DATA SHEET BIPOLAR ANALOG INTEGRATED CIRCUITS µPC8130TA, µPC8131TA –15 dBm INPUT, VARIABLE GAIN AMPLIFIER SILICON MMIC FOR TRANSMITTER AGC OF DIGITAL CELLULAR TELEPHONE DESCRIPTION The µPC8130TA and µPC8131TA are silicon monolithic integrated circuits designed as variable gain amplifier. Due to 800 MHz to 1.5 GHz operation, these ICs are suitable for RF transmitter AGC stage of digital cellular telephone. These ICs are lower distortion than conventional µPC8119T and µPC8120T so that –15 dBm input level can be applied. These ICs also available in two types of gain control so you can choose either IC in accordance with your system design. 3 V supply voltage and minimold package contribute to make your system lower voltage, decreased space and fewer components. The µPC8130TA and µPC8131TA are manufactured using NEC’s 20 GHz fT NESAT™III silicon bipolar process. This process uses silicon nitride passivation film and gold electrodes. These materials can protect chip surface from external pollution and prevent corrosion/migration. Thus, this IC has excellent performance, uniformity and reliability. FEATURES • Recommended operating frequency: f = 800 MHz to 1.5 GHz • Low distortion : Padj ≤ –60 dBc MAX. @Pin = –15 dBm, ∆f = ±50 kHz, VCC = 3.0 V, TA = +25 °C • Supply voltage : VCC = 2.7 to 3.3 V • Low current consumption : ICC = 11 mA TYP. @VCC = 3.0 V • Gain control voltage : VAGC = 0 to 2.4 V (recommended) • Two types of gain control : µPC8130TA = VAGC up vs. Gain up (Reverse control) µPC8131TA = VAGC up vs. Gain down (Forward control) • AGC control can be constructed by external control circuit. • High-density surface mounting : 6 pin minimold package APPLICATION • 800 MHz to 900 MHz or 1.5 GHz Digital cellular telephone (PDC800M, PDC1.5G and so on) ORDERING INFORMATION Part Number µPC8130TA-E3 µPC8131TA-E3 Package Marking Supplying Form Gain Control Type C2Q Embossed tape 8 mm wide. 1, 2, 3 pins face to perforation side of the tape. Qty 3 kp/reel. Reverse control 6-pin minimold C2R Forward control Remark To order evaluation samples, please contact your local NEC sales office. (Part number for sample order: µPC8130TA, µPC8131TA) Caution Electro-static sensitive devices. The information in this document is subject to change without notice. Document No. P11721EJ2V0DS00 (2nd edition) Date Published October 1998 N CP(K) Printed in Japan The mark shows major revised points. © 1997 µPC8130TA, µPC8131TA PIN CONNECTIONS C2Q (Top View) 3 2 1 (Bottom View) 4 Pin No. Pin Name 1 INPUT 2 GND 3 GND 4 OUTPUT 5 VCC 6 VAGC Features 3 4 5 5 2 6 6 1 Marking is an example of µPC8130TA GAIN CONTROL AMPLIFIER PRODUCT LINE-UP Part No. VCC (V) ICC (mA) VAGC (V) VAGC up vs. Gain f (GHz) PO (1 dB) Pin (dBm) µPC2723T 4.5 to 5.5 15 3.3 to 5.0 down up to 1.1 –4 – µPC8119T 2.7 to 3.3 11 0.6 to 2.4 down 0.1 to 1.92 +3 ≤ –18 PHS, PDC µPC8120T 2.7 to 3.3 11 0.6 to 2.4 up 0.1 to 1.92 +3 ≤ –18 PHS, PDC µPC8130TA 2.7 to 3.3 11 0.6 to 2.4 up 0.8 to 1.5 +5 ≤ –15 PDC 800 M, PDC 1.5 G µPC8131TA 2.7 to 3.3 11 0 to 2.4 down 0.8 to 1.5 +5 ≤ –15 PDC 800 M, PDC 1.5 G Remark Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail. To know the associated product, please refer to each latest data sheet. SYSTEM APPLICATION EXAMPLE This block diagram is an example of IF modulation digital cellular system. The µPC8130TA and µPC8131TA are applicable for not only IF modulation system but also RF modulation system. This diagram is intended to show the µPC8130TA and µPC8131TA location in the systems. RX I Q DEMO ÷N SW PLL PLL µ PC8130TA or µ PC8131TA TX I 0° φ PA 90 ° Q This document is to be specified for µPC8130TA and µPC8131TA only. For the other part number mentioned in this document, please refer to the latest data sheet of each part number. 2 µPC8130TA, µPC8131TA PIN EXPLANATION Pin No. 1 2 3 4 Pin Name Applied Voltage V Pin Voltage Note V IN – 1.4 GND OUT 0 − voltage as same as VCC through external inductor − Function and Applications Internal Equivalent Circuit RF input pin. This pin should be coupled with capacitor (eg 1000 pF) for DC cut. Input return loss can be improved with external impedance matching circuit. Ground pin. This pin should be connected to system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible. Ground pins must be connected together with wide ground pattern to decrease impedance difference. 5 4 Control circuit 1 Bias circuit 2 RF output pin. This pin is designed as open collector of high impedance. This pin must be externally equipped with matching circuits. 5 VCC 2.7 to 3.3 – Supply voltage pin. This pin must be equipped with bypass capacitor (eg 1000 pF) to minimize its RF impedance. 6 VAGC 0 to 3.3 − Gain control pin. The relation between product number and control performance is shown below; 3 GND 5 Control circuit Part No. VAGC up vs. Gain µPC8130TA up µPC8131TA down 6 2 Note Pin voltage is measured at VCC = 3.0 V. 3 µPC8130TA, µPC8131TA ABSOLUTE MAXIMUM RATINGS Parameter Symbol Conditions Ratings Unit Supply Voltage VCC TA = +25 °C, Pin 4 and 5 3.6 V Total Circuit Current ICC TA = +25 °C, Pin 4 and 5 30 mA Input Power Pin TA = +25 °C +10 dBm VAGC TA = +25 °C 3.6 V Gain Control Voltage Operating Ambient Temperature TA –25 to +85 °C Storage Temperature Tstg –55 to +150 °C RECOMMENDED OPERATING CONDITIONS Parameter Symbol MIN. TYP. MAX. Unit Remarks Supply Voltage VCC 2.7 3.0 3.3 V Same voltage should be applied to 4 and 5 pins. Gain Control Voltage VAGC 0 – 2.4 V –0.5 ≤ IAGC ≤ 0.1 mA Input Level Pin – – –15 dBm Operating Ambient Temperature TA –25 +25 +85 °C f 800 – 1500 MHz With external output-matching IAGC 0.5 – – mA VAGC ≤ 3.3 V Operating Frequency AGC Pin Drive Current Padj ≤ –60 dBc @∆f = ±50 kHz Note Note Adjacent Channel Interference (Padj) wave form condition: π/4DQPSK modulation signal, data rate = 42 kbps, rolloff ratio = 0.5, PN9 bits (pseudorandom pattern) 4 µPC8130TA, µPC8131TA ELECTRICAL CHARACTERISTICS (Unless otherwise specified, TA = +25 °C, VCC = Vout = 3.0 V, ZS = ZL = 50 Ω, External matched output port) Parameter Symbol Circuit Current ICC µPC8130TA Test Conditions µPC8131TA Unit MIN. TYP. MAX. MIN. TYP. MAX. No signal, ICC = IVcc + Iout 8.5 11 15 8.5 11 15 mA Maximum Power Gain GPMAX f = 950 MHz, Pin = –20 dBm f = 1440 MHz, Pin = –20 dBm 10 8 12.5 11 15 14 9.5 8 12 11 14.5 14 dB Gain Control Note1 Range GCR f = 950 MHz, Pin = –20 dBm f = 1440 MHz, Pin = –20 dBm 40 35 50 41 – – 40 35 45 39 – – dB Minimum Power Gain GPMIN f = 950 MHz, Pin = –20 dBm f = 1440 MHz, Pin = –20 dBm – – –37 –30 – – – – –33 –28 – – dB Adjacent Channel Interference Note 2 ) (@∆f = ±50 kHz Padj f = 950 MHz, Pin = –15 dBm f = 1440 MHz, Pin = –15 dBm – – –65 –65 –60 –60 – – –65 –65 –60 –60 dB Isolation ISL f = 950 MHz, GPMAX f = 1440 MHz, GPMAX 17 20 20 25 – – 20 25 25 30 – – dB PO (1 dB) f = 950 MHz, GPMAX f = 1440 MHz, GPMAX +2 +2 +5 +5 – – +2 +1 +5 +4 – – dBm Input Return Loss RLin f = 950 MHz, GPMAX f = 1440 MHz, GPMAX 3.5 6.5 6.5 10 – – 6 7 9 10.5 – – dB Noise Figure NF f = 950 MHz, GPMAX f = 1440 MHz, GPMAX – – 11 8.5 14 11.5 – – 11 8 14 11 dB 1 dB Compression Output Power Notes 1. Gain Control Range (GCR) specification: GCR = GPMAX – GPMIN (dB) Conditions µPC8130TA: GPMAX@ VAGC = VCC, GPMIN@ VAGC = 0 V µPC8131TA: GPMAX@ VAGC = 0 V, GPMIN@ VAGC = VCC 2. Adjacent Channel Interference (Padj) wave form condition: π/4DQPSK modulation signal, data rate = 42 kbps, rolloff ratio = 0.5, PN9 bits (pseudorandom pattern) Remark Measured on TEST CIRCUIT 1 and 2 5 µPC8130TA, µPC8131TA TEST CIRCUIT1 (f = 950 MHz, both products in common) 1000 pF VCC L2 VAGC C4 C3 L1 6 C5 5 C1 IN 4 C6 C2 OUT 1 2, 3 Output matching circuit ILLUSTRATION OF TEST CIRCUIT1 ASSEMBLED ON EVALUATION BOARD µ PC8130/31TA OUT C2 OUT C6 L1 L2 C3 C5 C4 AGC C1 IN IN VCC VAGC COMPONENT LIST Form Chip capacitor Chip inductor Symbol Value Makers Product Name C1, C3 to C6 1000 pF Murata Mfg. Co., Ltd. GRM39 series C2 1.5 pF Murata Mfg. Co., Ltd. GRM39 series L1 4.5 nH (10 nH, 8.2 nH, parallel) Toko Co., Ltd. LL1608-F L2 270 nH Toko Co., Ltd. LL2012-F Caution Test circuit or print pattern in this sheet is for testing IC characteristics. In the case of actual system application, external circuits including print pattern and matching circuit constant of output port should be designed in accordance with IC’s S parameters and environmental components. 6 µPC8130TA, µPC8131TA TEST CIRCUIT2 (f = 1440 MHz, both products in common) 1000 pF VCC L2 VAGC C4 C3 L1 6 C5 5 C1 IN 4 C6 C2 OUT 1 2, 3 Output matching circuit ILLUSTRATION OF TEST CIRCUIT2 ASSEMBLED ON EVALUATION BOARD µ PC8130/31TA OUT C2 OUT C6 L1 L2 C3 C5 C4 AGC C1 IN IN VCC VAGC COMPONENT LIST Form Chip capacitor Chip inductor Symbol Value Makers Product Name C1, C3 to C6 1000 pF Murata Mfg. Co., Ltd. GRM39 series C2 1.5 pF Murata Mfg. Co., Ltd. GRM39 series L1 1.2 nH Toko Co., Ltd. LL1608-F L2 270 nH Toko Co., Ltd. LL2012-F Caution Test circuit or print pattern in this sheet is for testing IC characteristics. In the case of actual system application, external circuits including print pattern and matching circuit constant of output port should be designed in accordance with IC’s S parameters and environmental components. 7 µPC8130TA, µPC8131TA APPLICATION EXPLANATION The µPC8130TA and µPC8131TA has difference in internal circuit in order to reduce the number of external component with µPC8119T and µPC8120T. For this reason, they have difference in mechanism for determing minimum gain and external suitable constant. Determing Minimum Gain 8 External Feedback Capacitor of VCC to VAGC Pin Optimize Choke Inductance of π Type Circuit on VCC Line µPC8119T µPC8120T High frequency negative feed back between OUT, VCC and VAGC pin optimized by external choke inductance. Necessary The impedance of inductance should be very low at high frequency region. µPC8130TA µPC8131TA Isolation of VCC to OUT pin optimized by external choke inductance. Unnecessary The impedance of inductance should be very high at high frequency region. µPC8130TA, µPC8131TA TYPICAL CHARACTERISTICS µPC8130TA CIRCUIT CURRENT vs. SUPPLY VOLTAGE GAIN CONTROL CURRENT vs. GAIN CONTROL VOLTAGE 20 0.2 no signals Gain Control Current IAGC (mA) Circuit Current ICC (mA) 18 16 14 12 10 8 6 4 2 0 0 0.5 2.5 3 1 1.5 2 Supply Voltage VCC (V) 3.5 0.16 0.14 VCC = 2.7 V 0.12 0.1 VCC = 3.0 V 0.08 VCC = 3.3 V 0.06 0.04 0.02 0 4 0 0.5 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) 4 CURRENT INTO OUTPUT PIN AND CURRENT INTO VCC PIN vs. GAIN CONTROL VOLTAGE CIRCUIT CURRENT vs. OPERATING AMBIENT TEMPERATURE 16 12 10 VCC = 3.3 V VCC = 3.0 V VCC = 2.7 V 8 6 4 2 Current into Output pin IOUT (mA) Current into VCC pin IVCC (mA) 14 Circuit Current ICC (mA) no signals 0.18 14 IVCC 12 Iout 10 8 VCC = 2.7 V 6 -20 0 20 40 60 80 100 Operating Ambient Temperature TA (°C) S11 vs. FREQUENCY VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm S11 1 : 950 MHz 69.594 Ω −8.9766 Ω : 2 1.44 GHz 58.973 Ω −22.688 Ω : 3 1.9 GHz 48.133 Ω −23.941 Ω VCC = 3.0 V VCC = 2.7 V 4 2 no signals 0 -40 VCC = 3.3 V VCC = 3.0 V VCC = .3.3 V no signals 0 0 0.5 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) 4 S22 vs. FREQUENCY VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm S22 1 : 950 MHz 15.859 Ω −208.8 Ω : 2 1.44 GHz 32.234 Ω −150.07 Ω : 1.9 GHz 24.711 Ω −131.8 Ω 1 32 1 3 START 100.000 000 MHz STOP 3 100.000 000 MHz START 800.000 000 MHz 2 STOP 2 700.000 000 MHz 9 µPC8130TA, µPC8131TA µPC8130TA Output port matching at f = 950 MHz VCC = VAGC = 3.0 V(GPMAX), Pin = −20 dBm S11 vs. FREQUENCY 1: 65.098 Ω −56.266 Ω 2.9775 pF 950.000 000 MHz VCC = VAGC = 3.0 V(GPMAX), Pin = −20 dBm S22 vs. FREQUENCY 1: 69.219 Ω 13.313 Ω 2.2303 nH 950.000 000 MHz MARKER 1 950 MHz MARKER 1 950 MHz 1 1 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz S11 vs. FREQUENCY VAGC = VCC (GPMAX), Pin = −20 dBm S11 log MAG 5 dB/REF 0 dB 1: −6.8118 dB 950.000 000 MHz 10 0 VCC = 3.0 V STOP 3 100.000 000 MHz S11 vs. FREQUENCY VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm S11 log MAG 5 dB/REF 0 dB 1: −5.9537 dB 950.000 000 MHz 10 VCC = 3.3 V 0 TA = −25 °C 1 −10 −20 −10 −20 VCC = 2.7 V −30 −30 START 100.000 000 MHz STOP 3 100.000 000 MHz 950.000 000 MHz 0 STOP 3 100.000 000 MHz S22 vs. FREQUENCY VCC = VAGC = 3.0 V(GPMAX), Pin = −20 dBm S22 log MAG 5 dB/REF 0 dB 1: −12.477 dB 950.000 000 MHz 10 0 −10 VCC = 3.3 V VCC = 3.0 V VCC = 2.7 V −20 −30 −10 TA = −25 °C −20 TA = +85 °C TA = +25 °C −30 START 100.000 000 MHz 10 TA = +85 °C START 100.000 000 MHz S22 vs. FREQUENCY VAGC = VCC (GPMAX), Pin = −20 dBm S22 log MAG 5 dB/REF 0 dB 1: −13.235 dB 10 TA = +25 °C STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz µPC8130TA, µPC8131TA µPC8130TA Output port matching at f = 950 MHz S21 vs. FREQUENCY VAGC = VCC (GPMAX), Pin = −20 dBm S21 log MAG 1 dB/REF 7 dB 1: 12.811 dB 950.000 000 MHz 16 14 1 VCC = 3.3 V VCC = 3.0 V VCC = 2.7 V 12 S21 vs. FREQUENCY VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm S21 log MAG 1 dB/REF 7 dB 1: 12.714 dB 950.000 000 MHz 16 14 1 12 TA = +25 °C 10 10 8 8 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz S12 vs. FREQUENCY VAGC = VCC (GPMAX), Pin = −20 dBm S12 log MAG 5 dB/REF 0 dB 1: −20.189 dB 950.000 000 MHz 10 0 TA = −25 °C TA = +85 °C STOP 3 100.000 000 MHz S12 vs. FREQUENCY VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm S12 log MAG 5 dB/REF 0 dB 1: −20.255 dB 950.000 000 MHz 10 0 −10 VCC = 3.3 V 1 −20 VCC = 3.0 V VCC = 2.7 V −30 −10 TA = +85 °C TA = +25 °C 1 −20 TA = −25 °C −30 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz 11 µPC8130TA, µPC8131TA µPC8130TA Output port matching at f = 950 MHz POWER GAIN vs. GAIN CONTROL VOLTAGE VCC = 2.7 V Power Gain GP (dB) Power Gain GP (dB) POWER GAIN vs. GAIN CONTROL VOLTAGE 20 15 10 5 0 −5 −10 −15 −20 −25 −30 −35 −40 VCC = 3.0 V VCC = 3.3 V 0 0.5 1 1.5 2 2.5 3 3.5 Gain Control Voltage VAGC (V) 4 S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = −20 dBm S21 log MAG 10 dB/REF 0 dB 1: −36.686 dB VAGC = 1.5 V 950.000 000 MHz 40 VAGC = 1.4 V VAGC = 3.0 V VAGC = 1.3 V VAGC = 2.2 V VAGC = 1.2 V VAGC = 2.0 V VAGC = 1.1 V 20 VAGC = 1.9 V VAGC = 1.0 V VAGC = 1.6 V 20 15 10 5 0 −5 TA = −25 °C −10 TA = +85 °C −15 TA = +25 °C −20 −25 −30 −35 −40 0 0.5 1 1.5 2 2.5 3 3.5 Gain Control Voltage VAGC (V) S12 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = −20 dBm S12 log MAG 10 dB/REF 0 dB 1: −20.344 dB 950.000 000 MHz 40 20 0 0 VAGC = 3.0 V 1 −20 VAGC = 0 V −20 1 −40 START 100.000 000 MHz VAGC = 0.9 V VAGC = 0.2 V VAGC = 0 V STOP 3 100.000 000 MHz −40 950.000 000 MHz 40 VAGC = 3.0 V VAGC = 1.55 V START 100.000 000 MHz S11 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = -20 dBm S11 log MAG 10 dB/REF 0 dB 1: −6.9044 dB 20 4 STOP 3 100.000 000 MHz S22 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = -20 dBm S22 log MAG 10 dB/REF 0 dB 1: −12.969 dB 950.000 000 MHz 40 20 VAGC = 2.0 V 0 −20 −40 1 0 VAGC = 1.6 V VAGC = 0 to 1.0 V START 100.000 000 MHz 12 STOP 3 100.000 000 MHz 1 −20 VAGC = 1.7 V VAGC = 0 V VAGC = 2.05 V −40 VAGC = 3.0 V START 100.000 000 MHz STOP 3 100.000 000 MHz µPC8130TA, µPC8131TA µPC8130TA Output port matching at f = 950 MHz OUTPUT POWER vs. INPUT POWER OUTPUT POWER vs. INPUT POWER 5 10 f = 950 MHz VAGC = VCC 0 Output Power Pout (dBm) Output Power Pout (dBm) 10 0 VCC = 3.3 V VCC = 3.0 V VCC = 2.7 V −5 −10 −15 −20 −20 −15 −10 −5 Input Power Pin (dBm) 0 −20 −30 −40 OUTPUT POWER vs. INPUT POWER −20 −15 −10 −5 Input Power Pin (dBm) 0 5 OUTPUT POWER vs. INPUT POWER f = 950 MHz VCC = 3.3 V VAGC = 3.3 V 0 Output Power Pout (dBm) Output Power Pout (dBm) −25 10 −10 −20 −30 −40 VAGC = 1.7 V VAGC = 1.45 V VAGC = 1.3 V VAGC = 1.15 V VAGC = 0 V −50 −60 −70 −30 VAGC = 1.5 V VAGC = 1.3 V VAGC = 1.1 V VAGC = 0.95 V VAGC = 0 V −50 −70 −30 5 VAGC = 3.0 V −10 −60 10 0 f = 950 MHz VCC = 3.0 V −25 −20 −15 −10 −5 Input Power Pin (dBm) 0 f = 950 MHz VCC = 2.7 V −10 −20 −30 −40 −50 −60 5 VAGC = 2.7 V −70 −30 −25 VAGC = 1.3 V VAGC = 1.1 V VAGC = 0.95 V VAGC = 0.75 V VAGC = 0 V −20 −15 −10 −5 0 5 Input Power Pin (dBm) 13 µPC8130TA, µPC8131TA µPC8130TA Output port matching at f = 950 MHz 10 0 Pout −10 IM3 −20 −30 2f1-f2 (949 MHz) −40 −50 −60 −70 −30 2f2-f1 (952 MHz) −25 VCC = 3.0 V VAGC = 3.0 V f1 = 950 MHz f2 = 951 MHz −20 −15 −10 Input Power Pin (dBm) −5 0 OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER 20 20 VCC = 3.0 V 10 VAGC = 1.55 V 0 f1 = 950 MHz f2 = 951 MHz −10 −20 Pout −20 −30 2f1-f2 (949 MHz) 2f2-f1 (952 MHz) −40 −50 IM3 −60 −70 −30 −25 −20 −15 −10 Input Power Pin (dBm) −5 0 Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER 14 20 VCC = 3.0 V 10 VAGC = 0 V 0 f1 = 950 MHz f2 = 951 MHz −10 −20 −30 Pout −40 −50 −60 −70 −30 −25 2f1-f2 (949 MHz) 2f2-f1 (952 MHz) −20 −15 −10 Input Power Pin (dBm) IM3 −5 0 2f1-f2 (949 MHz) 2f2-f1 (952 MHz) −40 −50 −60 −70 −30 −25 −20 −15 −10 Input Power Pin (dBm) −5 0 OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) VCC = 3.0 V 10 VAGC = 1.3 V 0 f1 = 950 MHz f2 = 951 MHz −10 IM3 −30 OUTPUT POWER AND IM3 vs. INPUT POWER 20 Pout 20 VCC = 3.0 V 10 VAGC = 1.15 V 0 f1 = 950 MHz f2 = 951 MHz −10 −20 Pout −30 −40 −50 IM3 2f2-f1 (952 MHz) −60 −70 −30 −25 −20 −15 −10 Input Power Pin (dBm) 2f1-f2 (949 MHz) −5 0 µPC8130TA, µPC8131TA µPC8130TA Output port matching at f = 950 MHz −50 TA = +25 °C Pin = −13 dBm ±50 KHz −55 VCC = 3.0 V VCC = 3.3 V −60 VCC = 2.7 V −65 −70 −75 0 0.5 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE Adjacent Channel Interference Padj (dBc) Adjacent Channel Interference Padj (dBc) ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE 4 −50 TA = −25 °C Pin = −13 dBm ±50 KHz −55 −60 −65 −70 −75 Adjacent Channel Interference Padj (dBc) Adjacent Channel Interference Padj (dBc) TA = +85 °C Pin = −13 dBm ±50 KHz −55 VCC = 3.3 V −60 VCC = 3.0 V −65 −70 VCC = 2.7 V −75 0 0.5 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) 4 VCC = 2.7 V 0 0.5 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) 4 ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE −50 VCC = 3.3 V VCC = 3.0 V −30 VAGC = VCC −35 −40 −45 VCC = 3.3 V −50 −55 −60 VCC = 2.7 V −65 −70 −20 VCC = 3.0 V −15 −10 −5 Input Power Pin (dBm) 0 5 15 µPC8130TA, µPC8131TA µPC8130TA Output port matching at f = 1440 MHz VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm S11 vs. FREQUENCY 1: 51.363 Ω −34.424 Ω 3.2107 pF 1 440.000 000 MHz VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm S22 vs. FREQUENCY 1: 37.857 Ω −11.791 Ω 9.3736 pF 1 440.000 000 MHz MARKER 1 1.44 GHz MARKER 1 1.44 GHz 1 1 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz S11 vs. FREQUENCY VAGC = VCC (GPMAX), Pin = −20 dBm S11 log MAG 5 dB/REF 0 dB 1: −9.8796 dB 1 440.000 000 MHz 10 VCC = 3.3 V 0 VCC = 3.0 V S11 vs. FREQUENCY VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm S11 log MAG 5 dB/REF 0 dB 1: −9.5571 dB 1 440.000 000 MHz 10 0 TA = −25 °C −10 −10 VCC = 2.7 V −20 −30 −20 −30 START 100.000 000 MHz STOP 3 100.000 000 MHz 1 440.000 000 MHz 0 −10 1 TA = +25 °C TA = +85 °C START 100.000 000 MHz S22 vs. FREQUENCY VAGC = VCC (GPMAX), Pin = −20 dBm S22 log MAG 5 dB/REF 0 dB 1: −14.444 dB 10 S22 vs. FREQUENCY VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm S22 log MAG 5 dB/REF 0 dB 1: −14.139 dB 1 440.000 000 MHz 10 VCC = 3.3 V 1 VCC = 2.7 V −10 1 TA = +85 °C TA = −25 °C −20 VCC = 3.0 V START 100.000 000 MHz 16 STOP 3 100.000 000 MHz 0 −20 −30 STOP 3 100.000 000 MHz STOP 3 100.000 000 MHz −30 TA = +25 °C START 100.000 000 MHz STOP 3 100.000 000 MHz µPC8130TA, µPC8131TA µPC8130TA Output port matching at f = 1440 MHz S21 vs. FREQUENCY VAGC = VCC (GPMAX), Pin = −20 dBm S21 log MAG 1 dB/REF 5 dB 1: −11.31 dB 1 440.000 000 MHz 14 12 1 VCC = 3.3 V VCC = 3.0 V VCC = 2.7 V S21 vs. FREQUENCY VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm S21 log MAG 1 dB/REF 5 dB 1: −11.291 dB TA = −25 °C 8 8 6 6 STOP 3 100.000 000 MHz START 100.000 000 MHz S12 vs. FREQUENCY VAGC = VCC (GPMAX), Pin = −20 dBm S12 log MAG 5 dB/REF 0 dB 1: −25.647 dB 1 440.000 000 MHz −10 −10 1 VCC = 3.0 V −20 VCC = 2.7 V −30 1 440.000 000 MHz 10 0 VCC = 3.3 V STOP 3 100.000 000 MHz S12 vs. FREQUENCY VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm S12 log MAG 5 dB/REF 0 dB 1: −25.515 dB 0 −20 TA = +25 °C TA = +85 °C 10 10 1 12 10 START 100.000 000 MHz 1 440.000 000 MHz 14 TA = +85 °C 1 TA = +25 °C TA = −25 °C −30 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz 17 µPC8130TA, µPC8131TA µPC8130TA Output port matching at f = 1440 MHz POWER GAIN vs. GAIN CONTROL VOLTAGE VCC = 2.7 V Power Gain GP (dB) Power Gain GP (dB) POWER GAIN vs. GAIN CONTROL VOLTAGE 20 15 10 5 0 −5 −10 −15 −20 −25 −30 −35 −40 VCC = 3.0 V VCC = 3.3 V 0 0.5 1 1.5 2 2.5 3 3.5 Gain Control Voltage VAGC (V) 4 20 15 10 5 0 TA = +25 °C −5 −10 −15 TA = +85 °C −20 −25 TA = −25 °C −30 −35 −40 0 0.5 1 1.5 2 2.5 3 3.5 Gain Control Voltage VAGC (V) S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = −20 dBm S21 log MAG 10 dB/REF 0 dB 2: 10.863 dB 40 20 0 VAGC = 3.0 V VAGC = 2.0 V VAGC = 1.9 V VAGC = 1.8 V VAGC = 1.7 V VAGC = 1.6 V 2 VAGC = 1.5 V VAGC = 1.4 V VAGC = 1.3 V VAGC = 1.2 V VAGC = 1.1 V VAGC = 1.0 V 1 440.000 000 MHz 3 1: −6.6158 dB 950 MHz 3: 5.9184 dB 1.9 GHz S12 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = −20 dBm S12 log MAG 10 dB/REF 0 dB 1: −25.759 dB 20 VAGC = 3.0 V −20 VAGC = 0.8 V VAGC = 0 V START 100.000 000 MHz STOP 3 100.000 000 MHz 1 440.000 000 MHz 40 0 −20 −40 VAGC = 3.0 V VAGC = 1.7 V VAGC = 0 to 1.0 V 18 STOP 3 100.000 000 MHz 1 VAGC = 1.7 V START 100.000 000 MHz STOP 3 100.000 000 MHz S22 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = −20 dBm S22 log MAG 10 dB/REF 0 dB 1: −13.275 dB 1 440.000 000 MHz 40 20 0 1 START 100.000 000 MHz VAGC = 0 V −40 S11 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = -20 dBm S11 log MAG 10 dB/REF 0 dB 1: −9.9621 dB 20 1 440.000 000 MHz 40 0 1 −20 −40 4 −20 1 VAGC = 3.0 V VAGC = 1.65 V VAGC = 0 V −40 START 100.000 000 MHz STOP 3 100.000 000 MHz µPC8130TA, µPC8131TA µPC8130TA Output port matching at f = 1440 MHz OUTPUT POWER vs. INPUT POWER OUTPUT POWER vs. INPUT POWER 5 10 f = 1440 MHz VAGC = VCC 0 Output Power Pout (dBm) Output Power Pout (dBm) 10 VCC = 2.7 V 0 VCC = 3.0 V −5 VCC = 3.3 V −10 −15 f = 1440 MHz VCC = 3.0 V −10 VAGC = 1.5 V −20 −30 −40 VAGC = 1.15 V −50 −60 −20 −20 −15 −10 −5 0 Input Power Pin (dBm) −70 −30 5 OUTPUT POWER vs. INPUT POWER 10 f = 1440 MHz VCC = 3.3 V VAGC = 3.3 V −10 −20 −30 −40 VAGC = 1.65 V VAGC = 1.45 V VAGC = 1.3 V VAGC = 1.15 V VAGC = 0 V −50 −60 −70 −30 −25 −20 −15 −10 −5 Input Power Pin (dBm) 0 0 Output Power Pout (dBm) Output Power Pout (dBm) −25 VAGC = 1.25 V VAGC = 0.95 V VAGC = 0 V −20 −15 −10 −5 0 5 Input Power Pin (dBm) OUTPUT POWER vs. INPUT POWER 10 0 VAGC = 3.0 V f = 1440 MHz VCC = 2.7 V −20 −30 −40 −50 VAGC = 1.3 V VAGC = 1.1 V VAGC = 0.95 V VAGC = 0.75 V VAGC = 0 V −60 5 VAGC = 2.7 V −10 −70 −30 −25 −20 −15 −10 −5 Input Power Pin (dBm) 0 5 19 µPC8130TA, µPC8131TA µPC8130TA Output port matching at f = 1440 MHz 10 Pout 0 −10 IM3 −20 2f1-f2 (1439 MHz) −30 −40 VCC = 3.0 V VAGC = 3.0 V f1 = 1440 MHz 2f2-f1 (1442 MHz) f2 = 1441 MHz −50 −60 −70 −30 −25 −20 −15 −10 Input Power Pin (dBm) −5 OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER 20 0 20 10 −10 −20 Pout −30 −40 2f1-f2 (1439 MHz) −50 IM3 −60 −70 −30 2f2-f1 (1442 MHz) −25 −20 −15 −10 Input Power Pin (dBm) −5 0 OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) 20 20 VCC = 3.0 V 10 VAGC = 0 V 0 f1 = 1440 MHz f2 = 1441 MHz −10 −20 −30 Pout −40 −50 2f2-f1 (1442 MHz) 2f1-f2 (1439 MHz) −60 −70 −30 −25 −20 −15 −10 Input Power Pin (dBm) IM3 −5 0 IM3 −30 −40 −50 2f1-f2 (1439 MHz) −60 −70 −30 −25 VCC = 3.0 V VAGC = 1.5 V f1 = 1440 MHz f2 = 1441 MHz −20 −15 −10 Input Power Pin (dBm) −5 0 OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) VCC = 3.0 V 10 VAGC = 1.25 V 0 f1 = 1440 MHz f2 = 1441 MHz −10 Pout −20 OUTPUT POWER AND IM3 vs. INPUT POWER 20 2f2-f1 (1442 MHz) 0 20 VCC = 3.0 V 10 VAGC = 1.1 V 0 f1 = 1440 MHz f2 = 1441 MHz −10 −20 Pout −30 −40 2f1-f2 (1439 MHz) −50 −60 −70 −30 IM3 2f2-f1 (1442 MHz) −25 −20 −15 −10 Input Power Pin (dBm) −5 0 µPC8130TA, µPC8131TA µPC8130TA Output port matching at f = 1440 MHz −50 TA = +25 °C Pin = −15 dBm ±50 KHz −55 −60 VCC = 3.0 V VCC = 3.3 V −65 −70 −75 VCC = 2.7 V 0 0.5 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE Adjacent Channel Interference Padj (dBc) Adjacent Channel Interference Padj (dBc) ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE 4 −50 TA = −25 °C Pin = −15 dBm ±50 KHz −55 −60 VCC = 3.3 V −65 −70 −75 Adjacent Channel Interference Padj (dBc) Adjacent Channel Interference Padj (dBc) TA = +85 °C Pin = −13 dBm ±50 KHz −55 VCC = 3.0 V VCC = 3.3 V −60 −65 −70 −75 VCC = 2.7 V 0 0.5 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) 4 VCC = 2.7 V 0 0.5 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) 4 ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE −50 VCC = 3.0 V −30 −35 VAGC = VCC −40 −45 −50 −55 VCC = 2.7 V −60 VCC = 3.0 V −65 −70 −20 VCC = 3.3 V −15 −10 −5 0 Input Power Pin (dBm) 5 21 µPC8130TA, µPC8131TA TYPICAL CHARACTERISTICS µPC8131TA CIRCUIT CURRENT vs. SUPPLY VOLTAGE GAIN CONTROL CURRENT vs. GAIN CONTROL VOLTAGE 20 0.5 no signals Gain Control Current IAGC (mA) Circuit Current ICC (mA) 18 16 14 12 10 8 6 4 2 0 0 0.5 2.5 3 1 1.5 2 Supply Voltage VCC (V) 3.5 4 VCC = 2.7 V 0.3 VCC = 3.0 V 0.2 VCC = 3.3 V 0.1 0 −0.1 −0.2 −0.3 −0.4 −0.5 0 0.5 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) 4 CURRENT INTO OUTPUT PIN AND CURRENT INTO VCC PIN vs. GAIN CONTROL VOLTAGE CIRCUIT CURRENT vs. OPERATING AMBIENT TEMPERATURE 16 12 10 VCC = 3.3 V VCC = 3.0 V VCC = 2.7 V 8 6 4 2 no signals 0 −40 −20 0 20 40 60 80 100 Operating Ambient Temperature TA (°C) S11 vs. FREQUENCY VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = -20 dBm S11 1 : 949.4 MHz 72.504 Ω −14.266 Ω : 2 1.44 GHz 58.012 Ω −25.781 Ω 3 : 1.9 GHz 48.307 Ω −26.266 Ω Current into Output pin IOUT (mA) Current into VCC pin IVCC (mA) 14 Circuit Current ICC (mA) no signals 0.4 VCC = .3.3 V 14 VCC = 3.3 V IVCC VCC = 3.0 V 12 10 Iout VCC = 3.0 V 8 VCC = 2.7 V 6 4 2 VCC = 2.7 V 0 0 0.5 no signals 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) 4 S22 vs. FREQUENCY VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = -20 dBm S22 1 : 950 MHz 30.711 Ω −210.3 Ω : 2 1.44 GHz 35.516 Ω −158.06 Ω 3 : 1.9 GHz 19.758 Ω −131.8 Ω 1 3 1 2 2 3 START 100.000 000 MHz 22 STOP 3 100.000 000 MHz START 800.000 000 MHz STOP 2 700.000 000 MHz µPC8130TA, µPC8131TA µPC8131TA Output port matching at f = 950 MHz VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm S11 vs. FREQUENCY 1: 66.246 Ω −41.039 Ω 4.0822 pF 950.000 000 MHz VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm S22 vs. FREQUENCY 1: 57.439 Ω 3.3594 Ω 562.8 pH 950.000 000 MHz MARKER 1 950 MHz MARKER 1 950 MHz 1 1 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz S11 vs. FREQUENCY VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm S11 log MAG 5 dB/REF 0 dB 1: −2.0122 dB S11 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = −20 dBm S11 log MAG 5 dB/REF 0 dB 1: −8.9634 dB 950.000 000 MHz 10 0 VCC = 3.3 V 0 1 −10 −10 VCC = 2.7 V VCC = 3.0 V −20 −30 −30 START 100.000 000 MHz STOP 3 100.000 000 MHz 950.000 000 MHz 10 0 TA = +25 °C TA = +85 °C STOP 3 100.000 000 MHz S22 vs. FREQUENCY VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm S22 log MAG 5 dB/REF 0 dB 1: −18.936 dB 950.000 000 MHz 10 0 −10 −10 VCC = 3.3 V −30 TA = −25 °C START 100.000 000 MHz S22 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = −20 dBm S22 log MAG 5 dB/REF 0 dB 1: −19.264 dB −20 950.000 000 MHz 10 1 −20 STOP 3 100.000 000 MHz VCC = 2.7 V TA = +85 °C TA = +25 °C −30 VCC = 3.0 V START 100.000 000 MHz −20 TA = −25 °C STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz 23 µPC8130TA, µPC8131TA µPC8131TA Output port matching at f = 950 MHz S21 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = −20 dBm S21 log MAG 1 dB/REF 7 dB 1: 11.909 dB 950.000 000 MHz 16 14 VCC = 3.3 V 1 S21 vs. FREQUENCY VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm S21 log MAG 1 dB/REF 7 dB 1: 11.894 dB 14 1 VCC = 3.0 V 12 950.000 000 MHz 16 12 TA = +25 °C VCC = 2.7 V 10 10 8 8 START 100.000 000 MHz STOP 3 100.000 000 MHz 950.000 000 MHz 10 0 TA = +85 °C START 100.000 000 MHz S12 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = −20 dBm S12 log MAG 5 dB/REF 0 dB 1: −24.468 dB STOP 3 100.000 000 MHz S12 vs. FREQUENCY VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm S12 log MAG 5 dB/REF 0 dB 1: −24.393 dB 950.000 000 MHz 10 0 −10 −10 VCC = 3.3 V −20 TA = −25 °C 1 VCC = 3.0 V TA = −25 °C −20 1 TA = +85 °C, +25 °C VCC = 2.7 V −30 −30 START 100.000 000 MHz 24 STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz µPC8130TA, µPC8131TA µPC8131TA Output port matching at f = 950 MHz POWER GAIN vs. GAIN CONTROL VOLTAGE Power Gain GP (dB) Power Gain GP (dB) POWER GAIN vs. GAIN CONTROL VOLTAGE 20 15 10 5 0 −5 −10 −15 −20 −25 −30 −35 −40 VCC = 3.3 V VCC = 2.7 V 0 0.5 VCC = 3.0 V 1 1.5 2 2.5 3 3.5 Gain Control Voltage VAGC (V) 4 S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = −20 dBm S21 log MAG 10 dB/REF 0 dB 1: −34.406 dB VAGC = 1.3 V 950.000 000 MHz VAGC = 1.4 V 40 VAGC = 0 V VAGC = 1.5 V VAGC = 0.5 V VAGC = 1.6 V VAGC = 0.7 V VAGC = 1.7 V 20 VAGC = 0.9 V VAGC = 1.8 V VAGC = 1.1 V VAGC = 1.9 V 20 15 10 5 0 −5 −10 −15 −20 −25 −30 −35 −40 TA = −25 °C TA = +25 °C TA = +85 °C 0 0.5 1 1.5 2 2.5 3 3.5 Gain Control Voltage VAGC (V) 4 S12 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = −20 dBm S12 log MAG 10 dB/REF 0 dB 1: −24.537 dB 950.000 000 MHz 40 20 0 0 VAGC = 0 V −20 −20 1 VAGC = 3.0 V 1 −40 VAGC = 2.0 V VAGC = 2.1 V VAGC = 3.0 V START 100.000 000 MHz STOP 3 100.000 000 MHz −40 VAGC = 1.1 V START 100.000 000 MHz S11 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = −20 dBm S11 log MAG 10 dB/REF 0 dB 1: −8.9126 dB 950.000 000 MHz 40 20 S22 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = −20 dBm S22 log MAG 10 dB/REF 0 dB 1: −19.505 dB 950.000 000 MHz 40 20 VAGC = 1.5 V 0 VAGC = 0 V 0 1 1 −20 −40 STOP 3 100.000 000 MHz VAGC = 2.0 to 3.0 V VAGC = 1.0 V START 100.000 000 MHz −20 −40 STOP 3 100.000 000 MHz VAGC = 1.1 V VAGC = 3.0 V VAGC = 1.8 V VAGC = 0 V VAGC = 0.45 V START 100.000 000 MHz STOP 3 100.000 000 MHz 25 µPC8130TA, µPC8131TA µPC8131TA Output port matching at f = 950 MHz OUTPUT POWER vs. INPUT POWER OUTPUT POWER vs. INPUT POWER 5 10 f = 950 MHz VAGC = 0 V 0 0 Output Power Pout (dBm) Output Power Pout (dBm) 10 VCC = 3.3 V VCC = 3.0 V VCC = 2.7 V -5 -10 -15 -20 -20 -15 -10 -5 Input Power Pin (dBm) 0 -20 -30 -40 OUTPUT POWER vs. INPUT POWER 0 -30 -40 VAGC = 1.5 V VAGC = 1.8 V VAGC = 1.95 V VAGC = 2.15 V VAGC = 3.3 V -60 26 VAGC = 0 V -20 -50 -25 -20 -15 -10 -5 Input Power Pin (dBm) -20 -15 -10 -5 Input Power Pin (dBm) 0 0 5 OUTPUT POWER vs. INPUT POWER Output Power Pout (dBm) Output Power Pout (dBm) f = 950 MHz VCC = 3.3 V -25 10 -10 -70 -30 VAGC = 1.5 V VAGC = 1.75 V VAGC = 1.95 V VAGC = 2.15 V VAGC = 3.0 V -50 -70 -30 5 VAGC = 0 V -10 -60 10 0 f = 950 MHz VCC = 3.0 V f = 950 MHz VCC = 2.7 V -10 -20 -30 -40 VAGC = 1.5 V VAGC = 1.75 V VAGC = 1.9 V VAGC = 2.1 V VAGC = 2.7 V -50 -60 5 VAGC = 0 V -70 -30 -25 -20 -15 -10 -5 Input Power Pin (dBm) 0 5 µPC8130TA, µPC8131TA µPC8131TA Output port matching at f = 950 MHz 10 Pout 0 −10 IM3 −20 2f2-f1 (952 MHz) −30 −40 −50 2f1-f2 (949 MHz) −60 −70 −30 −25 VCC = 3.0 V VAGC = 0 V f1 = 950 MHz f2 = 951 MHz −20 −15 −10 Input Power Pin (dBm) −5 0 OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER 20 20 VCC = 3.0 V 10 VAGC = 1.15 V 0 f1 = 950 MHz f2 = 951 MHz −10 −30 Pout −20 IM3 −30 2f2-f1 (952 MHz) −40 −50 2f1-f2 (949 MHz) −60 −70 −30 −25 −20 −15 −10 Input Power Pin (dBm) −5 0 2f1-f2 (949 MHz) −40 −50 2f2-f1 (952 MHz) −60 −70 −30 −25 −20 −15 −10 Input Power Pin (dBm) −5 0 OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) VCC = 3.0 V 10 VAGC = 1.55 V 0 f1 = 950 MHz f2 = 951 MHz −10 IM3 −20 OUTPUT POWER AND IM3 vs. INPUT POWER 20 Pout 20 VCC = 3.0 V 10 VAGC = 1.75 V 0 f1 = 950 MHz f2 = 951 MHz −10 Pout −20 −30 IM3 2f2-f1 (952 MHz) −40 −50 2f1-f2 (949 MHz) −60 −70 −30 −25 −20 −15 −10 Input Power Pin (dBm) −5 0 Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER 20 VCC = 3.0 V 10 VAGC = 3.0 V 0 f1 = 950 MHz f2 = 951 MHz −10 −20 −30 Pout −40 −50 2f1-f2 (949 MHz) −60 −70 −30 −25 −20 −15 −10 Input Power Pin (dBm) 2f2-f1 (952 MHz) IM3 −5 0 27 µPC8130TA, µPC8131TA µPC8131TA Output port matching at f = 950 MHz −50 TA = +25 °C Pin = −15 dBm ±50 KHz −55 VCC = 2.7 V −60 VCC = 3.3 V −65 −70 VCC = 3.0 V −75 0 0.5 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE Adjacent Channel Interference Padj (dBc) Adjacent Channel Interference Padj (dBc) ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE 4 −50 TA = −25 °C Pin = −19 dBm ±50 KHz −55 −65 −70 −75 Adjacent Channel Interference Padj (dBc) Adjacent Channel Interference Padj (dBc) 28 TA = +85 °C Pin = −13 dBm ±50 KHz −55 VCC = 2.7 V −60 VCC = 3.3 V −65 −70 VCC = 3.0 V −75 0 0.5 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) 4 VCC = 3.0 V VCC = 3.3 V 0 0.5 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) 4 ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE −50 VCC = 2.7 V −60 −30 −35 VAGC = 0 V −40 VCC = 2.7 V −45 VCC = 3.0 V −50 VCC = 3.3 V −55 −60 −65 −70 −20 −15 −10 −5 0 Input Power Pin (dBm) 5 µPC8130TA, µPC8131TA µPC8131TA Output port matching at f = 1440 MHz VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm S11 vs. FREQUENCY 1: 57.025 Ω −32.578 Ω 3.3926 pF 1 440.000 000 MHz VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm S22 vs. FREQUENCY 1: 40.016 Ω −8.582 Ω 12.879 pF 1 440.000 000 MHz MARKER 1 1.44 GHz MARKER 1 1.44 GHz 1 1 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz S11 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = −20 dBm S11 log MAG 5 dB/REF 0 dB 1: −10.576 dB 1 440.000 000 MHz 10 VCC = 3.3 V 0 VCC = 3.0 V 1 −10 S22 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = −20 dBm S22 log MAG 5 dB/REF 0 dB 1: −15.766 dB −30 0 −20 STOP 3 100.000 000 MHz 1 440.000 000 MHz 10 −20 VCC = 2.7 V VCC = 3.3 V VCC = 3.0 V START 100.000 000 MHz S11 vs. FREQUENCY VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm S11 log MAG 5 dB/REF 0 dB 1: −10.784 dB −10 1 −30 START 100.000 000 MHz 0 1 440.000 000 MHz 10 −10 VCC = 2.7 V −20 STOP 3 100.000 000 MHz STOP 3 100.000 000 MHz S22 vs. FREQUENCY VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm S22 log MAG 5 dB/REF 0 dB 1: −15.915 dB 1 440.000 000 MHz 10 0 TA = −25 °C 1 −10 −20 TA = +25 °C TA = +85 °C −30 −30 START 100.000 000 MHz STOP 3 100.000 000 MHz 1 TA = −25 °C TA = +85 °C TA = +25 °C START 100.000 000 MHz STOP 3 100.000 000 MHz 29 µPC8130TA, µPC8131TA µPC8131TA Output port matching at f = 1440 MHz S21 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = −20 dBm S21 log MAG 1 dB/REF 5 dB 1: 10.951 dB 1 440.000 000 MHz 14 12 S21 vs. FREQUENCY VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm S21 log MAG 1 dB/REF 5 dB 1: 10.957 dB 1 440.000 000 MHz 14 VCC = 3.3 V VCC = 3.0 V 12 1 1 TA = −25 °C TA = +25 °C 10 8 VCC = 2.7 V 8 6 6 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz S12 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = −20 dBm S12 log MAG 5 dB/REF 0 dB 1: −29.767 dB 1 440.000 000 MHz 10 −10 −10 −20 VCC = 3.0 V 1 −30 START 100.000 000 MHz 30 VCC = 2.7 V STOP 3 100.000 000 MHz 1 440.000 000 MHz 10 0 VCC = 3.3 V STOP 3 100.000 000 MHz S12 vs. FREQUENCY VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm S12 log MAG 5 dB/REF 0 dB 1: −30.004 dB 0 −20 TA = +85 °C 10 −30 TA = +85 °C TA = +25 °C 1 START 100.000 000 MHz TA = −25 °C STOP 3 100.000 000 MHz µPC8130TA, µPC8131TA µPC8131TA Output port matching at f = 1440 MHz POWER GAIN vs. GAIN CONTROL VOLTAGE VCC = 2.7 V VCC = 3.0 V Power Gain GP (dB) Power Gain GP (dB) POWER GAIN vs. GAIN CONTROL VOLTAGE 20 15 10 5 0 −5 −10 −15 −20 −25 −30 −35 −40 VCC = 3.3 V 0 0.5 1 1.5 2 2.5 3 3.5 Gain Control Voltage VAGC (V) 4 20 15 10 5 0 −5 −10 −15 −20 −25 −30 −35 −40 S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = −20 dBm S21 log MAG 10 dB/REF 0 dB 1: 10.967 dB VAGC = 0 V VAGC = 0.5 V VAGC = 0.7 V VAGC = 0.8 V VAGC = 0.9 V VAGC = 1.0 V VAGC = 1.2 V 20 1 VAGC = 1.3 V VAGC = 1.4 V VAGC = 1.5 V VAGC = 1.6 V 0 VAGC = 1.7 V VAGC = 1.8 V 40 1 440.000 000 MHz 0.5 1 1.5 2 2.5 3 3.5 Gain Control Voltage VAGC (V) 4 1 440.000 000 MHz 40 0 VAGC = 0 V 1 −40 VAGC = 1.9 V VAGC = 2.0 V VAGC = 3.0 V STOP 3 100.000 000 MHz 1 440.000 000 MHz 20 VAGC = 3.0 V START 100.000 000 MHz S11 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = −20 dBm S11 log MAG 10 dB/REF 0 dB 1: −10.499 dB 40 0 S12 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = −20 dBm S12 log MAG 10 dB/REF 0 dB 1: −29.705 dB −20 START 100.000 000 MHz TA = +85 °C 20 −20 −40 TA = -25 °C TA = +25 °C STOP 3 100.000 000 MHz S22 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = −20 dBm S22 log MAG 10 dB/REF 0 dB 1: −14.578 dB 1 440.000 000 MHz 40 20 VAGC = 0 V 0 VAGC = 1 V 1 VAGC = 1.5 V 0 1 −20 −20 VAGC = 1.15 V VAGC = 0 V VAGC = 3.0 V VAGC = 2.0 to 3.0 V −40 START 100.000 000 MHz STOP 3 100.000 000 MHz −40 START 100.000 000 MHz STOP 3 100.000 000 MHz 31 µPC8130TA, µPC8131TA µPC8131TA Output port matching at f = 1440 MHz OUTPUT POWER vs. INPUT POWER OUTPUT POWER vs. INPUT POWER 10 5 f = 1440 MHz VAGC = 0 V 0 Output Power Pout (dBm) Output Power Pout (dBm) 10 VCC = 2.7 V 0 VCC = 3.0 V −5 VCC = 3.3 V −10 −15 −20 −20 −20 −30 −15 −10 −5 Input Power Pin (dBm) 0 VAGC = 1.6 V −60 −30 5 f = 1440 MHz VCC = 3.3 V −20 −30 VAGC = 1.3 V VAGC = 1.6 V VAGC = 1.8 V VAGC = 3.3 V −50 32 0 VAGC = 0 V −40 −25 −20 −15 −10 −5 Input Power Pin (dBm) 0 VAGC = 1.8 V VAGC = 3.0 V −25 −20 −15 −10 −5 Input Power Pin (dBm) 0 5 OUTPUT POWER vs. INPUT POWER 10 −10 −60 −30 VAGC = 1.3 V −40 −50 Output Power Pout (dBm) Output Power Pout (dBm) 0 VAGC = 0 V −10 OUTPUT POWER vs. INPUT POWER 10 f = 1440 MHz VCC = 3.0 V f = 1440 MHz VCC = 2.7 V −10 −20 −30 −40 VAGC = 1.3 V VAGC = 1.6 V VAGC = 1.8 V −50 5 VAGC = 0 V −60 −30 −25 VAGC = 2.7 V −20 −15 −10 −5 Input Power Pin (dBm) 0 5 µPC8130TA, µPC8131TA µPC8131TA Output port matching at f = 1440 MHz 10 Pout 0 −10 IM3 2f2-f1 (1442 MHz) −20 −30 2f1-f2 (1439 MHz) −40 VCC = 3.0 V VAGC = 0 V f1 = 1440 MHz f2 = 1441 MHz −50 −60 −70 −30 −25 −20 −15 −10 Input Power Pin (dBm) −5 0 OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER 20 20 10 0 −20 −40 Pout −20 −30 IM3 2f2-f1 (1442 MHz) −40 −50 −60 −70 −30 −25 −20 −15 Input Power Pin 2f1-f2 (1439 MHz) −10 −5 (dBm) 0 IM3 2f1-f2 (1439 MHz) −50 VCC = 3.0 V VAGC = 1.3 V f1 = 1440 MHz f2 = 1441 MHz −60 −70 −30 −25 −20 −15 −10 Input Power Pin (dBm) −5 0 OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) VCC = 3.0 V 10 VAGC = 1.6 V 0 f1 = 1440 MHz f2 = 1441 MHz −10 2f2-f1 (1442 MHz) −30 OUTPUT POWER AND IM3 vs. INPUT POWER 20 Pout −10 20 VCC = 3.0 V 10 VAGC = 1.8 V 0 f1 = 1440 MHz f2 = 1441 MHz −10 −20 Pout −30 IM3 −40 −50 −60 −70 −30 2f2-f1 (1442 MHz) −25 −20 −15 −10 Input Power Pin (dBm) 2f1-f2 (1439 MHz) −5 0 Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER 20 VCC = 3.0 V 10 VAGC = 3.0 V 0 f1 = 1440 MHz f2 = 1441 MHz −10 −20 −30 Pout −40 2f1-f2 (1439 MHz) −50 2f2-f1 (1442 MHz) −60 −70 −30 −25 −20 −15 −10 Input Power Pin (dBm) IM3 −5 0 33 µPC8130TA, µPC8131TA µPC8131TA Output port matching at f = 1440 MHz −50 TA = +25 °C Pin = −15 dBm ±50 KHz −55 −60 VCC = 3.3 V −65 −70 VCC = 3.0 V VCC = 2.7 V −75 0 0.5 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE Adjacent Channel Interference Padj (dBc) Adjacent Channel Interference Padj (dBc) ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE 4 −50 TA = −25 °C Pin = −19 dBm ±50 KHz −55 −60 −65 −70 −75 Adjacent Channel Interference Padj (dBc) Adjacent Channel Interference Padj (dBc) 34 TA = +85 °C Pin = −13 dBm ±50 KHz −55 VCC = 3.3 V −60 VCC = 2.7 V −65 −70 −75 VCC = 3.0 V 0 0.5 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) 4 VCC = 3.0 V VCC = 3.3 V 0 0.5 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) 4 ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE −50 VCC = 2.7 V −30 −35 VAGC = 0 V −40 −45 −50 VCC = 2.7 V VCC = 3.3 V −55 VCC = 3.0 V −60 −65 −70 −20 −15 −10 −5 Input Power Pin (dBm) 0 5 µPC8130TA, µPC8131TA PACKAGE DIMENSIONS 6 PIN MINI-MOLD PACKAGE (UNIT: mm) +0.1 0.3 –0.0 3 +0.2 2 1.5 –0.1 2.8 –0.3 +0.2 1 0.13 ±0.1 0 to 0.1 6 5 4 0.95 0.95 1.9 0.8 +0.2 1.1 –0.1 2.9 ±0.2 35 µPC8130TA, µPC8131TA NOTES ON CORRECT USE (1) Observe precautions for handling because of electro-static sensitive devices. (2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired oscillation). All the ground pins must be connected together with wide ground pattern to decrease impedance difference. (3) The bypass capacitor (eg. 1000 pF) should be attached to the VCC pin. (4) Impedance matching circuit must be each externally attached to input and output ports. (5) The bias must be applied to output pin through the matching inductor. (The bias must not be applied to input pin.) RECOMMENDED SOLDERING CONDITIONS This product should be soldered under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your NEC sales representative. Soldering Method Soldering Conditions Recommended Condition Symbol Infrared Reflow Package peak temperature: 235 °C or below Time: 30 seconds or less (at 210 °C) Note Count: 3, Exposure limit : None IR35-00-3 VPS Package peak temperature: 215 °C or below Time: 40 seconds or less (at 200 °C) Note Count: 3, Exposure limit : None VP15-00-3 Wave Soldering Soldering bath temperature: 260 °C or below Time: 10 seconds or less Note Count: 1, Exposure limit : None WS60-00-1 Partial Heating Pin temperature: 300 °C Time: 3 seconds or less (per side of device) Note Exposure limit : None – Note After opening the dry pack, keep it in a place below 25 °C and 65 % RH for the allowable storage period. Caution Do not use different soldering methods together (except for partial heating). For details of recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E). 36 µPC8130TA, µPC8131TA [MEMO] 37 µPC8130TA, µPC8131TA [MEMO] 38 µPC8130TA, µPC8131TA [MEMO] 39 µPC8130TA, µPC8131TA ATTENTION OBSERVE PRECAUTIONS FOR HANDLING ELECTROSTATIC SENSITIVE DEVICES NESAT (NEC Silicon Advanced Technology) is a trademark of NEC Corporation. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. Anti-radioactive design is not implemented in this product. M4 96. 5