TI TLC5905PAP

TLC5905
LED DRIVER
SLLS401 – NOVEMBER 1999
D
D
D
D
D
D
D
D
Drive Capability and Output Counts:
– 80 mA (Current Sink) × 16 Bits
– 120 mA (Current Sink) × 8 Bits
Constant Current Output Range:
– 5 mA to 80 mA/10 mA to 120 mA
(Selectable by MODE Terminal) (Current
Value Setting for All Output Terminals
Using External Resistor and Internal
Brightness Control Register)
Constant Current Accuracy ± 4% (Maximum
Error Between Bits)
Voltage Applied to Constant Current Output
Terminals:
– Minimum 0.4 V (Output Current 5 mA to
40 mA)
– Minimum 0.7 V (Output Current 40 mA to
80 mA)
256 Gray Scale Display:
– Pulse Width Control 256 Steps
Brightness Adjustment:
– Output Current Adjustment for 32 Steps
(Adjustment for Brightness Deviation
Between LED Modules)
– 8 Steps Brightness Control by 8 Times
Speed Gray Scale Control Clock
(Brightness Adjustment for Panel)
Error Output Signal Check:
– Check Error Output Signal Line Such as
Protection Circuit When Operating
Data Output Timing Selectable:
– Select Data Output Timing for Shift
Register Relative to Clock
D
D
D
D
D
D
D
D
D
D
D
D
OVM (Output Voltage Monitor):
– Monitor Voltage on Constant Current
Output Terminals (Detect LED
Disconnection and Short Circuit)
WDT (Watchdog Timer):
– Turn Output Off When Scan Signal
Stopped
TSD (Thermal Shut Down):
– Turn Output Off When Junction
Temperature Exceeds Limit
Data Input:
– Clock Synchronized 1 Bit Serial Input
(Shmitt-Triggered Input)
Data Output:
– Clock Synchronized 1 Bit Serial Output
(3-State Output)
Input Signal Level:
– CMOS Level
Power Supply Voltage . . . 4.5 V to 5.5 V
Maximum Output Voltage . . . 17 V
Data Transfer Rate . . . 15 MHz (Max
Gray Scale Clock Frequency . . . 8 MHz
(Max)
Operating Free-Air Temperature Range
–20°C to 85°C
64-Pin HTQFP Package (PD = 4.9 W,
TA = 25°C)
description
The TLC5905 is a constant current driver that incorporates shift register, data latch, constant current circuitry
with a current value adjustable and 256 gray scale display that uses pulse width control. The output current can
be selected as maximum 80 mA with 16 bits or 120 mA with 8 bit. The current value of the constant current output
is set by one external resistor. After this device is mounted on a printed-circuit board (PCB), the brightness
deviation between LED modules (ICs) can be adjusted using an external data input, and the brightness control
for the panel can be accomplished by the brightness adjustment circuitry. Also, the device incorporates the
output voltage monitor (OVM) used for LED open detection (LOD) by monitoring constant current output.
Moreover, the device incorporates watchdog timer (WDT) circuitry, which turns constant current output off when
the scan signal stops during dynamic scanning operation, and thermal shutdown (TSD) circuitry, which turns
constant current output off when the junction temperature exceeds the limit.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  1999, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
TLC5905
LED DRIVER
SLLS401 – NOVEMBER 1999
pin assignments
NC
OUT3
GNDLED
OUT2
OUT1
GNDLED
OUT0
NC
NC
BCENA
GNDLOG
MODE
VCCLOG
TSENA
NC
SIN
PAP PACKAGE
(TOP VIEW)
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
NC
OUT4
GNDLED
OUT5
OUT6
GNDLED
NC
OUT7
OUT8
NC
GNDLED
OUT9
OUT10
GNDLED
OUT11
NC
1
48
2
47
3
46
4
45
5
44
6
43
7
42
8
41
9
40
10
39
11
38
12
37
13
36
14
35
15
34
33
16
NC
OUT12
GNDLED
OUT13
OUT14
GNDLED
OUT15
NC
IREF
VCCLED
WDCAP
GNDANA
NC
VCCANA
MCENA
SOUT
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
NC – No internal connection
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TEST2
SOMODE
GSCLK
BLANK
RSEL1
RSEL0
SCLK
XENABLE
XOE
WDTRG
XLATCH
XDOWN1
XDOWN2
TEST1
BOUT
GSOUT
TLC5905
LED DRIVER
SLLS401 – NOVEMBER 1999
functional block diagram
Shift Register and Data Latch
OVM
Shift Register
Data Latch
MCENA
BCENA
RSEL0
SOUT
RSEL1
SIN
XENABLE
SCLK
Controller
SCLK
Brightness Control
Shift Register
Data Latch
SOMODE
Gray Scale Control
Shift Register
Data Latch
XOE
XLATCH
MODE
GSCLK
BLANK
8 bits
Gray Scale
Counter
DELEY
GSOUT
DELEY
BOUT
16 x 8 bits
Comparator
TSENA
XDOWN1
TSD
WDTRG
WDCAP
IREF
XDOWN2
WDT
Current Reference
Circuit
16 bits
Constant Current Driver
OUT0
16 bits
OVM Comp
LATCH
OUT15
NOTE: All the input terminals are with Schmitt-triggered inverter except IREF and WDCAP.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
TLC5905
LED DRIVER
SLLS401 – NOVEMBER 1999
functional block diagram for shift register and data latch
MCENA
OVM Data Latch
(1 x 8 bit)
OVM Shift Register
(8 x 1 bit)
SIN
BCENA
Brightness Control Data Latch
(1 x 8 bit)
Gray Scale Control Data Latch
(16 x 8 bit)
SCLK
Constant Current Driver Control
Gray Scale Clock Counter
Brightness Control Shift Register
(8 x 1 bit)
XLATCH
XENABLE
16 bit OVM Comparator
XDOWN1, 2 Output Driver
16 x 8 bit Data Comparator
SCLK
Controller
Gray Scale Control Shift Register
(128 x 1 bit / 64 x 1 bit)
(see Note)
MODE
1 bit
S/R
t u
RSEL 0–1
SOMODE
SOUT
XOE
NOTE: Enclosed in ( ) is dependent on MODE pin selection.
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLC5905
LED DRIVER
SLLS401 – NOVEMBER 1999
equivalent input and output schematic diagrams
Input
VCCLOG
INPUT
GNDLOG
SOUT, GSOUT, BOUT
VCCLOG
OUTPUT
GNDLOG
XDOWN1, XDOWN2
XDOWN1, XDOWN2
GNDLOG
OUTn
OUTn
GNDLED
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
TLC5905
LED DRIVER
SLLS401 – NOVEMBER 1999
Terminal Functions
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
TERMINAL
NAME
I/O
DESCRIPTION
BCENA
55
I
Brightness control enable. When BCENA is low, the brightness control latch is set to the
default value. The output current value in this status is 100% of the value set by an external
resistor. The frequency division ratio of GSCLK is1/1. When BCENA is high, writing to
brightness control latch is enabled.
BLANK
45
I
Blank(Light off). When BLANK is high, all the output of the constant current driver is turned
off. The constant current output is turned on (LED on) when synchronized to the falling edge
of GCLK after next rising edge of GCLK when BLANK goes from high to low.
BOUT
34
O
Blank signal delay. BOUT is an output with the addition of delay time to BLANK.
GSCLK
46
I
Clock input for gray scale. The gray scale display is accomplished by lighting the LED on until
the number of GSCLK counted is equal to data latched.
GNDANA
28
GNDLED
3,6,11,14,
19,22,59,62
GNDLOG
54
GSOUT
33
O
Clock delay for gray scale. GSOUT is an output with the addition of delay time to GSCLK.
IREF
25
I/O
Constant current value setting. LED current is set to the desired value by connecting an
external resistor between IREF and GND. The 37 times current is compared to current across
the external resistor sink on the output terminal.
MCENA
31
I
OVM enable. When MCENA is low, the OVM latch is set to the default value. The comparison
voltage in this status is 0.3 V. When MCENA is high, writing to OVM latch is enabled.
MODE
53
I
8/16 bits select. When MODE is high, the 16 bits output is selected. When MODE is low, the
8 bits output is selected.
NC
OUT0 – OUT15
Analog ground (internally connected to GNDLOG and GNDLED)
LED driver ground (internally connected to GNDANA and GNDLOG)
Logic ground (internally connected to GNDANA and GNDLED)
1,7,10,16,17,24,
29,50,56,57,64
58,60,61,63,
2,4,5,8,9,12,13
15,18,20,21,23
No internal connection
O
Constant current output
RSEL0
RSEL1
43
44
I
Shift register data latch switching.
When RSEL1 is low and RESL0 is low, gray scale data shift register latch is selected.
When RSEL1 is low and RESL0 is high, the brightness control register latch is selected.
When RSEL1 is high and RSEL0 is low, the OVM register latch is selected.
When RSEL1 is high and RSEL0 high, no register latch is selected.
SCLK
42
I
Clock input for data transfer. The input data is from SIN. All data on the shift register selected
by RSEL0 and RSEL1, and output data at SOUT are sifted by 1 bit synchronizing to SCLK.
The data except the SOUT is synchronized to the rising edge. The edge for data from SOUT
is determined by the level of SOMODE.
SIN
49
I
Input for 1 bit serial data. These terminals are inputs for shift register for gray scale data,
brightness control and OVM. The register selected is determined by RSEL0, 1.
SOMODE
47
I
Timing select for data output. When SOMODE is low, SOUT is changed by synchronizing to
the rising edge of SCLK. When SOMODE is high, SOUT is changed by synchronizing to the
falling edge of SCLK.
SOUT
32
O
Output for 1 bit serial data with 3–state. These terminals are outputs for shift register for gray
scale data, brightness control and OVM. The register selected is determined by RSEL0, 1.
TEST1
TEST2
35
48
I
TEST. Factory test terminal. TEST1 and TEST2 should be connected to GND for normal
operation.
THERMAL PAD
TSENA
6
NO.
package bottom
51
Heat sink pad. This pad is connected to the lowest potential IC or thermal layer.
I
TSD (thermal shutdown) enable. When TSENA is high, TSD is enabled. When TSENA is low,
TSD is disabled.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLC5905
LED DRIVER
SLLS401 – NOVEMBER 1999
Terminal Functions (Continued)
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
TERMINAL
NAME
NO.
I/O
DESCRIPTION
VCCANA
VCCLOG
30
Analog power supply voltage
52
Logic power supply voltage
VCCLED
26
LED driver power supply voltage
WDCAP
27
I
WDT (watchdog timer) detection time adjustment. WDT detection time is adjusted by
connecting a capacitor between WDCAP and GND. When WDCAP is directly connected
to GND, the WDT function is disabled. In this case, WDTRG should be tied to a high or low
level.
WDTRG
39
I
WDT (watchdog timer) trigger input. By applying a scan signal to this terminal, the scan
signal can be monitored by turning the constant current output off and protecting the LED
from damage by burning when the scan signal is stopped during constant period designed.
XDOWN1
37
O
Shutdown. XDOWN1 is configured as an open collector. It goes low when constant current
output is shut down by the WDT or TSD function.
XDOWN2
36
O
OVM comparator output. XDOWN2 is configured as open collector. It monitors terminal
voltage when constant current output is turned on. XDOWN2 goes low when this voltage is
lower than the level selected by the OVM latch. When BLANK is set high, the previous level
is held.
XENABLE
41
I
SCLK enable. When XENABLE is low, data transfer is enabled. Data transfer starts on the
rising edge of SCLK after XENABLE goes low. During XENABLE high, no data is transferred.
XLATCH
38
I
Latch. When XLATCH is high, data on shift register goes through latch. When XLATCH is
low, data is latched. Accordingly, if data on shift register is changed during XLATCH high,
this new value is latched (level latch).
XOE
40
I
Data output enable. When XOE is low, the SOUT terminal is drived. When XOE is high, the
SOUT terminal goes to high-impedance state.
absolute maximum ratings over operating free-air temperature (unless otherwise noted)†
Logic supply voltage, VCC(LOG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 7 V
Supply voltage for constant current circuit, VCC(LED) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 7 V
Analog supply voltage, VCC(ANA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 7 V
Output current (DC), IOL(C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 mA
Input voltage range, VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to VCC(LOG) + 0.3 V
Output voltage range, V(SOUT), V(BOUT) and V(GSOUT) . . . . . . . . . . . . . . . . . . . – 0.3 V to VCC(LOG) + 0.3 V
Output voltage range, V(OUTn) and V(XDOWNn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 18 V
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 125°C
Continuous total power dissipation at (or below) TA = 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.9 W
Power dissipation rating at (or above) TA = 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39.4 mW/°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values are with respect to GNDLOG terminal.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
TLC5905
LED DRIVER
SLLS401 – NOVEMBER 1999
recommended operating conditions
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
Á
ÁÁÁ
ÁÁ
Á
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
Á
ÁÁÁ
ÁÁ
Á
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
dc characteristics
PARAMETER
TEST CONDITIONS
MIN
NOM
MAX
UNIT
Logic supply voltage, VCC(LOG)
4.5
5
5.5
V
Supply voltage for constant current circuit,
VCC(LED)
4.5
5
5.5
V
Analog power supply, VCC(ANA)
4.5
5
5.5
V
– 0.3
0
0.3
V
– 0.3
0
0.3
V
17
V
VCC(LOG)
0.2 VCC(LOG)
V
Voltage between VCC, V(DIFF1)
Voltage between GND, V(DIFF2)
Voltage applied to constant current
output, V(OUTn)
V(DIFF1) = VCC(LOG) – VCC(ANA)
VCC(LOG) – VCC(LED),
VCC(ANA) – VCC(LED)
V(DIFF2) = GNDLOG – GND(ANA)
GND(LOG) – GND(LED),
GND(ANA) – GND(LED)
OUT0 to OUT15 off
High-level input voltage, VIH
0.8 VCC(LOG)
Low-level input voltage, VIL
High-level output current, IOH
Low level output current
Low-level
current, IOL
Constant output current, IOL(C)
GNDLOG
VCC(LOG) = 4.5V, SOUT, BOUT, GSOUT
VCC(LOG) = 4.5V, SOUT, BOUT, GSOUT
– 1.0
1.0
VCC(LOG) = 4.5V, XDOWN1, XDOWN2
OUT0 to OUT15
Operating free–air temperature range, TA
V
mA
5
mA
5
80
mA
– 20
85
°C
ac characteristics, VCC(LOG) = VCC(ANA) = VCC(LED) = 4.5 V to 5.5 V, TA = – 20 to 85°C (unless otherwise noted)
PARAMETER
TEST CONDITIONS
SCLK clock frequency,
frequency f(SCLK)
MIN
At cascade operation (SOMODE = L)
10
20
Frequency division ratio 1/1
20
Frequency division ratio 1/1
40
No GSOUT operation (see Note 2)
20
WDTRG clock frequency, f(WDT)
40
XLATCH pulse duration (high), tw(h)
50
Rise/fall time, tr/tf
Setup time, tsu
Hold time, th
10
BLANK – GSCLK
20
XENABLE – SCLK
15
XLATCH – SCLK
15
XLATCH – GSCLK
10
RSEL – SCLK
10
RSEL – XLATCH
20
SIN – SCLK
10
XENABLE – SCLK
20
XLATCH – SCLK
30
RSEL – SCLK
20
RSEL – XLATCH
20
NOTE 2: When GSCLK is operated with >8 MHz, GSOUT operation can not be assured.
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MHz
MHz
ns
ns
100
SIN – SCLK
MHz
ns
8
WDTRG pulse duration (high or low level), tw(h)/tw(l)
UNIT
ns
8
No GSOUT operation (see Note 2)
GSCLK pulse duration (high or low level),
level) tw(h)
(h)/tw(l)
(l)
MAX
15
SCLK pulse duration (high or low level), tw(h)/tw(l)
GSCLK clock frequency,
frequency f(GSCLK)
TYP
At single operation
ns
ns
ns
TLC5905
LED DRIVER
SLLS401 – NOVEMBER 1999
electrical characteristics,
MIN/MAX:VCC(LOG)= VCC(ANA) = VCC(LED) = 4.5 V to 5.5 V, TA = –20 to 85°C
TYP: VCC(LOG) = VCC(ANA) = VCC(LED) = 5 V, TA = 25°C (unless otherwise noted)
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
Á
ÁÁ
Á
ÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
Á
ÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
Á
ÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
VCC(LOG)
–0.5
UNIT
VOH
High-level output voltage
IOH = –1 mA, SOUT, GSOUT, BOUT
VOL
Low level output voltage
Low-level
IOL = 1 mA, SOUT, GSOUT, BOUT
IOL = 5 mA, XDOWN1, XDOWN2
0.5
II
Input current
±1
µA
I(LOG)
Supply
y current ((logic)
g )
VI = VCC(LOG) or GND(LOG)
Input signal is static, TSENA = H,
WDCAP = OPEN
1
mA
mA
0.5
Data transfer, SCLK = 15 MHz, GSCLK = 8 MHz
I(ANA)
I(LED)
Supply current (analog)
Supply current (constant current
driver)
V
18
30
LED turnon, R(IREF) = 590 Ω
LED turnoff, R(IREF) = 590 Ω
3
5
3
5
LED turnoff, R(IREF) = 1180 Ω
15
20
LED turnoff, R(IREF) =590 Ω
VO = 1 V,
R(IREF) = 1180 Ω
All output bits turn on
30
40
25
35
50
70
VO = 1 V, R(IREF) = 590 Ω
All output bits turn on
V
mA
mA
IO(LC1)
Constant output current
VO = 1 V, V(IREF) = 1.24 V,
R(IREF) = 1180 Ω
35
40
45
mA
IO(LC2)
Constant output current
VO = 1,
V(IREF) = 1.24V,
R(IREF) = 590 Ω
70
80
90
mA
IO(LK)
( )
Constant output leakage current
0.1
µA
XDOWN1,2 (V(XDOWNn) = 15 V)
1
µA
SOUT (VOUTn = VCC(LOG) or GND)
1
µA
OUT0 to OUT15 (V(OUTn) = 15 V)
∆IO(LC)
Constant output current error
between bits
VCC(LOG) = VCC(ANA) = VCC(LED) = 5 V,
VO = 1V, R(IREF) = 590 Ω, All output bits turnon
±1%
±4%
I∆O(LC1)
Changes in constant output
current depend on supply voltage
VO = 1 V, R(IREF) = 1180 Ω,
V(IREF) = 1.24 V, 1 bit output turnon
±1%
±4%
%/V
I∆O(LC2)
Changes in constant output
current depend on output voltage
VO= 1 V to 3 V, R(IREF) = 1180 Ω,
V(IREF) = 1.24 V, 1 bit output turnon
±1%
±2%
%/V
T(tsd)
T(wdt)
TSD detection temperature
Junction temperature
150
160
170
°C
WDT detection temperature
No external capacitor
5
10
15
ms
V(IREF)
Voltage reference
BCENA = L, R(IREF) = 590 Ω
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1.24
V
9
TLC5905
LED DRIVER
SLLS401 – NOVEMBER 1999
switching characteristics, CL = 15pF,
MIN/MAX: VCC(LOG)= VCC(ANA) = VCC(LED) = 4.5 V to 5.5 V, TA = –20 to 85°C
TYP: VCC(LOG) = VCC(ANA) = VCC(LED) = 5 V, TA = 25°C (unless otherwise noted)
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
Á
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
PARAMETER
tr
TEST CONDITIONS
Rise time
MIN
12
30
GSOUT, BOUT
13
30
GSOUT, BOUT
OUTn (see Figure 1)
Propagation delay time
35
60
350
500
20
40
70
350
500
GSCLK – GSOUT
20
40
70
SCLK – SOUT
15
30
50
XOE↓ – SOUT (see Note 3)
10
20
35
XOE↑ – SOUT (see Note 3)
10
15
25
GSCLK – XDOWN2
10
20
25
BLANK↑ – OUT0
NOTE 3: Until SOUT will be turned on (drive) or turned off (Hi–Z).
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
ns
ns
200
GSCLK↓ – OUT0
td
8
10
OUTn+1 – OUTn
BLANK – BOUT
UNIT
250
SOUT
Fall time
MAX
SOUT
OUTn (see Figure 1)
tf
TYP
5000
ns
TLC5905
LED DRIVER
SLLS401 – NOVEMBER 1999
PARAMETER MEASUREMENT INFORMATION
VCC
51 Ω
VCC
IREF
OUTn
GND
590 Ω
15 pF
Figure 1. Rise Time and Fall Time Test Circuit for OUTn
VIH or VOH
100%
VIH
90%
50%
10%
VIL
tr
VIL or VOL
0%
tf
td
100%
VIH
50%
100%
VIH or VOH
50%
0%
VIL
tw(h)
0%
VIL or VOL
tw(l)
Figure 2. Timing Requirements
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
TLC5905
LED DRIVER
SLLS401 – NOVEMBER 1999
PRINCIPLES OF OPERATION
constant current output selection by user (80 mA x16 bits or 120 mA x 8 bits)
When the MODE terminal is set to high, output is selected as 80 mA x 16 bits. When the MODE terminal is set
to low, output is selected as 120 mA x 8 bits. By this setting, the shift register latch for gray scale data is changed
to the configuration corresponding to the bit selected. Note that two constant output terminals should be tied
to LED such as OUT0-to-OUT1 and OUT2-to-OUT3 because they operate in pairs when the 8-bit output mode
is selected. Also, in this case, the current value on constant current output is the same as in 16-bit output mode.
Therefore, when output current of 120 mA is desired, the resister connected to the IREF terminal should be set
to the same value as the output current of 60 mA.
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
Table 1. Operation Mode Selection
MODE
OUTPUT
H
80 mA × 16 bits
L
120 mA × 8 bits
On the constant current output terminals (OUT0–15), approximately 37 times the current that flows through
external resistor, RIREF (connected between IREF and GND), can flow. The external resistor value is calculated
using the following equation.
R(IREF) (Ω) ≅ 37 × 1.24 (V) / IOL(C)(A) where BCENA is low.
Note that more current flows if IREF is connected directly to GND.
constant output current operation
The constant current output turns on (sink constant current), if all the gray scale data latched into the gray scale
latch is not zero on the falling edge of the gray scale clock after the next rising edge of the gray scale clock when
BLANK goes from high to low. After that, the number of the falling edge is counted by the 8-bit gray scale counter.
Then, output counted corresponding to the gray scale data is turned off (stop to sink constant current). If the
shift register for gray scale is updated during XLATCH high, data on the gray scale data latch is also updated
affecting the number of the gray scale of constant current output. Accordingly, during on-state of constant
current output, XLATCH should be kept at a low level and the gray scale data latch should be held. If there are
constant current output terminals unconnected (includes LED disconnection), the LED should be turned on after
writing zero to the gray scale data latch corresponding to the output unconnected. Unless this action is taken,
supply current on the constant current driver will increase resulting in influencing the current value for the
constant current output when turned on.
shift register latch
The device provides three kinds of shift register latchs including the gray scale data, brightness control, and
OVM. To write data into the shift register, SCLK and SIN are utilized. The selection of the shift register will be
done by RSEL0 and RSEL1 as shown in Table 2. Note that RSEL0 and RSEL1 should be changed when both
SCLK and XLATCH are low.
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
Table 2. Shift Register Latch Selection
12
RSEL0
RSEL1
L
L
Shift register latch for gray scale data
SHIFT REGISTER LATCH SELECTED
L
H
Shift register latch for brightness control
H
L
Shift register latch for OVM
H
H
N/A (SOUT is tied to low level)
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLC5905
LED DRIVER
SLLS401 – NOVEMBER 1999
PRINCIPLES OF OPERATION
shift register latch for gray scale data
The shift register latch for gray scale data is set as a 64 x 1 bit configuration in the 8-bit mode, and as a 128
x 1 bit configuration in the 16-bit mode. The gray scale data, configured as 8 bits, represents the time when
constant current output is being turned on, and the data range is 0 to 255 (00h to FFh). When the gray scale
data is 0, the time is shortest, and the output is not turned on(light off). On the other hand, when the gray scale
data is 255, the time is longest, and it turns on during time of 255 clocks from GSCLK. The configuration of shift
register and latch for gray scale data is shown in Figure 3.
Latch for Gray Scale Data
XLATCH
OUT15 Data
OUT14 Data
(8 bits)
(8 bits)
..........
OUT1 Data
OUT0 Data
(8 bits)
(8 bits)
Shift Register for Gray Scale Data
SOUT
MSB
128
121
120
113
..........
16
9
LSB
0
8
SCLK
SIN
16 Bit Mode (MODE=H, RSEL0 and RSEL1=L)
Latch for Gray Scale Data
XLATCH
OUT15,14 Data
OUT13,12 Data
(8 bits)
(8 bits)
..........
OUT3,2 Data
OUT1,0 Data
(8 bits)
(8 bits)
Shift Register for Gray Scale Data
SOUT
MSB
64
57
56
49
..........
16
9
8
LSB
0
SCLK
SIN
8 Bit Mode (MODE=L, RSEL0 and RSEL1=L)
Figure 3. Relationship Between Shift Register and Latch for Gray Scale Data
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
13
TLC5905
LED DRIVER
SLLS401 – NOVEMBER 1999
PRINCIPLES OF OPERATION
shift register latch for brightness control and OVM
The shift register latch for both the brightness control and OVM (output voltage monitor) is configured with a
1 x 1 byte. In the shift register latch for brightness control, the division ratio of GSCLK can be set and the output
current value on constant current output can be adjusted. In the shift register latch for OVM, the comparison
voltage at the OVM comparator on constant current output terminals (OUT0 to OUT15) can be set and the output
signal for both XDOWN1 and XDOWN2 can be forced to a low level. When powered up, the latch data is
indeterminate and shift register is not initialized. When these functions are used, data should be written to the
shift register latch prior to turning the constant current output on (BLANK=L). Also, it is inhibited from rewriting
the latch value for brightness control when the constant current output is turned on. When these functions are
not used, latch value can be set to the default value setting of BCENA or MCENA or to low level (tied to GND).
The configuration of the shift register and latch for brightness control and monitor control is shown in Figure 4.
Latch for Brightness Control
GSCLK Division Ratio Data Set
XLATCH
0
0
MSB
Current Data Adjusted On Constant Current Output
0
1
LSB
MSB
1
1
1
1
(see Note)
LSB
Shift Register for Brightness Control
SCLK
SOUT
8th bit
7th bit
6th bit
5th bit
4th bit
3rd bit
2nd bit
1st bit
SIN
Latch for OVM
Monitor Control Data
N/A
XLATCH
0
0
0
MSB
1
(see Note)
LSB
Shift Register for OVM
SCLK
SOUT
8th bit
7th bit
6th bit
5th bit
4th bit
3rd bit
2nd bit
1st bit
SIN
NOTE: Indicates default value at BCENA low if brightness control latch, at MCENA low if OVM latch.
Figure 4. Relationship Between Shift Register and Latch for Brightness Control and OVM
write data to shift register latch
The shift register latch written is selected using the RSEL0 and RSEL1 terminal. The data is applied to the SIN
data input terminal and clocked into the shift register synchronizing to the rising edge of SCLK after XENABLE
is pulled low. The shift register for gray scale data is 64 bit length in the 8 bit mode resulting in 64 times of SCLK,
and 128 bit length in the16 bit mode resulting in 128 times of SCLK. Brigtness control and monitor control results
in eight times the SCLK input. At number of SCLK input for each case, data can be written into the shift register.
In this condition, when XLATCH is pulled high, data in the shift register is clocked into latch (data through), and
when XLATCH is pulled low, data is held (latch).
14
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLC5905
LED DRIVER
SLLS401 – NOVEMBER 1999
PRINCIPLES OF OPERATION
brightness control function
By writing data into the brightness control latch, current on all constant current outputs can be adjusted to control
the variation of brightness between ICs and the division ratio for the gray scale clock can be set to control the
variation of brightness for the total panel system.
output current adjustment on all constant current outputs – brightness adjustment between ICs
By using the lower 5 bits of the brightness control latch, output current can be adjusted to 32 steps as 1 step
of 1.6% current ratio between 100% and 51.6% when the output current is set to 100% of an external resistor.
By using this function, the brightness control between modules (ICs) can be adjusted, sending the desired data
externally even if ICs are mounted on a print-circuit board. When BCENA is pulled low, the output current is set
to 100%.
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
Table 3. Relative Current Ratio For Total Constant Current Output
CODE
CURRENT RATIO%
20 (mA)
80 (mA)
MSB 00000 LSB
51.6
10.3
41.3
VIREF (TYP)
0.63
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
11110
11111†
98.4
19.3
78.7
1.22
100
20.0
80.0
1.24
† BCENA is low.
frequency division ratio setting for gray scale clock – panel brightness adjustment
By using the upper 3 bits of the brightness control latch, the gray scale clock can be divided into 1/1 to 1/8. If
the gray scale clock is set to 8 times the speed (256 × 8 = 2048) of frequency during horizontal scanning time,
the brightness can be adjusted to 8 steps by selecting the frequency division ratio. Therefore, the total panel
brightness can be adjusted at once, and applied to the brightness of day or night. When BCENA is pulled low,
the gray scale clock is not divided. When BCENA is pulled high, the brightness can be adjusted as shown in
Table 4.
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
Table 4. Relative Brightness Ratio For Total Constant Current Output
CODE
FREQUENCY
DIVISION RATIO
RELATIVE BRIGHTNESS RATIO
(%)
MSB 000 LSB†
1/1
12.5
.
.
.
.
.
.
.
.
.
.
.
.
110
1/7
87.5
111
1/8
100
† BCENA is low.
OVM (output voltage monitor) function
By writing data into the OVM latch, the comparison voltage for voltage comparator of OUT0 to OUT15 can be
set and the output signal for XDOWN1 and XDOWN2 can be checked.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
TLC5905
LED DRIVER
SLLS401 – NOVEMBER 1999
PRINCIPLES OF OPERATION
OVM (output voltage monitor) function (continued)
OVM comparator
The OVM comparator compares the voltage on the constant current output terminal during turnon with
comparison voltage set by the OVM latch. When the voltage on the constant current output terminal is lower,
XDOWN2 goes low. As shown in Figure 5, the comparator is provided in every output portion, and the
comparison result corresponding to the output to be turned on appears in the XDOWN2 terminal. Since the
XDOWN2 terminal is an open-collector output, outputs of multiple ICs are brought together.
The output terminal for comparison result is XDOWN2 only. The voltage on all the constant current output can
be checked to monitor XDOWN2, turning output on in turn. The voltage on the constant current output, when
turned on, can also be measured, resulting in a change to the comparison voltage set by the OVM latch. Using
this function, the sensing (LOD function) LED disconnection (output voltage is below 0.3 V) and short circuit
(output voltage is extremely high) can be detected and specifies which LED has encountered this failure. Also,
by monitoring the output voltage and controlling the voltage across anode of the LED to minimize the voltage
on the constant current output (approximately 0.7 V at IO = 80 mA), the rising temperature of the chip can be
minimized. Furthermore, by setting BLANK to low during LED on, the previous comparison result can be held.
Thus, synchronizing timing to check XDOWN2 from the system to the LED lighting timing is not required. Note
that the gray scale data being turned on should be a minimum of 5 µs since the XDOWN2 output is required
approximately 5 µs after the constant current output is turned on. The comparison result is also required
approximately 5 µs after latch data is changed.
OUT0
–
+
Internal OUT0
Turn ON Signal
OUT1
–
+
XDOWN2
Internal OUT1
Turn ON Signal
D
Q
OUT14
LATCH
–
+
Internal OUT014
Turn ON Signal
OUT15
Internal OUT015
Turn ON Signal
–
+
BLANK
Comparison Voltage
When BLANK is high, hold the data
When BLANK is low, data is out.
Figure 5. OVM Functional Diagram
16
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLC5905
LED DRIVER
SLLS401 – NOVEMBER 1999
PRINCIPLES OF OPERATION
OVM (output voltage monitor) function (continued)
output signal check for XDOWN1, XDOWN2
XDOWN1 or XDOWN2 can be forced to a low level by setting the appropriate latch value for OVM. This allows
investigation of the correct connection of XDOWN1 or XDOWN2 to the external system. Since both XDOWN1
and XDOWN2 terminal are open-collector outputs, outputs of multiple ICs are brought together.
OVM comparator setting
Setting the OVM latch is shown in Table 5. Note that the comparison voltage is set to the default value of 0.3 V
when MCENA tied to a low level.
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
Table 5. OVM Setting
COMPARISON
VOLTAGE
XDOWN1
XDOWN2
0000
0001†
NO COMPARISON
DEPEND ON TSD/WDT
HI–Z
0.3 V
DEPEND ON TSD/WDT
DEPEND ON OVM COMPARATOR
0010
0.4 V
DEPEND ON TSD/WDT
DEPEND ON OVM COMPARATOR
MONITOR CONTROL DATA
MSB
LSB
0011
0.5 V
DEPEND ON TSD/WDT
DEPEND ON OVM COMPARATOR
0100
0.6 V
DEPEND ON TSD/WDT
DEPEND ON OVM COMPARATOR
0101
0.7 V
DEPEND ON TSD/WDT
DEPEND ON OVM COMPARATOR
0110
0.8 V
DEPEND ON TSD/WDT
DEPEND ON OVM COMPARATOR
0111
0.9 V
DEPEND ON TSD/WDT
DEPEND ON OVM COMPARATOR
1000
1.0 V
DEPEND ON TSD/WDT
DEPEND ON OVM COMPARATOR
1001
1.1 V
DEPEND ON TSD/WDT
DEPEND ON OVM COMPARATOR
1010
1.2 V
DEPEND ON TSD/WDT
DEPEND ON OVM COMPARATOR
1011
1/3 × VCC(ANA)
DEPEND ON TSD/WDT
DEPEND ON OVM COMPARATOR
1100
1/2 × VCC(ANA)
DEPEND ON TSD/WDT
DEPEND ON OVM COMPARATOR
1101
2/3 × VCC(ANA)
DEPEND ON TSD/WDT
DEPEND ON OVM COMPARATOR
1110
0.3 V
L
DEPEND ON OVM COMPARATOR
1111
† MCENA is low.
0.3 V
DEPEND ON TSD/WDT
L
SOUT output timing selection
The timing for the SOUT output can be switched by selecting the SOMODE level. When SOMODE is low, SOUT
is clocked out synchronizing to the rising edge of SCLK. When SOMODE is high, SOUT is clocked out
synchronizing to the falling edge of SCLK. When the shift operation with SOMODE high, data can be protected
from shift error even if the SCLK signal is buffered in serial externally. In this case, when ICs are connected in
cascade, the maximum data transfer speed will be slower than the case of SOMODE low.
protection
This device incorporates WDT and TSD functions. If the WDT or TSD is turned on, then the constant current
output is stopped and XDOWN1 goes low. Therefore, by monitoring XDOWN1 terminal, these failures can be
detected immediately. Since the XDOWN1 output is configured as an open collector, outputs of multiple ICs are
brought together.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
17
TLC5905
LED DRIVER
SLLS401 – NOVEMBER 1999
PRINCIPLES OF OPERATION
protection (continued)
WDT (watchdog timer)
The constant current output is forced to turn off and XDOWN1 goes low when the fixed period elapsed after the
signal applied to WDTRG has not been changed. Therefore, by a connecting scan signal (signal to control line
displayed) to WDTRG, the stop of the scan signal can be detected and the constant current output is turned
off preventing the LED from burning and damage by continuous LED turnon at the dynamic scanning operation.
The detection time can be set using an external capacitor, Cext. The typical value is approximately 10 ms without
a capacitor, 160 ms with a1000 pF capacitor and 1500 ms with a 0.01 µF capacitor. During static operation,
the WDT function is disabled connecting WDCAP to GND (high or low level should be applied to WDTRG). Note
that normal operation will be resumed changing the WDTRG level when WDT functions.
WDT operational time T (ms) ≅ 10 + 0.15 x Cext (pF)
TLC5905
1500
Scan Signal
WDTRG
WDCAP
Cext
160
10
0
0.001
0.01
Cext – External Capacitor – µF
Figure 6. WDT Operational Time and Usage Example
TSD (thermal shutdown)
When the junction temperature exceeds the limit, TSD functions and turns the constant current output off, and
XDOWN1 goes low. When TSD is used, TSENA is pulled high. When TSD is not used, TSENA is pulled low.
To recover from constant current output off-state to normal operation, the power supply should be turned off or
TSENA should be pulled low once.
18
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLC5905
LED DRIVER
SLLS401 – NOVEMBER 1999
PRINCIPLES OF OPERATION
noise reduction
concurrent switching noise reduction
The concurrent switching noise has potential to occur when multiple outputs turn on or off at the same time. To
prevent this noise, the device has delay output terminals such as XGSOUT and BOUT for GSCLK (gray scale
clock) and BLANK (blanking signal) respectively. By connecting these outputs to GSCLK and BLANK terminals
of next stage IC, it allows differences in the switching time between ICs to be made. When GSCLK is output
to GSOUT through the device, duty will be changed between input and output, and the number of stages to be
connected will be limited depending on frequency.
output slope
When output current is 80 mA, the time to change constant current output to turnon and turnoff is approximately
150 ns and 250 ns respectively. It is effective in reducing concurrent switching noise that occurrs when multiple
outputs turn or off at the same time.
delay between constant current output
The constant current output has a delay time of approximately 30 ns between outputs. It means approximately
450 ns delay time exists between OUT0 and OUT15. This time difference by delay is effective for reduction of
concurrent switching noise as well as the output slope. This delay time has the same value in 8 bits or 16 bits
operation mode.
power supply
The followings should be taken into consideration.
D
D
VCC(LOG), VCC(ANA) and VCC(LED) should be supplied by a single power supply to minimize voltage
differences between these terminals.
The bypass capacitor should be located between power the supply and GND to eliminate the variation of
power supply voltage.
GND
Although GNDLOG, GNDANA and GNDLED are internally tied together, these terminals should be externally
connected to reduce noise influence.
thermal pad
The thermal pad should be connected to GND to eliminate the noise influence since it is connected to the bottom
side of IC chip. Also, desired thermal effect will be obtained by connecting this pad to the PCB pattern with better
thermal conductivity.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
19
TLC5905
LED DRIVER
SLLS401 – NOVEMBER 1999
PRINCIPLES OF OPERATION
noise reduction (continued)
4.9
3.2
2.5
1.48
0
0
–20
0
25
85
TA – Free–Air Temperature – °C
NOTES: A. This is based on simulation. When a TI recommended PCB is used, derate linearly at the rate of 39.4 mW/°C for operation above
25°C free-air temperature.
VCC(LOG)=VCC(ANA)=VCC(LED)= 5 V, IO(LC) = 80 mA, IC(C) is typical value.
B. The thermal impedance will be varied depending on mounting conditions. Since PAP package established low thermal
impedance by radiating heat from the thermal pad, the thermal pad should be soldered to the pattern with a low thermal
impedance.
C. The material for PCB should be selected considering the thermal characteristics since the temperature will rise around the
thermal pad.
Figure 7. Power Rating – Free-Air Temperature
20
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLC5905
LED DRIVER
SLLS401 – NOVEMBER 1999
PRINCIPLES OF OPERATION
noise reduction (continued)
90
80
70
60
50
40
30
20
10
0
0.1
1.0
10.0
RIREF – kΩ
Conditions : VO = 1 V, V(IREF) = 1.24 V
I
OLC
(mA)
W
^
V
(V)
(IREF)
R
(k )
(IREF)
W
37
^I
47
(mA)
O(LC)
NOTE: The output current is in 16 bit mode. When in 8 bit mode (MODE=L), the output current is the sum of both outputs. This sum current should
be set from 10 mA to 120 mA. The resistor, R(IREF), should be located as close to the IREF terminal as possible to avoid the noise influence.
R
(IREF)
(k )
Figure 8. Current on Constant Current Output vs External Resistor
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
21
RSEL1
XOE
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
XENABLE
tsu(XENABLE–SCLK)
1/f(DCLK)
th(XENABLE–SCLK)
SCLK
tsu(SIN–SCLK)
SD00_A
SIN
SD01_A
tw(l)(SCLK)
SD02_A
th(SIN–SCLK)
SD7E_A
tw(h)(SCLK)
SD7F_A
SD00_B
th(XLATCH–SCLK)
SD7D_B
SD7E_B
SD7F_B
SD00_C
SD01_C
tsu(XLATCH–SCLK)
XLATCH
tw(h)(XLATCH)
SOUT
HI–Z
SD00_A
td(XOE↓–SOUT)
SD01_A
SD7E_A
SD7F_A
td(SCLK–SOUT)
NOTE : MODE = H
Figure 9. Timing Diagram (Shift Register for Gray Scale Data)
SD00_B
td(XOE↑–SOUT)
TLC5905
LED DRIVER
SLLS401 – november 1999
22
RSEL0
MCENA
RSEL0
RSEL1
tsu(RSEL–XLATCH)
th(RSEL–XLATCH)
XOE
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
XENABLE
tsu(RSEL–SCLK)
th(RSEL–SCLK)
SCLK
SD00_A
SIN
SD01_A
SD07_A
SD00_B
SD01_B
SD07_B
SD00_C
SD01_C
SD02_C
SD03_C
SD04_C
th(XLATCH–SCLK)
XLATCH
tw(h)(XLATCH)
MCL_0
Default Value 1
Default Value 1
(Monitor Control Latch–Internal Signal)
MCL_1–3
Default Value 0
Default Value 0
HI–Z
SD00_A
td(XOE↑–SOUT)
SD01_A
SD06_A
SD07_A
SD00_B
Figure 10. Timing Diagram (Shift Register for Monitor Control)
SD01_B
SD03_B
23
TLC5905
LED DRIVER
SOUT
td(SCLK–SOUT)
SLLS401 – november 1999
td(XOE↓–SOUT)
RSEL0
tsu(RSEL–XLATCH)
th(RSEL–XLATCH)
RSEL1
XOE
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
XENABLE
tsu(RSEL–SCLK)
th(RSEL–SCLK)
SCLK
SD00_A
SIN
SD01_A
SD07_A
SD00_B
SD01_B
SD07_B
SD00_C
SD01_C
SD02_C
SD03_C
th(XLATCH–SCLK)
XLATCH
tw(h)(XLATCH)
BCL_0–4
Default Value 1
Default Value 1
(Monitor Control Latch–Internal Signal)
BCL_5–7
Default Value 0
Default Value 0
td(XOE↓–SOUT)
SOUT
HI–Z
td(SCLK–SOUT)
SD00_A
td(XOE↑–SOUT)
SD01_A
SD06_A
SD07_A
SD00_B
Figure 11. Timing Diagram (Shift Register for Brightness Control)
SD01_B
SD03_B
SD04_C
TLC5905
LED DRIVER
SLLS401 – november 1999
24
BCENA
XLATCH
tsu(XLATCH–GSCLK)
BLANK
tsu(BLANK–GSCLK)
1/f(GSCLK)
td(BLANK–OUT0)
GSCLK
tw(l)(GSCLK)
tw(h)(GSCLK)
1/f(WDT)
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
WDTRG
tw(l)(WDTRG)
tw(h)(WDTRG)
td(BLANK–OUT0)
td(GSCLK–OUT0)
ON (see Note A)
OFF
OUT0
td(OUTn+1–OUTn)
ON (see Note A)
OFF
......
ON (see Note A)
OFF
OFF
(see
Note A)
OFF
......
OFF
(see
Note A)
(see
Note A)
OFF
......
OFF
(see
Note A)
(see
Note A)
HI–Z
XDOWN1
XDOWN2
(see
Note A)
OFF
tw(dt)
td(OUTn+1–OUTn)
OUT1
......
OUT15
td(GSCLK–OUT0)
td(GSCLK–XDOWN2)
(see NoteB)
(see NoteB)
td(BLANK–BOUT)
GSOUT
NOTES: A. ON or OFF, or ON time is varied dpend on the gray scale data and BLANK.
B. LED disconnection
25
Figure 12. Timing Diagram (Constant Current Output)
TLC5905
LED DRIVER
td(GSCLK–GSOUT)
SLLS401 – november 1999
BOUT
TLC5905
LED DRIVER
SLLS401 – NOVEMBER 1999
MECHANICAL DATA
PAP (S-PQFP-G64)
PowerPAD PLASTIC QUAD FLATPACK
0,27
0,17
0,50
48
0,08 M
33
49
32
Thermal Pad
(See Note D)
64
17
0,13 NOM
1
16
7,50 TYP
10,20
SQ
9,80
12,20
SQ
11,80
1,05
0,95
Gage Plane
0,25
0,15
0,05
0°– 7°
0,75
0,45
Seating Plane
0,08
1,20 MAX
4147702/A 01/98
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion.
The package thermal performance may be enhanced by bonding the thermal pad to an external thermal plane.
This pad is electrically and thermally connected to the backside of the die and possibly selected leads.
E. Falls within JEDEC MS-026
PowerPAD is a trademark of Texas Instruments Incorporated.
26
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1999, Texas Instruments Incorporated