NEC UPC2723T

DATA SHEET
BIPOLAR ANALOG INTEGRATED CIRCUITS
µPC8130TA, µPC8131TA
–15 dBm INPUT, VARIABLE GAIN AMPLIFIER SILICON MMIC
FOR TRANSMITTER AGC OF DIGITAL CELLULAR TELEPHONE
DESCRIPTION
The µPC8130TA and µPC8131TA are silicon monolithic integrated circuits designed as variable gain amplifier.
Due to 800 MHz to 1.5 GHz operation, these ICs are suitable for RF transmitter AGC stage of digital cellular
telephone. These ICs are lower distortion than conventional µPC8119T and µPC8120T so that –15 dBm input level
can be applied. These ICs also available in two types of gain control so you can choose either IC in accordance with
your system design. 3 V supply voltage and minimold package contribute to make your system lower voltage,
decreased space and fewer components.
The µPC8130TA and µPC8131TA are manufactured using NEC’s 20 GHz fT NESAT™III silicon bipolar process.
This process uses silicon nitride passivation film and gold electrodes. These materials can protect chip surface from
external pollution and prevent corrosion/migration. Thus, this IC has excellent performance, uniformity and reliability.
FEATURES
• Recommended operating frequency: f = 800 MHz to 1.5 GHz
• Low distortion
: Padj ≤ –60 dBc MAX. @Pin = –15 dBm, ∆f = ±50 kHz, VCC = 3.0 V,
TA = +25 °C
• Supply voltage
: VCC = 2.7 to 3.3 V
• Low current consumption
: ICC = 11 mA TYP. @VCC = 3.0 V
• Gain control voltage
: VAGC = 0 to 2.4 V (recommended)
• Two types of gain control
: µPC8130TA = VAGC up vs. Gain up (Reverse control)
µPC8131TA = VAGC up vs. Gain down (Forward control)
• AGC control can be constructed by external control circuit.
• High-density surface mounting
: 6 pin minimold package
APPLICATION
• 800 MHz to 900 MHz or 1.5 GHz Digital cellular telephone (PDC800M, PDC1.5G and so on)
ORDERING INFORMATION
Part Number
µPC8130TA-E3
µPC8131TA-E3
Package
Marking
Supplying Form
Gain Control Type
C2Q
Embossed tape 8 mm wide.
1, 2, 3 pins face to perforation side of the tape.
Qty 3 kp/reel.
Reverse control
6-pin minimold
C2R
Forward control
Remark To order evaluation samples, please contact your local NEC sales office.
(Part number for sample order: µPC8130TA, µPC8131TA)
Caution Electro-static sensitive devices.
The information in this document is subject to change without notice.
Document No. P11721EJ2V0DS00 (2nd edition)
Date Published October 1998 N CP(K)
Printed in Japan
The mark
shows major revised points.
©
1997
µPC8130TA, µPC8131TA
PIN CONNECTIONS
C2Q
(Top View)
3
2
1
(Bottom View)
4
Pin No.
Pin Name
1
INPUT
2
GND
3
GND
4
OUTPUT
5
VCC
6
VAGC
Features
3
4
5
5
2
6
6
1
Marking is an example of µPC8130TA
GAIN CONTROL AMPLIFIER PRODUCT LINE-UP
Part No.
VCC (V)
ICC (mA)
VAGC (V)
VAGC up vs. Gain
f (GHz)
PO (1 dB)
Pin (dBm)
µPC2723T
4.5 to 5.5
15
3.3 to 5.0
down
up to 1.1
–4
–
µPC8119T
2.7 to 3.3
11
0.6 to 2.4
down
0.1 to 1.92
+3
≤ –18
PHS, PDC
µPC8120T
2.7 to 3.3
11
0.6 to 2.4
up
0.1 to 1.92
+3
≤ –18
PHS, PDC
µPC8130TA
2.7 to 3.3
11
0.6 to 2.4
up
0.8 to 1.5
+5
≤ –15
PDC 800 M, PDC 1.5 G
µPC8131TA
2.7 to 3.3
11
0 to 2.4
down
0.8 to 1.5
+5
≤ –15
PDC 800 M, PDC 1.5 G
Remark Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail.
To know the associated product, please refer to each latest data sheet.
SYSTEM APPLICATION EXAMPLE
This block diagram is an example of IF modulation digital cellular system.
The µPC8130TA and µPC8131TA are applicable for not only IF modulation system but also RF modulation
system. This diagram is intended to show the µPC8130TA and µPC8131TA location in the systems.
RX
I
Q
DEMO
÷N
SW
PLL
PLL
µ PC8130TA
or
µ PC8131TA
TX
I
0°
φ
PA
90 °
Q
This document is to be specified for µPC8130TA and µPC8131TA only. For the other part number mentioned in
this document, please refer to the latest data sheet of each part number.
2
µPC8130TA, µPC8131TA
PIN EXPLANATION
Pin
No.
1
2
3
4
Pin
Name
Applied
Voltage
V
Pin
Voltage
Note
V
IN
–
1.4
GND
OUT
0
−
voltage
as same
as VCC
through
external
inductor
−
Function and Applications
Internal Equivalent Circuit
RF input pin. This pin should be
coupled with capacitor (eg 1000 pF)
for DC cut. Input return loss can be
improved with external impedance
matching circuit.
Ground pin. This pin should be
connected to system ground with
minimum inductance. Ground pattern on the board should be formed
as wide as possible. Ground pins
must be connected together with
wide ground pattern to decrease
impedance difference.
5
4
Control
circuit
1
Bias
circuit
2
RF output pin. This pin is designed
as open collector of high impedance.
This pin must be externally equipped
with matching circuits.
5
VCC
2.7 to 3.3
–
Supply voltage pin.
This pin must be equipped with
bypass capacitor (eg 1000 pF)
to minimize its RF impedance.
6
VAGC
0 to 3.3
−
Gain control pin. The relation
between product number and control
performance is shown below;
3
GND
5
Control circuit
Part No.
VAGC up vs. Gain
µPC8130TA
up
µPC8131TA
down
6
2
Note Pin voltage is measured at VCC = 3.0 V.
3
µPC8130TA, µPC8131TA
ABSOLUTE MAXIMUM RATINGS
Parameter
Symbol
Conditions
Ratings
Unit
Supply Voltage
VCC
TA = +25 °C, Pin 4 and 5
3.6
V
Total Circuit Current
ICC
TA = +25 °C, Pin 4 and 5
30
mA
Input Power
Pin
TA = +25 °C
+10
dBm
VAGC
TA = +25 °C
3.6
V
Gain Control Voltage
Operating Ambient Temperature
TA
–25 to +85
°C
Storage Temperature
Tstg
–55 to +150
°C
RECOMMENDED OPERATING CONDITIONS
Parameter
Symbol
MIN.
TYP.
MAX.
Unit
Remarks
Supply Voltage
VCC
2.7
3.0
3.3
V
Same voltage should be applied to 4
and 5 pins.
Gain Control Voltage
VAGC
0
–
2.4
V
–0.5 ≤ IAGC ≤ 0.1 mA
Input Level
Pin
–
–
–15
dBm
Operating Ambient Temperature
TA
–25
+25
+85
°C
f
800
–
1500
MHz
With external output-matching
IAGC
0.5
–
–
mA
VAGC ≤ 3.3 V
Operating Frequency
AGC Pin Drive Current
Padj ≤ –60 dBc @∆f = ±50 kHz
Note
Note Adjacent Channel Interference (Padj) wave form condition: π/4DQPSK modulation signal, data rate = 42
kbps, rolloff ratio = 0.5, PN9 bits (pseudorandom pattern)
4
µPC8130TA, µPC8131TA
ELECTRICAL CHARACTERISTICS (Unless otherwise specified, TA = +25 °C, VCC = Vout = 3.0 V, ZS = ZL = 50 Ω,
External matched output port)
Parameter
Symbol
Circuit Current
ICC
µPC8130TA
Test Conditions
µPC8131TA
Unit
MIN.
TYP.
MAX.
MIN.
TYP.
MAX.
No signal, ICC = IVcc + Iout
8.5
11
15
8.5
11
15
mA
Maximum Power
Gain
GPMAX
f = 950 MHz, Pin = –20 dBm
f = 1440 MHz, Pin = –20 dBm
10
8
12.5
11
15
14
9.5
8
12
11
14.5
14
dB
Gain Control
Note1
Range
GCR
f = 950 MHz, Pin = –20 dBm
f = 1440 MHz, Pin = –20 dBm
40
35
50
41
–
–
40
35
45
39
–
–
dB
Minimum Power
Gain
GPMIN
f = 950 MHz, Pin = –20 dBm
f = 1440 MHz, Pin = –20 dBm
–
–
–37
–30
–
–
–
–
–33
–28
–
–
dB
Adjacent Channel
Interference
Note 2
)
(@∆f = ±50 kHz
Padj
f = 950 MHz, Pin = –15 dBm
f = 1440 MHz, Pin = –15 dBm
–
–
–65
–65
–60
–60
–
–
–65
–65
–60
–60
dB
Isolation
ISL
f = 950 MHz, GPMAX
f = 1440 MHz, GPMAX
17
20
20
25
–
–
20
25
25
30
–
–
dB
PO (1 dB)
f = 950 MHz, GPMAX
f = 1440 MHz, GPMAX
+2
+2
+5
+5
–
–
+2
+1
+5
+4
–
–
dBm
Input Return
Loss
RLin
f = 950 MHz, GPMAX
f = 1440 MHz, GPMAX
3.5
6.5
6.5
10
–
–
6
7
9
10.5
–
–
dB
Noise Figure
NF
f = 950 MHz, GPMAX
f = 1440 MHz, GPMAX
–
–
11
8.5
14
11.5
–
–
11
8
14
11
dB
1 dB Compression
Output Power
Notes 1. Gain Control Range (GCR) specification: GCR = GPMAX – GPMIN (dB)
Conditions
µPC8130TA: GPMAX@ VAGC = VCC, GPMIN@ VAGC = 0 V
µPC8131TA: GPMAX@ VAGC = 0 V, GPMIN@ VAGC = VCC
2. Adjacent Channel Interference (Padj) wave form condition: π/4DQPSK modulation signal, data rate = 42
kbps, rolloff ratio = 0.5, PN9 bits (pseudorandom pattern)
Remark Measured on TEST CIRCUIT 1 and 2
5
µPC8130TA, µPC8131TA
TEST CIRCUIT1 (f = 950 MHz, both products in common)
1000 pF
VCC
L2
VAGC
C4
C3
L1
6
C5
5
C1
IN
4
C6
C2
OUT
1
2, 3
Output matching circuit
ILLUSTRATION OF TEST CIRCUIT1 ASSEMBLED ON EVALUATION BOARD
µ PC8130/31TA
OUT
C2
OUT
C6
L1
L2
C3
C5
C4
AGC
C1
IN
IN
VCC
VAGC
COMPONENT LIST
Form
Chip capacitor
Chip inductor
Symbol
Value
Makers
Product Name
C1, C3 to C6
1000 pF
Murata Mfg. Co., Ltd.
GRM39 series
C2
1.5 pF
Murata Mfg. Co., Ltd.
GRM39 series
L1
4.5 nH (10 nH, 8.2 nH, parallel)
Toko Co., Ltd.
LL1608-F
L2
270 nH
Toko Co., Ltd.
LL2012-F
Caution Test circuit or print pattern in this sheet is for testing IC characteristics.
In the case of actual system application, external circuits including print pattern and matching
circuit constant of output port should be designed in accordance with IC’s S parameters and
environmental components.
6
µPC8130TA, µPC8131TA
TEST CIRCUIT2 (f = 1440 MHz, both products in common)
1000 pF
VCC
L2
VAGC
C4
C3
L1
6
C5
5
C1
IN
4
C6
C2
OUT
1
2, 3
Output matching circuit
ILLUSTRATION OF TEST CIRCUIT2 ASSEMBLED ON EVALUATION BOARD
µ PC8130/31TA
OUT
C2
OUT
C6
L1
L2
C3
C5
C4
AGC
C1
IN
IN
VCC
VAGC
COMPONENT LIST
Form
Chip capacitor
Chip inductor
Symbol
Value
Makers
Product Name
C1, C3 to C6
1000 pF
Murata Mfg. Co., Ltd.
GRM39 series
C2
1.5 pF
Murata Mfg. Co., Ltd.
GRM39 series
L1
1.2 nH
Toko Co., Ltd.
LL1608-F
L2
270 nH
Toko Co., Ltd.
LL2012-F
Caution Test circuit or print pattern in this sheet is for testing IC characteristics.
In the case of actual system application, external circuits including print pattern and matching
circuit constant of output port should be designed in accordance with IC’s S parameters and
environmental components.
7
µPC8130TA, µPC8131TA
APPLICATION EXPLANATION
The µPC8130TA and µPC8131TA has difference in internal circuit in order to reduce the number of external
component with µPC8119T and µPC8120T. For this reason, they have difference in mechanism for determing
minimum gain and external suitable constant.
Determing Minimum Gain
8
External Feedback Capacitor of
VCC to VAGC Pin
Optimize Choke Inductance of π
Type Circuit on VCC Line
µPC8119T
µPC8120T
High frequency negative feed back
between OUT, VCC and VAGC pin
optimized by external choke
inductance.
Necessary
The impedance of inductance
should be very low at high
frequency region.
µPC8130TA
µPC8131TA
Isolation of VCC to OUT pin
optimized by external choke
inductance.
Unnecessary
The impedance of inductance
should be very high at high
frequency region.
µPC8130TA, µPC8131TA
TYPICAL CHARACTERISTICS
µPC8130TA
CIRCUIT CURRENT vs. SUPPLY VOLTAGE
GAIN CONTROL CURRENT vs. GAIN CONTROL VOLTAGE
20
0.2
no signals
Gain Control Current IAGC (mA)
Circuit Current ICC (mA)
18
16
14
12
10
8
6
4
2
0
0
0.5
2.5
3
1
1.5
2
Supply Voltage VCC (V)
3.5
0.16
0.14
VCC = 2.7 V
0.12
0.1
VCC = 3.0 V
0.08
VCC = 3.3 V
0.06
0.04
0.02
0
4
0
0.5
2.5
3
3.5
1
1.5
2
Gain Control Voltage VAGC (V)
4
CURRENT INTO OUTPUT PIN AND CURRENT
INTO VCC PIN vs. GAIN CONTROL VOLTAGE
CIRCUIT CURRENT vs. OPERATING AMBIENT TEMPERATURE
16
12
10
VCC = 3.3 V
VCC = 3.0 V
VCC = 2.7 V
8
6
4
2
Current into Output pin IOUT (mA)
Current into VCC pin IVCC (mA)
14
Circuit Current ICC (mA)
no signals
0.18
14
IVCC
12
Iout
10
8
VCC = 2.7 V
6
-20
0
20
40
60
80
100
Operating Ambient Temperature TA (°C)
S11 vs. FREQUENCY
VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm
S11
1 : 950 MHz
69.594 Ω −8.9766 Ω
:
2 1.44 GHz
58.973 Ω −22.688 Ω
:
3 1.9 GHz
48.133 Ω −23.941 Ω
VCC = 3.0 V
VCC = 2.7 V
4
2
no signals
0
-40
VCC = 3.3 V
VCC = 3.0 V
VCC = .3.3 V
no signals
0
0
0.5
2.5
3
3.5
1
1.5
2
Gain Control Voltage VAGC (V)
4
S22 vs. FREQUENCY
VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm
S22
1 : 950 MHz
15.859 Ω −208.8 Ω
:
2 1.44 GHz
32.234 Ω −150.07 Ω
: 1.9 GHz
24.711 Ω −131.8 Ω
1
32
1
3
START 100.000 000 MHz
STOP 3 100.000 000 MHz
START 800.000 000 MHz
2
STOP 2 700.000 000 MHz
9
µPC8130TA, µPC8131TA
µPC8130TA
Output port matching at f = 950 MHz
VCC = VAGC = 3.0 V(GPMAX), Pin = −20 dBm
S11 vs. FREQUENCY 1: 65.098 Ω −56.266 Ω 2.9775 pF
950.000 000 MHz
VCC = VAGC = 3.0 V(GPMAX), Pin = −20 dBm
S22 vs. FREQUENCY 1: 69.219 Ω 13.313 Ω 2.2303 nH
950.000 000 MHz
MARKER 1
950 MHz
MARKER 1
950 MHz
1
1
START 100.000 000 MHz
STOP 3 100.000 000 MHz
START 100.000 000 MHz
S11 vs. FREQUENCY
VAGC = VCC (GPMAX), Pin = −20 dBm
S11 log MAG 5 dB/REF 0 dB
1: −6.8118 dB
950.000 000 MHz
10
0
VCC = 3.0 V
STOP 3 100.000 000 MHz
S11 vs. FREQUENCY
VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm
S11 log MAG 5 dB/REF 0 dB
1: −5.9537 dB
950.000 000 MHz
10
VCC = 3.3 V
0
TA = −25 °C
1
−10
−20
−10
−20
VCC = 2.7 V
−30
−30
START 100.000 000 MHz
STOP 3 100.000 000 MHz
950.000 000 MHz
0
STOP 3 100.000 000 MHz
S22 vs. FREQUENCY
VCC = VAGC = 3.0 V(GPMAX), Pin = −20 dBm
S22 log MAG 5 dB/REF 0 dB
1: −12.477 dB
950.000 000 MHz
10
0
−10
VCC = 3.3 V
VCC = 3.0 V
VCC = 2.7 V
−20
−30
−10
TA = −25 °C
−20
TA = +85 °C
TA = +25 °C
−30
START 100.000 000 MHz
10
TA = +85 °C
START 100.000 000 MHz
S22 vs. FREQUENCY
VAGC = VCC (GPMAX), Pin = −20 dBm
S22 log MAG 5 dB/REF 0 dB
1: −13.235 dB
10
TA = +25 °C
STOP 3 100.000 000 MHz
START 100.000 000 MHz
STOP 3 100.000 000 MHz
µPC8130TA, µPC8131TA
µPC8130TA
Output port matching at f = 950 MHz
S21 vs. FREQUENCY
VAGC = VCC (GPMAX), Pin = −20 dBm
S21 log MAG 1 dB/REF 7 dB
1: 12.811 dB
950.000 000 MHz
16
14
1
VCC = 3.3 V
VCC = 3.0 V
VCC = 2.7 V
12
S21 vs. FREQUENCY
VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm
S21 log MAG 1 dB/REF 7 dB
1: 12.714 dB
950.000 000 MHz
16
14
1
12
TA = +25 °C
10
10
8
8
START 100.000 000 MHz
STOP 3 100.000 000 MHz
START 100.000 000 MHz
S12 vs. FREQUENCY
VAGC = VCC (GPMAX), Pin = −20 dBm
S12 log MAG 5 dB/REF 0 dB
1: −20.189 dB
950.000 000 MHz
10
0
TA = −25 °C
TA = +85 °C
STOP 3 100.000 000 MHz
S12 vs. FREQUENCY
VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm
S12 log MAG 5 dB/REF 0 dB
1: −20.255 dB
950.000 000 MHz
10
0
−10
VCC = 3.3 V
1
−20
VCC = 3.0 V
VCC = 2.7 V
−30
−10
TA = +85 °C
TA = +25 °C
1
−20
TA = −25 °C
−30
START 100.000 000 MHz
STOP 3 100.000 000 MHz
START 100.000 000 MHz
STOP 3 100.000 000 MHz
11
µPC8130TA, µPC8131TA
µPC8130TA
Output port matching at f = 950 MHz
POWER GAIN vs. GAIN CONTROL VOLTAGE
VCC = 2.7 V
Power Gain GP (dB)
Power Gain GP (dB)
POWER GAIN vs. GAIN CONTROL VOLTAGE
20
15
10
5
0
−5
−10
−15
−20
−25
−30
−35
−40
VCC = 3.0 V
VCC = 3.3 V
0
0.5
1
1.5
2
2.5
3
3.5
Gain Control Voltage VAGC (V)
4
S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = −20 dBm
S21 log MAG 10 dB/REF 0 dB
1: −36.686 dB
VAGC = 1.5 V 950.000 000 MHz
40
VAGC = 1.4 V
VAGC = 3.0 V
VAGC = 1.3 V
VAGC = 2.2 V
VAGC = 1.2 V
VAGC = 2.0 V
VAGC = 1.1 V
20
VAGC = 1.9 V
VAGC = 1.0 V
VAGC = 1.6 V
20
15
10
5
0
−5
TA = −25 °C
−10
TA = +85 °C
−15
TA = +25 °C
−20
−25
−30
−35
−40
0
0.5
1
1.5
2
2.5
3
3.5
Gain Control Voltage VAGC (V)
S12 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = −20 dBm
S12 log MAG 10 dB/REF 0 dB
1: −20.344 dB
950.000 000 MHz
40
20
0
0
VAGC = 3.0 V
1
−20
VAGC = 0 V
−20
1
−40
START 100.000 000 MHz
VAGC = 0.9 V
VAGC = 0.2 V
VAGC = 0 V
STOP 3 100.000 000 MHz
−40
950.000 000 MHz
40
VAGC = 3.0 V
VAGC = 1.55 V
START 100.000 000 MHz
S11 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = -20 dBm
S11 log MAG 10 dB/REF 0 dB
1: −6.9044 dB
20
4
STOP 3 100.000 000 MHz
S22 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = -20 dBm
S22 log MAG 10 dB/REF 0 dB
1: −12.969 dB
950.000 000 MHz
40
20
VAGC = 2.0 V
0
−20
−40
1
0
VAGC = 1.6 V
VAGC = 0 to 1.0 V
START 100.000 000 MHz
12
STOP 3 100.000 000 MHz
1
−20
VAGC = 1.7 V
VAGC = 0 V
VAGC = 2.05 V
−40
VAGC = 3.0 V
START 100.000 000 MHz
STOP 3 100.000 000 MHz
µPC8130TA, µPC8131TA
µPC8130TA
Output port matching at f = 950 MHz
OUTPUT POWER vs. INPUT POWER
OUTPUT POWER vs. INPUT POWER
5
10
f = 950 MHz
VAGC = VCC
0
Output Power Pout (dBm)
Output Power Pout (dBm)
10
0
VCC = 3.3 V
VCC = 3.0 V
VCC = 2.7 V
−5
−10
−15
−20
−20
−15
−10
−5
Input Power Pin (dBm)
0
−20
−30
−40
OUTPUT POWER vs. INPUT POWER
−20 −15 −10
−5
Input Power Pin (dBm)
0
5
OUTPUT POWER vs. INPUT POWER
f = 950 MHz
VCC = 3.3 V
VAGC = 3.3 V
0
Output Power Pout (dBm)
Output Power Pout (dBm)
−25
10
−10
−20
−30
−40
VAGC = 1.7 V
VAGC = 1.45 V
VAGC = 1.3 V
VAGC = 1.15 V
VAGC = 0 V
−50
−60
−70
−30
VAGC = 1.5 V
VAGC = 1.3 V
VAGC = 1.1 V
VAGC = 0.95 V
VAGC = 0 V
−50
−70
−30
5
VAGC = 3.0 V
−10
−60
10
0
f = 950 MHz
VCC = 3.0 V
−25
−20 −15 −10
−5
Input Power Pin (dBm)
0
f = 950 MHz
VCC = 2.7 V
−10
−20
−30
−40
−50
−60
5
VAGC = 2.7 V
−70
−30
−25
VAGC = 1.3 V
VAGC = 1.1 V
VAGC = 0.95 V
VAGC = 0.75 V
VAGC = 0 V
−20 −15 −10
−5
0
5
Input Power Pin (dBm)
13
µPC8130TA, µPC8131TA
µPC8130TA
Output port matching at f = 950 MHz
10
0
Pout
−10
IM3
−20
−30
2f1-f2
(949 MHz)
−40
−50
−60
−70
−30
2f2-f1
(952 MHz)
−25
VCC = 3.0 V
VAGC = 3.0 V
f1 = 950 MHz
f2 = 951 MHz
−20
−15
−10
Input Power Pin (dBm)
−5
0
OUTPUT POWER AND IM3 vs. INPUT POWER
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
20
20
VCC = 3.0 V
10 VAGC = 1.55 V
0 f1 = 950 MHz
f2 = 951 MHz
−10
−20
Pout
−20
−30
2f1-f2
(949 MHz)
2f2-f1
(952 MHz)
−40
−50
IM3
−60
−70
−30
−25
−20
−15
−10
Input Power Pin (dBm)
−5
0
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
14
20
VCC = 3.0 V
10 VAGC = 0 V
0 f1 = 950 MHz
f2 = 951 MHz
−10
−20
−30
Pout
−40
−50
−60
−70
−30
−25
2f1-f2 (949 MHz)
2f2-f1
(952 MHz)
−20
−15
−10
Input Power Pin (dBm)
IM3
−5
0
2f1-f2
(949 MHz)
2f2-f1
(952 MHz)
−40
−50
−60
−70
−30
−25
−20
−15
−10
Input Power Pin (dBm)
−5
0
OUTPUT POWER AND IM3 vs. INPUT POWER
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
VCC = 3.0 V
10 VAGC = 1.3 V
0 f1 = 950 MHz
f2 = 951 MHz
−10
IM3
−30
OUTPUT POWER AND IM3 vs. INPUT POWER
20
Pout
20
VCC = 3.0 V
10 VAGC = 1.15 V
0 f1 = 950 MHz
f2 = 951 MHz
−10
−20
Pout
−30
−40
−50
IM3
2f2-f1
(952 MHz)
−60
−70
−30
−25
−20
−15
−10
Input Power Pin (dBm)
2f1-f2
(949 MHz)
−5
0
µPC8130TA, µPC8131TA
µPC8130TA
Output port matching at f = 950 MHz
−50
TA = +25 °C
Pin = −13 dBm
±50 KHz
−55
VCC = 3.0 V
VCC = 3.3 V
−60
VCC = 2.7 V
−65
−70
−75
0
0.5
2.5
3
3.5
1
1.5
2
Gain Control Voltage VAGC (V)
ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE
Adjacent Channel Interference Padj (dBc)
Adjacent Channel Interference Padj (dBc)
ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE
4
−50
TA = −25 °C
Pin = −13 dBm
±50 KHz
−55
−60
−65
−70
−75
Adjacent Channel Interference Padj (dBc)
Adjacent Channel Interference Padj (dBc)
TA = +85 °C
Pin = −13 dBm
±50 KHz
−55
VCC = 3.3 V
−60
VCC = 3.0 V
−65
−70
VCC = 2.7 V
−75
0
0.5
2.5
3
3.5
1
1.5
2
Gain Control Voltage VAGC (V)
4
VCC = 2.7 V
0
0.5
2.5
3
3.5
1
1.5
2
Gain Control Voltage VAGC (V)
4
ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER
ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE
−50
VCC = 3.3 V
VCC = 3.0 V
−30
VAGC = VCC
−35
−40
−45
VCC = 3.3 V
−50
−55
−60
VCC = 2.7 V
−65
−70
−20
VCC = 3.0 V
−15
−10
−5
Input Power Pin (dBm)
0
5
15
µPC8130TA, µPC8131TA
µPC8130TA
Output port matching at f = 1440 MHz
VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm
S11 vs. FREQUENCY 1: 51.363 Ω −34.424 Ω 3.2107 pF
1 440.000 000 MHz
VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm
S22 vs. FREQUENCY 1: 37.857 Ω −11.791 Ω 9.3736 pF
1 440.000 000 MHz
MARKER 1
1.44 GHz
MARKER 1
1.44 GHz
1
1
START 100.000 000 MHz
STOP 3 100.000 000 MHz
START 100.000 000 MHz
S11 vs. FREQUENCY
VAGC = VCC (GPMAX), Pin = −20 dBm
S11 log MAG 5 dB/REF 0 dB
1: −9.8796 dB
1 440.000 000 MHz
10
VCC = 3.3 V
0 VCC = 3.0 V
S11 vs. FREQUENCY
VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm
S11 log MAG 5 dB/REF 0 dB
1: −9.5571 dB
1 440.000 000 MHz
10
0
TA = −25 °C
−10
−10
VCC = 2.7 V
−20
−30
−20
−30
START 100.000 000 MHz
STOP 3 100.000 000 MHz
1 440.000 000 MHz
0
−10
1
TA = +25 °C
TA = +85 °C
START 100.000 000 MHz
S22 vs. FREQUENCY
VAGC = VCC (GPMAX), Pin = −20 dBm
S22 log MAG 5 dB/REF 0 dB
1: −14.444 dB
10
S22 vs. FREQUENCY
VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm
S22 log MAG 5 dB/REF 0 dB
1: −14.139 dB
1 440.000 000 MHz
10
VCC = 3.3 V
1
VCC = 2.7 V
−10
1
TA = +85 °C
TA = −25 °C
−20
VCC = 3.0 V
START 100.000 000 MHz
16
STOP 3 100.000 000 MHz
0
−20
−30
STOP 3 100.000 000 MHz
STOP 3 100.000 000 MHz
−30
TA = +25 °C
START 100.000 000 MHz
STOP 3 100.000 000 MHz
µPC8130TA, µPC8131TA
µPC8130TA
Output port matching at f = 1440 MHz
S21 vs. FREQUENCY
VAGC = VCC (GPMAX), Pin = −20 dBm
S21 log MAG 1 dB/REF 5 dB
1: −11.31 dB
1 440.000 000 MHz
14
12
1
VCC = 3.3 V
VCC = 3.0 V
VCC = 2.7 V
S21 vs. FREQUENCY
VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm
S21 log MAG 1 dB/REF 5 dB
1: −11.291 dB
TA = −25 °C
8
8
6
6
STOP 3 100.000 000 MHz
START 100.000 000 MHz
S12 vs. FREQUENCY
VAGC = VCC (GPMAX), Pin = −20 dBm
S12 log MAG 5 dB/REF 0 dB
1: −25.647 dB
1 440.000 000 MHz
−10
−10
1
VCC = 3.0 V
−20
VCC = 2.7 V
−30
1 440.000 000 MHz
10
0
VCC = 3.3 V
STOP 3 100.000 000 MHz
S12 vs. FREQUENCY
VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm
S12 log MAG 5 dB/REF 0 dB
1: −25.515 dB
0
−20
TA = +25 °C
TA = +85 °C
10
10
1
12
10
START 100.000 000 MHz
1 440.000 000 MHz
14
TA = +85 °C
1
TA = +25 °C
TA = −25 °C
−30
START 100.000 000 MHz
STOP 3 100.000 000 MHz
START 100.000 000 MHz
STOP 3 100.000 000 MHz
17
µPC8130TA, µPC8131TA
µPC8130TA
Output port matching at f = 1440 MHz
POWER GAIN vs. GAIN CONTROL VOLTAGE
VCC = 2.7 V
Power Gain GP (dB)
Power Gain GP (dB)
POWER GAIN vs. GAIN CONTROL VOLTAGE
20
15
10
5
0
−5
−10
−15
−20
−25
−30
−35
−40
VCC = 3.0 V
VCC = 3.3 V
0
0.5
1
1.5
2
2.5
3
3.5
Gain Control Voltage VAGC (V)
4
20
15
10
5
0
TA = +25 °C
−5
−10
−15 TA = +85 °C
−20
−25
TA = −25 °C
−30
−35
−40
0
0.5
1
1.5
2
2.5
3
3.5
Gain Control Voltage VAGC (V)
S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = −20 dBm
S21 log MAG
10 dB/REF 0 dB
2: 10.863 dB
40
20
0
VAGC = 3.0 V
VAGC = 2.0 V
VAGC = 1.9 V
VAGC = 1.8 V
VAGC = 1.7 V
VAGC = 1.6 V
2
VAGC = 1.5 V
VAGC = 1.4 V
VAGC = 1.3 V
VAGC = 1.2 V
VAGC = 1.1 V
VAGC = 1.0 V
1 440.000 000 MHz
3
1: −6.6158 dB
950 MHz
3: 5.9184 dB
1.9 GHz
S12 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = −20 dBm
S12 log MAG 10 dB/REF 0 dB
1: −25.759 dB
20
VAGC = 3.0 V
−20
VAGC = 0.8 V
VAGC = 0 V
START 100.000 000 MHz
STOP 3 100.000 000 MHz
1 440.000 000 MHz
40
0
−20
−40
VAGC = 3.0 V
VAGC = 1.7 V
VAGC = 0 to 1.0 V
18
STOP 3 100.000 000 MHz
1
VAGC = 1.7 V
START 100.000 000 MHz
STOP 3 100.000 000 MHz
S22 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = −20 dBm
S22 log MAG 10 dB/REF 0 dB
1: −13.275 dB
1 440.000 000 MHz
40
20
0
1
START 100.000 000 MHz
VAGC = 0 V
−40
S11 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = -20 dBm
S11 log MAG 10 dB/REF 0 dB
1: −9.9621 dB
20
1 440.000 000 MHz
40
0
1
−20
−40
4
−20
1
VAGC = 3.0 V
VAGC = 1.65 V
VAGC = 0 V
−40
START 100.000 000 MHz
STOP 3 100.000 000 MHz
µPC8130TA, µPC8131TA
µPC8130TA
Output port matching at f = 1440 MHz
OUTPUT POWER vs. INPUT POWER
OUTPUT POWER vs. INPUT POWER
5
10
f = 1440 MHz
VAGC = VCC
0
Output Power Pout (dBm)
Output Power Pout (dBm)
10
VCC = 2.7 V
0
VCC = 3.0 V
−5
VCC = 3.3 V
−10
−15
f = 1440 MHz
VCC = 3.0 V
−10
VAGC = 1.5 V
−20
−30
−40
VAGC = 1.15 V
−50
−60
−20
−20
−15
−10
−5
0
Input Power Pin (dBm)
−70
−30
5
OUTPUT POWER vs. INPUT POWER
10
f = 1440 MHz
VCC = 3.3 V
VAGC = 3.3 V
−10
−20
−30
−40
VAGC = 1.65 V
VAGC = 1.45 V
VAGC = 1.3 V
VAGC = 1.15 V
VAGC = 0 V
−50
−60
−70
−30
−25
−20 −15 −10
−5
Input Power Pin (dBm)
0
0
Output Power Pout (dBm)
Output Power Pout (dBm)
−25
VAGC = 1.25 V
VAGC = 0.95 V
VAGC = 0 V
−20 −15 −10
−5
0
5
Input Power Pin (dBm)
OUTPUT POWER vs. INPUT POWER
10
0
VAGC = 3.0 V
f = 1440 MHz
VCC = 2.7 V
−20
−30
−40
−50
VAGC = 1.3 V
VAGC = 1.1 V
VAGC = 0.95 V
VAGC = 0.75 V
VAGC = 0 V
−60
5
VAGC = 2.7 V
−10
−70
−30
−25
−20 −15 −10
−5
Input Power Pin (dBm)
0
5
19
µPC8130TA, µPC8131TA
µPC8130TA
Output port matching at f = 1440 MHz
10
Pout
0
−10
IM3
−20
2f1-f2
(1439 MHz)
−30
−40
VCC = 3.0 V
VAGC = 3.0 V
f1 = 1440 MHz
2f2-f1
(1442 MHz) f2 = 1441 MHz
−50
−60
−70
−30
−25
−20
−15
−10
Input Power Pin (dBm)
−5
OUTPUT POWER AND IM3 vs. INPUT POWER
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
20
0
20
10
−10
−20
Pout
−30
−40
2f1-f2
(1439 MHz)
−50
IM3
−60
−70
−30
2f2-f1
(1442 MHz)
−25
−20
−15
−10
Input Power Pin (dBm)
−5
0
OUTPUT POWER AND IM3 vs. INPUT POWER
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
20
20
VCC = 3.0 V
10 VAGC = 0 V
0 f1 = 1440 MHz
f2 = 1441 MHz
−10
−20
−30
Pout
−40
−50
2f2-f1 (1442 MHz)
2f1-f2 (1439 MHz)
−60
−70
−30
−25
−20
−15
−10
Input Power Pin (dBm)
IM3
−5
0
IM3
−30
−40
−50
2f1-f2
(1439 MHz)
−60
−70
−30
−25
VCC = 3.0 V
VAGC = 1.5 V
f1 = 1440 MHz
f2 = 1441 MHz
−20
−15
−10
Input Power Pin (dBm)
−5
0
OUTPUT POWER AND IM3 vs. INPUT POWER
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
VCC = 3.0 V
10 VAGC = 1.25 V
0 f1 = 1440 MHz
f2 = 1441 MHz
−10
Pout
−20
OUTPUT POWER AND IM3 vs. INPUT POWER
20
2f2-f1
(1442 MHz)
0
20
VCC = 3.0 V
10 VAGC = 1.1 V
0 f1 = 1440 MHz
f2 = 1441 MHz
−10
−20
Pout
−30
−40
2f1-f2
(1439 MHz)
−50
−60
−70
−30
IM3
2f2-f1
(1442 MHz)
−25
−20
−15
−10
Input Power Pin (dBm)
−5
0
µPC8130TA, µPC8131TA
µPC8130TA
Output port matching at f = 1440 MHz
−50
TA = +25 °C
Pin = −15 dBm
±50 KHz
−55
−60
VCC = 3.0 V
VCC = 3.3 V
−65
−70
−75
VCC = 2.7 V
0
0.5
2.5
3
3.5
1
1.5
2
Gain Control Voltage VAGC (V)
ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE
Adjacent Channel Interference Padj (dBc)
Adjacent Channel Interference Padj (dBc)
ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE
4
−50
TA = −25 °C
Pin = −15 dBm
±50 KHz
−55
−60
VCC = 3.3 V
−65
−70
−75
Adjacent Channel Interference Padj (dBc)
Adjacent Channel Interference Padj (dBc)
TA = +85 °C
Pin = −13 dBm
±50 KHz
−55
VCC = 3.0 V
VCC = 3.3 V
−60
−65
−70
−75
VCC = 2.7 V
0
0.5
2.5
3
3.5
1
1.5
2
Gain Control Voltage VAGC (V)
4
VCC = 2.7 V
0
0.5
2.5
3
3.5
1
1.5
2
Gain Control Voltage VAGC (V)
4
ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER
ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE
−50
VCC = 3.0 V
−30
−35
VAGC = VCC
−40
−45
−50
−55
VCC = 2.7 V
−60
VCC = 3.0 V
−65
−70
−20
VCC = 3.3 V
−15
−10
−5
0
Input Power Pin (dBm)
5
21
µPC8130TA, µPC8131TA
TYPICAL CHARACTERISTICS
µPC8131TA
CIRCUIT CURRENT vs. SUPPLY VOLTAGE
GAIN CONTROL CURRENT vs. GAIN CONTROL VOLTAGE
20
0.5
no signals
Gain Control Current IAGC (mA)
Circuit Current ICC (mA)
18
16
14
12
10
8
6
4
2
0
0
0.5
2.5
3
1
1.5
2
Supply Voltage VCC (V)
3.5
4
VCC = 2.7 V
0.3
VCC = 3.0 V
0.2
VCC = 3.3 V
0.1
0
−0.1
−0.2
−0.3
−0.4
−0.5
0
0.5
2.5
3
3.5
1
1.5
2
Gain Control Voltage VAGC (V)
4
CURRENT INTO OUTPUT PIN AND CURRENT
INTO VCC PIN vs. GAIN CONTROL VOLTAGE
CIRCUIT CURRENT vs. OPERATING AMBIENT TEMPERATURE
16
12
10
VCC = 3.3 V
VCC = 3.0 V
VCC = 2.7 V
8
6
4
2
no signals
0
−40
−20
0
20
40
60
80
100
Operating Ambient Temperature TA (°C)
S11 vs. FREQUENCY
VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = -20 dBm
S11
1 : 949.4 MHz
72.504 Ω −14.266 Ω
:
2 1.44 GHz
58.012 Ω −25.781 Ω
3 : 1.9 GHz
48.307 Ω −26.266 Ω
Current into Output pin IOUT (mA)
Current into VCC pin IVCC (mA)
14
Circuit Current ICC (mA)
no signals
0.4
VCC = .3.3 V
14
VCC = 3.3 V
IVCC
VCC = 3.0 V
12
10
Iout
VCC = 3.0 V
8
VCC = 2.7 V
6
4
2
VCC = 2.7 V
0
0
0.5
no signals
2.5
3
3.5
1
1.5
2
Gain Control Voltage VAGC (V)
4
S22 vs. FREQUENCY
VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = -20 dBm
S22
1 : 950 MHz
30.711 Ω −210.3 Ω
:
2 1.44 GHz
35.516 Ω −158.06 Ω
3 : 1.9 GHz
19.758 Ω −131.8 Ω
1
3
1
2
2
3
START 100.000 000 MHz
22
STOP 3 100.000 000 MHz
START 800.000 000 MHz
STOP 2 700.000 000 MHz
µPC8130TA, µPC8131TA
µPC8131TA
Output port matching at f = 950 MHz
VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm
S11 vs. FREQUENCY 1: 66.246 Ω −41.039 Ω 4.0822 pF
950.000 000 MHz
VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm
S22 vs. FREQUENCY 1: 57.439 Ω 3.3594 Ω 562.8 pH
950.000 000 MHz
MARKER 1
950 MHz
MARKER 1
950 MHz
1
1
START 100.000 000 MHz
STOP 3 100.000 000 MHz
START 100.000 000 MHz
S11 vs. FREQUENCY
VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm
S11 log MAG 5 dB/REF 0 dB
1: −2.0122 dB
S11 vs. FREQUENCY
VAGC = 0 V (GPMAX), Pin = −20 dBm
S11 log MAG 5 dB/REF 0 dB
1: −8.9634 dB
950.000 000 MHz
10
0
VCC = 3.3 V
0
1
−10
−10
VCC = 2.7 V
VCC = 3.0 V
−20
−30
−30
START 100.000 000 MHz
STOP 3 100.000 000 MHz
950.000 000 MHz
10
0
TA = +25 °C
TA = +85 °C
STOP 3 100.000 000 MHz
S22 vs. FREQUENCY
VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm
S22 log MAG 5 dB/REF 0 dB
1: −18.936 dB
950.000 000 MHz
10
0
−10
−10
VCC = 3.3 V
−30
TA = −25 °C
START 100.000 000 MHz
S22 vs. FREQUENCY
VAGC = 0 V (GPMAX), Pin = −20 dBm
S22 log MAG 5 dB/REF 0 dB
1: −19.264 dB
−20
950.000 000 MHz
10
1
−20
STOP 3 100.000 000 MHz
VCC = 2.7 V
TA = +85 °C
TA = +25 °C
−30
VCC = 3.0 V
START 100.000 000 MHz
−20
TA = −25 °C
STOP 3 100.000 000 MHz
START 100.000 000 MHz
STOP 3 100.000 000 MHz
23
µPC8130TA, µPC8131TA
µPC8131TA
Output port matching at f = 950 MHz
S21 vs. FREQUENCY
VAGC = 0 V (GPMAX), Pin = −20 dBm
S21 log MAG 1 dB/REF 7 dB
1: 11.909 dB
950.000 000 MHz
16
14
VCC = 3.3 V
1
S21 vs. FREQUENCY
VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm
S21 log MAG 1 dB/REF 7 dB
1: 11.894 dB
14
1
VCC = 3.0 V
12
950.000 000 MHz
16
12
TA = +25 °C
VCC = 2.7 V
10
10
8
8
START 100.000 000 MHz
STOP 3 100.000 000 MHz
950.000 000 MHz
10
0
TA = +85 °C
START 100.000 000 MHz
S12 vs. FREQUENCY
VAGC = 0 V (GPMAX), Pin = −20 dBm
S12 log MAG 5 dB/REF 0 dB
1: −24.468 dB
STOP 3 100.000 000 MHz
S12 vs. FREQUENCY
VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm
S12 log MAG 5 dB/REF 0 dB
1: −24.393 dB
950.000 000 MHz
10
0
−10
−10
VCC = 3.3 V
−20
TA = −25 °C
1
VCC = 3.0 V
TA = −25 °C
−20
1
TA = +85 °C, +25 °C
VCC = 2.7 V
−30
−30
START 100.000 000 MHz
24
STOP 3 100.000 000 MHz
START 100.000 000 MHz
STOP 3 100.000 000 MHz
µPC8130TA, µPC8131TA
µPC8131TA
Output port matching at f = 950 MHz
POWER GAIN vs. GAIN CONTROL VOLTAGE
Power Gain GP (dB)
Power Gain GP (dB)
POWER GAIN vs. GAIN CONTROL VOLTAGE
20
15
10
5
0
−5
−10
−15
−20
−25
−30
−35
−40
VCC = 3.3 V
VCC = 2.7 V
0
0.5
VCC = 3.0 V
1
1.5
2
2.5
3
3.5
Gain Control Voltage VAGC (V)
4
S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = −20 dBm
S21 log MAG 10 dB/REF 0 dB
1: −34.406 dB
VAGC = 1.3 V
950.000 000 MHz
VAGC = 1.4 V
40
VAGC = 0 V
VAGC = 1.5 V
VAGC = 0.5 V
VAGC = 1.6 V
VAGC = 0.7 V
VAGC = 1.7 V
20
VAGC = 0.9 V
VAGC = 1.8 V
VAGC = 1.1 V
VAGC = 1.9 V
20
15
10
5
0
−5
−10
−15
−20
−25
−30
−35
−40
TA = −25 °C
TA = +25 °C
TA = +85 °C
0
0.5
1
1.5
2
2.5
3
3.5
Gain Control Voltage VAGC (V)
4
S12 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = −20 dBm
S12 log MAG 10 dB/REF 0 dB
1: −24.537 dB
950.000 000 MHz
40
20
0
0
VAGC = 0 V
−20
−20
1
VAGC = 3.0 V
1
−40
VAGC = 2.0 V
VAGC = 2.1 V
VAGC = 3.0 V
START 100.000 000 MHz
STOP 3 100.000 000 MHz
−40
VAGC = 1.1 V
START 100.000 000 MHz
S11 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = −20 dBm
S11 log MAG 10 dB/REF 0 dB
1: −8.9126 dB
950.000 000 MHz
40
20
S22 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = −20 dBm
S22 log MAG 10 dB/REF 0 dB
1: −19.505 dB
950.000 000 MHz
40
20
VAGC = 1.5 V
0
VAGC = 0 V
0
1
1
−20
−40
STOP 3 100.000 000 MHz
VAGC = 2.0 to 3.0 V
VAGC = 1.0 V
START 100.000 000 MHz
−20
−40
STOP 3 100.000 000 MHz
VAGC = 1.1 V
VAGC = 3.0 V
VAGC = 1.8 V
VAGC = 0 V
VAGC = 0.45 V
START 100.000 000 MHz
STOP 3 100.000 000 MHz
25
µPC8130TA, µPC8131TA
µPC8131TA
Output port matching at f = 950 MHz
OUTPUT POWER vs. INPUT POWER
OUTPUT POWER vs. INPUT POWER
5
10
f = 950 MHz
VAGC = 0 V
0
0
Output Power Pout (dBm)
Output Power Pout (dBm)
10
VCC = 3.3 V
VCC = 3.0 V
VCC = 2.7 V
-5
-10
-15
-20
-20
-15
-10
-5
Input Power Pin (dBm)
0
-20
-30
-40
OUTPUT POWER vs. INPUT POWER
0
-30
-40
VAGC = 1.5 V
VAGC = 1.8 V
VAGC = 1.95 V
VAGC = 2.15 V
VAGC = 3.3 V
-60
26
VAGC = 0 V
-20
-50
-25
-20
-15
-10
-5
Input Power Pin (dBm)
-20
-15
-10
-5
Input Power Pin (dBm)
0
0
5
OUTPUT POWER vs. INPUT POWER
Output Power Pout (dBm)
Output Power Pout (dBm)
f = 950 MHz
VCC = 3.3 V
-25
10
-10
-70
-30
VAGC = 1.5 V
VAGC = 1.75 V
VAGC = 1.95 V
VAGC = 2.15 V
VAGC = 3.0 V
-50
-70
-30
5
VAGC = 0 V
-10
-60
10
0
f = 950 MHz
VCC = 3.0 V
f = 950 MHz
VCC = 2.7 V
-10
-20
-30
-40
VAGC = 1.5 V
VAGC = 1.75 V
VAGC = 1.9 V
VAGC = 2.1 V
VAGC = 2.7 V
-50
-60
5
VAGC = 0 V
-70
-30
-25
-20
-15
-10
-5
Input Power Pin (dBm)
0
5
µPC8130TA, µPC8131TA
µPC8131TA
Output port matching at f = 950 MHz
10
Pout
0
−10
IM3
−20
2f2-f1
(952 MHz)
−30
−40
−50
2f1-f2
(949 MHz)
−60
−70
−30
−25
VCC = 3.0 V
VAGC = 0 V
f1 = 950 MHz
f2 = 951 MHz
−20
−15
−10
Input Power Pin (dBm)
−5
0
OUTPUT POWER AND IM3 vs. INPUT POWER
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
20
20
VCC = 3.0 V
10 VAGC = 1.15 V
0 f1 = 950 MHz
f2 = 951 MHz
−10
−30
Pout
−20
IM3
−30
2f2-f1
(952 MHz)
−40
−50
2f1-f2
(949 MHz)
−60
−70
−30
−25
−20
−15
−10
Input Power Pin (dBm)
−5
0
2f1-f2
(949 MHz)
−40
−50
2f2-f1
(952 MHz)
−60
−70
−30
−25
−20
−15
−10
Input Power Pin (dBm)
−5
0
OUTPUT POWER AND IM3 vs. INPUT POWER
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
VCC = 3.0 V
10 VAGC = 1.55 V
0 f1 = 950 MHz
f2 = 951 MHz
−10
IM3
−20
OUTPUT POWER AND IM3 vs. INPUT POWER
20
Pout
20
VCC = 3.0 V
10 VAGC = 1.75 V
0 f1 = 950 MHz
f2 = 951 MHz
−10
Pout
−20
−30
IM3
2f2-f1
(952 MHz)
−40
−50
2f1-f2
(949 MHz)
−60
−70
−30
−25
−20
−15
−10
Input Power Pin (dBm)
−5
0
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
20
VCC = 3.0 V
10 VAGC = 3.0 V
0 f1 = 950 MHz
f2 = 951 MHz
−10
−20
−30
Pout
−40
−50
2f1-f2 (949 MHz)
−60
−70
−30
−25
−20
−15
−10
Input Power Pin (dBm)
2f2-f1
(952 MHz)
IM3
−5
0
27
µPC8130TA, µPC8131TA
µPC8131TA
Output port matching at f = 950 MHz
−50
TA = +25 °C
Pin = −15 dBm
±50 KHz
−55
VCC = 2.7 V
−60
VCC = 3.3 V
−65
−70
VCC = 3.0 V
−75
0
0.5
2.5
3
3.5
1
1.5
2
Gain Control Voltage VAGC (V)
ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE
Adjacent Channel Interference Padj (dBc)
Adjacent Channel Interference Padj (dBc)
ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE
4
−50
TA = −25 °C
Pin = −19 dBm
±50 KHz
−55
−65
−70
−75
Adjacent Channel Interference Padj (dBc)
Adjacent Channel Interference Padj (dBc)
28
TA = +85 °C
Pin = −13 dBm
±50 KHz
−55
VCC = 2.7 V
−60
VCC = 3.3 V
−65
−70
VCC = 3.0 V
−75
0
0.5
2.5
3
3.5
1
1.5
2
Gain Control Voltage VAGC (V)
4
VCC = 3.0 V
VCC = 3.3 V
0
0.5
2.5
3
3.5
1
1.5
2
Gain Control Voltage VAGC (V)
4
ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER
ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE
−50
VCC = 2.7 V
−60
−30
−35
VAGC = 0 V
−40
VCC = 2.7 V
−45
VCC = 3.0 V
−50
VCC = 3.3 V
−55
−60
−65
−70
−20
−15
−10
−5
0
Input Power Pin (dBm)
5
µPC8130TA, µPC8131TA
µPC8131TA
Output port matching at f = 1440 MHz
VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm
S11 vs. FREQUENCY 1: 57.025 Ω −32.578 Ω 3.3926 pF
1 440.000 000 MHz
VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm
S22 vs. FREQUENCY 1: 40.016 Ω −8.582 Ω 12.879 pF
1 440.000 000 MHz
MARKER 1
1.44 GHz
MARKER 1
1.44 GHz
1
1
START 100.000 000 MHz
STOP 3 100.000 000 MHz
START 100.000 000 MHz
S11 vs. FREQUENCY
VAGC = 0 V (GPMAX), Pin = −20 dBm
S11 log MAG 5 dB/REF 0 dB
1: −10.576 dB
1 440.000 000 MHz
10
VCC = 3.3 V
0 VCC = 3.0 V
1
−10
S22 vs. FREQUENCY
VAGC = 0 V (GPMAX), Pin = −20 dBm
S22 log MAG 5 dB/REF 0 dB
1: −15.766 dB
−30
0
−20
STOP 3 100.000 000 MHz
1 440.000 000 MHz
10
−20
VCC = 2.7 V
VCC = 3.3 V
VCC = 3.0 V
START 100.000 000 MHz
S11 vs. FREQUENCY
VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm
S11 log MAG 5 dB/REF 0 dB
1: −10.784 dB
−10
1
−30
START 100.000 000 MHz
0
1 440.000 000 MHz
10
−10
VCC = 2.7 V
−20
STOP 3 100.000 000 MHz
STOP 3 100.000 000 MHz
S22 vs. FREQUENCY
VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm
S22 log MAG 5 dB/REF 0 dB
1: −15.915 dB
1 440.000 000 MHz
10
0
TA = −25 °C
1
−10
−20
TA = +25 °C
TA = +85 °C
−30
−30
START 100.000 000 MHz
STOP 3 100.000 000 MHz
1
TA = −25 °C
TA = +85 °C
TA = +25 °C
START 100.000 000 MHz
STOP 3 100.000 000 MHz
29
µPC8130TA, µPC8131TA
µPC8131TA
Output port matching at f = 1440 MHz
S21 vs. FREQUENCY
VAGC = 0 V (GPMAX), Pin = −20 dBm
S21 log MAG 1 dB/REF 5 dB
1: 10.951 dB
1 440.000 000 MHz
14
12
S21 vs. FREQUENCY
VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm
S21 log MAG 1 dB/REF 5 dB
1: 10.957 dB
1 440.000 000 MHz
14
VCC = 3.3 V
VCC = 3.0 V
12
1
1
TA = −25 °C
TA = +25 °C
10
8
VCC = 2.7 V
8
6
6
START 100.000 000 MHz
STOP 3 100.000 000 MHz
START 100.000 000 MHz
S12 vs. FREQUENCY
VAGC = 0 V (GPMAX), Pin = −20 dBm
S12 log MAG 5 dB/REF 0 dB
1: −29.767 dB
1 440.000 000 MHz
10
−10
−10
−20
VCC = 3.0 V
1
−30
START 100.000 000 MHz
30
VCC = 2.7 V
STOP 3 100.000 000 MHz
1 440.000 000 MHz
10
0
VCC = 3.3 V
STOP 3 100.000 000 MHz
S12 vs. FREQUENCY
VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm
S12 log MAG 5 dB/REF 0 dB
1: −30.004 dB
0
−20
TA = +85 °C
10
−30
TA = +85 °C
TA = +25 °C
1
START 100.000 000 MHz
TA = −25 °C
STOP 3 100.000 000 MHz
µPC8130TA, µPC8131TA
µPC8131TA
Output port matching at f = 1440 MHz
POWER GAIN vs. GAIN CONTROL VOLTAGE
VCC = 2.7 V
VCC = 3.0 V
Power Gain GP (dB)
Power Gain GP (dB)
POWER GAIN vs. GAIN CONTROL VOLTAGE
20
15
10
5
0
−5
−10
−15
−20
−25
−30
−35
−40
VCC = 3.3 V
0
0.5
1
1.5
2
2.5
3
3.5
Gain Control Voltage VAGC (V)
4
20
15
10
5
0
−5
−10
−15
−20
−25
−30
−35
−40
S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = −20 dBm
S21 log MAG
10 dB/REF 0 dB
1: 10.967 dB
VAGC = 0 V
VAGC = 0.5 V
VAGC = 0.7 V
VAGC = 0.8 V
VAGC = 0.9 V
VAGC = 1.0 V
VAGC = 1.2 V
20
1
VAGC = 1.3 V
VAGC = 1.4 V
VAGC = 1.5 V
VAGC = 1.6 V
0 VAGC = 1.7 V
VAGC = 1.8 V
40
1 440.000 000 MHz
0.5
1
1.5
2
2.5
3
3.5
Gain Control Voltage VAGC (V)
4
1 440.000 000 MHz
40
0
VAGC = 0 V
1
−40
VAGC = 1.9 V
VAGC = 2.0 V
VAGC = 3.0 V
STOP 3 100.000 000 MHz
1 440.000 000 MHz
20
VAGC = 3.0 V
START 100.000 000 MHz
S11 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = −20 dBm
S11 log MAG 10 dB/REF 0 dB
1: −10.499 dB
40
0
S12 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = −20 dBm
S12 log MAG 10 dB/REF 0 dB
1: −29.705 dB
−20
START 100.000 000 MHz
TA = +85 °C
20
−20
−40
TA = -25 °C
TA = +25 °C
STOP 3 100.000 000 MHz
S22 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
VCC = 3.0 V, Pin = −20 dBm
S22 log MAG 10 dB/REF 0 dB
1: −14.578 dB
1 440.000 000 MHz
40
20
VAGC = 0 V
0
VAGC = 1 V
1
VAGC = 1.5 V
0
1
−20
−20
VAGC = 1.15 V
VAGC = 0 V
VAGC = 3.0 V
VAGC = 2.0 to 3.0 V
−40
START 100.000 000 MHz
STOP 3 100.000 000 MHz
−40
START 100.000 000 MHz
STOP 3 100.000 000 MHz
31
µPC8130TA, µPC8131TA
µPC8131TA
Output port matching at f = 1440 MHz
OUTPUT POWER vs. INPUT POWER
OUTPUT POWER vs. INPUT POWER
10
5
f = 1440 MHz
VAGC = 0 V
0
Output Power Pout (dBm)
Output Power Pout (dBm)
10
VCC = 2.7 V
0
VCC = 3.0 V
−5
VCC = 3.3 V
−10
−15
−20
−20
−20
−30
−15
−10
−5
Input Power Pin (dBm)
0
VAGC = 1.6 V
−60
−30
5
f = 1440 MHz
VCC = 3.3 V
−20
−30
VAGC = 1.3 V
VAGC = 1.6 V
VAGC = 1.8 V
VAGC = 3.3 V
−50
32
0
VAGC = 0 V
−40
−25
−20 −15 −10
−5
Input Power Pin (dBm)
0
VAGC = 1.8 V
VAGC = 3.0 V
−25
−20 −15 −10
−5
Input Power Pin (dBm)
0
5
OUTPUT POWER vs. INPUT POWER
10
−10
−60
−30
VAGC = 1.3 V
−40
−50
Output Power Pout (dBm)
Output Power Pout (dBm)
0
VAGC = 0 V
−10
OUTPUT POWER vs. INPUT POWER
10
f = 1440 MHz
VCC = 3.0 V
f = 1440 MHz
VCC = 2.7 V
−10
−20
−30
−40
VAGC = 1.3 V
VAGC = 1.6 V
VAGC = 1.8 V
−50
5
VAGC = 0 V
−60
−30
−25
VAGC = 2.7 V
−20 −15 −10
−5
Input Power Pin (dBm)
0
5
µPC8130TA, µPC8131TA
µPC8131TA
Output port matching at f = 1440 MHz
10
Pout
0
−10
IM3
2f2-f1
(1442 MHz)
−20
−30
2f1-f2
(1439 MHz)
−40
VCC = 3.0 V
VAGC = 0 V
f1 = 1440 MHz
f2 = 1441 MHz
−50
−60
−70
−30
−25
−20
−15
−10
Input Power Pin (dBm)
−5
0
OUTPUT POWER AND IM3 vs. INPUT POWER
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
20
20
10
0
−20
−40
Pout
−20
−30
IM3
2f2-f1
(1442 MHz)
−40
−50
−60
−70
−30
−25
−20
−15
Input Power Pin
2f1-f2
(1439 MHz)
−10
−5
(dBm)
0
IM3
2f1-f2
(1439 MHz)
−50
VCC = 3.0 V
VAGC = 1.3 V
f1 = 1440 MHz
f2 = 1441 MHz
−60
−70
−30
−25
−20
−15
−10
Input Power Pin (dBm)
−5
0
OUTPUT POWER AND IM3 vs. INPUT POWER
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
VCC = 3.0 V
10 VAGC = 1.6 V
0 f1 = 1440 MHz
f2 = 1441 MHz
−10
2f2-f1
(1442 MHz)
−30
OUTPUT POWER AND IM3 vs. INPUT POWER
20
Pout
−10
20
VCC = 3.0 V
10 VAGC = 1.8 V
0 f1 = 1440 MHz
f2 = 1441 MHz
−10
−20
Pout
−30
IM3
−40
−50
−60
−70
−30
2f2-f1
(1442 MHz)
−25
−20
−15
−10
Input Power Pin (dBm)
2f1-f2
(1439 MHz)
−5
0
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM3 (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
20
VCC = 3.0 V
10 VAGC = 3.0 V
0 f1 = 1440 MHz
f2 = 1441 MHz
−10
−20
−30
Pout
−40
2f1-f2 (1439 MHz)
−50
2f2-f1 (1442 MHz)
−60
−70
−30
−25
−20
−15
−10
Input Power Pin (dBm)
IM3
−5
0
33
µPC8130TA, µPC8131TA
µPC8131TA
Output port matching at f = 1440 MHz
−50
TA = +25 °C
Pin = −15 dBm
±50 KHz
−55
−60
VCC = 3.3 V
−65
−70
VCC = 3.0 V
VCC = 2.7 V
−75
0
0.5
2.5
3
3.5
1
1.5
2
Gain Control Voltage VAGC (V)
ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE
Adjacent Channel Interference Padj (dBc)
Adjacent Channel Interference Padj (dBc)
ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE
4
−50
TA = −25 °C
Pin = −19 dBm
±50 KHz
−55
−60
−65
−70
−75
Adjacent Channel Interference Padj (dBc)
Adjacent Channel Interference Padj (dBc)
34
TA = +85 °C
Pin = −13 dBm
±50 KHz
−55
VCC = 3.3 V
−60
VCC = 2.7 V
−65
−70
−75
VCC = 3.0 V
0
0.5
2.5
3
3.5
1
1.5
2
Gain Control Voltage VAGC (V)
4
VCC = 3.0 V
VCC = 3.3 V
0
0.5
2.5
3
3.5
1
1.5
2
Gain Control Voltage VAGC (V)
4
ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER
ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE
−50
VCC = 2.7 V
−30
−35
VAGC = 0 V
−40
−45
−50
VCC = 2.7 V
VCC = 3.3 V
−55
VCC = 3.0 V
−60
−65
−70
−20
−15
−10
−5
Input Power Pin (dBm)
0
5
µPC8130TA, µPC8131TA
PACKAGE DIMENSIONS
6 PIN MINI-MOLD PACKAGE (UNIT: mm)
+0.1
0.3 –0.0
3
+0.2
2
1.5 –0.1
2.8 –0.3
+0.2
1
0.13 ±0.1
0 to 0.1
6
5
4
0.95
0.95
1.9
0.8
+0.2
1.1 –0.1
2.9 ±0.2
35
µPC8130TA, µPC8131TA
NOTES ON CORRECT USE
(1) Observe precautions for handling because of electro-static sensitive devices.
(2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired oscillation). All
the ground pins must be connected together with wide ground pattern to decrease impedance difference.
(3) The bypass capacitor (eg. 1000 pF) should be attached to the VCC pin.
(4) Impedance matching circuit must be each externally attached to input and output ports.
(5) The bias must be applied to output pin through the matching inductor. (The bias must not be applied to input
pin.)
RECOMMENDED SOLDERING CONDITIONS
This product should be soldered under the following recommended conditions.
For soldering methods and
conditions other than those recommended below, contact your NEC sales representative.
Soldering Method
Soldering Conditions
Recommended Condition
Symbol
Infrared Reflow
Package peak temperature: 235 °C or below
Time: 30 seconds or less (at 210 °C)
Note
Count: 3, Exposure limit : None
IR35-00-3
VPS
Package peak temperature: 215 °C or below
Time: 40 seconds or less (at 200 °C)
Note
Count: 3, Exposure limit : None
VP15-00-3
Wave Soldering
Soldering bath temperature: 260 °C or below
Time: 10 seconds or less
Note
Count: 1, Exposure limit : None
WS60-00-1
Partial Heating
Pin temperature: 300 °C
Time: 3 seconds or less (per side of device)
Note
Exposure limit : None
–
Note After opening the dry pack, keep it in a place below 25 °C and 65 % RH for the allowable storage period.
Caution Do not use different soldering methods together (except for partial heating).
For details of recommended soldering conditions for surface mounting, refer to information document
SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).
36
µPC8130TA, µPC8131TA
[MEMO]
37
µPC8130TA, µPC8131TA
[MEMO]
38
µPC8130TA, µPC8131TA
[MEMO]
39
µPC8130TA, µPC8131TA
ATTENTION
OBSERVE PRECAUTIONS
FOR HANDLING
ELECTROSTATIC
SENSITIVE
DEVICES
NESAT (NEC Silicon Advanced Technology) is a trademark of NEC Corporation.
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from use of a device described herein or any other liability arising from use
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
customer designated "quality assurance program" for a specific application. The recommended applications of
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
before using it in a particular application.
Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.
M4 96. 5