage pin. This pin must be externally equipped with low pass filter (eg π type) in order to suppress leakage from input pin. This pin also must be equipped with bypass capacitor (eg 1000 pF) to minimize ground impedance. 6 VAGC 0 to 3.3 – Gain control pin. The relation between product number and control performance is shown below; Part No. VAGC up vs. Gain µPC8119T down µPC8120T up 2 3 5 6 Control circuit 2 3 Note Pin voltage is measured at VCC = 3.0 V. 3 µPC8119T, µPC8120T ABSOLUTE MAXIMUM RATINGS Parameter Symbol Conditions Ratings Unit Supply Voltage VCC TA = +25°C 3.6 V Gain Control Voltage VAGC TA = +25°C 3.6 mA Operating Ambient Temperature TA −40 to +85 °C Storage Temperature Tstg –55 to +150 °C Power Dissipation of Package PD 280 mW Mounted on double-sided copper-clad 50 × 50 × 1.6 mm epoxy glass PWB TA = +85°C RECOMMENDED OPERATING CONDITIONS Parameter Symbol MIN. TYP. MAX. Unit Supply Voltage VCC 2.7 3.0 3.3 V Same voltage should be applied to 4 and 5 pins. Gain Control Voltage VAGC 0.6 – 2.4 V IAGC ≤ 0.1 mA Pin – – –18 dBm – – –10 TA –40 +25 +85 °C f 100 – 1920 MHz With external output-matching IAGC 0.5 – – mA VAGC ≤ 3.3 V Input Level Operating Ambient Temperature Operating Frequency AGC Pin Drive Current Notice Padj ≤ –60 dBc @ ∆f = ±50 kHzNote 1 Padj ≤ –60 dBc @ ∆f = ±600 kHzNote 2 Notes 1. Adjacent Channel Interference (Padj) wave form condition: f = 950 MHz or 1440 MHz, π/4QPSK modulation signal, data rate = 42 kbps, rolloff ratio = 0.5, PN9 bits (pseudo random pattern) 2. Adjacent Channel Interference (Padj) wave form condition: f = 1900 MHz, π/4QPSK modulation signal, data rate = 384 kbps, rolloff ratio = 0.5, PN9 bits (pseudo random pattern) 4 µPC8119T, µPC8120T ELECTRICAL CHARACTERISTICS (Unless otherwise specified, TA = +25°C, VCC = Vout = 3.0 V, ZS = ZL = 50 Ω , External matched output port) µPC8119T Parameter Symbol Unit MIN. Circuit Current ICC µPC8120T Test Conditions TYP. MAX. MIN. TYP. MAX. No signal, ICC = IVCC + Iout 7.5 11 15 7.5 11 15 mA Maximum Power Gain GPMAX f = 950 MHz, Pin = –30 dBm f = 1440 MHz, Pin = –30 dBm 10 10 12.5 13 15 16 10.5 10.5 13 13.5 15.5 16.5 dB Gain Control RangeNote GCR f = 950 MHz, Pin = –30 dBm f = 1440 MHz, Pin = –30 dBm 40 35 50 45 – – 40 35 50 45 – dB Noise Figure NF f = 950 MHz, GPMAX f = 1440 MHz, GPMAX – – 8.5 7.5 11.5 10.5 – – 9.0 7.5 12 10.5 dB Isolation ISL f = 950 MHz, GPMAX f = 1440 MHz, GPMAX 27 31 32 36 – – 26 30 31 35 – – dB Input Return Loss RLin f = 950 MHz, GPMAX f = 1440 MHz, GPMAX 3 3 6 6 – – 3 3 6 6 – – dB PO (1 dB) f = 950 MHz, GPMAX f = 1440 MHz, GPMAX 0 +1.0 +3 +4 – – +0.5 0 +3.5 +3 – – dBm 1 dB Compression Output Power Note Gain Control Range (GCR) specification: GCR = GPMAX – GPMIN (dB) Conditions µPC8119T: GPMAX @ VAGC = 0 V, GPMIN @ VAGC = VCC µPC8120T: GPMAX @ VAGC = VCC, GPMIN @ VAGC = 0 V Remark Measured on TEST CIRCUIT 1 and 2 STANDARD CHARACTERISTICS FOR REFERENCE (Unless otherwise specified, TA = +25°C, VCC = Vout = 3.0 V, ZS = ZL = 50 Ω , External matched output port) Reference Value Parameter Symbol Test Conditions µPC8119T µPC8120T Unit Maximum Power Gain GPMAX f = 1900 MHz, Pin = –30 dBm 12.5 13 dB Gain Control RangeNote GCR f = 1900 MHz, Pin = –30 dBm 22 22 dB NF f = 1900 MHz, GPMAX 7.2 7.3 dB PO (1 dB) f = 1900 MHz, GPMAX +3.0 +2.5 dBm Noise Figure 1 dB Compression Output Power Note Gain Control Range (GCR) specification: GCR = GPMAX – GPMIN (dB) Conditions µPC8119T: GPMAX @ VAGC = 0 V, GPMIN @ VAGC = VCC µPC8120T: GPMAX @ VAGC = VCC, GPMIN @ VAGC = 0 V Remark Measured on APPLICATION CIRCUIT EXAMPLE 5 µPC8119T, µPC8120T TEST CIRCUIT1 (f = 950 MHz, both products in common) Vcc line low pass filter C6 1000 pF Jumper wire VAGC C3 1000 pF C4 6 1000 pF C7 1000 pF 5 C1 IN VCC C5 1000 pF L 1000 pF 5 nH C2 4 OUT 1 1 pF 2, 3 Output matching circuit ILLUSTRATION OF TEST CIRCUIT1 ASSEMBLED ON EVALUATION BOARD TYPE1 µPC8119/20T OUT C2 OUT L C7 VCC C3 C4 C5 VAGC VAGC C1 IN IN COMPONENT LIST Form Symbol Value C1, C3 to C7 1000 pF C2 1 pFNote 1 Chip inductor L 5 nH (10 nH × 2 pcs parallel)Note 2 Jumper wire Jumper wire 5 nH Chip capacitor Notes 1. 1 pF : Murata Mfg. Co., Ltd. GR40CK010C 2. 10 nH : Murata Mfg. Co., Ltd. LQP31A10NG04 6 C6 Jumper wire µPC8119T, µPC8120T TEST CIRCUIT2 (f = 1440 MHz, both products in common) Vcc line low pass filter C6 1000 pF Pattern L VAGC C3 1000 pF VCC C5 1000 pF C4 C7 6 1000 pF 5 C1 IN 1000 pF L 1000 pF 2 nH C2 4 OUT 1 1 pF 2, 3 Output matching circuit ILLUSTRATION OF TEST CIRCUIT2 ASSEMBLED ON EVALUATION BOARD TYPE2 µPC8119/20T OUT C2 OUT L VCC C5 C6 C3 VAGC 1 C1 C7 GND C7 C4 Pattern L (5 nH) VAGC IN (Monitor of Vcc pin) C4 IN Vcc COMPONENT LIST Form Chip capacitor Chip inductor Printed on board Notes 1. 1 pF Symbol Value C1, C3 to C7 1000 pF C2 1 pFNote 1 L 2 nH (4.7 nH + 6.8 nH × 2 pcs parallel)Note 2 Pattern L 5 nH : Murata Mfg. Co., Ltd. GR40CK010C 2. 4.7 nH : Murata Mfg. Co., Ltd. LQP31A4N7J04 6.8 nH : Murata Mfg. Co., Ltd. LQP31A6N8J04 7 µPC8119T, µPC8120T APPLICATION CIRCUIT EXAMPLE (f = 1900 MHz, both products in common) Vcc line low pass filter C6 1000 pF Jumper wire VAGC C3 1000 pF C4 6 1000 pF 5 C1 IN 1000 pF VCC C5 1000 pF C7 L 1000 pF 100 nH 1000 pF 4 OUT 1 C2 2, 3 C8 2 to 2.5 pF Output matching circuit ILLUSTRATION OF APPLICATION CIRCUIT EXAMPLE ASSEMBLED ON EVALUATION BOARD TYPE1 µPC8119/20T OUT C8 OUT C2 L C7 GND C4 VAGC IN COMPONENT LIST Form Chip capacitor Chip inductor Printed on board Symbol Value C1 to C7 1000 pF C8 2 to 2.5 pF L 100 nH Note Jumper wire 5 nH Note 100 nH: Murata Mfg. Co., Ltd. LQP31A10NG04 8 C6 Jumper wire VAGC C1 IN C5 VCC µPC8119T, µPC8120T LLUSTRATION AND EXPLANATIONS OF EVALUATION BOARD TYPE2 µPC8119/20T OUT OUT VAGC 1 IN Vcc monitor line IN Vcc VAGC VCC EXPLANATION <1> This board prints the pattern inductor which inductance is as same as jumper wire in TEST CIRCUITs (inductance: approx. 5 nH to 6 nH). <2> Input leakage to VCC pin can be monitored through ‘VCC monitor line’. This leakage can be suppressed with π type low pass filter attached to VCC pin. The filter performance depends on parallel capacitors. <3> After adjusted low pass filter, monitor line should be removed before output matching circuit is attached. EVALUATION BOARD CHARACTERS (1) 35 µm thick double-sided copper clad 35 × 42 × 0.4 mm polyimide board (2) Back side: GND pattern (3) Solder plated patterns (4) : Through holes ATTENTION Test circuit or print pattern in this sheet is for testing IC characteristics. In the case of actual system application, external circuits including print pattern and matching circuit constant of output port should be designed in accordance with IC’s S parameters and environmental components. 9 µPC8119T, µPC8120T APPLICATION for µPC8119T, µPC8120T 1. TO GET MINIMUM GAIN –1. VCC line filtering A low pass filter must be attached to VCC line in order to suppress RF input leakage to VCC. (The low pass filter: for example π type.) This filter must be inserted between VCC pin and matching inductor. If the low pass filter is not attached to this point, minimum output level would not go down under the leakage level. For example, µPC8119T’s RF input leakage level to VCC shows –30 dBm at 950 MHz and –17 dBm at 1440 dBm. π type low pass filter constant example Pattern L = 5 to 6 nH, C5 = C6 = 1000 pF (Refer to TEST CIRCUIT1, 2 and APPLICATION CIRCUIT EXAMPLE) In the case of testing on ‘µPC8119/20T TYPE2’ board, monitor the input leakage to VCC pin through ‘VCC monitor line’ and adjust parallel capacitors to suppress leakage. –2. Capacitor feed-back between VAGC and VCC pins Feed-back capacitor between VAGC and VCC pins must be externally attached in order to decrease impedance difference. 2. TO GET MAXIMUM GAIN –1. Output matching As for external matching circuit, only output port should be equipped in order to get maximum gain. Output port matching in accordance with impedance of these ICs and next stage must keep the points as follows; <1> AC points • IC output impedance at maximum gain must be used. • Inductance of L must be chosen to get S22 ~ –20 dBm at maximum gain. <2> DC point • On LC matching, L of low DC resistance must be chosen to apply voltage as same as VCC to output pin. 3. OTHERS –1. Input connection Input port does not need to match externally. These ICs can be connected to front stage through coupling capacitor (eg 1000 pF) for DC cut. –2. VCC ON/OFF while voltage applied to VAGC Due to internal transistor’s voltage rating, ON/OFF can be controlled with VCC voltage while 3.0 V or less is applied to VAGC. For the usage and application of µPC8119T and µPC8120T, please refer to the application note (Document No. P12763E). 10 µPC8119T, µPC8120T TYPICAL CHARACTERISTICS (TA = +25°C) µPC8119T CIRCUIT CURRENT vs. SUPPLY VOLTAGE 14 150 Gain Control Current IAGC ( µ A) no signals Vcc = Vout 12 Circuit Current ICC (mA) GAIN CONTROL CURRENT vs. GAIN CONTROL VOLTAGE 10 8 6 4 2 125 Vcc = 2.7 V 100 75 Vcc = 3.0 V 50 Vcc = 3.3 V 25 0 0 0 1 2 0 4 0.5 1 1.5 2 2.5 3 3.5 Supply Voltage VCC (V) Gain Control Voltage VAGC (V) CIRCUIT CURRENT vs. OPERATING AMBIENT TEMPERATURE CURRENT INTO OUTPUT PIN AND CURRENT INTO VCC PIN vs. GAIN CONTROL VOLTAGE no signals Vcc = Vout 16 3 Current into Output pin Iout (mA) Current into VCC pin IVCC (mA) 18 Circuit Current ICC (mA) no signals Vcc = Vout Vcc = 3.3 V 14 12 10 8 Vcc = 3.0 V 6 Vcc = 2.7 V 4 14 no signals Vcc = Vout 12 Vcc = 3.3 V Vcc = 3.0 V Vcc = 3.3 V 10 Vcc = 3.0 V Vcc = 2.7 V 8 IVCC Vcc = 2.7 V 6 Iout 4 2 2 0 –50 –25 0 +25 +50 +5 +100 Operating Ambient Temperature TA (°C) S11 vs. FREQUENCY Vcc = Vout = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm 0 0 0.5 1 1.5 2 2.5 3 3.5 Gain Control Voltage VAGC (V) S22 vs. FREQUENCY Vcc = Vout = 3.0 V, VAGC = 0 V (GPMAX) 1 : 900 MHz 52.545 Ω – 39.801 Ω 2 : 1500 MHz 33.402 Ω – 32.457 Ω 3 : 1900 MHz 27.989 Ω – 24.408 Ω 1 : 900 MHz 36.039 Ω – 190.09 Ω 2 : 1500 MHz 39.668 Ω – 125.84 Ω 3 : 1900 MHz 34.668 Ω – 106.88 Ω 2 3 2 1 1 3 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz 11 µPC8119T, µPC8120T µPC8119T Output port matching at f = 950 MHz Vcc = Vout = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm 1; 39.367 Ω –52.375 3.1987 pF 950.000 000 MHz S11 vs. FREQUENCY MARKER 1 950 MHz 1; 59.756 Ω S22 vs. FREQUENCY –11.957 14.011 pF 950.000 000 MHz MARKER 1 950 MHz 1 1 START 100.000 000 MHz STOP 3 100.000 000 MHz START S11 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = –30 dBm 10 0 –10 S11 log MAG 5 dB/ REF 0 dB 1: –6.1221 dB 950.000 000 MHz 1 10 Vcc = 3.3 V 5 dB/ REF 0 dB 1: –5.8713 dB 950.000 000 MHz TA = +85 °C TA = +25 °C 1 TA = –40 °C –30 START 100.000 000 MHz STOP 3 100.000 000 MHz –40 S22 log MAG 5 dB/ REF 0 dB 1: –15.889 dB 950.000 000 MHz 10 0 –10 –10 Vcc = 2.7 V –20 Vcc = 3.0 V START 100.000 000 MHz STOP 3 100.000 000 MHz S22 vs. FREQUENCY Vcc = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm 0 –20 S11 log MAG –20 S22 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = –30 dBm 10 3 100.000 000 MHz –10 Vcc = 3.0 V –30 –40 STOP S11 vs. FREQUENCY Vcc = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm 0 Vcc = 2.7 V –20 100.000 000 MHz S22 log MAG 5 dB/ REF 0 dB 1: –15.858 dB 950.000 000 MHz TA = +85 °C TA = +25 °C TA = –40 °C Vcc = 3.3 V –30 –40 12 –30 START 100.000 000 MHz STOP 3 100.000 000 MHz –40 START 100.000 000 MHz STOP 3 100.000 000 MHz µPC8119T, µPC8120T µPC8119T Output port matching at f = 950 MHz S21 vs. FREQUENCY Vcc = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm S21 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = –30 dBm 16 S21 log MAG 1 dB/ REF 6 dB 1: 12.738 dB 16 Vcc = 3.3 V TA = –40 °C Vcc = 3.0 V TA = +25 °C 12 10 8 8 START 100.000 000 MHz STOP 3 100.000 000 MHz 6 S12 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = –30 dBm S12 log MAG 5 dB/ REF 0 dB 1: –31.911 dB 950.000 000 MHz 0 –10 –20 –20 –30 Vcc = 3.0 V START 100.000 000 MHz STOP 3 100.000 000 MHz S12 vs. FREQUENCY Vcc = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm –10 1 Vcc = 3.3 V 1: 12.854 dB TA = +85 °C Vcc = 2.7 V 10 –30 REF 6 dB 950.000 000 MHz 14 12 0 1 dB/ 950.000 000 MHz 14 6 S21 log MAG S12 log MAG 5 dB/ REF 0 dB 1: –32.053 dB 950.000 000 MHz TA = –40 °C 1 TA = –25 °C TA = –85 °C –40 –40 Vcc = 2.7 V –50 START 100.000 000 MHz STOP 3 100.000 000 MHz –50 START 100.000 000 MHz STOP 3 100.000 000 MHz 13 µPC8119T, µPC8120T µPC8119T Output port matching at f = 950 MHz POWER GAIN vs. GAIN CONTROL VOLTAGE 20 10 10 Power Gain GP (dB) Power Gain GP (dB) POWER GAIN vs. GAIN CONTROL VOLTAGE 20 0 –10 Vcc = 3.3 V –20 Vcc = 3.0 V –30 Vcc = 2.7 V –40 TA = +75 °C –10 –20 TA = –25 °C –30 TA = +75 °C TA = +25 °C –50 –60 –60 0 0.5 1 1.5 2 2.5 3 3.5 0 Gain Control Voltage VAGC (V) S21 log MAG 1 VAGC = 1.2 V VAGC = 1.4 V VAGC = 1.6 V VAGC = 1.7 V VAGC = 1.8 V VAGC = 1.9 V 5 dB/ REF 0 dB 1:12.926 dB VAGC = 0 V 950.000 000 MHz VAGC = 0.9 V VAGC = 1.0 V 0.5 1 1.5 2 2.5 3 3.5 Gain Control Voltage VAGC (V) S12 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm 0 TA = –25 °C 0 –40 –50 10 TA = +25 °C 0 S12 log MAG 5 dB/ REF 0 dB 1: –32.063 dB 950.000 000 MHz –10 –20 –10 1 –30 VAGC = 0 V VAGC = 3.0 V –20 VAGC = 2.0 V –40 VAGC = 2.1 V –30 START 100.000 000 MHz STOP 3 100.000 000 MHz –50 5 dB/ REF 0 dB 1: –5.7199 dB 950.000 000 MHz 10 VAGC = 3.0 to 2.0 V STOP 3 100.000 000 MHz S22 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S11 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S11 log MAG START 100.000 000 MHz S22 log MAG 5 dB/ REF 0 dB 1: –15.219 dB 950.000 000 MHz 10 VAGC = 1.8 V 0 VAGC = 1.6 V 1 VAGC = 1.4 V –10 –10 VAGC = 1.4 V –20 VAGC = 1.2 V VAGC = 0 to 0.7 V VAGC = 0 to 0.7 V –20 VAGC = 1.0 V VAGC = 3.0 to 2.4 V –30 –30 START 100.000 000 MHz 14 0 STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz µPC8119T, µPC8120T µPC8119T Output port matching at f = 950 MHz OUTPUT POWER vs. INPUT POWER +10 f = 950 MHz VAGC = 0 V Vcc = 3.3 V 0 +5 0 Vcc = 3.0 V Vcc = 2.7 V –5 –10 Output Power Pout (dBm) Output Power Pout (dBm) +10 OUTPUT POWER vs. INPUT POWER –15 –20 f = 950 MHz VCC = 3.0 V VAGC = 0 V –10 –20 –30 VAGC = 1.60 V –40 VAGC = 1.85 V –50 VAGC = 2.00 V –60 –30 –25 –20 –15 –10 –5 0 +5 –70 +10 VAGC = 2.15 V –30 –25 –20 Input Power Pin (dBm) f = 950 MHz VCC = 3.3 V 0 VAGC = 0 V –10 VAGC = 1.6 V VAGC = 1.9 V –20 VAGC = 2.05 V –30 –40 VAGC = 2.2 V –50 0 +5 +10 f = 950 MHz VCC = 2.7 V VAGC = 0 V –10 VAGC = 1.55 V –20 VAGC = 1.8 V –30 VAGC = 1.95 V –40 VAGC = 2.1 V –50 –60 –60 –70 –5 OUTPUT POWER vs. INPUT POWER +10 Output Power Pout (dBm) Output Power Pout (dBm) 0 –10 Input Power Pin (dBm) OUTPUT POWER vs. INPUT POWER +10 –15 VAGC = 3.3 V –30 –25 –20 –15 –10 –5 0 Input Power Pin (dBm) +5 +10 –70 –30 –25 –20 –15 –10 –5 0 +5 +10 Input Power Pin (dBm) 15 µPC8119T, µPC8120T µPC8119T Output port matching at f = 950 MHz –10 IM3 –20 –30 2f2 – f1 (952 MHz) –40 2f1 – f2 (949 MHz) –50 Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Vcc = 3.0 V VAGC = 0 V (GPMAX) f1 = 950 MHz f2 = 951 MHz –60 –70 –30 –25 –20 –15 –10 –5 0 +10 0 Pout –10 –20 IM3 –30 2f2 – f1 (952 MHz) –40 2f1 – f2 (949 MHz) –50 Vcc = 3.0 V VAGC = 1.6 V (GP ~ ~ dB) f1 = 950 MHz f2 = 951 MHz –60 –70 –30 –25 –20 –15 –10 –5 0 Input Power Pin (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER OUTPUT POWER AND IM3 vs. INPUT POWER +10 Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Input Power Pin (dBm) Vcc = 3.0 V VAGC = 1.85 V (GP ~~ 10 dB) f1 = 950 MHz f2 = 951 MHz 0 –10 –20 Pout –30 2f2 – f1 (952 MHz) IM3 –40 2f1 - f2 (949 MHz) –50 –60 –70 –30 –25 –20 –15 –10 –5 0 +10 Vcc = 3.0 V VAGC = 2.0 V (GP ~~ –20 dB) f1 = 950 MHz f2 = 951 MHz 0 –10 –20 Pout –30 –40 2f2 – f1 (952 MHz) –50 IM3 –60 –70 –30 2f1 – f2 (949 MHz) –25 –20 –15 –10 –5 0 Input Power Pin (dBm) Input Power Pin (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER OUTPUT POWER AND IM3 vs. INPUT POWER +10 0 –10 Vcc = 3.0 V VAGC = 2.15 V (GP ~ ~ –30 dB) f1 = 950 MHz f2 = 951 MHz –20 –30 Pout –40 –50 –60 –70 –30 2f2 – f1 (952 MHz) IM3 2f1 – f2 (949 MHz) –25 –20 –15 –10 Input Power Pin (dBm) 16 Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Pout 0 OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER +10 –5 0 +10 0 –10 Vcc = 3.0 V VAGC = 2.3 V (GP ~ ~ –40 dB) f1 = 950 MHz f2 = 951 MHz –20 –30 –40 –50 2f2 – f1 (952 MHz) 2f1 – f2 (949 MHz) –60 –70 –30 Pout IM3 –25 –20 –15 –10 Input Power Pin (dBm) –5 0 µPC8119T, µPC8120T µPC8119T Output port matching at f = 950 MHz Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) +10 Pout 0 –10 IM3 –20 2f2 – f1 (952 MHz) –30 2f1 – f2 (949 MHz) –40 –50 Vcc = 3.3 V VAGC = 0 V (GPMAX) f1 = 950 MHz f2 = 951 MHz –60 –70 –30 –25 –20 –15 –10 –5 0 –50 –10 IM3 –20 2f2 – f1 (952 MHz) –30 2f1 – f2 (949 MHz) –40 –50 Vcc = 2.7 V VAGC = 0 V (GPMAX) f1 = 950 MHz f2 = 951 MHz –60 –70 –30 –25 –20 –15 –10 –5 ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE Vcc = 2.7 V ∆ ±50kHz Vcc = 3.0 V ∆ ±50kHz Vcc = 3.3 V ∆ ±50kHz Vcc = 2.7 V ∆ ±100kHz Vcc = 3.0 V ∆ ±100kHz Vcc = 3.3 V ∆ ±100kHz –60 –70 –80 –30 Pout 0 Input Power Pin (dBm) f = 950 MHz VAGC = 0 V (GPMAX) –40 +10 Input Power Pin (dBm) –20 –30 OUTPUT POWER AND IM3 vs. INPUT POWER Adjacent Channel Interference Padj (dBc) Adjacent Channel Interference Padj (dBc) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER –25 –20 –15 –10 Input Power Pin (dBm) –5 0 0 –45 f = 950 MHz Vcc = 3.0 V –50 –55 –60 Pin = –17.4 dBm ∆ ±50 kHz Pin = –19.4 dBm ∆ ±50 kHz –65 Pin = –17.4 dBm ∆ ±100 kHz Pin = –19.4 dBm ∆ ±100 kHz –70 –75 0 0.5 1 1.5 2 2.5 3 Gain Control Voltage VAGC (V) 17 µPC8119T, µPC8120T µPC8119T Output port matching at f = 1440 MHz Vcc = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm S11 vs. FREQUENCY 1; 36.172 Ω –45.977 Ω 2.4039 pF 1 440.000 000 MHz MARKER 1 1.44 MHz S22 vs. FREQUENCY 1; 48.932 Ω –13.582 Ω 8.1375 pF 1 440.000 000 MHz MARKER 1 1.44 MHz 1 1 START 100.000 000 MHz STOP 3 100.000 000 MHz START S11 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = –30 dBm S11 log MAG 5 dB/ REF 0 dB MARKER 1 1.44 GHz 0 1: –6.1588 dB S11 log MAG –20 –30 –30 STOP 3 100.000 000 MHz TA = –40 °C START 100.000 000 MHz S22 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = –30 dBm REF 0 dB STOP 3 100.000 000 MHz S22 vs. FREQUENCY Vcc = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm 1: –17.51 dB 1 440.000 000 MHz MARKER 1 1.44 GHz 0 S22 log MAG 10 5 dB/ REF 0 dB 1: –16.978 dB 1 440.000 000 MHz MARKER 1 1.44 GHz 0 –10 –10 Vcc = 3.3 V Vcc = 3.0 V –20 Vcc = 2.7 V –30 TA = +85 °C –20 TA = +25 °C TA = –40 °C –30 START 100.000 000 MHz 18 1: –6.2593 dB TA = +85 °C TA = +25 °C 1 –10 –20 10 REF 0 dB 1 440.000 000 MHz Vcc = 3.3 V 5 dB/ 5 dB/ 10 0 –10 S22 log MAG 3 100.000 000 MHz MARKER 1 1.44 GHz Vcc = 2.7 V Vcc = 3.0 V 1 START 100.000 000 MHz STOP S11 vs. FREQUENCY Vcc = 3.0 V, VAGC = 0 V (GPMAX) , Pin = –30 dBm 1 440.000 000 MHz 10 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz µPC8119T, µPC8120T µPC8119T Output port matching at f = 1440 MHz S21 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = –30 dBm 16 14 S21 log MAG 1 dB/ REF 6 dB S21 vs. FREQUENCY Vcc = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm 1:13.355 dB 1 440.000 000 MHz MARKER 1 1.44 GHz 1 14 Vcc = 3.3 V Vcc = 3.0 V Vcc = 2.7 V 12 16 8 8 6 1: –13.23 dB 1 440.000 000 MHz MARKER 1 1.44 GHz 1 TA = –40 °C TA = +25 °C 6 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz S12 log MAG 5 dB/ REF 0 dB STOP 3 100.000 000 MHz S12 vs. FREQUENCY Vcc = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm S12 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = –30 dBm 1: –35.55 dB 1 440.000 000 MHz MARKER 1 1.44 GHz 0 –10 –20 –30 REF 6 dB TA = +85 °C 10 –10 1 dB/ 12 10 0 S21 log MAG S12 log MAG 5 dB/ REF 0 dB 1: –36.039 dB 1 440.000 000 MHz MARKER 1 1.44 GHz –20 1 Vcc = 3.3 V Vcc = 3.0 V Vcc = 2.7 V –40 TA = +85 °C –30 TA = –40 °C 1 TA = +25 °C –40 –50 –50 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz 19 µPC8119T, µPC8120T µPC8119T Output port matching at f = 1440 MHz POWER GAIN vs. GAIN CONTROL VOLTAGE +20 +20 +10 +10 0 0 –10 Vcc = 3.3 V –20 Vcc = 3.0 V –30 –40 Power Gain GP (dB) Power Gain GP (dB) POWER GAIN vs. GAIN CONTROL VOLTAGE TA = –25 °C TA = +25 °C –10 TA = +5 °C –20 TA = –25 °C –30 TA = +75 °C –40 TA = +25 °C Vcc = 2.7 V –50 –50 –60 –60 0 0.5 1 1.5 2 2.5 3 3.5 0 Gain Control Voltage VAGC (V) 10 0 –10 REF 0 dB 1: 13.362 dB 1 440.000 000 MHz 1 1.5 2 2.5 3 3.5 Gain Control Voltage VAGC (V) S12 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S21 log MAG 5 dB/ 1 VAGC = 0 to 0.6 V VAGC = 0.9 V VAGC = 1.0 V VAGC = 1.2 V VAGC = 1.4 V VAGC = 1.6 V VAGC = 1.8 V VAGC = 1.9 V VAGC = 2.0 V 0.5 0 S12 log MAG 5 dB/ REF 0 dB 1: –35.661 dB 1 440.000 000 MHz –10 –20 VAGC = 0 V –30 –20 1 VAGC = 2.1 V –40 VAGC = 3.0 V –30 VAGC = 2.2 V START 100.000 000 MHz –50 START 100.000 000 MHz STOP 3 100.000 000 MHz S11 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S11 log MAG 10 0 5 dB/ REF 0 dB S22 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm 1: –6.1536 dB 1 440.000 000 MHz VAGC = 3.0 to 2.0 V VAGC = 1.8 V VAGC = 1.6 V 1 VAGC = 1.4 V –10 S22 log MAG 5 dB/ –20 10 VAGC = 1.4 V VAGC = 0 to 0.7 V –20 VAGC = 1.8 V –30 START 100.000 000 MHz 20 1: –17.471 dB 0 VAGC = 0 to 0.7 V –30 REF 0 dB 1 440.000 000 MHz –10 VAGC = 1.2 V VAGC = 1.0 V STOP 3 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz µPC8119T, µPC8120T µPC8119T Output port matching at f = 1440 MHz OUTPUT POWER vs. INPUT POWER +10 OUTPUT POWER vs. INPUT POWER +10 f = 1440 MHz Vcc = 3.3 V VAGC = 0 V 0 0 Output Power Pout (dBm) Output Power Pout (dBm) +5 Vcc = 3.0 V Vcc = 2.7 V –5 –10 f = 1440 MHz Vcc = 3.0 V VAGC = 0 V –10 VAGC = 1.6 V –20 VAGC = 1.85 V –30 VAGC = 2.0 V –40 VAGC = 2.75 V –50 –15 VAGC = 3.0 V –60 –20 –30 –25 –20 –15 –10 –5 Output Power Pout (dBm) 0 0 +5 +10 Input Power Pin (dBm) Input Power Pin (dBm) OUTPUT POWER vs. INPUT POWER OUTPUT POWER vs. INPUT POWER f = 1440 MHz Vcc = 3.3 V +10 VAGC = 0 V VAGC = 1.7 V –10 VAGC = 1.9 V –20 VAGC = 2.05 V 0 –40 VAGC = 2.2 V –50 VAGC = 3.3 V –70 –30 –25 –20 –15 –10 –5 0 +5 Input Power Pin (dBm) f = 1440 MHz Vcc = 2.7 V VAGC = 0 V VAGC = 1.6 V –30 –60 –70 –30 –25 –20 –15 –10 –5 +5 +10 Output Power Pout (dBm) +10 0 –10 VAGC = 1.8 V –20 VAGC = 1.95 V –30 –40 VAGC = 2.1 V –50 –60 +10 VAGC = 2.7 V –70 –30 –25 –20 –15 –10 –5 0 +5 +10 Input Power Pin (dBm) 21 µPC8119T, µPC8120T µPC8119T Output port matching at f = 1440 MHz Pout 0 –10 IM3 –20 2f2 – f1 (1442 MHz) –30 –40 2f1 – f2 (1439 MHz) –50 VCC = 3.0 V VAGC = 0 V (GPMAX) f1 = 1440 MHz f2 = 1441 MHz –60 –70 –30 –25 –20 –15 –10 –5 OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER 10 0 10 0 –10 Pout –20 IM3 –30 2f2 – f1 (1442 MHz) –40 2f1 – f2 (1439 MHz) –50 VCC = 3.0 V VAGC = 1.65 V ~ 0 dB) (GP ~ f1 = 1440 MHz f2 = 1441 MHz –60 –70 –30 –25 Input Power Pin (dBm) 0 –10 Pout –30 IM3 2f2 – f1 (1442 MHz) –40 2f1 – f2 (1439 MHz) VCC = 3.0 V VAGC = 1.85 V (GP ~~ –10 dB) f1 = 1440 MHz f2 = 1441 MHz –50 –60 –70 –30 –25 –20 –15 –10 –5 0 Input Power Pin (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER VCC = 3.0 V VAGC = 2.0 V 0 (GP ~~ –30 dB) f1 = 1440 MHz f2 = 1441 MHz –10 –20 –30 Pout –40 2f2 – f1 (1442 MHz) IM3 –60 –70 –30 2f1 – f2 (1439 MHz) –25 –20 –15 –10 Input Power Pin (dBm) 22 –10 –5 0 10 VCC = 3.0 V VAGC = 2.0 V 0 (GP ~~ –20 dB) f1 = 1440 MHz f2 = 1441 MHz –10 –20 Pout –30 –40 2f2 – f1 (1442 MHz) IM3 –50 –60 –70 –30 2f1 – f2(1439 MHz) –25 –20 –15 –10 Input Power Pin (dBm) 10 –50 –15 OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER 10 –20 –20 Input Power Pin (dBm) –5 0 –5 0 µPC8119T, µPC8120T µPC8119T Output port matching at f = 1440 MHz OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER 10 Pout 0 –10 IM3 –20 2f2 – f1 (1442 MHz) –30 2f1 – f2 (1439 MHz) –40 –50 VCC = 3.3 V VAGC = 0 V (GPMAX) f1 = 1440 MHz f2 = 1441 MHz –60 –70 –30 –25 –20 –15 –10 –5 0 10 Pout 0 –10 IM3 –20 2f2 – f1 (1442 MHz) –30 2f1 – f2 (1439 MHz) –40 –50 –60 –70 –30 –20 f = 1440 MHz VAGC = 0 V (GPMAX) VCC = 2.7 V ∆ ±50 kHz VCC = 3.0 V ∆ ±50 kHz VCC = 3.3 V ∆ ±50 kHz –50 –60 –70 –80 –30 VCC = 2.7 V ∆ ±100 kHz VCC = 3.0 V ∆ ±100 kHz VCC = 3.3 V ∆ ±100 kHz –25 –20 –15 –10 Input Power Pin (dBm) –20 –15 –10 –5 0 ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE Adjacent Channel Interference Padj (dBc) Adjacent Channel Interference Padj (dBc) ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER –40 –25 Input Power Pin (dBm) Input Power Pin (dBm) –30 VCC = 2.7 V VAGC = 0 V (GPMAX) f1 = 1440 MHz f2 = 1441 MHz –5 0 –45 f = 1440 MHz VCC = 3.0 V –50 Pin = –17.4 dBm ∆ ±50 kHz –55 Pin = –19.4 dBm ∆ ±50 kHz –60 –65 Pin = –17.4 dBm ∆ ±100 kHz –70 Pin = –19.4 dBm ∆ ±100 kHz –75 0 0.5 1 1.5 2 2.5 3 Gain Control Voltage VAGC (V) 23 µPC8119T, µPC8120T µPC8119T Output port matching at f = 1900 MHz Vcc = Vout = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm 1; 25.644 Ω ––28.377 Ω 2.9519 pF 1 900.000 000 MHz S11 vs. FREQUENCY MARKER 1 1.9 GHz 1; 43.631 Ω 8.0605 Ω 675.2 pH 1 900.000 000 MHz S22 vs. FREQUENCY MARKER 1 1.9 GHz 1 1 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz log MAG 5 dB/ REF 0 dB 1: 6.8063 dB 1 900.000 000 MHz 10 VCC = 2.7 V 0 3 100.000 000 MHz S22 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = –30 dBm S11 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = –30 dBm S11 STOP S22 log MAG 5 dB/ REF 0 dB 1: –20.108 dB 1 900.000 000 MHz 10 0 1 –10 –10 1 VCC = 3.3 V –20 –20 VCC = 3.0 V –30 VCC = 3.3 V VCC = 3.0 V VCC = 2.7 V –30 START 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz S21 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = –30 dBm S21 log MAG 1 dB/ REF 7 dB 1: 12.887 dB 1 900.000 000 MHz 15 VCC = 3.3 V 13 STOP 3 100.000 000 MHz S12 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = –30 dBm 0 S12 log MAG 5 dB/ REF 0 dB 1: –37.473 dB 1 900.000 000 MHz –10 –20 VCC = 2.7 V VCC = 3.0 V 11 –30 9 –40 7 –50 VCC = 3.3 V VCC = 3.0 V VCC = 2.7 V 24 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz µPC8119T, µPC8120T µPC8119T Output port matching at f = 1900 MHz POWER GAIN vs. GAIN CONTROL VOLTAGE POWER GAIN vs. GAIN CONTROL VOLTAGE 20 20 10 Power Gain GP (dB) Power Gain GP (dB) TA = –25 °C VCC = 3.0 V 0 VCC = 3.3 V VCC = 2.7 V –10 –20 0 0.5 1 1.5 2 2.5 3 3.5 TA = +75 °C 0 TA = +75 °C TA = +25 °C –10 –20 Gain Control Voltage VAGC (V) S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S21 log MAG REF –10.0 dB 5.0 dB/13.038 dB 1 MARKER 1 VAGC = 0 V 1.9 GHz 10 VAGC = 1.0 V VAGC = 1.4 V TA = +25 °C 10 TA = –25 °C 0 0.5 1 1.5 2 2.5 3 3.5 Gain Control Voltage VAGC (V) 0 –10 S12 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S12 log MAG REF –25.0 dB 5.0 dB/–38.732 dB MARKER 1 1.9 GHz 0 –20 VAGC = 1.7 V VAGC = 3.0 V –10 –30 VAGC = 2.0 V –20 1 VAGC = 3.0 V –40 –30 VAGC = 0 V START 0.100000000 GHz STOP 3.100000000 GHz –50 S11 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S11 log MAG REF –10.0 dB 5.0 dB/–6.025 dB 10 MARKER 1 1.9 GHz 0 STOP 3.100000000 GHz S22 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S22 log MAG REF –10.0 dB 5.0 dB/–18.194 dB 10 VAGC = 3.0 V VAGC = 1.6 V START 0.100000000 GHz MARKER 1 1.9 GHz 0 1 –10 VAGC = 1.4 V –10 VAGC = 0 V VAGC = 0 V –20 –20 –30 –30 START 0.100000000 GHz STOP 3.100000000 GHz VAGC = 1.4 V 1 VAGC = 3.0 V VAGC = 1.8 V START 0.100000000 GHz STOP 3.100000000 GHz 25 µPC8119T, µPC8120T µPC8119T Output port matching at f = 1900 MHz OUTPUT POWER vs. INPUT POWER OUTPUT POWER vs. INPUT POWER +10 +10 f = 1900 MHz VAGC = 0 V VCC = 3.3 V 0 VCC = 3.0 V –5 VCC = 2.7 V –10 VAGC = 0 V VAGC = 1.4 V 0 Output Power Pout (dBm) Output Power Pout (dBm) +5 f = 1900 MHz VCC = 3.0 V VAGC = 1.65 V –10 –20 VAGC = 1.8 V –30 VAGC = 2.0 V –15 VAGC = 3.0 V –40 –20 –30 –25 –20 –15 –10 –5 Output Power Pout (dBm) 0 OUTPUT POWER vs. INPUT POWER OUTPUT POWER vs. INPUT POWER +10 f = 1900 MHz VCC = 3.3 V VAGC = 0 V 0 VAGC = 1.7 V VAGC = 1.85 V VAGC = 2.0 V VAGC = 3.3 V –40 –10 f = 1900 MHz VCC = 2.7 V VAGC = 0 V VAGC = 1.4 V VAGC = 1.6 V VAGC = 1.75 V –20 VAGC = 1.9 V –30 VAGC = 2.7 V –40 –30 –25 –20 –15 –10 –5 0 Input Power Pin (dBm) 26 +5 +10 Input Power Pin (dBm) –10 –30 0 Input Power Pin (dBm) VAGC = 1.4 V –20 –30 –25 –20 –15 –10 –5 +5 +10 Output Power Pout (dBm) +10 0 +5 +10 –30 –25 –20 –15 –10 –5 0 Input Power Pin (dBm) +5 +10 µPC8119T, µPC8120T µPC8119T Output port matching at f = 1900 MHz Pout 0 –10 IM3 –20 2f2 – f1 (1900.6 MHz) –30 2f1 – f2 (1899.7 MHz) –40 –50 VCC = 3.0 V VAGC = 0 V (GPMAX) f1 = 1900.0 MHz f2 = 1900.3 MHz –60 –70 –30 –25 –20 –15 –10 –5 OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER +10 0 +10 VCC = 3.0 V VAGC = 1.8 V 0 (GP ~ ~ –5 dB) f1 = 1900 MHz f2 = 1900.3 MHz –10 Pout –20 IM3 –30 2f2 – f1 (1900.6 MHz) –40 –50 2f1 – f2 (1899.7 MHz) –60 –70 –30 –25 Input Power Pin (dBm) VCC = 3.0 V VAGC = 1.7 V 0 (GP ~ –10 dB) ~ f1 = 1900 MHz f 2 = 1900.3 MHz –10 Pout –30 –50 IM3 2f2 – f1 (1900.6 MHz) –60 –70 –30 2f1 – f2 (1899.7 MHz) –25 –20 –15 –10 Input Power Pin (dBm) –10 –5 0 –5 OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER –40 –15 Input Power Pin (dBm) +10 –20 –20 0 +10 VCC = 3.0 V VAGC = 3.0 V 0 (GPMIN) f1 = 1900 MHz –10 f2 = 1900.3 MHz –20 Pout –30 IM3 –40 –50 2f2 – f1 (1900.6 MHz) 2f1 – f2 (1899.7 MHz) –60 –70 –30 –25 –20 –15 –10 –5 0 Input Power Pin (dBm) 27 µPC8119T, µPC8120T µPC8119T Pout 0 –10 IM3 –20 2f2 – f1 (1900.6 MHz) –30 2f1 – f2 (1899.7 MHz) –40 –60 –70 –30 Adjacent Channel Interference Padj (dBc) VCC = 3.3 V VAGC = 0 V (GPMAX) f1 = 1900.0 MHz f2 = 1900.3 MHz –50 –20 –30 –25 –20 –15 –10 –10 IM3 –20 2f2 – f1 (1900.6 MHz) –30 2f1 – f2 (1899.7 MHz) –40 VCC = 2.7 V VAGC = 0 V (GPMAX) f1 = 1900.0 MHz f2 = 1900.3 MHz –50 –60 –25 –20 –15 –10 –5 Input Power Pin (dBm) ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE –40 VCC = 2.7 V ∆ ±600 kHz VCC = 3.0 V ∆ ±600 kHz –60 –70 VCC = 3.3 V ∆ ±600 kHz –80 –30 Pout 0 –70 –30 0 f = 1900 MHz VAGC = 0 V (GPMAX) –50 OUTPUT POWER AND IM3 vs. INPUT POWER +10 Input Power Pin (dBm) –25 –20 –15 –10 Input Power Pin (dBm) 28 –5 Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER +10 –5 0 Adjacent Channel Interference Padj (dBc) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output port matching at f = 1900 MHz –45 0 f = 1900 MHz VCC = 3.0 V –50 Pin = –10 dBm, ∆ 600 kHz –55 Pin = –12 dBm, ∆ ±600 kHz –60 –65 –70 Pin = –15 dBm, ∆ 600 kHz –75 0 0.5 1.0 1.5 2.0 2.5 Gain Control Voltage VAGC (V) 3.0 µPC8119T, µPC8120T µPC8120T CIRCUIT CURRENT vs. SUPPLY VOLTAGE 14 GAIN CONTROL CURRENT vs. GAIN CONTROL VOLTAGE 200 no signals no signals 175 Gain Control Current IAGC ( µ A) Circuit Current ICC (mA) 12 10 8 6 4 150 VCC = 2.7 V 125 100 VCC = 3.0 V 75 50 VCC = 3.3 V 2 25 0 0 0 1 2 3 4 0 1 1.5 2 2.5 3 3.5 Supply Voltage VCC (V) Gain Control Voltage VAGC (V) CIRCUIT CURRENT vs. OPERATING AMBIENT TEMPERATURE CURRENT INTO OUTPUT PIN AND CURRENT INTO VCC PIN vs. GAIN CONTROL VOLTAGE 12 20 no signals 11 Current into Output Pin Iout (mA) Current into VCC Pin IVCC (mA) 18 16 Circuit Current ICC (mA) 0.5 VCC = 3.3 V VCC = 3.0 V 14 12 10 8 VCC = 2.7 V 6 4 2 Iout VCC = 3.3 V 10 9 VCC = 3.0 V VCC = 3.3 V IVCC 8 VCC = 3.0 V 7 VCC = 2.7 V 6 VCC = 2.7 V 5 4 3 2 1 0 –40 –20 no signals 0 0 +20 +40 +60 +80 +100 0 0.5 1 1.5 2 2.5 3 3.5 Operating Ambient temperature TA (°C) Gain Control Voltage VAGC (V) S11 vs. FREQUENCY VCC = 3.0 V, VAGC = 3.0 V (GPMAX), Pin = –30 dBm S22 vs. FREQUENCY VCC = 3.0 V, VAGC = 3.0 V (GPMAX), Pin = –30 dBm 1 : 950 MHz 49.6 Ω – 43.49 Ω 2 : 1440 MHz 32.908 Ω – 34.803 Ω 3 : 1900 MHz 26.389 Ω – 24.797 Ω 1 : 950 MHz 33.758 Ω – 173.11 Ω 2 : 1440 MHz 35.742 Ω – 123.63 Ω 3 : 1900 MHz 34.758 Ω – 105.66 Ω 2 3 2 1 1 3 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz 29 µPC8119T, µPC8120T µPC8120T Output port matching at f = 950 MHz VCC = 3.0 V, VAGC = 3.0 V (GPMAX), Pin = –30 dBm 1; 42.344 Ω –55.41 Ω 3.0235 pF S11 vs. FREQUENCY S22 vs. FREQUENCY 950.000.000 MHz 1; 50.91 Ω –5.9805 Ω 28.013 pF 950.000 000 MHz 1 1 START 100.000 000 MHz STOP S11 vs. FREQUENCY VAGC = 3.0 V (GPMAX), Pin = –30 dBm S11 log MAG 5dB/ REF 0 dB 3 100.000 000 MHz START 100.000 000 MHz STOP S11 vs. FREQUENCY VCC = 3.0 V VAGC = 3.0 V (GPMAX), Pin = –30 dBm S11 log MAG 5dB/ REF 0 dB 1: –5.7196 dB 1: –5.6328 dB 950.000 000 MHz 950.000 000 MHz 10 10 VCC = 2.7 V 0 1 –10 0 VCC = 3.0 V –10 VCC = 3.3 V –20 –20 –30 –30 START 100.000 000 MHz STOP 3 100.000 000 MHz S22 log MAG 5dB/ REF 0 dB 10 0 –10 –10 VCC = 3.0 V VCC = 3.3 V 950.000 000 MHz TA = +85 °C –20 TA = +25 °C TA = –40 °C –30 –30 START 100.000 000 MHz 30 STOP 3 100.000 000 MHz 10 0 VCC = 2.7 V TA = –40 °C S22 vs. FREQUENCY VCC = 3.0 V, VAGC = 3.0 V (GPMAX), Pin = –30 dBm S22 log MAG 5dB/ REF 0 dB 1: –18.205 dB 1: –19 .447 dB 950.000 000 MHz TA = +85 °C TA = –25 °C 1 START 100.000 000 MHz S22 vs. FREQUENCY VAGC = 3.0 V (GPMAX), Pin = –30 dBm –20 3 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz µPC8119T, µPC8120T µPC8120T Output port matching at f = 950 MHz S21 vs. FREQUENCY VAGC = 3.0 V (GPMAX), Pin = –30 dBm 17 S21 log MAG 1 dB/ REF 7 dB 1:12.768 dB 950.000 000 MHz 17 950.000 000 MHz 15 15 1 13 1 VCC = 3.3 V VCC = 3.0 V VCC = 2.7 V 13 11 11 9 9 7 S21 START 100.000 000 MHz STOP 3 100.000 000 MHz 7 S12 log MAG 5dB/ REF 0 dB 1: –31.551 dB 950.000 000 MHz 0 –10 –10 –20 –20 1 –30 VCC = 3.3 V VCC = 3.0 V VCC = 2.7 V –40 –50 S12 STOP 3 100.000 000 MHz S12 vs. FREQUENCY VAGC = 3.0 V (GPMAX), Pin = –30 dBm log MAG 5dB/ REF 0 dB 1: –31.543 dB 950.000 000 MHz 1 –30 TA = –40 °C TA = +25 °C TA = +85 °C START 100.000 000 MHz S12 vs. FREQUENCY VAGC = 3.0 V (GPMAX), Pin = –30 dBm 0 S21 vs. FREQUENCY VAGC = 3.0 V (GPMAX), Pin = –30 dBm log MAG 1dB/ REF 7 dB 1: –12.78 dB TA = –40 °C TA = +25 °C TA = +85 °C –40 START 100.000 000 MHz STOP 3 100.000 000 MHz –50 START 100.000 000 MHz STOP 3 100.000 000 MHz 31 µPC8119T, µPC8120T µPC8120T Output port matching at f = 950 MHz POWER GAIN vs. GAIN CONTROL VOLTAGE POWER GAIN vs. GAIN CONTROL VOLTAGE +20 +20 +10 +10 TA = –25 °C Power Gain GP (dB) Power Gain GP (dB) VCC = 2.7 V 0 VCC = 3.0 V –10 VCC = 3.3 V –20 –30 TA = +75 °C 0 –10 TA = +75 °C TA = +25 °C –20 –30 TA = –25 °C –40 –40 –50 0 0.5 1 1.5 2 2.5 3.0 3.5 –50 0 0.5 Gain Control Voltage VAGC (V) log MAG 1 10 VAGC = 1.7 V VAGC = 1.6 V VAGC = 1.5 V 0 VAGC = 1.4 V VAGC = 1.3 V VAGC = 1.2 V –10 5 dB/ REF 0 dB 1: 12.776 dB 950.000.000 MHz VAGC = 3.0 V VAGC = 2.0 V VAGC = 1.9 V VAGC = 1.8 V 2.0 2.5 3.0 3.5 S12 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm 0 S12 log MAG 5 dB/ REF 0 dB 1: –31.081 dB 950.000.000 MHz –10 –20 VAGC = 3.0 V 1 –30 VAGC = 0 V –20 –30 START 100.000 000 MHz VAGC = 1.1 V VAGC = 1.0 V VAGC = 0.9 V STOP 3 100.000 000 MHz –40 –50 START 100.000 000 MHz S11 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S11 log MAG 5 dB/ REF 0 dB STOP 3 100.000 000 MHz S22 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S22 1: –5.6855 dB 10 0 1.5 Gain Control Voltage VAGC (V) S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S21 1 log MAG 5 dB/ REF 0 dB 1: –19.041 dB 950.000.000 MHz 10 1 VAGC = 0 to 1.2 V VAGC = 1.4 V VAGC = 1.6 V –10 0 –10 VAGC = 1.6 V VAGC = 2.3 to 3.0 V VAGC = 1.8 V –20 VAGC = 2.2 to 3.0 V –20 VAGC = 0 to 0.9 V VAGC = 1.2 V –30 –30 START 100.000 000 MHz 32 STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz µPC8119T, µPC8120T µPC8120T Output port matching at f = 950 MHz OUTPUT POWER vs. INPUT POWER OUTPUT POWER vs. INPUT POWER +10 +10 f = 950 MHz VAGC = 3.0 V VCC = 3.3 V 0 0 VCC = 2.7 V –5 VCC = 3.0 V –10 Output Power Pout (dBm) Output Power Pout (dBm) +5 f = 950 MHz VCC = 3.0 V –10 VAGC = 3.0 V VAGC = 1.5 V VAGC = 1.3 V VAGC = 1.15 V –20 VAGC = 1.0 V –30 –40 VAGC = 0 V –50 –15 –60 –20 –30 –25 –20 –15 –10 –5 Output Power Pout (dBm) 0 –10 0 +5 +10 Input Power Pin (dBm) Input Power Pin (dBm) OUTPUT POWER vs. INPUT POWER OUTPUT POWER vs. INPUT POWER f = 950 MHz VCC = 3.3 V +10 VAGC = 3.3 V 0 VAGC = 1.7 V VAGC = 1.5 V VAGC = 1.35 V –20 –30 –40 VAGC = 1.2 V –50 –70 –30 –25 –20 –15 –10 –5 +5 +10 VAGC = 0 V –60 f = 950 MHz VCC = 2.7 V VAGC = 2.7 V VAGC = 1.3 V Output Power Pout (dBm) +10 0 –10 VAGC = 1.1 V –20 VAGC = 0.95 V –30 –40 –50 VAGC = 0.8 V VAGC = 0 V –60 –70 –30 –25 –20 –15 –10 –5 0 Input Power Pin (dBm) +5 +10 –70 –30 –25 –20 –15 –10 –5 0 +5 +10 Input Power Pin (dBm) 33 µPC8119T, µPC8120T µPC8120T Output port matching at f = 950 MHz Pout 0 –10 IM3 –20 2f2 – f1 (952 MHz) –30 2f1 – f2 (949 MHz) –40 –50 –60 –70 –30 –25 –20 –15 VCC = 3.0 V VAGC = 3.0 V (GPMAX) f1 = 950 MHz f2 = 951 MHz –10 –5 0 OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER +10 +10 VCC = 3.0 V VAGC = 1.5 V (GP ~ ~ 0 dB) f1 = 950 MHz f2 = 951 MHz 0 –10 Pout –20 IM3 –30 2f1 – f2 (949 MHz) –40 2f2 – f1 (952 MHz) –50 –60 –70 –30 –25 –10 VCC = 3.0 V VAGC = 1.3 V (GP ~ ~ –10 dB) f1 = 950 MHz f2 = 951 MHz Pout –20 –30 IM3 –40 2f1 – f2 (949 MHz) –50 2f2 – f1 (952 MHz) –60 –70 –30 –25 –20 –15 –10 –5 0 –20 Pout –30 –40 IM3 2f1 – f2 (949 MHz) –50 2f2 – f1 (952 MHz) –60 –70 –30 –25 VCC = 3.0 V VAGC = 1.0 V (GP ~ ~ –30 dB) f1 = 950 MHz f2 = 951 MHz –20 –30 Pout –40 IM3 –50 –60 –70 –30 2f1 – f2 (949 MHz) –25 –20 –15 2f2 – f1 (952 MHz) –10 –5 0 Input Power Pin (dBm) 34 –20 –15 –10 –5 0 Input Power Pin (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) –10 0 VCC = 3.0 V VAGC = 1.15 V 0 (GP ~ ~ –20 dB) f1 = 950 MHz –10 f2 = 951 MHz OUTPUT POWER AND IM3 vs. INPUT POWER 0 –5 +10 Input Power Pin (dBm) +10 –10 OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER 0 –15 Input Power Pin (dBm) Input Power Pin (dBm) +10 –20 +10 VCC = 3.0 V VAGC = 1.15 V 0 (GP ~ –38 dB) ~ f1 = 950 MHz –10 f2 = 951 MHz –20 –30 –40 Pout –50 –60 –70 –30 –25 2f1 – f2 IM3 (949 MHz) 2f2 – f1 (952 MHz) –5 –20 –15 –10 Input Power Pin (dBm) 0 µPC8119T, µPC8120T µPC8120T Output port matching at f = 950 MHz OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER +10 Pout 0 –10 –20 –30 –40 2f2 – f1 (952 MHz) 2f1 – f2 (949 MHz) –50 VCC = 3.3 V VAGC = 3.3 V (GPMAX) f1 = 950 MHz f2 = 951 MHz –60 –70 –30 –25 –20 –15 –10 –5 0 +10 Pout 0 –10 –20 2f2 – f1 (952 MHz) –30 2f1 – f2 (949 MHz) –40 –50 –60 –70 –30 Input Power Pin (dBm) f = 950 MHz VAGC = VCC (GPMAX) –40 VCC = 2.7 V ∆ ±50 kHz VCC = 3.0 V ∆ ±50 kHz VCC = 3.3 V ∆ ±50 kHz –50 –60 VCC = 2.7 V ∆ ±100 kHz VCC = 3.0 V ∆ ±100 kHz VCC = 3.3 V ∆ ±100 kHz –70 –80 –30 –25 –20 –15 –10 Input Power Pin (dBm) –20 –15 –10 –5 0 ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE –5 0 Adjacent Channel Interference Padj (dBc) Adjacent Channel Interference Padj (dBc) –30 –25 Input Power Pin (dBm) ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER –20 VCC = 2.7 V VAGC = 2.7 V (GPMAX) f1 = 950 MHz f2 = 951 MHz –45 f = 950 MHz VCC = 3.0 V –50 Pin = –17.4 dBm ∆ ±50 kHz –55 Pin = –19.4 dBm ∆ ±50 kHz –60 –65 Pin = –17.4 dBm ∆ ±100 kHz Pin = –19.4 dBm ∆ ±100 kHz –70 –75 0 0.5 1 1.5 2 2.5 3 Gain Control Voltage VAGC (V) 35 µPC8119T, µPC8120T µPC8120T Output port matching at f = 1440 MHz VCC = 3.0 V , VAGC = 3.0 V (GPMAX), Pin = –30 dBm 1; 36.68 Ω S11 vs. FREQUENCY –50.342 Ω 2.2582 pF 1 400.000 000 MHz S22 vs. FREQUENCY 1; 48.615 Ω –5.4863 Ω –20.145 pF 1 440.000 000 MHz MARKER 1 1.44 GHz MARKER 1 1.44 GHz 1 1 START 100.000 000 MHz STOP 3 100.000 000 MHz START S11 vs. FREQUENCY VAGC = 3.0 V (GPMAX), Pin = –30 dBm S11 log MAG 5 dB/ REF 0 dB 10 1.44 GHz 0 VCC = 2.7 V VCC = 3.0 V 1 S11 log MAG –10 –20 –20 –30 –30 STOP 3 100.000 000 MHz REF 0 dB 1; –6.0673 dB TA = +25 °C 1 TA = –40 °C STOP 3 100.000 000 MHz S22 vs. FREQUENCY VCC = 3.0 V, VAGC = 3.0 V (GpMAX), Pin = –30 dBm 1; –24.057 dB 1 440.000 000 MHz 10 REF 0 dB 1 440.000 000 MHz START 100.000 000 MHz S22 vs. FREQUENCY VAGC = 3.0 V (GPMAX), Pin = –30 dBm 5 dB/ 3 100.000 000 MHz TA = +85 °C VCC = 3.3 V S22 log MAG 5 dB/ 10 0 –10 START 100.000 000 MHz STOP S11 vs. FREQUENCY VCC = 3.0 V, VAGC = 3.0 V (GpMAX), Pin = –30 dBm 1; –6.064 dB 1 440.000 000 MHz 100.000 000 MHz S22 log MAG 5 dB/ REF 0 dB 1; –22.951 dB 1 440.000 000 MHz 10 MARKER 1 1.44 GHz 0 0 –10 –10 –20 VCC = 3.0 V –30 START 100.000 000 MHz 36 –20 1 VCC = 3.3 V VCC = 2.7 V STOP 3 100.000 000 MHz TA = +85 °C –30 TA = +25 °C TA = –40 °C START 100.000 000 MHz STOP 3 100.000 000 MHz µPC8119T, µPC8120T µPC8120T Output port matching at f = 1440 MHz S21 vs. FREQUENCY VAGC = 3.0 V (GPMAX), Pin = –30 dBm 17 S21 log MAG 1 dB/ REF 7 dB 1; 12.974 dB S21 vs. FREQUENCY VAGC = 3.0 V, (GPMAX), Pin = –30 dBm 17 S21 log MAG 1 dB/ 1 440.000 000 MHz 15 MARKER 1 1.44 GHz 1 VCC = 3.3 V VCC = 3.0 V VCC = 2.7 V 1 11 9 9 START 100.000 000 MHz STOP 3 100.000 000 MHz 7 S12 log MAG 5 dB/ REF 0 dB 1; –35.378 dB START 100.000 000 MHz 0 S12 log MAG 5 dB/ 1 440.000 000 MHz –10 MARKER 1 1.44 GHz STOP 3 100.000 000 MHz REF 0 dB 1; –35.238 dB 1 440.000 000 MHz –10 –20 –20 VCC = 3.3 V –30 TA = –40 °C TA = +25 °C TA = +85 °C S12 vs. FREQUENCY VAGC = 3.0 V, (GPMAX), Pin = –30 dBm S12 vs. FREQUENCY VAGC = 3.0 V (GPMAX), Pin = –30 dBm 0 MARKER 1 1.44 GHz 13 11 7 1;13.025 dB 1 440.000 000 MHz 15 13 REF 7 dB 1 VCC = 3.0 V –30 1 TA = +85 °C TA = +25 °C TA = –40 °C –40 –40 VCC = 2.7 V –50 START 100.000 000 MHz STOP 3 100.000 000 MHz –50 START 100.000 000 MHz STOP 3 100.000 000 MHz 37 µPC8119T, µPC8120T µPC8120T Output port matching at f = 1440 MHz POWER GAIN vs. GAIN CONTROL VOLTAGE POWER GAIN vs. GAIN CONTROL VOLTAGE +20 +20 TA = –25 °C VCC = 2.7 V +10 Power Gain GP (dB) Power Gain GP (dB) +10 0 VCC = 3.0 V –10 VCC = 3.3 V –20 –30 TA = +25 °C 0 TA = +75 °C –10 TA = +75 °C –20 TA = +25 °C –30 –40 0 0.5 1 1.5 2 2.5 3 3.5 –40 Gain Control Voltage VAGC (V) S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S21 log MAG 5 dB/ REF 0 dB 1: –12.908 dB 1 VAGC = 3.0 V 1.440.000 000 MHz VAGC = 2.0 V 10 VAGC = 1.9 V VAGC = 1.8 V VAGC = 1.7 V VAGC = 1.6 V 0 VAGC = 1.5 V VAGC = 1.4 V VAGC = 1.3 V VAGC = 1.2 V –10 TA = –25 °C 0 0.5 1 0 –10 START 100.000 000 MHz –40 1.440.000 000 MHz MARKER 1 1.44 GHz VAGC = 3.0 V 1 VAGC = 0 V START 100.000 000 MHz 0 1 1.440.000 000 MHz MARKER 1 1.44 GHz 0 –10 –10 STOP 3 100.000 000 MHz S22 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S22 log MAG 5 dB/ REF 0 dB 1: –23.731 dB 10 VAGC = 0 to 1.2 V VAGC = 1.4 V VAGC = 1.6 V 3.5 S12 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S12 log MAG 5 dB/ REF 0 dB 1: –34.801 dB 1.440.000 000 MHz MARKER 1 1.44 GHz 3 –50 STOP 3 100.000 000 MHz S11 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S11 log MAG 5 dB/ REF 0 dB 1: –6.1639 dB 10 2.5 –20 –20 –30 2 Gain Control Voltage VAGC (V) –30 VAGC = 1.1 V VAGC = 1.0 V VAGC = 0.9 V VAGC = 0 V 1.5 VAGC = 1.8 V VAGC = 2.2 to 3.0 V VAGC = 1.6 V VAGC = 0 to 0.9 V –20 –20 VAGC = 2.3 to 3.0 V –30 –30 START 100.000 000 MHz 38 STOP 3 100.000 000 MHz VAGC = 1.35 V START 100.000 000 MHz STOP 3 100.000 000 MHz µPC8119T, µPC8120T µPC8120T Output port matching at f = 1440 MHz OUTPUT POWER vs. INPUT POWER +5 +10 VCC = 3.3 V f = 1440 MHz VAGC = 3.0 V 0 OUTPUT POWER vs. INPUT POWER 0 VCC = 3.0 V VCC = 2.7 V –5 –10 –15 –20 –30 –25 –20 –15 –10 –5 0 +5 Output Power Pout (dBm) Output Power Pout (dBm) +10 f = 1440 MHz VCC = 3.0 V VAGC = 3.0 V –10 VAGC = 1.5 V VAGC = 1.3 V –20 –30 –40 VAGC = 1.15 V VAGC = 0.95 V VAGC = 0 V –50 –60 +10 Input Power Pin (dBm) –70 –30 –25 –20 –15 –10 –5 0 +5 +10 Input Power Pin (dBm) OUTPUT POWER vs. INPUT POWER OUTPUT POWER vs. INPUT POWER Output Power Pout (dBm) 0 –10 f = 1440 MHz VCC = 3.3 V +10 VAGC = 3.3 V VAGC = 1.65 V VAGC = 1.45 V –20 –30 –40 –50 VAGC = 1.3 V VAGC = 1.1 V VAGC = 0 V –60 0 Output Power Pout (dBm) +10 f = 1440 MHz VCC = 2.7 V VAGC = 2.7 V VAGC = 1.3 V –10 VAGC = 1.1 V –20 VAGC = 0.95 V –30 –40 –50 VAGC = 0.75 V VAGC = 0 V –60 –70 –30 –25 –20 –15 –10 –5 0 Input Power Pin (dBm) +5 +10 –70 –30 –25 –20 –15 –10 –5 0 +5 +10 Input Power Pin (dBm) 39 µPC8119T, µPC8120T µPC8120T Output port matching at f = 1440 MHz Pout 0 –10 IM3 –20 2f1 – f2 (1439 MHz) –30 2f2 – f1 (1442 MHz) –40 –50 VCC = 3.0 V VAGC = 3.0 V (GPMAX) f1 = 1440 MHz f2 = 1441 MHz –60 –70 –30 –25 –20 –15 –10 –5 OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER +10 0 +10 VCC = 3.0 V VAGC = 1.5 V 0 (GP ~ ~ 0 dB) f1 = 1440 MHz f2 = 1441 MHz –10 –20 IM3 –30 2f1 – f2 (1439 MHz) –40 2f2 – f1 (1442 MHz) –50 –60 –70 –30 –25 Input Power Pin (dBm) VCC = 3.0 V VAGC = 1.3 V 0 (GP ~ ~ –10 dB) f1 = 1440 MHz f2 = 1441 MHz –10 Pout –30 IM3 2f1 – f2 (1439 MHz) –50 2f2 – f1 (1442 MHz) –60 –70 –30 –25 –20 –15 –10 –5 0 Input Power Pin (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER VCC = 3.0 V VAGC = 0 V 0 (GP ~ ~ –30 dB) f1 = 1440 MHz f2 = 1441 MHz –10 –20 –30 Pout –40 –50 IM3 –60 2f1 – f2 (1439 MHz) –70 –30 –25 –20 –15 –10 Input Power Pin (dBm) 40 –10 –5 0 +10 VCC = 3.0 V VAGC = 1.15 V 0 (GP ~ ~ –20 dB) f1 = 1440 MHz f2 = 1441 MHz –10 –20 Pout –30 –40 2f1 – f2 (1439 MHz) –50 IM3 –60 –70 –30 2f2 – f1 (1442 MHz) –25 –20 –15 –10 Input Power Pin (dBm) +10 2f2 – f1 (1442 MHz) –15 OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER –40 –20 Input Power Pin (dBm) +10 –20 Pout –5 0 –5 0 µPC8119T, µPC8120T µPC8120T Output port matching at f = 1440 MHz OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER +10 Pout 0 –10 –20 –30 IM3 2f2 – f1 (1442 MHz) 2f1 – f2 (1439 MHz) –40 –50 VCC = 3.3 V VAGC = 3.3 V (GPMAX) f1 = 1440 MHz f2 = 1441 MHz –60 –70 –30 –25 –20 –15 –10 –5 0 +10 Pout 0 –10 –20 2f2 – f1 (1442 MHz) –30 2f1 – f2 –40 (1439 MHz) –50 –60 –70 –30 Input Power Pin (dBm) VCC = 3.0 V ∆ ±100 kHz VCC = 3.3 V ∆ ±100 kHz –25 –20 –15 –10 Input Power Pin (dBm) –5 0 Adjacent Channel Interference Padj (dBc) Adjacent Channel Interference Padj (dBc) VCC = 2.7 V ∆ ±100 kHz –60 –80 –30 –20 –15 –10 –5 0 ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE –20 f = 1440 MHz VAGC = VCC (GPMAX) –30 VCC = 2.7 V ∆ ±50 kHz VCC = 3.0 V ∆ ±50 kHz VCC = 3.3 V ∆ ±50 kHz –40 –70 –25 Input Power Pin (dBm) ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER –50 VCC = 2.7 V VAGC = 2.7 V (GPMAX) f1 = 1440 MHz f2 = 1441 MHz –45 f = 1440 MHz VCC = 3.0 V –50 –55 Pin = –19.4 dBm ∆ ±50 kHz Pin = –17.4 dBm ∆ ±50 kHz –60 –65 Pin = –17.4 dBm ∆ ±100 kHz Pin = –19.4 dBm ∆ ±100 kHz –70 –75 0 0.5 1 1.5 2 2.5 3 Gain Control Voltage VAGC (V) 41 µPC8119T, µPC8120T µPC8120T Output port matching at f = 1900 MHz Vcc = 3.0 V, VAGC = 3.0 V (GPMAX), Pin = –30 dBm S11 vs. FREQUENCY 1; 24.991 Ω –27.029 Ω 3.0991 pF 1; 52.643 Ω 16.369 Ω 1.3712 nH 1 900.000 000 MHz S22 vs. FREQUENCY 1 900.000 000 MHz MARKER 1 1.9 GHz MARKER 1 1.9 GHz 1 1 START 100.000 000 MHz STOP 100.000 000 MHz START 5 dB/ REF 0 dB 10 MARKER 1 1.9 GHz S22 log MAG 1; –5.5512 dB 1 900.000 000 MHz STOP 100.000 000 MHz S22 vs. FREQUENCY VAGC = 3.0 V (GPMAX), Pin = –30 dBm S11 vs. FREQUENCY VAGC = 3.0 V (GPMAX), Pin = –30 dBm S11 log MAG 100.000 000 MHz 5 dB/ REF 0 dB 1; –24.124 dB 1 900.000 000 MHz 10 MARKER 1 1.9 GHz VCC = 3.3 V 0 0 VCC = 3.0 V 1 –10 –20 –10 VCC = 2.7 V –30 START 100.000 000 MHz STOP 3 100.000 000 MHz S21 vs. FREQUENCY VAGC = 3.0 V (GPMAX), Pin = –30 dBm S21 log MAG 1 dB/ REF 7 dB 1; 12.505 dB 1 900.000 000 MHz 15 VCC = 2.7 V VCC = 3.0 V VCC = 3.3 V –30 START 100.000 000 MHz 17 1 –20 MARKER 1 1.9 GHz 1 13 VCC = 3.3 V VCC = 3.0 V VCC = 2.7 V 11 STOP 3 100.000 000 MHz S12 vs. FREQUENCY VAGC = 3.0 V (GPMAX), Pin = –30 dBm 0 S12 log MAG 5 dB/ REF 0 dB 1; –37.895 dB 1 900.000 000 MHz –10 MARKER 1 1.9 GHz –20 –30 VCC = 3.3 V VCC = 3.0 V 9 7 42 –40 START 100.000 000 MHz STOP 3 100.000 000 MHz –50 VCC = 2.7 V START 100.000 000 MHz STOP 3 100.000 000 MHz µPC8119T, µPC8120T µPC8120T Output port matching at f = 1900 MHz POWER GAIN vs. GAIN CONTROL VOLTAGE POWER GAIN vs. GAIN CONTROL VOLTAGE 20 20 TA = –25 °C 10 Power Gain GP (dB) Power Gain GP (dB) VCC = 2.7 V VCC = 3.0 V 0 VCC = 3.3 V –10 –20 0 0.5 1 1.5 2 2.5 3 3.5 10 TA = +25 °C TA = +75 °C 0 –10 –20 Gain Control Voltage VAGC (V) 10 S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S21 log MAG 5.0 dB/ REF –10.0 dB 13.389 dB VAGC = 3.0 V 1 MARKER 1 1.9 GHz V = 2.0 V VAGC = 1.7 V VAGC = 1.4 V 0.5 1 1.5 2 2.5 3 3.5 Gain Control Voltage VAGC (V) 0 S12 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S12 log MAG 5.0 dB/ REF –25.0 dB –37.828 dB MARKER 1 1.9 GHz AGC 0 0 –10 –20 –10 VAGC = 1.0 V –30 VAGC = 0 V VAGC = 0 V –20 –40 VAGC = 3.0 V –30 START 0.100000000 GHz STOP 3.100000000 GHz –50 S11 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S11 log MAG 5.0 dB/ REF –10.0 dB –5.75 dB 10 MARKER 1 1.9 GHz 0 1 VAGC = 1.6 V VAGC = 3.0 V –10 VAGC = 1.6 V –10 –20 –30 –30 STOP 3.100000000 GHz MARKER 1 1.9 GHz 0 –20 START 0.100000000 GHz STOP 3.100000000 GHz S22 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE Vcc = 3.0 V, Pin = –30 dBm S22 log MAG 5.0 dB/ REF –10.0 dB –21.073 dB 10 VAGC = 0 V VAGC = 1.4 V START 0.100000000 GHz 1 VAGC = 3.0 V VAGC = 0 V VAGC = 1.25 V START 0.100000000 GHz STOP 3.100000000 GHz 43 µPC8119T, µPC8120T µPC8120T Output port matching at f = 1900 MHz OUTPUT POWER vs. INPUT POWER +5 OUTPUT POWER vs. INPUT POWER +10 f = 1900 MHz +5 VCC = 3.0 V VCC = 3.3 V f = 1900 MHz VAGC = 3.0 V 0 VCC = 3.0 V VCC = 2.7 V –5 –10 –15 –20 –30 –25 VAGC = 3.0 V VAGC = 1.65 V 0 Output Power Pout (dBm) Output Power Pout (dBm) +10 –5 –10 –15 –20 VAGC = 1.5 V VAGC = 1.4 V VAGC = 1.3 V VAGC = 0 V –25 –30 –35 –20 –15 –10 –5 0 +5 +10 –40 Input Power Pin (dBm) –45 –30 –25 –20 –15 –10 –5 0 +5 +10 Input Power Pin (dBm) OUTPUT POWER vs. INPUT POWER +10 f = 1900 MHz +5 VCC = 3.3 V OUTPUT POWER vs. INPUT POWER +10 VAGC = 3.3 V f = 1900 MHz +5 VCC = 2.7 V VAGC = 1.9 V –5 0 VAGC = 1.65 V –10 –15 –20 –25 VAGC = 1.55 V VAGC = 1.48 V –30 VAGC = 0 V –5 –20 –25 –30 –40 –40 Input Power Pin (dBm) +5 +10 VAGC = 1.3 V –15 –35 0 VAGC = 1.5 V –10 –35 –45 –30 –25 –20 –15 –10 –5 44 Output Power Pout (dBm) Output Power Pout (dBm) 0 VAGC = 2.7 V VAGC = 1.2 V VAGC = 1.13 V VAGC = 0 V –45 –30 –25 –20 –15 –10 –5 0 Input Power Pin (dBm) +5 +10 µPC8119T, µPC8120T µPC8120T Output port matching at f = 1900 MHz OUTPUT POWER AND IM3 vs. INPUT POWER Pout 0 –10 IM3 –20 –30 2f2 – f1 (1900.6 MHz) –40 2f1 – f2 (1899.7 MHz) –50 VCC = 3.0 V VAGC = 3.0 V (GPMAX) f1 = 1900 MHz f2 = 1900.3 MHz –10 –5 0 –60 –70 –30 –25 –20 –15 Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER +10 +10 VCC = 3.0 V VAGC = 1.4 V 0 (GP ~ ~ –5 dB) f1 = 1900 MHz f2 = 1900.3 MHz –10 Pout –20 –30 IM3 –40 2f1 – 2f2 (1899.7 MHz) –50 2f2 – 2f1 (1900.6 MHz) –60 –70 –30 –25 VCC = 3.0 V VAGC = 1.3 V 0 (GP ~ ~ –10 dB) f1 = 1900 MHz f2 = 1900.3 MHz –10 Pout IM3 2f1 – f2 (1899.7 MHz) –40 2f2 – f1 (1900.6 MHz) –50 –60 –70 –30 –25 –20 –15 –10 –5 0 –20 Pout –30 –40 2f1 – f2 (1899.7 MHz) –50 –60 –70 –30 –25 IM3 –20 2f2 – f1 (1900.6 MHz) 2f1 – f2 (1899.7 MHz) –50 –60 –70 –30 –25 –20 –15 VCC = 3.3 V VAGC = 3.3 V (GPMAX) f1 = 1900 MHz f2 = 1900.3 MHz –10 –5 0 Input Power Pin (dBm) –20 IM3 2f2 – f1 (1900.6 MHz) –15 –10 –5 0 Input Power Pin (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Pout 0 –40 0 VCC = 3.0 V VAGC = 0 V 0 (GPMIN) f1 = 1900 MHz f2 = 1900.3 MHz –10 OUTPUT POWER AND IM3 vs. INPUT POWER +10 –30 –5 +10 Input Power Pin (dBm) –10 –10 OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER +10 –30 –15 Input Power Pin (dBm) Input Power Pin (dBm) –20 –20 +10 Pout 0 –10 IM3 –20 2f2 – f1 (1900.6 MHz) –30 2f1 – f2 (1899.7 MHz) –40 –50 –60 –70 –30 –25 –20 –15 VCC = 2.7 V VAGC = 2.7 V (GPMAX) f1 = 1900 MHz f2 = 1900.3 MHz –10 –5 0 Input Power Pin (dBm) 45 µPC8119T, µPC8120T µPC8120T Output port matching at f = 1900 MHz –20 –30 f = 1900 MHz VAGC = VCC (GPMAX) –40 VCC = 2.7 V ∆ ±600 kHz –50 VCC = 3.0 V ∆ ±600 kHz –60 –70 –80 –30 –25 –20 VCC = 3.3 V ∆ ±600 kHz –15 –10 –5 0 Input Power Pin (dBm) 46 ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE Adjacent Channel Interference Padj (dBc) Adjacent Channel Interference Padj (dBc) ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER –45 –50 f = 1900 MHz VCC = 3.0 V –55 –60 Pin = –10 dBm ∆ ±600 kHz –65 Pin = –12 dBm ∆ ±600 kHz –70 –75 0.0 0.5 Pin = –15 dBm ∆ ±600 kHz 1.0 1.5 2.0 Gain Control Voltage VAGC (V) 2.5 3.0 µPC8119T, µPC8120T PACKAGE DIMENSIONS 6 PIN MINIMOLD PACKAGE (UNITS: mm) +0.1 0.13±0.1 0.3 –0.0 3 +0.2 2 1.5 –0.1 0 – 0.1 6 5 4 0.95 0.95 1.9 0.8 0.2 MIN. 2.8 –0.3 +0.2 1 +0.2 1.1–0.1 2.9±0.2 47 µPC8119T, µPC8120T NOTES ON CORRECT USE (1) Observe precautions for handling because of electro-static sensitive devices. (2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired oscillation). (3) Keep the track length of the ground pins as short as possible. (4) A low pass filter must be attached to VCC line. (5) A matching circuit must be externally attached to output port. RECOMMENDED SOLDERING CONDITIONS This product should be soldered under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your NEC sales representative. µPC8119T, µPC8120T Soldering Method Soldering Conditions Recommended Condition Symbol Infrared Reflow Package peak temperature: 235°C or below Time: 30 seconds or less (at 210°C) Count: 3, Exposure limitNote: None IR35-00-3 VPS Package peak temperature: 215°C or below Time: 40 seconds or less (at 200°C) Count: 3, Exposure limitNote: None VP15-00-3 Wave Soldering Soldering bath temperature: 260°C or below Time: 10 seconds or less Count: 1, Exposure limitNote: None WS60-00-1 Partial Heating Pin temperature: 300°C Time: 3 seconds or less (per side of device) Exposure limitNote: None – Note After opening the dry pack, keep it in a place below 25°C and 65% RH for the allowable storage period. Caution Do not use different soldering methods together (except for partial heating). For details of the recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E). 48 µPC8119T, µPC8120T [MEMO] 49 µPC8119T, µPC8120T [MEMO] 50 µPC8119T, µPC8120T [MEMO] 51 µPC8119T, µPC8120T The application circuits and their parameters are for reference only and are not intended for use in actual design-ins. NESAT (NEC Silicon Advanced Technology) is a trademark of NEC Corporation. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. Anti-radioactive design is not implemented in this product. M4 96. 5