NEC UPC8120T

DATA SHEET
BIPOLAR ANALOG INTEGRATED CIRCUITS
µPC8119T, µPC8120T
VARIABLE GAIN AMPLIFIER SILICON MMIC
FOR TRANSMITTER AGC OF DIGITAL CELLULAR TELEPHONE
DESCRIPTION
The µPC8119T and µPC8120T are silicon monolithic integrated circuits designed as variable gain amplifier. Due to
100 MHz to 1.9 GHz operation, these ICs are suitable for RF transmitter AGC stage of digital cellular telephone. Two
types of gain control let users choose in accordance with system design. 3 V supply voltage and mini mold package
contribute to make system lower voltage, decreased space and fewer components.
The µPC8119T and µPC8120T are manufactured using NEC’s 20 GHz fT NESATTM III silicon bipolar process. This
process uses silicon nitride passivation film and gold electrodes. These materials can protect chip surface from external
pollution and prevent corrosion / migration. Thus, this IC has excellent performance, uniformity and reliability.
FEATURES
• Recommended operating frequency : f = 100 MHz to 1.92 GHz
• Supply voltage
: VCC = 2.7 to 3.3 V
• Low current consumption
: ICC = 11 mA TYP. @ VCC = 3.0 V
• Gain control voltage
: VAGC = 0.6 to 2.4 V (recommended)
• Two types of gain control
: µPC8119T = VAGC up vs. Gain down
µPC8120T = VAGC up vs. Gain up
(Forward control)
(Reverse control)
• AGC control can be constructed by external control circuit.
• High-density surface mounting
APPLICATIONS
• 1.9 GHz cordless telephone (PHS base-station and so on)
• 800 MHz to 900 MHz or 1.5 GHz Digital cellular telephone (PDC800M, PDC1.5G and so on)
ORDERING INFORMATION
Part Number
Package
Marking
Supplying Form
Gain Control Type
µPC8119T-E3
6-pin minimold
C2M
Embossed tape 8 mm wide.
1, 2, 3 pins face to perforation side of the tape.
Qty 3 kp/reel.
Forward control
µPC8120T-E3
Remark
C2N
Reverse control
To order evaluation samples, please contact your local NEC sales office.
(Part number for sample order: µPC8119T, µPC8120T)
Caution
Electro-static sensitive devices
The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version.
Document No. P11027EJ2V0DS00 (2nd edition)
Date Published October 1998 N CP(K)
Printed in Japan
The mark
shows major revised points.
©
1996
µPC8119T, µPC8120T
PIN CONNECTIONS
3
2
1
(Bottom View)
C2M
(Top View)
4
4
Pin No.
Pin Name
1
INPUT
2
GND
3
GND
4
OUTPUT
5
VCC
6
VAGC
3
5
5
2
6
6
1
Marking is a example for µPC8119T.
VARIABLE GAIN AMPLIFIER PRODUCT LINE-UP
Part No.
VCC (V)
ICC (mA)
VAGC (V)
VAGC up vs.Gain
f (GHz)
µPC2723T
4.5 to 5.5
15
3.3 to 5.0
down
up to 1.1
–4
µPC8119T
2.7 to 3.3
11
0.6 to 2.4
down
0.1 to 1.92
+3
µPC8120T
2.7 to 3.3
11
0.6 to 2.4
up
0.1 to 1.92
+3
µPC8130TA
2.7 to 3.3
11
0.6 to 2.4
up
0.8 to 1.5
+5
Low distortion
µPC8131TA
2.7 to 3.3
11
0 to 2.4
down
0.8 to 1.5
+5
Low distortion
Remark
PO (1 dB)
Features
Excellent VCC fluctuation
Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail.
To know the associated product, please refer to each latest data sheet.
SYSTEM APPLICATION EXAMPLE
LNA
RX
I
Q
DEMO
÷N
SW
PLL
PLL
µPC8119T
or
µPC8120T
I
0°
φ
TX
PA
90°
Q
2
µPC8119T, µPC8120T
PIN EXPLANATION
Pin
No.
Pin Name
1
IN
2
3
4
GND
OUT
Applied
Voltage
V
–
0
Pin
Voltage
V
Function and Applications
Internal Equivalent Circuit
Note
1.2
–
Voltage
as same
as VCC
through
external
inductor
–
RF input pin. This pin should be
coupled with capacitor (eg 1000
pF) for DC cut. This pin can be
input from 50 Ω impedance signal
source without matching circuit.
Ground pin. This pin should be
connected to system ground with
minimum inductance. Ground
pattern on the board should be
formed as wide as possible.
5
4
Control
circuit
1
Bias
circuit
RF output pin. This pin is
designed as open collector of
high impedance.
This pin must be externally
equipped with matching circuits.
5
VCC
2.7 to 3.3
–
Supply voltage pin. This pin must
be externally equipped with low
pass filter (eg π type) in order to
suppress leakage from input pin.
This pin also must be equipped
with bypass capacitor (eg 1000
pF) to minimize ground
impedance.
6
VAGC
0 to 3.3
–
Gain control pin. The relation
between product number and
control performance is shown
below;
Part No.
VAGC up vs. Gain
µPC8119T
down
µPC8120T
up
2
3
5
6
Control
circuit
2
3
Note Pin voltage is measured at VCC = 3.0 V.
3
µPC8119T, µPC8120T
ABSOLUTE MAXIMUM RATINGS
Parameter
Symbol
Conditions
Ratings
Unit
Supply Voltage
VCC
TA = +25°C
3.6
V
Gain Control Voltage
VAGC
TA = +25°C
3.6
mA
Operating Ambient
Temperature
TA
−40 to +85
°C
Storage Temperature
Tstg
–55 to +150
°C
Power Dissipation of
Package
PD
280
mW
Mounted on double-sided copper-clad 50 × 50 × 1.6
mm epoxy glass PWB
TA = +85°C
RECOMMENDED OPERATING CONDITIONS
Parameter
Symbol
MIN.
TYP.
MAX.
Unit
Supply Voltage
VCC
2.7
3.0
3.3
V
Same voltage should be applied to 4 and 5
pins.
Gain Control Voltage
VAGC
0.6
–
2.4
V
IAGC ≤ 0.1 mA
Pin
–
–
–18
dBm
–
–
–10
TA
–40
+25
+85
°C
f
100
–
1920
MHz
With external output-matching
IAGC
0.5
–
–
mA
VAGC ≤ 3.3 V
Input Level
Operating Ambient
Temperature
Operating Frequency
AGC Pin Drive Current
Notice
Padj ≤ –60 dBc @ ∆f = ±50 kHzNote 1
Padj ≤ –60 dBc @ ∆f = ±600 kHzNote 2
Notes 1. Adjacent Channel Interference (Padj) wave form condition:
f = 950 MHz or 1440 MHz, π/4QPSK
modulation signal, data rate = 42 kbps, rolloff ratio = 0.5, PN9 bits (pseudo random pattern)
2. Adjacent Channel Interference (Padj) wave form condition: f = 1900 MHz, π/4QPSK modulation signal,
data rate = 384 kbps, rolloff ratio = 0.5, PN9 bits (pseudo random pattern)
4
µPC8119T, µPC8120T
ELECTRICAL CHARACTERISTICS
(Unless otherwise specified, TA = +25°C, VCC = Vout = 3.0 V, ZS = ZL = 50 Ω , External matched output port)
µPC8119T
Parameter
Symbol
Unit
MIN.
Circuit Current
ICC
µPC8120T
Test Conditions
TYP. MAX. MIN.
TYP. MAX.
No signal, ICC = IVCC + Iout
7.5
11
15
7.5
11
15
mA
Maximum Power Gain
GPMAX
f = 950 MHz, Pin = –30 dBm
f = 1440 MHz, Pin = –30 dBm
10
10
12.5
13
15
16
10.5
10.5
13
13.5
15.5
16.5
dB
Gain Control RangeNote
GCR
f = 950 MHz, Pin = –30 dBm
f = 1440 MHz, Pin = –30 dBm
40
35
50
45
–
–
40
35
50
45
–
dB
Noise Figure
NF
f = 950 MHz, GPMAX
f = 1440 MHz, GPMAX
–
–
8.5
7.5
11.5
10.5
–
–
9.0
7.5
12
10.5
dB
Isolation
ISL
f = 950 MHz, GPMAX
f = 1440 MHz, GPMAX
27
31
32
36
–
–
26
30
31
35
–
–
dB
Input Return Loss
RLin
f = 950 MHz, GPMAX
f = 1440 MHz, GPMAX
3
3
6
6
–
–
3
3
6
6
–
–
dB
PO (1 dB)
f = 950 MHz, GPMAX
f = 1440 MHz, GPMAX
0
+1.0
+3
+4
–
–
+0.5
0
+3.5
+3
–
–
dBm
1 dB Compression Output
Power
Note Gain Control Range (GCR) specification: GCR = GPMAX – GPMIN (dB)
Conditions µPC8119T: GPMAX @ VAGC = 0 V, GPMIN @ VAGC = VCC
µPC8120T: GPMAX @ VAGC = VCC, GPMIN @ VAGC = 0 V
Remark
Measured on TEST CIRCUIT 1 and 2
STANDARD CHARACTERISTICS FOR REFERENCE
(Unless otherwise specified, TA = +25°C, VCC = Vout = 3.0 V, ZS = ZL = 50 Ω , External matched output port)
Reference Value
Parameter
Symbol
Test Conditions
µPC8119T
µPC8120T
Unit
Maximum Power Gain
GPMAX
f = 1900 MHz, Pin = –30 dBm
12.5
13
dB
Gain Control RangeNote
GCR
f = 1900 MHz, Pin = –30 dBm
22
22
dB
NF
f = 1900 MHz, GPMAX
7.2
7.3
dB
PO (1 dB)
f = 1900 MHz, GPMAX
+3.0
+2.5
dBm
Noise Figure
1 dB Compression Output Power
Note Gain Control Range (GCR) specification: GCR = GPMAX – GPMIN (dB)
Conditions µPC8119T: GPMAX @ VAGC = 0 V, GPMIN @ VAGC = VCC
µPC8120T: GPMAX @ VAGC = VCC, GPMIN @ VAGC = 0 V
Remark
Measured on APPLICATION CIRCUIT EXAMPLE
5
µPC8119T, µPC8120T
TEST CIRCUIT1 (f = 950 MHz, both products in common)
Vcc line low pass filter
C6
1000 pF
Jumper wire
VAGC
C3
1000 pF
C4
6
1000 pF
C7
1000 pF
5
C1
IN
VCC
C5
1000 pF
L
1000 pF
5 nH
C2
4
OUT
1
1 pF
2, 3
Output matching circuit
ILLUSTRATION OF TEST CIRCUIT1 ASSEMBLED ON EVALUATION BOARD
TYPE1
µPC8119/20T
OUT
C2
OUT
L
C7
VCC
C3
C4
C5
VAGC
VAGC
C1
IN
IN
COMPONENT LIST
Form
Symbol
Value
C1, C3 to C7
1000 pF
C2
1 pFNote 1
Chip inductor
L
5 nH (10 nH × 2 pcs parallel)Note 2
Jumper wire
Jumper wire
5 nH
Chip capacitor
Notes 1. 1 pF : Murata Mfg. Co., Ltd. GR40CK010C
2. 10 nH : Murata Mfg. Co., Ltd. LQP31A10NG04
6
C6
Jumper wire
µPC8119T, µPC8120T
TEST CIRCUIT2 (f = 1440 MHz, both products in common)
Vcc line low pass filter
C6
1000 pF
Pattern L
VAGC
C3
1000 pF
VCC
C5
1000 pF
C4
C7
6 1000 pF
5
C1
IN
1000 pF
L
1000 pF
2 nH
C2
4
OUT
1
1 pF
2, 3
Output matching circuit
ILLUSTRATION OF TEST CIRCUIT2 ASSEMBLED ON EVALUATION BOARD
TYPE2
µPC8119/20T
OUT
C2
OUT
L
VCC
C5
C6
C3
VAGC
1
C1
C7 GND
C7
C4
Pattern L
(5 nH)
VAGC
IN
(Monitor
of Vcc pin)
C4
IN
Vcc
COMPONENT LIST
Form
Chip capacitor
Chip inductor
Printed on board
Notes 1. 1 pF
Symbol
Value
C1, C3 to C7
1000 pF
C2
1 pFNote 1
L
2 nH (4.7 nH + 6.8 nH × 2 pcs parallel)Note 2
Pattern L
5 nH
: Murata Mfg. Co., Ltd. GR40CK010C
2. 4.7 nH : Murata Mfg. Co., Ltd. LQP31A4N7J04
6.8 nH : Murata Mfg. Co., Ltd. LQP31A6N8J04
7
µPC8119T, µPC8120T
APPLICATION CIRCUIT EXAMPLE (f = 1900 MHz, both products in common)
Vcc line low pass filter
C6
1000 pF
Jumper wire
VAGC
C3
1000 pF
C4
6
1000 pF
5
C1
IN
1000 pF
VCC
C5
1000 pF
C7
L
1000 pF
100 nH
1000 pF
4
OUT
1
C2
2, 3
C8
2 to 2.5 pF
Output matching circuit
ILLUSTRATION OF APPLICATION CIRCUIT EXAMPLE ASSEMBLED ON EVALUATION BOARD
TYPE1
µPC8119/20T
OUT
C8
OUT
C2
L
C7
GND
C4
VAGC
IN
COMPONENT LIST
Form
Chip capacitor
Chip inductor
Printed on board
Symbol
Value
C1 to C7
1000 pF
C8
2 to 2.5 pF
L
100 nH Note
Jumper wire
5 nH
Note 100 nH: Murata Mfg. Co., Ltd. LQP31A10NG04
8
C6
Jumper wire
VAGC
C1
IN
C5
VCC
µPC8119T, µPC8120T
LLUSTRATION AND EXPLANATIONS OF EVALUATION BOARD
TYPE2
µPC8119/20T
OUT
OUT
VAGC
1
IN
Vcc monitor line
IN
Vcc
VAGC
VCC
EXPLANATION
<1> This board prints the pattern inductor which inductance is as same as jumper wire in TEST CIRCUITs
(inductance: approx. 5 nH to 6 nH).
<2> Input leakage to VCC pin can be monitored through ‘VCC monitor line’. This leakage can be suppressed with π
type low pass filter attached to VCC pin. The filter performance depends on parallel capacitors.
<3> After adjusted low pass filter, monitor line should be removed before output matching circuit is attached.
EVALUATION BOARD CHARACTERS
(1) 35 µm thick double-sided copper clad 35 × 42 × 0.4 mm polyimide board
(2) Back side: GND pattern
(3) Solder plated patterns
(4)
: Through holes
ATTENTION Test circuit or print pattern in this sheet is for testing IC characteristics.
In the case of actual system application, external circuits including print pattern and matching circuit
constant of output port should be designed in accordance with IC’s S parameters and environmental
components.
9
µPC8119T, µPC8120T
APPLICATION for µPC8119T, µPC8120T
1. TO GET MINIMUM GAIN
–1.
VCC line filtering
A low pass filter must be attached to VCC line in order to suppress RF input leakage to VCC. (The low pass
filter: for example π type.) This filter must be inserted between VCC pin and matching inductor. If the low
pass filter is not attached to this point, minimum output level would not go down under the leakage level.
For example, µPC8119T’s RF input leakage level to VCC shows –30 dBm at 950 MHz and –17 dBm at 1440
dBm.
π type low pass filter constant example
Pattern L = 5 to 6 nH, C5 = C6 = 1000 pF (Refer to TEST CIRCUIT1, 2 and APPLICATION CIRCUIT
EXAMPLE)
In the case of testing on ‘µPC8119/20T TYPE2’ board, monitor the input leakage to VCC pin through ‘VCC
monitor line’ and adjust parallel capacitors to suppress leakage.
–2.
Capacitor feed-back between VAGC and VCC pins
Feed-back capacitor between VAGC and VCC pins must be externally attached in order to decrease
impedance difference.
2. TO GET MAXIMUM GAIN
–1.
Output matching
As for external matching circuit, only output port should be equipped in order to get maximum gain. Output
port matching in accordance with impedance of these ICs and next stage must keep the points as follows;
<1> AC points
• IC output impedance at maximum gain must be used.
• Inductance of L must be chosen to get S22 ~ –20 dBm at maximum gain.
<2> DC point
• On LC matching, L of low DC resistance must be chosen to apply voltage as same as VCC to output
pin.
3. OTHERS
–1.
Input connection
Input port does not need to match externally. These ICs can be connected to front stage through coupling
capacitor (eg 1000 pF) for DC cut.
–2.
VCC ON/OFF while voltage applied to VAGC
Due to internal transistor’s voltage rating, ON/OFF can be controlled with VCC voltage while 3.0 V or less is
applied to VAGC.
For the usage and application of µPC8119T and µPC8120T, please refer to the application note (Document
No. P12763E).
10
µPC8119T, µPC8120T
TYPICAL CHARACTERISTICS (TA = +25°C)
µPC8119T
CIRCUIT CURRENT vs. SUPPLY VOLTAGE
14
150
Gain Control Current IAGC ( µ A)
no signals
Vcc = Vout
12
Circuit Current ICC (mA)
GAIN CONTROL CURRENT vs. GAIN CONTROL VOLTAGE
10
8
6
4
2
125
Vcc = 2.7 V
100
75
Vcc = 3.0 V
50
Vcc = 3.3 V
25
0
0
0
1
2
0
4
0.5
1
1.5
2
2.5
3
3.5
Supply Voltage VCC (V)
Gain Control Voltage VAGC (V)
CIRCUIT CURRENT vs.
OPERATING AMBIENT TEMPERATURE
CURRENT INTO OUTPUT PIN AND CURRENT INTO VCC PIN
vs. GAIN CONTROL VOLTAGE
no signals
Vcc = Vout
16
3
Current into Output pin Iout (mA)
Current into VCC pin IVCC (mA)
18
Circuit Current ICC (mA)
no signals
Vcc = Vout
Vcc = 3.3 V
14
12
10
8
Vcc = 3.0 V
6
Vcc = 2.7 V
4
14
no signals
Vcc = Vout
12
Vcc = 3.3 V
Vcc = 3.0 V
Vcc = 3.3 V
10
Vcc = 3.0 V
Vcc = 2.7 V
8
IVCC
Vcc = 2.7 V
6
Iout
4
2
2
0
–50
–25
0
+25
+50
+5
+100
Operating Ambient Temperature TA (°C)
S11 vs. FREQUENCY
Vcc = Vout = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm
0
0
0.5
1
1.5
2
2.5
3
3.5
Gain Control Voltage VAGC (V)
S22 vs. FREQUENCY
Vcc = Vout = 3.0 V, VAGC = 0 V (GPMAX)
1 : 900 MHz
52.545 Ω – 39.801 Ω
2 : 1500 MHz
33.402 Ω – 32.457 Ω
3 : 1900 MHz
27.989 Ω – 24.408 Ω
1 : 900 MHz
36.039 Ω – 190.09 Ω
2 : 1500 MHz
39.668 Ω – 125.84 Ω
3 : 1900 MHz
34.668 Ω – 106.88 Ω
2
3
2
1
1
3
START 100.000 000 MHz
STOP 3 100.000 000 MHz
START 100.000 000 MHz
STOP 3 100.000 000 MHz
11
µPC8119T, µPC8120T
µPC8119T
Output port matching at f = 950 MHz
Vcc = Vout = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm
1; 39.367 Ω –52.375 3.1987 pF
950.000 000 MHz
S11 vs. FREQUENCY
MARKER 1
950 MHz
1; 59.756 Ω
S22 vs. FREQUENCY
–11.957 14.011 pF
950.000 000 MHz
MARKER 1
950 MHz
1
1
START
100.000 000 MHz
STOP
3 100.000 000 MHz
START
S11 vs. FREQUENCY
VAGC = 0 V (GPMAX), Pin = –30 dBm
10
0
–10
S11 log MAG
5 dB/
REF 0 dB
1: –6.1221 dB
950.000 000 MHz
1
10
Vcc = 3.3 V
5 dB/
REF 0 dB 1: –5.8713 dB
950.000 000 MHz
TA = +85 °C
TA = +25 °C
1
TA = –40 °C
–30
START 100.000 000 MHz
STOP 3 100.000 000 MHz
–40
S22 log MAG
5 dB/
REF 0 dB
1: –15.889 dB
950.000 000 MHz
10
0
–10
–10
Vcc = 2.7 V
–20
Vcc = 3.0 V
START 100.000 000 MHz
STOP 3 100.000 000 MHz
S22 vs. FREQUENCY
Vcc = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm
0
–20
S11 log MAG
–20
S22 vs. FREQUENCY
VAGC = 0 V (GPMAX), Pin = –30 dBm
10
3 100.000 000 MHz
–10
Vcc = 3.0 V
–30
–40
STOP
S11 vs. FREQUENCY
Vcc = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm
0
Vcc = 2.7 V
–20
100.000 000 MHz
S22 log MAG
5 dB/
REF 0 dB
1: –15.858 dB
950.000 000 MHz
TA = +85 °C
TA = +25 °C
TA = –40 °C
Vcc = 3.3 V
–30
–40
12
–30
START 100.000 000 MHz
STOP 3 100.000 000 MHz
–40
START 100.000 000 MHz
STOP 3 100.000 000 MHz
µPC8119T, µPC8120T
µPC8119T
Output port matching at f = 950 MHz
S21 vs. FREQUENCY
Vcc = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm
S21 vs. FREQUENCY
VAGC = 0 V (GPMAX), Pin = –30 dBm
16
S21 log MAG
1 dB/
REF 6 dB
1: 12.738 dB
16
Vcc = 3.3 V
TA = –40 °C
Vcc = 3.0 V
TA = +25 °C
12
10
8
8
START 100.000 000 MHz
STOP 3 100.000 000 MHz
6
S12 vs. FREQUENCY
VAGC = 0 V (GPMAX), Pin = –30 dBm
S12 log MAG
5 dB/
REF 0 dB
1: –31.911 dB
950.000 000 MHz
0
–10
–20
–20
–30
Vcc = 3.0 V
START 100.000 000 MHz
STOP 3 100.000 000 MHz
S12 vs. FREQUENCY
Vcc = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm
–10
1 Vcc = 3.3 V
1: 12.854 dB
TA = +85 °C
Vcc = 2.7 V
10
–30
REF 6 dB
950.000 000 MHz
14
12
0
1 dB/
950.000 000 MHz
14
6
S21 log MAG
S12 log MAG
5 dB/
REF 0 dB
1: –32.053 dB
950.000 000 MHz
TA = –40 °C
1
TA = –25 °C
TA = –85 °C
–40
–40
Vcc = 2.7 V
–50
START 100.000 000 MHz
STOP 3 100.000 000 MHz
–50
START 100.000 000 MHz
STOP 3 100.000 000 MHz
13
µPC8119T, µPC8120T
µPC8119T
Output port matching at f = 950 MHz
POWER GAIN vs. GAIN CONTROL VOLTAGE
20
10
10
Power Gain GP (dB)
Power Gain GP (dB)
POWER GAIN vs. GAIN CONTROL VOLTAGE
20
0
–10
Vcc = 3.3 V
–20
Vcc = 3.0 V
–30
Vcc = 2.7 V
–40
TA = +75 °C
–10
–20
TA = –25 °C
–30
TA = +75 °C
TA = +25 °C
–50
–60
–60
0
0.5
1
1.5
2
2.5
3
3.5
0
Gain Control Voltage VAGC (V)
S21 log MAG 1
VAGC = 1.2 V
VAGC = 1.4 V
VAGC = 1.6 V
VAGC = 1.7 V
VAGC = 1.8 V
VAGC = 1.9 V
5 dB/ REF 0 dB 1:12.926 dB
VAGC = 0 V 950.000 000 MHz
VAGC = 0.9 V
VAGC = 1.0 V
0.5
1
1.5
2
2.5
3
3.5
Gain Control Voltage VAGC (V)
S12 vs. FREQUENCY DEPENDENCE OF GAIN
CONTROL VOLTAGE
Vcc = 3.0 V, Pin = –30 dBm
S21 vs. FREQUENCY DEPENDENCE OF GAIN
CONTROL VOLTAGE
Vcc = 3.0 V, Pin = –30 dBm
0
TA = –25 °C
0
–40
–50
10
TA = +25 °C
0
S12 log MAG
5 dB/
REF 0 dB
1: –32.063 dB
950.000 000 MHz
–10
–20
–10
1
–30
VAGC = 0 V
VAGC = 3.0 V
–20
VAGC = 2.0 V
–40
VAGC = 2.1 V
–30
START 100.000 000 MHz
STOP 3 100.000 000 MHz
–50
5 dB/
REF 0 dB
1: –5.7199 dB
950.000 000 MHz
10
VAGC = 3.0 to 2.0 V
STOP 3 100.000 000 MHz
S22 vs. FREQUENCY DEPENDENCE OF GAIN
CONTROL VOLTAGE
Vcc = 3.0 V, Pin = –30 dBm
S11 vs. FREQUENCY DEPENDENCE OF GAIN
CONTROL VOLTAGE
Vcc = 3.0 V, Pin = –30 dBm
S11 log MAG
START 100.000 000 MHz
S22 log MAG
5 dB/
REF 0 dB
1: –15.219 dB
950.000 000 MHz
10
VAGC = 1.8 V
0
VAGC = 1.6 V
1
VAGC = 1.4 V
–10
–10
VAGC = 1.4 V
–20
VAGC = 1.2 V
VAGC = 0 to 0.7 V
VAGC = 0 to 0.7 V
–20
VAGC = 1.0 V
VAGC = 3.0 to 2.4 V
–30
–30
START 100.000 000 MHz
14
0
STOP 3 100.000 000 MHz
START 100.000 000 MHz
STOP 3 100.000 000 MHz
µPC8119T, µPC8120T
µPC8119T
Output port matching at f = 950 MHz
OUTPUT POWER vs. INPUT POWER
+10
f = 950 MHz
VAGC = 0 V
Vcc = 3.3 V
0
+5
0
Vcc = 3.0 V
Vcc = 2.7 V
–5
–10
Output Power Pout (dBm)
Output Power Pout (dBm)
+10
OUTPUT POWER vs. INPUT POWER
–15
–20
f = 950 MHz
VCC = 3.0 V
VAGC = 0 V
–10
–20
–30
VAGC = 1.60 V
–40
VAGC = 1.85 V
–50
VAGC = 2.00 V
–60
–30
–25
–20
–15
–10
–5
0
+5
–70
+10
VAGC = 2.15 V
–30
–25
–20
Input Power Pin (dBm)
f = 950 MHz
VCC = 3.3 V
0
VAGC = 0 V
–10
VAGC = 1.6 V
VAGC = 1.9 V
–20
VAGC = 2.05 V
–30
–40
VAGC = 2.2 V
–50
0
+5
+10
f = 950 MHz
VCC = 2.7 V
VAGC = 0 V
–10
VAGC = 1.55 V
–20
VAGC = 1.8 V
–30
VAGC = 1.95 V
–40
VAGC = 2.1 V
–50
–60
–60
–70
–5
OUTPUT POWER vs. INPUT POWER
+10
Output Power Pout (dBm)
Output Power Pout (dBm)
0
–10
Input Power Pin (dBm)
OUTPUT POWER vs. INPUT POWER
+10
–15
VAGC = 3.3 V
–30
–25
–20
–15
–10
–5
0
Input Power Pin (dBm)
+5
+10
–70
–30
–25
–20
–15
–10
–5
0
+5
+10
Input Power Pin (dBm)
15
µPC8119T, µPC8120T
µPC8119T
Output port matching at f = 950 MHz
–10
IM3
–20
–30
2f2 – f1 (952 MHz)
–40
2f1 – f2 (949 MHz)
–50
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
Vcc = 3.0 V
VAGC = 0 V (GPMAX)
f1 = 950 MHz
f2 = 951 MHz
–60
–70
–30
–25
–20
–15
–10
–5
0
+10
0
Pout
–10
–20
IM3
–30
2f2 – f1 (952 MHz)
–40
2f1 – f2 (949 MHz)
–50
Vcc = 3.0 V
VAGC = 1.6 V (GP ~
~ dB)
f1 = 950 MHz
f2 = 951 MHz
–60
–70
–30
–25
–20
–15
–10
–5
0
Input Power Pin (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
Input Power Pin (dBm)
Vcc = 3.0 V
VAGC = 1.85 V
(GP ~~ 10 dB)
f1 = 950 MHz
f2 = 951 MHz
0
–10
–20
Pout
–30
2f2 – f1 (952 MHz) IM3
–40
2f1 - f2 (949 MHz)
–50
–60
–70
–30
–25
–20
–15
–10
–5
0
+10
Vcc = 3.0 V
VAGC = 2.0 V
(GP ~~ –20 dB)
f1 = 950 MHz
f2 = 951 MHz
0
–10
–20
Pout
–30
–40
2f2 – f1 (952 MHz)
–50
IM3
–60
–70
–30
2f1 – f2 (949 MHz)
–25
–20
–15
–10
–5
0
Input Power Pin (dBm)
Input Power Pin (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
0
–10
Vcc = 3.0 V
VAGC = 2.15 V
(GP ~
~ –30 dB)
f1 = 950 MHz
f2 = 951 MHz
–20
–30
Pout
–40
–50
–60
–70
–30
2f2 – f1 (952 MHz)
IM3
2f1 – f2 (949 MHz)
–25
–20
–15
–10
Input Power Pin (dBm)
16
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
Pout
0
OUTPUT POWER AND IM3 vs. INPUT POWER
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
–5
0
+10
0
–10
Vcc = 3.0 V
VAGC = 2.3 V
(GP ~
~ –40 dB)
f1 = 950 MHz
f2 = 951 MHz
–20
–30
–40
–50
2f2 – f1 (952 MHz)
2f1 – f2
(949 MHz)
–60
–70
–30
Pout
IM3
–25
–20
–15
–10
Input Power Pin (dBm)
–5
0
µPC8119T, µPC8120T
µPC8119T
Output port matching at f = 950 MHz
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
+10
Pout
0
–10
IM3
–20
2f2 – f1 (952 MHz)
–30
2f1 – f2 (949 MHz)
–40
–50
Vcc = 3.3 V
VAGC = 0 V (GPMAX)
f1 = 950 MHz
f2 = 951 MHz
–60
–70
–30
–25
–20
–15
–10
–5
0
–50
–10
IM3
–20
2f2 – f1 (952 MHz)
–30
2f1 – f2 (949 MHz)
–40
–50
Vcc = 2.7 V
VAGC = 0 V (GPMAX)
f1 = 950 MHz
f2 = 951 MHz
–60
–70
–30
–25
–20
–15
–10
–5
ADJACENT CHANNEL INTERFERENCE
vs. INPUT POWER
ADJACENT CHANNEL INTERFERENCE
vs. GAIN CONTROL VOLTAGE
Vcc = 2.7 V ∆ ±50kHz
Vcc = 3.0 V ∆ ±50kHz
Vcc = 3.3 V ∆ ±50kHz
Vcc = 2.7 V ∆ ±100kHz
Vcc = 3.0 V ∆ ±100kHz
Vcc = 3.3 V ∆ ±100kHz
–60
–70
–80
–30
Pout
0
Input Power Pin (dBm)
f = 950 MHz
VAGC = 0 V (GPMAX)
–40
+10
Input Power Pin (dBm)
–20
–30
OUTPUT POWER AND IM3 vs. INPUT POWER
Adjacent Channel Interference Padj (dBc)
Adjacent Channel Interference Padj (dBc)
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
–25
–20
–15
–10
Input Power Pin (dBm)
–5
0
0
–45
f = 950 MHz
Vcc = 3.0 V
–50
–55
–60
Pin = –17.4 dBm ∆ ±50 kHz
Pin = –19.4 dBm ∆ ±50 kHz
–65
Pin = –17.4 dBm ∆ ±100 kHz
Pin = –19.4 dBm ∆ ±100 kHz
–70
–75
0
0.5
1
1.5
2
2.5
3
Gain Control Voltage VAGC (V)
17
µPC8119T, µPC8120T
µPC8119T
Output port matching at f = 1440 MHz
Vcc = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm
S11 vs. FREQUENCY
1; 36.172 Ω
–45.977 Ω 2.4039 pF
1 440.000 000 MHz
MARKER 1
1.44 MHz
S22 vs. FREQUENCY
1; 48.932 Ω
–13.582 Ω 8.1375 pF
1 440.000 000 MHz
MARKER 1
1.44 MHz
1
1
START
100.000 000 MHz
STOP
3 100.000 000 MHz
START
S11 vs. FREQUENCY
VAGC = 0 V (GPMAX), Pin = –30 dBm
S11 log MAG
5 dB/
REF 0 dB
MARKER 1
1.44 GHz
0
1: –6.1588 dB
S11 log MAG
–20
–30
–30
STOP 3 100.000 000 MHz
TA = –40 °C
START 100.000 000 MHz
S22 vs. FREQUENCY
VAGC = 0 V (GPMAX), Pin = –30 dBm
REF 0 dB
STOP 3 100.000 000 MHz
S22 vs. FREQUENCY
Vcc = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm
1: –17.51 dB
1 440.000 000 MHz
MARKER 1
1.44 GHz
0
S22 log MAG
10
5 dB/
REF 0 dB
1: –16.978 dB
1 440.000 000 MHz
MARKER 1
1.44 GHz
0
–10
–10
Vcc = 3.3 V
Vcc = 3.0 V
–20
Vcc = 2.7 V
–30
TA = +85 °C
–20
TA = +25 °C
TA = –40 °C
–30
START 100.000 000 MHz
18
1: –6.2593 dB
TA = +85 °C
TA = +25 °C 1
–10
–20
10
REF 0 dB
1 440.000 000 MHz
Vcc = 3.3 V
5 dB/
5 dB/
10
0
–10
S22 log MAG
3 100.000 000 MHz
MARKER 1
1.44 GHz
Vcc = 2.7 V
Vcc = 3.0 V
1
START 100.000 000 MHz
STOP
S11 vs. FREQUENCY
Vcc = 3.0 V, VAGC = 0 V (GPMAX) , Pin = –30 dBm
1 440.000 000 MHz
10
100.000 000 MHz
STOP 3 100.000 000 MHz
START 100.000 000 MHz
STOP 3 100.000 000 MHz
µPC8119T, µPC8120T
µPC8119T
Output port matching at f = 1440 MHz
S21 vs. FREQUENCY
VAGC = 0 V (GPMAX), Pin = –30 dBm
16
14
S21 log MAG
1 dB/
REF 6 dB
S21 vs. FREQUENCY
Vcc = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm
1:13.355 dB
1 440.000 000 MHz
MARKER 1
1.44 GHz
1
14
Vcc = 3.3 V
Vcc = 3.0 V
Vcc = 2.7 V
12
16
8
8
6
1: –13.23 dB
1 440.000 000 MHz
MARKER 1
1.44 GHz
1
TA = –40 °C
TA = +25 °C
6
START 100.000 000 MHz
STOP 3 100.000 000 MHz
START 100.000 000 MHz
S12 log MAG
5 dB/
REF 0 dB
STOP 3 100.000 000 MHz
S12 vs. FREQUENCY
Vcc = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm
S12 vs. FREQUENCY
VAGC = 0 V (GPMAX), Pin = –30 dBm
1: –35.55 dB
1 440.000 000 MHz
MARKER 1
1.44 GHz
0
–10
–20
–30
REF 6 dB
TA = +85 °C
10
–10
1 dB/
12
10
0
S21 log MAG
S12 log MAG
5 dB/
REF 0 dB
1: –36.039 dB
1 440.000 000 MHz
MARKER 1
1.44 GHz
–20
1
Vcc = 3.3 V
Vcc = 3.0 V
Vcc = 2.7 V
–40
TA = +85 °C
–30
TA = –40 °C
1
TA = +25 °C
–40
–50
–50
START 100.000 000 MHz
STOP 3 100.000 000 MHz
START 100.000 000 MHz
STOP 3 100.000 000 MHz
19
µPC8119T, µPC8120T
µPC8119T
Output port matching at f = 1440 MHz
POWER GAIN vs. GAIN CONTROL VOLTAGE
+20
+20
+10
+10
0
0
–10
Vcc = 3.3 V
–20
Vcc = 3.0 V
–30
–40
Power Gain GP (dB)
Power Gain GP (dB)
POWER GAIN vs. GAIN CONTROL VOLTAGE
TA = –25 °C
TA = +25 °C
–10
TA = +5 °C
–20
TA = –25 °C
–30
TA = +75 °C
–40
TA = +25 °C
Vcc = 2.7 V
–50
–50
–60
–60
0
0.5
1
1.5
2
2.5
3
3.5
0
Gain Control Voltage VAGC (V)
10
0
–10
REF 0 dB
1: 13.362 dB
1 440.000 000 MHz
1
1.5
2
2.5
3
3.5
Gain Control Voltage VAGC (V)
S12 vs. FREQUENCY DEPENDENCE OF GAIN
CONTROL VOLTAGE
Vcc = 3.0 V, Pin = –30 dBm
S21 vs. FREQUENCY DEPENDENCE OF GAIN
CONTROL VOLTAGE
Vcc = 3.0 V, Pin = –30 dBm
S21 log MAG 5 dB/ 1
VAGC = 0 to 0.6 V
VAGC = 0.9 V
VAGC = 1.0 V
VAGC = 1.2 V
VAGC = 1.4 V
VAGC = 1.6 V
VAGC = 1.8 V
VAGC = 1.9 V
VAGC = 2.0 V
0.5
0
S12 log MAG
5 dB/
REF 0 dB
1: –35.661 dB
1 440.000 000 MHz
–10
–20
VAGC = 0 V
–30
–20
1
VAGC = 2.1 V
–40
VAGC = 3.0 V
–30
VAGC = 2.2 V
START 100.000 000 MHz
–50
START 100.000 000 MHz
STOP 3 100.000 000 MHz
S11 vs. FREQUENCY DEPENDENCE OF GAIN
CONTROL VOLTAGE
Vcc = 3.0 V, Pin = –30 dBm
S11 log MAG
10
0
5 dB/
REF 0 dB
S22 vs. FREQUENCY DEPENDENCE OF GAIN
CONTROL VOLTAGE
Vcc = 3.0 V, Pin = –30 dBm
1: –6.1536 dB
1 440.000 000 MHz
VAGC = 3.0 to 2.0 V
VAGC = 1.8 V
VAGC = 1.6 V
1 VAGC = 1.4 V
–10
S22 log MAG
5 dB/
–20
10
VAGC = 1.4 V
VAGC = 0 to 0.7 V
–20
VAGC = 1.8 V
–30
START 100.000 000 MHz
20
1: –17.471 dB
0
VAGC = 0 to 0.7 V
–30
REF 0 dB
1 440.000 000 MHz
–10
VAGC = 1.2 V
VAGC = 1.0 V
STOP 3 100.000 000 MHz
STOP 3 100.000 000 MHz
START 100.000 000 MHz
STOP 3 100.000 000 MHz
µPC8119T, µPC8120T
µPC8119T
Output port matching at f = 1440 MHz
OUTPUT POWER vs. INPUT POWER
+10
OUTPUT POWER vs. INPUT POWER
+10
f = 1440 MHz Vcc = 3.3 V
VAGC = 0 V
0
0
Output Power Pout (dBm)
Output Power Pout (dBm)
+5
Vcc = 3.0 V
Vcc = 2.7 V
–5
–10
f = 1440 MHz
Vcc = 3.0 V
VAGC = 0 V
–10
VAGC = 1.6 V
–20
VAGC = 1.85 V
–30
VAGC = 2.0 V
–40
VAGC = 2.75 V
–50
–15
VAGC = 3.0 V
–60
–20
–30 –25 –20 –15 –10 –5
Output Power Pout (dBm)
0
0
+5 +10
Input Power Pin (dBm)
Input Power Pin (dBm)
OUTPUT POWER vs. INPUT POWER
OUTPUT POWER vs. INPUT POWER
f = 1440 MHz
Vcc = 3.3 V
+10
VAGC = 0 V
VAGC = 1.7 V
–10
VAGC = 1.9 V
–20
VAGC = 2.05 V
0
–40
VAGC = 2.2 V
–50
VAGC = 3.3 V
–70
–30 –25 –20 –15 –10 –5
0 +5
Input Power Pin (dBm)
f = 1440 MHz
Vcc = 2.7 V
VAGC = 0 V
VAGC = 1.6 V
–30
–60
–70
–30 –25 –20 –15 –10 –5
+5 +10
Output Power Pout (dBm)
+10
0
–10
VAGC = 1.8 V
–20
VAGC = 1.95 V
–30
–40
VAGC = 2.1 V
–50
–60
+10
VAGC = 2.7 V
–70
–30 –25 –20 –15 –10 –5
0
+5 +10
Input Power Pin (dBm)
21
µPC8119T, µPC8120T
µPC8119T
Output port matching at f = 1440 MHz
Pout
0
–10
IM3
–20
2f2 – f1 (1442 MHz)
–30
–40
2f1 – f2 (1439 MHz)
–50
VCC = 3.0 V
VAGC = 0 V
(GPMAX)
f1 = 1440 MHz
f2 = 1441 MHz
–60
–70
–30
–25
–20
–15
–10
–5
OUTPUT POWER AND IM3 vs. INPUT POWER
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
10
0
10
0
–10
Pout
–20
IM3
–30
2f2 – f1 (1442 MHz)
–40
2f1 – f2 (1439 MHz)
–50
VCC = 3.0 V
VAGC = 1.65 V
~ 0 dB)
(GP ~
f1 = 1440 MHz
f2 = 1441 MHz
–60
–70
–30
–25
Input Power Pin (dBm)
0
–10
Pout
–30
IM3
2f2 – f1 (1442 MHz)
–40
2f1 – f2 (1439 MHz)
VCC = 3.0 V
VAGC = 1.85 V
(GP ~~ –10 dB)
f1 = 1440 MHz
f2 = 1441 MHz
–50
–60
–70
–30
–25
–20
–15
–10
–5
0
Input Power Pin (dBm)
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
VCC = 3.0 V
VAGC = 2.0 V
0 (GP ~~ –30 dB)
f1 = 1440 MHz
f2 = 1441 MHz
–10
–20
–30
Pout
–40
2f2 – f1 (1442 MHz)
IM3
–60
–70
–30
2f1 – f2 (1439 MHz)
–25
–20
–15
–10
Input Power Pin (dBm)
22
–10
–5
0
10
VCC = 3.0 V
VAGC = 2.0 V
0 (GP ~~ –20 dB)
f1 = 1440 MHz
f2 = 1441 MHz
–10
–20
Pout
–30
–40
2f2 – f1 (1442 MHz)
IM3
–50
–60
–70
–30
2f1 – f2(1439 MHz)
–25
–20
–15
–10
Input Power Pin (dBm)
10
–50
–15
OUTPUT POWER AND IM3 vs. INPUT POWER
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
10
–20
–20
Input Power Pin (dBm)
–5
0
–5
0
µPC8119T, µPC8120T
µPC8119T
Output port matching at f = 1440 MHz
OUTPUT POWER AND IM3 vs. INPUT POWER
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
10
Pout
0
–10
IM3
–20
2f2 – f1
(1442 MHz)
–30
2f1 – f2
(1439 MHz)
–40
–50
VCC = 3.3 V
VAGC = 0 V
(GPMAX)
f1 = 1440 MHz
f2 = 1441 MHz
–60
–70
–30
–25
–20
–15
–10
–5
0
10
Pout
0
–10
IM3
–20
2f2 – f1
(1442 MHz)
–30
2f1 – f2
(1439 MHz)
–40
–50
–60
–70
–30
–20
f = 1440 MHz
VAGC = 0 V (GPMAX)
VCC = 2.7 V ∆ ±50 kHz
VCC = 3.0 V ∆ ±50 kHz
VCC = 3.3 V ∆ ±50 kHz
–50
–60
–70
–80
–30
VCC = 2.7 V
∆ ±100 kHz
VCC = 3.0 V
∆ ±100 kHz
VCC = 3.3 V ∆ ±100 kHz
–25
–20
–15
–10
Input Power Pin (dBm)
–20
–15
–10
–5
0
ADJACENT CHANNEL INTERFERENCE
vs. GAIN CONTROL VOLTAGE
Adjacent Channel Interference Padj (dBc)
Adjacent Channel Interference Padj (dBc)
ADJACENT CHANNEL INTERFERENCE
vs. INPUT POWER
–40
–25
Input Power Pin (dBm)
Input Power Pin (dBm)
–30
VCC = 2.7 V
VAGC = 0 V
(GPMAX)
f1 = 1440 MHz
f2 = 1441 MHz
–5
0
–45
f = 1440 MHz
VCC = 3.0 V
–50
Pin = –17.4 dBm ∆ ±50 kHz
–55
Pin = –19.4 dBm ∆ ±50 kHz
–60
–65
Pin = –17.4 dBm ∆ ±100 kHz
–70
Pin = –19.4 dBm ∆ ±100 kHz
–75
0
0.5
1
1.5
2
2.5
3
Gain Control Voltage VAGC (V)
23
µPC8119T, µPC8120T
µPC8119T
Output port matching at f = 1900 MHz
Vcc = Vout = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm
1; 25.644 Ω ––28.377 Ω 2.9519 pF
1 900.000 000 MHz
S11 vs. FREQUENCY
MARKER 1
1.9 GHz
1; 43.631 Ω 8.0605 Ω 675.2 pH
1 900.000 000 MHz
S22 vs. FREQUENCY
MARKER 1
1.9 GHz
1
1
START
100.000 000 MHz
STOP
3 100.000 000 MHz
START
100.000 000 MHz
log MAG
5 dB/
REF 0 dB
1: 6.8063 dB
1 900.000 000 MHz
10
VCC = 2.7 V
0
3 100.000 000 MHz
S22 vs. FREQUENCY
VAGC = 0 V (GPMAX), Pin = –30 dBm
S11 vs. FREQUENCY
VAGC = 0 V (GPMAX), Pin = –30 dBm
S11
STOP
S22
log MAG
5 dB/
REF 0 dB
1: –20.108 dB
1 900.000 000 MHz
10
0
1
–10
–10
1
VCC = 3.3 V
–20
–20
VCC = 3.0 V
–30
VCC = 3.3 V
VCC = 3.0 V
VCC = 2.7 V
–30
START 100.000 000 MHz
START 100.000 000 MHz
STOP 3 100.000 000 MHz
S21 vs. FREQUENCY
VAGC = 0 V (GPMAX), Pin = –30 dBm
S21
log MAG
1 dB/
REF 7 dB
1: 12.887 dB
1 900.000 000 MHz
15
VCC = 3.3 V
13
STOP 3 100.000 000 MHz
S12 vs. FREQUENCY
VAGC = 0 V (GPMAX), Pin = –30 dBm
0
S12
log MAG
5 dB/
REF 0 dB 1: –37.473 dB
1 900.000 000 MHz
–10
–20
VCC = 2.7 V
VCC = 3.0 V
11
–30
9
–40
7
–50
VCC = 3.3 V
VCC = 3.0 V
VCC = 2.7 V
24
START 100.000 000 MHz
STOP 3 100.000 000 MHz
START 100.000 000 MHz
STOP 3 100.000 000 MHz
µPC8119T, µPC8120T
µPC8119T
Output port matching at f = 1900 MHz
POWER GAIN vs. GAIN CONTROL VOLTAGE
POWER GAIN vs. GAIN CONTROL VOLTAGE
20
20
10
Power Gain GP (dB)
Power Gain GP (dB)
TA = –25 °C
VCC = 3.0 V
0
VCC = 3.3 V
VCC = 2.7 V
–10
–20
0
0.5
1
1.5
2
2.5
3
3.5
TA = +75 °C
0
TA = +75 °C
TA = +25 °C
–10
–20
Gain Control Voltage VAGC (V)
S21 vs. FREQUENCY DEPENDENCE OF GAIN
CONTROL VOLTAGE
Vcc = 3.0 V, Pin = –30 dBm
S21 log MAG
REF –10.0 dB 5.0 dB/13.038 dB
1
MARKER 1
VAGC = 0 V
1.9 GHz
10
VAGC = 1.0 V
VAGC = 1.4 V
TA = +25 °C
10
TA = –25 °C
0
0.5
1
1.5
2
2.5
3
3.5
Gain Control Voltage VAGC (V)
0
–10
S12 vs. FREQUENCY DEPENDENCE OF GAIN
CONTROL VOLTAGE
Vcc = 3.0 V, Pin = –30 dBm
S12 log MAG
REF –25.0 dB 5.0 dB/–38.732 dB
MARKER 1
1.9 GHz
0
–20
VAGC = 1.7 V
VAGC = 3.0 V
–10
–30
VAGC = 2.0 V
–20
1
VAGC = 3.0 V
–40
–30
VAGC = 0 V
START 0.100000000 GHz
STOP 3.100000000 GHz
–50
S11 vs. FREQUENCY DEPENDENCE OF GAIN
CONTROL VOLTAGE
Vcc = 3.0 V, Pin = –30 dBm
S11 log MAG
REF –10.0 dB 5.0 dB/–6.025 dB
10
MARKER 1
1.9 GHz
0
STOP 3.100000000 GHz
S22 vs. FREQUENCY DEPENDENCE OF GAIN
CONTROL VOLTAGE
Vcc = 3.0 V, Pin = –30 dBm
S22 log MAG
REF –10.0 dB 5.0 dB/–18.194 dB
10
VAGC = 3.0 V
VAGC = 1.6 V
START 0.100000000 GHz
MARKER 1
1.9 GHz
0
1
–10
VAGC = 1.4 V
–10
VAGC = 0 V
VAGC = 0 V
–20
–20
–30
–30
START 0.100000000 GHz
STOP 3.100000000 GHz
VAGC = 1.4 V
1
VAGC = 3.0 V
VAGC = 1.8 V
START 0.100000000 GHz
STOP 3.100000000 GHz
25
µPC8119T, µPC8120T
µPC8119T
Output port matching at f = 1900 MHz
OUTPUT POWER vs. INPUT POWER
OUTPUT POWER vs. INPUT POWER
+10
+10
f = 1900 MHz
VAGC = 0 V
VCC = 3.3 V
0
VCC = 3.0 V
–5
VCC = 2.7 V
–10
VAGC = 0 V
VAGC = 1.4 V
0
Output Power Pout (dBm)
Output Power Pout (dBm)
+5
f = 1900 MHz
VCC = 3.0 V
VAGC = 1.65 V
–10
–20
VAGC = 1.8 V
–30
VAGC = 2.0 V
–15
VAGC = 3.0 V
–40
–20
–30 –25 –20 –15 –10 –5
Output Power Pout (dBm)
0
OUTPUT POWER vs. INPUT POWER
OUTPUT POWER vs. INPUT POWER
+10
f = 1900 MHz
VCC = 3.3 V
VAGC = 0 V
0
VAGC = 1.7 V
VAGC = 1.85 V
VAGC = 2.0 V
VAGC = 3.3 V
–40
–10
f = 1900 MHz
VCC = 2.7 V
VAGC = 0 V
VAGC = 1.4 V
VAGC = 1.6 V
VAGC = 1.75 V
–20
VAGC = 1.9 V
–30
VAGC = 2.7 V
–40
–30 –25 –20 –15 –10 –5
0
Input Power Pin (dBm)
26
+5 +10
Input Power Pin (dBm)
–10
–30
0
Input Power Pin (dBm)
VAGC = 1.4 V
–20
–30 –25 –20 –15 –10 –5
+5 +10
Output Power Pout (dBm)
+10
0
+5 +10
–30 –25 –20 –15 –10 –5
0
Input Power Pin (dBm)
+5 +10
µPC8119T, µPC8120T
µPC8119T
Output port matching at f = 1900 MHz
Pout
0
–10
IM3
–20
2f2 – f1
(1900.6 MHz)
–30
2f1 – f2
(1899.7 MHz)
–40
–50
VCC = 3.0 V
VAGC = 0 V
(GPMAX)
f1 = 1900.0 MHz
f2 = 1900.3 MHz
–60
–70
–30
–25
–20
–15
–10
–5
OUTPUT POWER AND IM3 vs. INPUT POWER
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
0
+10
VCC = 3.0 V
VAGC = 1.8 V
0 (GP ~
~ –5 dB)
f1 = 1900 MHz
f2 = 1900.3 MHz
–10
Pout
–20
IM3
–30
2f2 – f1
(1900.6 MHz)
–40
–50
2f1 – f2
(1899.7 MHz)
–60
–70
–30
–25
Input Power Pin (dBm)
VCC = 3.0 V
VAGC = 1.7 V
0 (GP ~ –10 dB)
~
f1 = 1900 MHz
f
2 = 1900.3 MHz
–10
Pout
–30
–50
IM3
2f2 – f1
(1900.6 MHz)
–60
–70
–30
2f1 – f2
(1899.7 MHz)
–25
–20
–15
–10
Input Power Pin (dBm)
–10
–5
0
–5
OUTPUT POWER AND IM3 vs. INPUT POWER
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
–40
–15
Input Power Pin (dBm)
+10
–20
–20
0
+10
VCC = 3.0 V
VAGC = 3.0 V
0 (GPMIN)
f1 = 1900 MHz
–10 f2 = 1900.3 MHz
–20
Pout
–30
IM3
–40
–50
2f2 – f1
(1900.6 MHz)
2f1 – f2
(1899.7 MHz)
–60
–70
–30
–25
–20
–15
–10
–5
0
Input Power Pin (dBm)
27
µPC8119T, µPC8120T
µPC8119T
Pout
0
–10
IM3
–20
2f2 – f1 (1900.6 MHz)
–30
2f1 – f2 (1899.7 MHz)
–40
–60
–70
–30
Adjacent Channel Interference Padj (dBc)
VCC = 3.3 V
VAGC = 0 V
(GPMAX)
f1 = 1900.0 MHz
f2 = 1900.3 MHz
–50
–20
–30
–25
–20
–15
–10
–10
IM3
–20
2f2 – f1 (1900.6 MHz)
–30
2f1 – f2 (1899.7 MHz)
–40
VCC = 2.7 V
VAGC = 0 V
(GPMAX)
f1 = 1900.0 MHz
f2 = 1900.3 MHz
–50
–60
–25
–20
–15
–10
–5
Input Power Pin (dBm)
ADJACENT CHANNEL INTERFERENCE
vs. INPUT POWER
ADJACENT CHANNEL INTERFERENCE
vs. GAIN CONTROL VOLTAGE
–40
VCC = 2.7 V ∆ ±600 kHz
VCC = 3.0 V ∆ ±600 kHz
–60
–70
VCC = 3.3 V ∆ ±600 kHz
–80
–30
Pout
0
–70
–30
0
f = 1900 MHz
VAGC = 0 V (GPMAX)
–50
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
Input Power Pin (dBm)
–25
–20
–15
–10
Input Power Pin (dBm)
28
–5
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
–5
0
Adjacent Channel Interference Padj (dBc)
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
Output port matching at f = 1900 MHz
–45
0
f = 1900 MHz
VCC = 3.0 V
–50
Pin = –10 dBm, ∆ 600 kHz
–55
Pin = –12 dBm, ∆ ±600 kHz
–60
–65
–70
Pin = –15 dBm, ∆ 600 kHz
–75
0
0.5
1.0
1.5
2.0
2.5
Gain Control Voltage VAGC (V)
3.0
µPC8119T, µPC8120T
µPC8120T
CIRCUIT CURRENT vs. SUPPLY VOLTAGE
14
GAIN CONTROL CURRENT vs. GAIN CONTROL VOLTAGE
200
no signals
no signals
175
Gain Control Current IAGC ( µ A)
Circuit Current ICC (mA)
12
10
8
6
4
150
VCC = 2.7 V
125
100
VCC = 3.0 V
75
50
VCC = 3.3 V
2
25
0
0
0
1
2
3
4
0
1
1.5
2
2.5
3
3.5
Supply Voltage VCC (V)
Gain Control Voltage VAGC (V)
CIRCUIT CURRENT vs.
OPERATING AMBIENT TEMPERATURE
CURRENT INTO OUTPUT PIN AND CURRENT INTO VCC PIN
vs. GAIN CONTROL VOLTAGE
12
20
no signals
11
Current into Output Pin Iout (mA)
Current into VCC Pin IVCC (mA)
18
16
Circuit Current ICC (mA)
0.5
VCC = 3.3 V
VCC = 3.0 V
14
12
10
8
VCC = 2.7 V
6
4
2
Iout
VCC = 3.3 V
10
9 VCC = 3.0 V
VCC = 3.3 V
IVCC
8
VCC = 3.0 V
7 VCC = 2.7 V
6
VCC = 2.7 V
5
4
3
2
1
0
–40 –20
no signals
0
0
+20 +40 +60 +80 +100
0
0.5
1
1.5
2
2.5
3
3.5
Operating Ambient temperature TA (°C)
Gain Control Voltage VAGC (V)
S11 vs. FREQUENCY
VCC = 3.0 V, VAGC = 3.0 V (GPMAX), Pin = –30 dBm
S22 vs. FREQUENCY
VCC = 3.0 V, VAGC = 3.0 V (GPMAX), Pin = –30 dBm
1 : 950 MHz
49.6 Ω – 43.49 Ω
2 : 1440 MHz
32.908 Ω – 34.803 Ω
3 : 1900 MHz
26.389 Ω – 24.797 Ω
1 : 950 MHz
33.758 Ω – 173.11 Ω
2 : 1440 MHz
35.742 Ω – 123.63 Ω
3 : 1900 MHz
34.758 Ω – 105.66 Ω
2
3
2
1
1
3
START
100.000 000 MHz
STOP
3 100.000 000 MHz
START
100.000 000 MHz
STOP
3 100.000 000 MHz
29
µPC8119T, µPC8120T
µPC8120T
Output port matching at f = 950 MHz
VCC = 3.0 V, VAGC = 3.0 V (GPMAX), Pin = –30 dBm
1; 42.344 Ω –55.41 Ω 3.0235 pF
S11 vs. FREQUENCY
S22 vs. FREQUENCY
950.000.000 MHz
1; 50.91 Ω –5.9805 Ω 28.013 pF
950.000 000 MHz
1
1
START
100.000 000 MHz
STOP
S11 vs. FREQUENCY
VAGC = 3.0 V (GPMAX), Pin = –30 dBm
S11 log MAG
5dB/ REF 0 dB
3 100.000 000 MHz
START
100.000 000 MHz
STOP
S11 vs. FREQUENCY
VCC = 3.0 V VAGC = 3.0 V (GPMAX), Pin = –30 dBm
S11 log MAG
5dB/ REF 0 dB 1: –5.7196 dB
1: –5.6328 dB
950.000 000 MHz
950.000 000 MHz
10
10
VCC = 2.7 V
0
1
–10
0
VCC = 3.0 V
–10
VCC = 3.3 V
–20
–20
–30
–30
START 100.000 000 MHz
STOP 3 100.000 000 MHz
S22 log MAG
5dB/
REF 0 dB
10
0
–10
–10
VCC = 3.0 V
VCC = 3.3 V
950.000 000 MHz
TA = +85 °C
–20
TA = +25 °C
TA = –40 °C
–30
–30
START 100.000 000 MHz
30
STOP 3 100.000 000 MHz
10
0
VCC = 2.7 V
TA = –40 °C
S22 vs. FREQUENCY
VCC = 3.0 V, VAGC = 3.0 V (GPMAX), Pin = –30 dBm
S22 log MAG
5dB/ REF 0 dB 1: –18.205 dB
1: –19 .447 dB
950.000 000 MHz
TA = +85 °C
TA = –25 °C
1
START 100.000 000 MHz
S22 vs. FREQUENCY
VAGC = 3.0 V (GPMAX), Pin = –30 dBm
–20
3 100.000 000 MHz
STOP 3 100.000 000 MHz
START 100.000 000 MHz
STOP 3 100.000 000 MHz
µPC8119T, µPC8120T
µPC8120T
Output port matching at f = 950 MHz
S21 vs. FREQUENCY
VAGC = 3.0 V (GPMAX), Pin = –30 dBm
17
S21 log MAG
1 dB/
REF 7 dB
1:12.768 dB
950.000 000 MHz
17
950.000 000 MHz
15
15
1
13
1
VCC = 3.3 V
VCC = 3.0 V
VCC = 2.7 V
13
11
11
9
9
7
S21
START 100.000 000 MHz
STOP 3 100.000 000 MHz
7
S12 log MAG
5dB/
REF 0 dB
1: –31.551 dB
950.000 000 MHz
0
–10
–10
–20
–20
1
–30
VCC = 3.3 V
VCC = 3.0 V
VCC = 2.7 V
–40
–50
S12
STOP 3 100.000 000 MHz
S12 vs. FREQUENCY
VAGC = 3.0 V (GPMAX), Pin = –30 dBm
log MAG
5dB/ REF 0 dB 1: –31.543 dB
950.000 000 MHz
1
–30
TA = –40 °C
TA = +25 °C
TA = +85 °C
START 100.000 000 MHz
S12 vs. FREQUENCY
VAGC = 3.0 V (GPMAX), Pin = –30 dBm
0
S21 vs. FREQUENCY
VAGC = 3.0 V (GPMAX), Pin = –30 dBm
log MAG
1dB/ REF 7 dB 1: –12.78 dB
TA = –40 °C
TA = +25 °C
TA = +85 °C
–40
START 100.000 000 MHz
STOP 3 100.000 000 MHz
–50
START 100.000 000 MHz
STOP 3 100.000 000 MHz
31
µPC8119T, µPC8120T
µPC8120T
Output port matching at f = 950 MHz
POWER GAIN vs. GAIN CONTROL VOLTAGE
POWER GAIN vs. GAIN CONTROL VOLTAGE
+20
+20
+10
+10
TA = –25 °C
Power Gain GP (dB)
Power Gain GP (dB)
VCC = 2.7 V
0
VCC = 3.0 V
–10
VCC = 3.3 V
–20
–30
TA = +75 °C
0
–10
TA = +75 °C
TA = +25 °C
–20
–30
TA = –25 °C
–40
–40
–50
0
0.5
1
1.5
2
2.5
3.0
3.5
–50
0
0.5
Gain Control Voltage VAGC (V)
log MAG
1
10 VAGC = 1.7 V
VAGC = 1.6 V
VAGC = 1.5 V
0 VAGC = 1.4 V
VAGC = 1.3 V
VAGC = 1.2 V
–10
5 dB/ REF 0 dB
1: 12.776 dB
950.000.000 MHz
VAGC = 3.0 V
VAGC = 2.0 V
VAGC = 1.9 V
VAGC = 1.8 V
2.0
2.5
3.0
3.5
S12 vs. FREQUENCY DEPENDENCE OF GAIN
CONTROL VOLTAGE
Vcc = 3.0 V, Pin = –30 dBm
0
S12
log MAG
5 dB/
REF 0 dB
1: –31.081 dB
950.000.000 MHz
–10
–20
VAGC = 3.0 V
1
–30
VAGC = 0 V
–20
–30
START 100.000 000 MHz
VAGC = 1.1 V
VAGC = 1.0 V
VAGC = 0.9 V
STOP 3 100.000 000 MHz
–40
–50
START 100.000 000 MHz
S11 vs. FREQUENCY DEPENDENCE OF GAIN
CONTROL VOLTAGE
Vcc = 3.0 V, Pin = –30 dBm
S11
log MAG
5 dB/
REF 0 dB
STOP 3 100.000 000 MHz
S22 vs. FREQUENCY DEPENDENCE OF GAIN
CONTROL VOLTAGE
Vcc = 3.0 V, Pin = –30 dBm
S22
1: –5.6855 dB
10
0
1.5
Gain Control Voltage VAGC (V)
S21 vs. FREQUENCY DEPENDENCE OF GAIN
CONTROL VOLTAGE
Vcc = 3.0 V, Pin = –30 dBm
S21
1
log MAG
5 dB/
REF 0 dB
1: –19.041 dB
950.000.000 MHz
10
1
VAGC = 0 to 1.2 V
VAGC = 1.4 V
VAGC = 1.6 V
–10
0
–10
VAGC = 1.6 V
VAGC = 2.3 to 3.0 V
VAGC = 1.8 V
–20
VAGC = 2.2 to 3.0 V
–20
VAGC = 0 to 0.9 V
VAGC = 1.2 V
–30
–30
START 100.000 000 MHz
32
STOP 3 100.000 000 MHz
START 100.000 000 MHz
STOP 3 100.000 000 MHz
µPC8119T, µPC8120T
µPC8120T
Output port matching at f = 950 MHz
OUTPUT POWER vs. INPUT POWER
OUTPUT POWER vs. INPUT POWER
+10
+10
f = 950 MHz
VAGC = 3.0 V
VCC = 3.3 V
0
0
VCC = 2.7 V
–5
VCC = 3.0 V
–10
Output Power Pout (dBm)
Output Power Pout (dBm)
+5
f = 950 MHz
VCC = 3.0 V
–10
VAGC = 3.0 V
VAGC = 1.5 V
VAGC = 1.3 V
VAGC = 1.15 V
–20
VAGC = 1.0 V
–30
–40
VAGC = 0 V
–50
–15
–60
–20
–30 –25 –20 –15 –10 –5
Output Power Pout (dBm)
0
–10
0
+5 +10
Input Power Pin (dBm)
Input Power Pin (dBm)
OUTPUT POWER vs. INPUT POWER
OUTPUT POWER vs. INPUT POWER
f = 950 MHz
VCC = 3.3 V
+10
VAGC = 3.3 V
0
VAGC = 1.7 V
VAGC = 1.5 V
VAGC = 1.35 V
–20
–30
–40
VAGC = 1.2 V
–50
–70
–30 –25 –20 –15 –10 –5
+5 +10
VAGC = 0 V
–60
f = 950 MHz
VCC = 2.7 V
VAGC = 2.7 V
VAGC = 1.3 V
Output Power Pout (dBm)
+10
0
–10
VAGC = 1.1 V
–20
VAGC = 0.95 V
–30
–40
–50
VAGC = 0.8 V
VAGC = 0 V
–60
–70
–30 –25 –20 –15 –10 –5
0
Input Power Pin (dBm)
+5 +10
–70
–30 –25 –20 –15 –10 –5
0
+5 +10
Input Power Pin (dBm)
33
µPC8119T, µPC8120T
µPC8120T
Output port matching at f = 950 MHz
Pout
0
–10
IM3
–20
2f2 – f1
(952 MHz)
–30
2f1 – f2
(949 MHz)
–40
–50
–60
–70
–30
–25
–20
–15
VCC = 3.0 V
VAGC = 3.0 V
(GPMAX)
f1 = 950 MHz
f2 = 951 MHz
–10
–5
0
OUTPUT POWER AND IM3 vs. INPUT POWER
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
+10
VCC = 3.0 V
VAGC = 1.5 V
(GP ~
~ 0 dB)
f1 = 950 MHz
f2 = 951 MHz
0
–10
Pout
–20
IM3
–30
2f1 – f2
(949 MHz)
–40
2f2 – f1
(952 MHz)
–50
–60
–70
–30
–25
–10
VCC = 3.0 V
VAGC = 1.3 V
(GP ~
~ –10 dB)
f1 = 950 MHz
f2 = 951 MHz
Pout
–20
–30
IM3
–40
2f1 – f2
(949 MHz)
–50
2f2 – f1
(952 MHz)
–60
–70
–30
–25
–20
–15
–10
–5
0
–20
Pout
–30
–40
IM3
2f1 – f2
(949 MHz)
–50
2f2 – f1
(952 MHz)
–60
–70
–30
–25
VCC = 3.0 V
VAGC = 1.0 V
(GP ~
~ –30 dB)
f1 = 950 MHz
f2 = 951 MHz
–20
–30
Pout
–40
IM3
–50
–60
–70
–30
2f1 – f2
(949 MHz)
–25
–20
–15
2f2 – f1
(952 MHz)
–10
–5
0
Input Power Pin (dBm)
34
–20
–15
–10
–5
0
Input Power Pin (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
–10
0
VCC = 3.0 V
VAGC = 1.15 V
0 (GP ~
~ –20 dB)
f1 = 950 MHz
–10 f2 = 951 MHz
OUTPUT POWER AND IM3 vs. INPUT POWER
0
–5
+10
Input Power Pin (dBm)
+10
–10
OUTPUT POWER AND IM3 vs. INPUT POWER
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
0
–15
Input Power Pin (dBm)
Input Power Pin (dBm)
+10
–20
+10
VCC = 3.0 V
VAGC = 1.15 V
0 (GP ~ –38 dB)
~
f1 = 950 MHz
–10 f2 = 951 MHz
–20
–30
–40
Pout
–50
–60
–70
–30
–25
2f1 – f2
IM3
(949 MHz)
2f2 – f1
(952 MHz)
–5
–20 –15 –10
Input Power Pin (dBm)
0
µPC8119T, µPC8120T
µPC8120T
Output port matching at f = 950 MHz
OUTPUT POWER AND IM3 vs. INPUT POWER
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
Pout
0
–10
–20
–30
–40
2f2 – f1
(952 MHz)
2f1 – f2
(949 MHz)
–50
VCC = 3.3 V
VAGC = 3.3 V
(GPMAX)
f1 = 950 MHz
f2 = 951 MHz
–60
–70
–30
–25
–20
–15
–10
–5
0
+10
Pout
0
–10
–20
2f2 – f1
(952 MHz)
–30
2f1 – f2
(949 MHz)
–40
–50
–60
–70
–30
Input Power Pin (dBm)
f = 950 MHz
VAGC = VCC (GPMAX)
–40
VCC = 2.7 V ∆ ±50 kHz
VCC = 3.0 V ∆ ±50 kHz
VCC = 3.3 V ∆ ±50 kHz
–50
–60
VCC = 2.7 V ∆ ±100 kHz
VCC = 3.0 V ∆ ±100 kHz
VCC = 3.3 V ∆ ±100 kHz
–70
–80
–30
–25
–20
–15
–10
Input Power Pin (dBm)
–20
–15
–10
–5
0
ADJACENT CHANNEL INTERFERENCE
vs. GAIN CONTROL VOLTAGE
–5
0
Adjacent Channel Interference Padj (dBc)
Adjacent Channel Interference Padj (dBc)
–30
–25
Input Power Pin (dBm)
ADJACENT CHANNEL INTERFERENCE
vs. INPUT POWER
–20
VCC = 2.7 V
VAGC = 2.7 V
(GPMAX)
f1 = 950 MHz
f2 = 951 MHz
–45
f = 950 MHz
VCC = 3.0 V
–50
Pin = –17.4 dBm ∆ ±50 kHz
–55
Pin = –19.4 dBm ∆ ±50 kHz
–60
–65
Pin = –17.4 dBm ∆ ±100 kHz
Pin = –19.4 dBm ∆ ±100 kHz
–70
–75
0
0.5
1
1.5
2
2.5
3
Gain Control Voltage VAGC (V)
35
µPC8119T, µPC8120T
µPC8120T
Output port matching at f = 1440 MHz
VCC = 3.0 V , VAGC = 3.0 V (GPMAX), Pin = –30 dBm
1; 36.68 Ω
S11 vs. FREQUENCY
–50.342 Ω 2.2582 pF
1 400.000 000 MHz
S22 vs. FREQUENCY 1; 48.615 Ω –5.4863 Ω –20.145 pF
1 440.000 000 MHz
MARKER 1
1.44 GHz
MARKER 1
1.44 GHz
1
1
START
100.000 000 MHz
STOP
3 100.000 000 MHz
START
S11 vs. FREQUENCY
VAGC = 3.0 V (GPMAX), Pin = –30 dBm
S11 log MAG
5 dB/
REF 0 dB
10
1.44 GHz
0
VCC = 2.7 V
VCC = 3.0 V
1
S11 log MAG
–10
–20
–20
–30
–30
STOP 3 100.000 000 MHz
REF 0 dB
1; –6.0673 dB
TA = +25 °C 1
TA = –40 °C
STOP 3 100.000 000 MHz
S22 vs. FREQUENCY
VCC = 3.0 V, VAGC = 3.0 V (GpMAX), Pin = –30 dBm
1; –24.057 dB
1 440.000 000 MHz
10
REF 0 dB
1 440.000 000 MHz
START 100.000 000 MHz
S22 vs. FREQUENCY
VAGC = 3.0 V (GPMAX), Pin = –30 dBm
5 dB/
3 100.000 000 MHz
TA = +85 °C
VCC = 3.3 V
S22 log MAG
5 dB/
10
0
–10
START 100.000 000 MHz
STOP
S11 vs. FREQUENCY
VCC = 3.0 V, VAGC = 3.0 V (GpMAX), Pin = –30 dBm
1; –6.064 dB
1 440.000 000 MHz
100.000 000 MHz
S22 log MAG
5 dB/
REF 0 dB
1; –22.951 dB
1 440.000 000 MHz
10
MARKER 1
1.44 GHz
0
0
–10
–10
–20
VCC = 3.0 V
–30
START 100.000 000 MHz
36
–20
1
VCC = 3.3 V
VCC = 2.7 V
STOP 3 100.000 000 MHz
TA = +85 °C
–30
TA = +25 °C
TA = –40 °C
START 100.000 000 MHz
STOP 3 100.000 000 MHz
µPC8119T, µPC8120T
µPC8120T
Output port matching at f = 1440 MHz
S21 vs. FREQUENCY
VAGC = 3.0 V (GPMAX), Pin = –30 dBm
17
S21 log MAG
1 dB/
REF 7 dB
1; 12.974 dB
S21 vs. FREQUENCY
VAGC = 3.0 V, (GPMAX), Pin = –30 dBm
17
S21 log MAG
1 dB/
1 440.000 000 MHz
15
MARKER 1
1.44 GHz
1
VCC = 3.3 V
VCC = 3.0 V
VCC = 2.7 V
1
11
9
9
START 100.000 000 MHz
STOP 3 100.000 000 MHz
7
S12 log MAG
5 dB/
REF 0 dB
1; –35.378 dB
START 100.000 000 MHz
0
S12 log MAG
5 dB/
1 440.000 000 MHz
–10
MARKER 1
1.44 GHz
STOP 3 100.000 000 MHz
REF 0 dB
1; –35.238 dB
1 440.000 000 MHz
–10
–20
–20
VCC = 3.3 V
–30
TA = –40 °C
TA = +25 °C
TA = +85 °C
S12 vs. FREQUENCY
VAGC = 3.0 V, (GPMAX), Pin = –30 dBm
S12 vs. FREQUENCY
VAGC = 3.0 V (GPMAX), Pin = –30 dBm
0
MARKER 1
1.44 GHz
13
11
7
1;13.025 dB
1 440.000 000 MHz
15
13
REF 7 dB
1
VCC = 3.0 V
–30
1
TA = +85 °C
TA = +25 °C
TA = –40 °C
–40
–40
VCC = 2.7 V
–50
START 100.000 000 MHz
STOP 3 100.000 000 MHz
–50
START 100.000 000 MHz
STOP 3 100.000 000 MHz
37
µPC8119T, µPC8120T
µPC8120T
Output port matching at f = 1440 MHz
POWER GAIN vs. GAIN CONTROL VOLTAGE
POWER GAIN vs. GAIN CONTROL VOLTAGE
+20
+20
TA = –25 °C
VCC = 2.7 V
+10
Power Gain GP (dB)
Power Gain GP (dB)
+10
0
VCC = 3.0 V
–10
VCC = 3.3 V
–20
–30
TA = +25 °C
0
TA = +75 °C
–10
TA = +75 °C
–20
TA = +25 °C
–30
–40
0
0.5
1
1.5
2
2.5
3
3.5
–40
Gain Control Voltage VAGC (V)
S21 vs. FREQUENCY DEPENDENCE OF GAIN
CONTROL VOLTAGE
Vcc = 3.0 V, Pin = –30 dBm
S21 log MAG
5 dB/ REF 0 dB 1: –12.908 dB
1
VAGC = 3.0 V
1.440.000 000 MHz
VAGC = 2.0 V
10 VAGC = 1.9 V
VAGC = 1.8 V
VAGC = 1.7 V
VAGC = 1.6 V
0 VAGC = 1.5 V
VAGC = 1.4 V
VAGC = 1.3 V
VAGC = 1.2 V
–10
TA = –25 °C
0
0.5
1
0
–10
START 100.000 000 MHz
–40
1.440.000 000 MHz
MARKER 1
1.44 GHz
VAGC = 3.0 V
1
VAGC = 0 V
START 100.000 000 MHz
0
1
1.440.000 000 MHz
MARKER 1
1.44 GHz
0
–10
–10
STOP 3 100.000 000 MHz
S22 vs. FREQUENCY DEPENDENCE OF GAIN
CONTROL VOLTAGE
Vcc = 3.0 V, Pin = –30 dBm
S22 log MAG
5 dB/ REF 0 dB 1: –23.731 dB
10
VAGC = 0 to 1.2 V
VAGC = 1.4 V
VAGC = 1.6 V
3.5
S12 vs. FREQUENCY DEPENDENCE OF GAIN
CONTROL VOLTAGE
Vcc = 3.0 V, Pin = –30 dBm
S12 log MAG
5 dB/ REF 0 dB 1: –34.801 dB
1.440.000 000 MHz
MARKER 1
1.44 GHz
3
–50
STOP 3 100.000 000 MHz
S11 vs. FREQUENCY DEPENDENCE OF GAIN
CONTROL VOLTAGE
Vcc = 3.0 V, Pin = –30 dBm
S11 log MAG
5 dB/ REF 0 dB 1: –6.1639 dB
10
2.5
–20
–20
–30
2
Gain Control Voltage VAGC (V)
–30
VAGC = 1.1 V
VAGC = 1.0 V
VAGC = 0.9 V
VAGC = 0 V
1.5
VAGC = 1.8 V
VAGC = 2.2 to 3.0 V
VAGC = 1.6 V
VAGC = 0 to 0.9 V
–20
–20
VAGC = 2.3 to 3.0 V
–30
–30
START 100.000 000 MHz
38
STOP 3 100.000 000 MHz
VAGC = 1.35 V
START 100.000 000 MHz
STOP 3 100.000 000 MHz
µPC8119T, µPC8120T
µPC8120T
Output port matching at f = 1440 MHz
OUTPUT POWER vs. INPUT POWER
+5
+10
VCC = 3.3 V
f = 1440 MHz
VAGC = 3.0 V
0
OUTPUT POWER vs. INPUT POWER
0
VCC = 3.0 V
VCC = 2.7 V
–5
–10
–15
–20
–30 –25 –20 –15 –10
–5
0
+5
Output Power Pout (dBm)
Output Power Pout (dBm)
+10
f = 1440 MHz
VCC = 3.0 V
VAGC = 3.0 V
–10
VAGC = 1.5 V
VAGC = 1.3 V
–20
–30
–40
VAGC = 1.15 V
VAGC = 0.95 V
VAGC = 0 V
–50
–60
+10
Input Power Pin (dBm)
–70
–30 –25 –20 –15 –10 –5
0
+5 +10
Input Power Pin (dBm)
OUTPUT POWER vs. INPUT POWER
OUTPUT POWER vs. INPUT POWER
Output Power Pout (dBm)
0
–10
f = 1440 MHz
VCC = 3.3 V
+10
VAGC = 3.3 V
VAGC = 1.65 V
VAGC = 1.45 V
–20
–30
–40
–50
VAGC = 1.3 V
VAGC = 1.1 V
VAGC = 0 V
–60
0
Output Power Pout (dBm)
+10
f = 1440 MHz
VCC = 2.7 V
VAGC = 2.7 V
VAGC = 1.3 V
–10
VAGC = 1.1 V
–20
VAGC = 0.95 V
–30
–40
–50
VAGC = 0.75 V
VAGC = 0 V
–60
–70
–30 –25 –20 –15 –10 –5
0
Input Power Pin (dBm)
+5 +10
–70
–30 –25 –20 –15 –10 –5
0
+5 +10
Input Power Pin (dBm)
39
µPC8119T, µPC8120T
µPC8120T
Output port matching at f = 1440 MHz
Pout
0
–10
IM3
–20
2f1 – f2
(1439 MHz)
–30
2f2 – f1
(1442 MHz)
–40
–50
VCC = 3.0 V
VAGC = 3.0 V
(GPMAX)
f1 = 1440 MHz
f2 = 1441 MHz
–60
–70
–30
–25
–20
–15
–10
–5
OUTPUT POWER AND IM3 vs. INPUT POWER
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
0
+10
VCC = 3.0 V
VAGC = 1.5 V
0 (GP ~
~ 0 dB)
f1 = 1440 MHz
f2 = 1441 MHz
–10
–20
IM3
–30
2f1 – f2
(1439 MHz)
–40
2f2 – f1
(1442 MHz)
–50
–60
–70
–30
–25
Input Power Pin (dBm)
VCC = 3.0 V
VAGC = 1.3 V
0 (GP ~
~ –10 dB)
f1 = 1440 MHz
f2 = 1441 MHz
–10
Pout
–30
IM3
2f1 – f2
(1439 MHz)
–50
2f2 – f1
(1442 MHz)
–60
–70
–30
–25
–20
–15
–10
–5
0
Input Power Pin (dBm)
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
VCC = 3.0 V
VAGC = 0 V
0 (GP ~
~ –30 dB)
f1 = 1440 MHz
f2 = 1441 MHz
–10
–20
–30
Pout
–40
–50
IM3
–60
2f1 – f2 (1439 MHz)
–70
–30
–25
–20
–15
–10
Input Power Pin (dBm)
40
–10
–5
0
+10
VCC = 3.0 V
VAGC = 1.15 V
0 (GP ~
~ –20 dB)
f1 = 1440 MHz
f2 = 1441 MHz
–10
–20
Pout
–30
–40
2f1 – f2
(1439 MHz)
–50
IM3
–60
–70
–30
2f2 – f1
(1442 MHz)
–25
–20
–15
–10
Input Power Pin (dBm)
+10
2f2 – f1 (1442 MHz)
–15
OUTPUT POWER AND IM3 vs. INPUT POWER
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
–40
–20
Input Power Pin (dBm)
+10
–20
Pout
–5
0
–5
0
µPC8119T, µPC8120T
µPC8120T
Output port matching at f = 1440 MHz
OUTPUT POWER AND IM3 vs. INPUT POWER
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
Pout
0
–10
–20
–30
IM3
2f2 – f1
(1442 MHz)
2f1 – f2
(1439 MHz)
–40
–50
VCC = 3.3 V
VAGC = 3.3 V
(GPMAX)
f1 = 1440 MHz
f2 = 1441 MHz
–60
–70
–30
–25
–20
–15
–10
–5
0
+10
Pout
0
–10
–20
2f2 – f1
(1442 MHz)
–30
2f1 – f2
–40
(1439 MHz)
–50
–60
–70
–30
Input Power Pin (dBm)
VCC = 3.0 V
∆ ±100 kHz
VCC = 3.3 V ∆ ±100 kHz
–25
–20
–15
–10
Input Power Pin (dBm)
–5
0
Adjacent Channel Interference Padj (dBc)
Adjacent Channel Interference Padj (dBc)
VCC = 2.7 V
∆ ±100 kHz
–60
–80
–30
–20
–15
–10
–5
0
ADJACENT CHANNEL INTERFERENCE
vs. GAIN CONTROL VOLTAGE
–20 f = 1440 MHz
VAGC = VCC
(GPMAX)
–30
VCC = 2.7 V ∆ ±50 kHz
VCC = 3.0 V ∆ ±50 kHz
VCC = 3.3 V ∆ ±50 kHz
–40
–70
–25
Input Power Pin (dBm)
ADJACENT CHANNEL INTERFERENCE
vs. INPUT POWER
–50
VCC = 2.7 V
VAGC = 2.7 V
(GPMAX)
f1 = 1440 MHz
f2 = 1441 MHz
–45
f = 1440 MHz
VCC = 3.0 V
–50
–55
Pin = –19.4 dBm ∆ ±50 kHz
Pin = –17.4 dBm ∆ ±50 kHz
–60
–65
Pin = –17.4 dBm ∆ ±100 kHz
Pin = –19.4 dBm ∆ ±100 kHz
–70
–75
0
0.5
1
1.5
2
2.5
3
Gain Control Voltage VAGC (V)
41
µPC8119T, µPC8120T
µPC8120T
Output port matching at f = 1900 MHz
Vcc = 3.0 V, VAGC = 3.0 V (GPMAX), Pin = –30 dBm
S11 vs. FREQUENCY 1; 24.991 Ω –27.029 Ω 3.0991 pF
1; 52.643 Ω 16.369 Ω 1.3712 nH
1 900.000 000 MHz
S22 vs. FREQUENCY
1 900.000 000 MHz
MARKER 1
1.9 GHz
MARKER 1
1.9 GHz
1
1
START
100.000 000 MHz
STOP 100.000 000 MHz
START
5 dB/
REF 0 dB
10
MARKER 1
1.9 GHz
S22 log MAG
1; –5.5512 dB
1 900.000 000 MHz
STOP
100.000 000 MHz
S22 vs. FREQUENCY
VAGC = 3.0 V (GPMAX), Pin = –30 dBm
S11 vs. FREQUENCY
VAGC = 3.0 V (GPMAX), Pin = –30 dBm
S11 log MAG
100.000 000 MHz
5 dB/
REF 0 dB
1; –24.124 dB
1 900.000 000 MHz
10
MARKER 1
1.9 GHz
VCC = 3.3 V
0
0
VCC = 3.0 V 1
–10
–20
–10
VCC = 2.7 V
–30
START 100.000 000 MHz
STOP 3 100.000 000 MHz
S21 vs. FREQUENCY
VAGC = 3.0 V (GPMAX), Pin = –30 dBm
S21 log MAG
1 dB/
REF 7 dB
1; 12.505 dB
1 900.000 000 MHz
15
VCC = 2.7 V
VCC = 3.0 V
VCC = 3.3 V
–30
START 100.000 000 MHz
17
1
–20
MARKER 1
1.9 GHz
1
13
VCC = 3.3 V
VCC = 3.0 V
VCC = 2.7 V
11
STOP 3 100.000 000 MHz
S12 vs. FREQUENCY
VAGC = 3.0 V (GPMAX), Pin = –30 dBm
0
S12 log MAG
5 dB/
REF 0 dB
1; –37.895 dB
1 900.000 000 MHz
–10
MARKER 1
1.9 GHz
–20
–30
VCC = 3.3 V
VCC = 3.0 V
9
7
42
–40
START 100.000 000 MHz
STOP 3 100.000 000 MHz
–50
VCC = 2.7 V
START 100.000 000 MHz
STOP 3 100.000 000 MHz
µPC8119T, µPC8120T
µPC8120T
Output port matching at f = 1900 MHz
POWER GAIN vs. GAIN CONTROL VOLTAGE
POWER GAIN vs. GAIN CONTROL VOLTAGE
20
20
TA = –25 °C
10
Power Gain GP (dB)
Power Gain GP (dB)
VCC = 2.7 V
VCC = 3.0 V
0
VCC = 3.3 V
–10
–20
0
0.5
1
1.5
2
2.5
3
3.5
10
TA = +25 °C
TA = +75 °C
0
–10
–20
Gain Control Voltage VAGC (V)
10
S21 vs. FREQUENCY DEPENDENCE OF GAIN
CONTROL VOLTAGE
Vcc = 3.0 V, Pin = –30 dBm
S21 log MAG 5.0 dB/ REF –10.0 dB
13.389 dB
VAGC = 3.0 V 1
MARKER 1
1.9 GHz
V = 2.0 V
VAGC = 1.7 V
VAGC = 1.4 V
0.5
1
1.5
2
2.5
3
3.5
Gain Control Voltage VAGC (V)
0
S12 vs. FREQUENCY DEPENDENCE OF GAIN
CONTROL VOLTAGE
Vcc = 3.0 V, Pin = –30 dBm
S12 log MAG 5.0 dB/ REF –25.0 dB
–37.828 dB
MARKER 1
1.9 GHz
AGC
0
0
–10
–20
–10
VAGC = 1.0 V
–30
VAGC = 0 V
VAGC = 0 V
–20
–40
VAGC = 3.0 V
–30
START 0.100000000 GHz
STOP 3.100000000 GHz
–50
S11 vs. FREQUENCY DEPENDENCE OF GAIN
CONTROL VOLTAGE
Vcc = 3.0 V, Pin = –30 dBm
S11 log MAG 5.0 dB/ REF –10.0 dB
–5.75 dB
10
MARKER 1
1.9 GHz
0
1
VAGC = 1.6 V
VAGC = 3.0 V
–10
VAGC = 1.6 V
–10
–20
–30
–30
STOP 3.100000000 GHz
MARKER 1
1.9 GHz
0
–20
START 0.100000000 GHz
STOP 3.100000000 GHz
S22 vs. FREQUENCY DEPENDENCE OF GAIN
CONTROL VOLTAGE
Vcc = 3.0 V, Pin = –30 dBm
S22 log MAG 5.0 dB/ REF –10.0 dB
–21.073 dB
10
VAGC = 0 V
VAGC = 1.4 V
START 0.100000000 GHz
1
VAGC = 3.0 V
VAGC = 0 V
VAGC = 1.25 V
START 0.100000000 GHz
STOP 3.100000000 GHz
43
µPC8119T, µPC8120T
µPC8120T
Output port matching at f = 1900 MHz
OUTPUT POWER vs. INPUT POWER
+5
OUTPUT POWER vs. INPUT POWER
+10
f = 1900 MHz
+5 VCC = 3.0 V
VCC = 3.3 V
f = 1900 MHz
VAGC = 3.0 V
0
VCC = 3.0 V
VCC = 2.7 V
–5
–10
–15
–20
–30 –25
VAGC = 3.0 V
VAGC = 1.65 V
0
Output Power Pout (dBm)
Output Power Pout (dBm)
+10
–5
–10
–15
–20
VAGC = 1.5 V
VAGC = 1.4 V
VAGC = 1.3 V
VAGC = 0 V
–25
–30
–35
–20 –15 –10
–5
0
+5
+10
–40
Input Power Pin (dBm)
–45
–30 –25 –20 –15 –10 –5
0
+5 +10
Input Power Pin (dBm)
OUTPUT POWER vs. INPUT POWER
+10
f = 1900 MHz
+5 VCC = 3.3 V
OUTPUT POWER vs. INPUT POWER
+10
VAGC = 3.3 V
f = 1900 MHz
+5 VCC = 2.7 V
VAGC = 1.9 V
–5
0
VAGC = 1.65 V
–10
–15
–20
–25
VAGC = 1.55 V
VAGC = 1.48 V
–30
VAGC = 0 V
–5
–20
–25
–30
–40
–40
Input Power Pin (dBm)
+5 +10
VAGC = 1.3 V
–15
–35
0
VAGC = 1.5 V
–10
–35
–45
–30 –25 –20 –15 –10 –5
44
Output Power Pout (dBm)
Output Power Pout (dBm)
0
VAGC = 2.7 V
VAGC = 1.2 V
VAGC = 1.13 V
VAGC = 0 V
–45
–30 –25 –20 –15 –10 –5
0
Input Power Pin (dBm)
+5 +10
µPC8119T, µPC8120T
µPC8120T
Output port matching at f = 1900 MHz
OUTPUT POWER AND IM3 vs. INPUT POWER
Pout
0
–10
IM3
–20
–30
2f2 – f1
(1900.6 MHz)
–40
2f1 – f2
(1899.7 MHz)
–50
VCC = 3.0 V
VAGC = 3.0 V
(GPMAX)
f1 = 1900 MHz
f2 = 1900.3 MHz
–10
–5
0
–60
–70
–30
–25
–20
–15
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
+10
VCC = 3.0 V
VAGC = 1.4 V
0 (GP ~
~ –5 dB)
f1 = 1900 MHz
f2 = 1900.3 MHz
–10
Pout
–20
–30
IM3
–40
2f1 – 2f2
(1899.7 MHz)
–50
2f2 – 2f1 (1900.6 MHz)
–60
–70
–30
–25
VCC = 3.0 V
VAGC = 1.3 V
0 (GP ~
~ –10 dB)
f1 = 1900 MHz
f2 = 1900.3 MHz
–10
Pout
IM3
2f1 – f2
(1899.7 MHz)
–40
2f2 – f1
(1900.6 MHz)
–50
–60
–70
–30
–25
–20
–15
–10
–5
0
–20
Pout
–30
–40
2f1 – f2
(1899.7 MHz)
–50
–60
–70
–30
–25
IM3
–20
2f2 – f1
(1900.6 MHz)
2f1 – f2 (1899.7 MHz)
–50
–60
–70
–30
–25
–20
–15
VCC = 3.3 V
VAGC = 3.3 V
(GPMAX)
f1 = 1900 MHz
f2 = 1900.3 MHz
–10
–5
0
Input Power Pin (dBm)
–20
IM3
2f2 – f1
(1900.6 MHz)
–15 –10
–5
0
Input Power Pin (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
Pout
0
–40
0
VCC = 3.0 V
VAGC = 0 V
0 (GPMIN)
f1 = 1900 MHz
f2 = 1900.3 MHz
–10
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
–30
–5
+10
Input Power Pin (dBm)
–10
–10
OUTPUT POWER AND IM3 vs. INPUT POWER
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
–30
–15
Input Power Pin (dBm)
Input Power Pin (dBm)
–20
–20
+10
Pout
0
–10
IM3
–20 2f2 – f1 (1900.6 MHz)
–30
2f1 – f2 (1899.7 MHz)
–40
–50
–60
–70
–30
–25
–20
–15
VCC = 2.7 V
VAGC = 2.7 V
(GPMAX)
f1 = 1900 MHz
f2 = 1900.3 MHz
–10
–5
0
Input Power Pin (dBm)
45
µPC8119T, µPC8120T
µPC8120T
Output port matching at f = 1900 MHz
–20
–30
f = 1900 MHz
VAGC = VCC (GPMAX)
–40
VCC = 2.7 V ∆ ±600 kHz
–50
VCC = 3.0 V ∆ ±600 kHz
–60
–70
–80
–30
–25
–20
VCC = 3.3 V ∆ ±600 kHz
–15
–10
–5
0
Input Power Pin (dBm)
46
ADJACENT CHANNEL INTERFERENCE
vs. GAIN CONTROL VOLTAGE
Adjacent Channel Interference Padj (dBc)
Adjacent Channel Interference Padj (dBc)
ADJACENT CHANNEL INTERFERENCE
vs. INPUT POWER
–45
–50
f = 1900 MHz
VCC = 3.0 V
–55
–60
Pin = –10 dBm ∆ ±600 kHz
–65
Pin = –12 dBm ∆ ±600 kHz
–70
–75
0.0
0.5
Pin = –15 dBm ∆ ±600 kHz
1.0
1.5
2.0
Gain Control Voltage VAGC (V)
2.5
3.0
µPC8119T, µPC8120T
PACKAGE DIMENSIONS
6 PIN MINIMOLD PACKAGE (UNITS: mm)
+0.1
0.13±0.1
0.3 –0.0
3
+0.2
2
1.5 –0.1
0 – 0.1
6
5
4
0.95
0.95
1.9
0.8
0.2 MIN.
2.8 –0.3
+0.2
1
+0.2
1.1–0.1
2.9±0.2
47
µPC8119T, µPC8120T
NOTES ON CORRECT USE
(1) Observe precautions for handling because of electro-static sensitive devices.
(2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired oscillation).
(3) Keep the track length of the ground pins as short as possible.
(4) A low pass filter must be attached to VCC line.
(5) A matching circuit must be externally attached to output port.
RECOMMENDED SOLDERING CONDITIONS
This product should be soldered under the following recommended conditions.
For soldering methods and
conditions other than those recommended below, contact your NEC sales representative.
µPC8119T, µPC8120T
Soldering Method
Soldering Conditions
Recommended Condition
Symbol
Infrared Reflow
Package peak temperature: 235°C or below
Time: 30 seconds or less (at 210°C)
Count: 3, Exposure limitNote: None
IR35-00-3
VPS
Package peak temperature: 215°C or below
Time: 40 seconds or less (at 200°C)
Count: 3, Exposure limitNote: None
VP15-00-3
Wave Soldering
Soldering bath temperature: 260°C or below
Time: 10 seconds or less
Count: 1, Exposure limitNote: None
WS60-00-1
Partial Heating
Pin temperature: 300°C
Time: 3 seconds or less (per side of device)
Exposure limitNote: None
–
Note After opening the dry pack, keep it in a place below 25°C and 65% RH for the allowable storage period.
Caution
Do not use different soldering methods together (except for partial heating).
For details of the recommended soldering conditions for surface mounting, refer to information document
SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).
48
µPC8119T, µPC8120T
[MEMO]
49
µPC8119T, µPC8120T
[MEMO]
50
µPC8119T, µPC8120T
[MEMO]
51
µPC8119T, µPC8120T
The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.
NESAT (NEC Silicon Advanced Technology) is a trademark of NEC Corporation.
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this
document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on
a customer designated "quality assurance program" for a specific application. The recommended applications
of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each
device before using it in a particular application.
Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.
M4 96. 5