TI TLC5904PZP

TLC5904
LED DRIVER
SLLS391 – NOVEMBER 1999
D
D
D
D
D
D
D
Drive Capability and Output Counts
– 80 mA (Current Sink) x 16 Bits
– 120 mA (Current Sink) x 8 Bits
Constant Current Output Range
– 5 to 80 mA/10 to 120mA (Selectable by
MODE Terminal) (Current Value Setting for
All Output Terminals Using External
Resistor and Internal Brightness Control
Register)
Constant Current Accuracy
– ± 4% (Maximum Error Between Bits)
Voltage Applied to Constant Current Output
Terminals
– Minimum 0.4 V (Output Current 5 mA to
40 mA)
– Minimum 0.7 V (Output Current 40 to
80 mA)
256 Gray Scale Display
– Pulse Width Control 256 Steps
Brightness Adjustment
– Output Current Adjustment for 32 Steps
(Adjustment for Brightness Deviation
Between LED Modules)
– 8 Steps Brightness Control by 8 Times
Speed Gray Scale Control Clock
(Brightness Adjustment for Panel)
Error Output Signal Check
– Check Error Output Signal Line Such as
Protection Circuit When Operating
D
D
D
D
D
D
D
D
D
D
D
D
D
Data Output Timing Selectable
– Select Data Output Timing for Shift
Register Relative to Clock
OVM (Output Voltage Monitor)
– Monitor Voltage on Constant Current
Output Terminals (Detect LED
Disconnection and Short Circuit)
WDT (Watchdog Timer)
– Turn Output Off When Scan Signal
Stopped
TSD (Thermal ShutDown)
– Turn Output Off When Junction
Temperature Exceeds Limit
Data Input
– Clock Synchronized 8 Bit Parallel Input
(Schmitt-Triggered Input)
Data Output
– Clock Synchronized 8 Bit Parallel Output
(3-State Output)
Input Signal Level . . . CMOS Level
Power Supply Voltage . . . 4.5 V to 5.5 V
Maximum Output Voltage . . . 17 V (Max)
Data Transfer Rate . . . 15 MHz (Max)
Gray Scale Clock Frequency
8 MHz (Max)
Operating Free-Air Temperature Range
–20_C to 85_C
100-Pin HTQFP Package (PD=4.7 W,
TA = 25°C)
description
The TLC5904 is a constant current driver incorporating shift register, data latch, and constant current circuitry
with current value adjustable and a 256 gray scale display using pulse width control. The output current can be
selected as maximum 80 mA with 16 bits or 120 mA with 8 bits, and the current value of constant current output
can be set by one external resistor. After this device is mounted on a PCB, the brightness deviation between
LED modules (ICs) can be adjusted by external data input, and the brightness control for the panel can be
accomplished by the brightness adjustment circuitry. Also, the device incorporates the output voltage monitor
(OVM) used for LED open detection (LOD) by monitoring the constant current output. Moreover, the device
incorporates watchdog time (WDT) circuitry, which turns the constant current output off when a scan signal is
stopped at the dynamic scanning operation, and thermal shutdown (TSD) circuitry, which turns the constant
current output off when the junction temperature exceeds the limit.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  1998, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
TLC5904
LED DRIVER
SLLS391 – NOVEMBER 1999
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
OUT12
NC
NC
GNDLED
NC
NC
OUT13
OUT14
NC
NC
GNDLED
NC
NC
OUT15
IREF
VCCLED
WDCAP
GNDANA
NC
VCCANA
MCENA
DOUT7
DOUT6
DOUT5
NC
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
NC
NC
OUT4
NC
GNDLED
NC
OUT5
OUT6
NC
GNDLED
NC
OUT7
OUT8
NC
GNDLED
NC
OUT9
OUT10
NC
GNDLED
NC
OUT11
NC
NC
NC
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
OUT3
NC
NC
NC
GNDLED
NC
OUT2
OUT1
NC
NC
GNDLED
NC
NC
OUT0
NC
BCENA
GNDLOG
MODE
NC
VCCLOG
TSENA
DIN7
DIN6
DIN5
DIN4
PZP PACKAGE
(TOP VIEW)
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TEST2
DOMODE
DIN3
DIN2
DIN1
DIN0
GSCLK
BLANK
RSEL1
RSEL0
DCLK
XENABLE
XOE
WDTRG
XLATCH
XDOWN1
XDOWN2
TEST1
BOUT
GSOUT
DOUT0
DOUT1
DOUT2
DOUT3
DOUT4
TLC5904
LED DRIVER
SLLS391 – NOVEMBER 1999
functional block diagram
Shift Register and Data Latch
OVM
Shift Register
Data Latch
MCENA
BCENA
RSEL0
8
RSEL1
8
DIN<0:7>
XENABLE
DCLK
Controller
DCLK
DOUT<0:7>
Brightness Control
Shift Register
Data Latch
DOMODE
Gray Scale Control
Shift Register
Data Latch
XOE
XLATCH
MODE
GSCLK
BLANK
8 bits
Gray Scale
Counter
DELEY
GSOUT
DELEY
BOUT
16 x 8 bits
Comparator
TSENA
XDOWN1
TSD
WDTRG
WDCAP
IREF
XDOWN2
WDT
Current Reference
Circuit
16 bits
Constant Current Driver
OUT0
16 bits
OVM Comp
LATCH
OUT15
NOTE: All the input terminals are with Schmitt-triggered inverter except IREF and WDCAP.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
TLC5904
LED DRIVER
SLLS391 – NOVEMBER 1999
functional block diagram for shift register and data latch
MCENA
DIN<0:7>
16 bit OVM Comparator
XDOWN1, 2 Output Driver
OVM Data Latch
(1 x 8 bit)
8
BCENA
OVM Shift Register
(1 x 8 bit)
8
Constant Current Driver Control
Gray Scale Clock Counter
Brightness Control Data Latch
(1 x 8 bit)
Brightness Control Shift Register
8
(1 x 8 bit)
XLATCH
Gray Scale Control Data Latch
(16 x 8 bit)
XENABLE
DCLK
MODE
16 x 8 bit Data Comparator
DCLK
Controller
Gray Scale Control Shift Register
(16 x 8 bit / 8 x 8 bit)
8
8
Note: Enclosed in () is dependent
on MODE pin selection.
1 bit
S/R
RSEL<0:1>
DOMODE
8
8
XOE
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
DOUT<0:7>
TLC5904
LED DRIVER
SLLS391 – NOVEMBER 1999
equivalent input and output schematic diagrams
Input
VCCLOG
INPUT
GNDLOG
DOUT0–7, GSOUT, BOUT
VCCLOG
OUTPUT
GNDLOG
XDOWN1, XDOWN2
XDOWN1, XDOWN2
GNDLOG
OUTn
OUTn
GNDLED
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
TLC5904
LED DRIVER
SLLS391 – NOVEMBER 1999
Terminal Functions
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
TERMINAL
NAME
BCENA
85
I/O
DESCRIPTION
I
Brightness control enable. When BCENA is low, the brightness control latch is set to the
default value. The output current value in this status is 100% of the setting value by an
external resistor. The frequency division ratio of GSCLK is1/1. When BCENA is high,
writing to brightness control latch is enabled.
BLANK
68
I
Blank(light off). When BLANK is high, all the output of the constant current driver is turned
off. The constant current output, which the gray scale data is not zero, is turned on (LED
on) synchronizing to the falling edge of GSCLK after the next rising edge of GSCLK when
BLANK goes from high to low.
BOUT
57
O
Blank signal delay. BOUT is the output with addition of delay time to BLANK.
65
I
Clock input for data transfer. The input data is from DIN. All data on the shift register is
selected by RSEL0 and RSEL1, and output data at DOUT is shifted by 1 bit synchronizing
to DCLK. The data except for DOUT is synchronized to the rising edge, and the edge for
data from DOUT is determined by the level of DOMODE.
70,71,72,73,
76,77,78,79
I
Input for 8 bit parallel data. These terminals are inputs to the shift register for gray scale
data, brightness control, and OVM. The register selected is determined by RSEL0, 1.
74
I
Timing select for data output. When DOMODE is low, DOUT0–7 is changed synchronizing
to the rising edge of DCLK. When DOMODE is high, DOUT0–7 is changed synchronizing
to the falling edge of DCLK.
55,54,53,52,
51,49,48,47
O
Output for 8 bit parallel data with 3-state. These terminals are outputs to the shift register
for gray scale data, brightness control, and OVM. The register selected is determined by
RSEL0, 1.
DCLK
DIN0 – DIN7
DOMODE
DOUT0 – DOUT7
GNDANA
43
Analog ground (internally connected to GNDLOG and GNDLED)
GNDLOG
84
Logic ground (internally connected to GNDANA and GNDLED)
GNDLED
5,10,15,20,
29,36,90,96
LED driver ground (internally connected to GNDANA and GNDLOG)
GSCLK
69
I
Clock input for gray scale. The gray scale display is accomplished by lighting LEDs until
the number of GSCLK counted is equal to data latched.
GSOUT
56
O
Clock delay for gray scale. GSOUT is the output with the addition of delay time to GSCLK.
IREF
40
I/O
Constant current value setting. LED current is set to the desired value by connecting an
external resistor between IREF and GND. The 37 times current compares current across
the external resistor sink on the output terminal.
MCENA
46
I
OVM enable. When MCENA is low, the OVM latch is set to the default value. The
comparison voltage in this status is 0.3V. When MCENA is high, writing to the OVM latch
is enabled.
MODE
83
I
8/16 bits select. When MODE is high, 16 bits output is selected. When MODE is low, 8 bits
output is selected.
NC
OUT0 – OUT15
RSEL0
RSEL1
6
NO.
1,2,4,6,9,11,14,16,
19,21,23,24,25,27,
28,30,31,34,35,37,
38,44,50,82,86,88,
89,91,92,95,97,98,
99
87,93,94,100,
3,7,8,12,13,
17,18,22,26,
32,33,39
66
67
No internal connection
O
Constant current output
I
Shift register data latch switching. When RSEL1 is low, gray scale data shift register latch
is selected at RSEL0 low, and the brightness control register latch is selected at RSEL0
high. When RSEL1 is high, the OVM register latch is selected at RSEL0 low, and no
register latch is selected at RSEL0 high.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLC5904
LED DRIVER
SLLS391 – NOVEMBER 1999
Terminal Functions (Continued)
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
TERMINAL
NAME
NO.
I/O
DESCRIPTION
TSENA
80
I
TSD(thermal shutdown) enable. When TSENA is high, TSD is enabled. When TSENA is
low, TSD is disabled.
TEST1
TEST2
58
75
I
TEST. Factory test terminal. TEST1 and TEST2 should be connected to GND for normal
operation.
THERMAL PAD
package bottom
Heat sink pad. This pad is connected to the lowest potential IC or thermal layer.
VCCANA
45
Analog power supply voltage
VCCLOG
81
Logic power supply voltage
VCCLED
41
LED driver power supply voltage
WDTRG
62
I
WDT (watchdog timer) trigger input. By applying a scan signal to this terminal, the scan
signal can be monitored by turning the constant current output off to protect the LED from
damage if the scan signal stops during the constant period designed.
WDCAP
42
I
WDT (watchdog timer) detection time adjustment. WDT detection time is adjusted by
connecting a capacitor between WDCAP and GND. When WDCAP is directly connected
to GND, WDT function is disabled. In this case, WDTRG should be tied to a high or a low
level.
XDOWN1
60
O
Shutdown. XDOWN1 is configured as open collector. It goes low when constant current
output is shut down by WDT or TSD function.
XDOWN2
59
O
OVM comparator output. XDOWN2 is configured as an open collector. It monitors terminal
voltage when constant current output is turned on. XDOWN2 goes low when this voltage
is lower than the level selected by OVM latch. When BLANK is set high, the previous level
is held.
XENABLE
64
I
DCLK enable. When XENABLE is low, data transfer is enabled. Data transfer starts on the
rising edge of DCLK after XENABLE goes low. During XENABLE high, no data is
transferred.
XLATCH
61
I
Latch. When XLATCH is high, data on the shift register goes through latch. When XLATCH
is low, data is latched. Accordingly, if data on the shift register is changed during XLATCH
high, this new value is latched (level latch).
XOE
63
I
Data output enable. When XOE is low, DOUT0–7 terminals are drived. When XOE is high,
DOUT0–7 terminals go to a high-impedance state.
absolute maximum ratings (see Note 1)†
Logic supply voltage, VCC(LOG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 7 V
Supply voltage for constant current circuit, VCC(LED) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 7 V
Analog supply voltage, VCCANA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 7 V
Output current (dc), IO(LC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 mA
Input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to VCCLOG + 0.3 V
Output voltage range, VO(DOUTn), VO(BOUT) and VO(GSOUT) . . . . . . . . . . . . . . – 0.3 V to VCCLOG + 0.3 V
Output voltage range, VO(OUTn) and VO(DOWNn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 18 V
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 150°C
Continuous total power dissipation at (or below) TA = 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7 W
Power dissipation rating at (or above) TA = 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38.2m W/°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values are with respect to the GNDLOG terminal.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
TLC5904
LED DRIVER
SLLS391 – NOVEMBER 1999
recommended operating conditions
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
Á
ÁÁ
Á
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
Á
ÁÁÁ
ÁÁ
Á
ÁÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
dc characteristics
PARAMETER
TEST CONDITIONS
MIN
NOM
MAX
UNIT
Logic supply voltage, VCCLOG
4.5
5
5.5
V
Supply voltage for constant current
circuit, VCCLED
4.5
5
5.5
V
Analog power supply, VCCANA
4.5
5
5.5
V
Voltage between VCC, VDIFF1
VDIFF1 = VCCLOG – VCCANA
VCCLOG – VCCLED, VCCANA – VCCLED
– 0.3
0
0.3
V
Voltage between GND, VDIFF2
VDIFF2 = GNDLOG – GNDANA
GNDLOG – GNDLED, GNDANA – GNDLED
– 0.3
0
0.3
V
Voltage applied to constant current
output, VOUTn
OUT0 to OUT15 off
17
V
0.8 VCCLOG
VCCLOG
V
GNDLOG
0.2 VCCLOG
V
High-level input voltage, VIH
Low-level input voltage, VIL
High-level output current, IOH
Low-level output current,, IOL
Constant output current, IO(LC)
VCCLOG = 4.5V,
BOUT, GSOUT
DOUT0 to DOUT7,
VCCLOG = 4.5V,
BOUT, GSOUT
DOUT0 to DOUT7,
VCCLOG = 4.5V,
XDOWN1, XDOWN2
OUT0 to OUT15
Operating free-air temperature range, TA
–1
mA
1
5
mA
5
80
mA
– 20
85
°C
ac characteristics, VCCLOG = VCCANA = VCCLED = 4.5 V to 5.5 V, TA = – 20 to 85°C (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
At cascade operation (DOMODE = L)
10
DCLK clock frequency
twh/twl
fGSCLK
DCLK pulse duration (high or low level)
twh/twl
fWDT
GSCLK pulse duration (high or low level)
twh/twl
twh
WDTRG pulse duration (high or low level)
40
XLATCH pulse duration (high)
50
tr/tf
Rise/fall time
tsu
th
8
20
Frequency division ratio 1/1
Hold time
10
BLANK – GSCLK
20
XENABLE – DCLK
15
XLATCH – DCLK
15
XLATCH – GSCLK
15
RSEL – DCLK↑
10
RSEL – XLATCH
20
DINn – DCLK
15
XENABLE – DCLK
20
XLATCH – DCLK
30
RSEL – DCLK↓
20
RSEL – XLATCH
20
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MHz
ns
MHz
8
MHz
ns
ns
ns
100
DINn – DCLK
UNIT
8
40
WDTRG clock frequency
Setup time
MAX
15
fDCLK
GSCLK clock frequency
TYP
At single operation
ns
ns
ns
TLC5904
LED DRIVER
SLLS391 – NOVEMBER 1999
electrical characteristics,
MIN/MAX: VCCLOG= VCCANA = VCCLED = 4.5 V to 5.5 V, TA = – 20 to 85°C
TYP: VCCLOG = VCCANA = VCCLED = 5 V, TA = 25°C (unless otherwise noted)
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
Á
ÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
Á
ÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
PARAMETER
VOH
High-level output voltage
VOL
g
Low-level output voltage
II
Input current
ILOG
Supply current (logic)
IANA
TEST CONDITIONS
DOUTn, GSOUT, BOUT,
IOH = – 1.0mA
Supply current (analog)
MIN
TYP
Supply current (constant current driver)
UNIT
V
DOUTn, GSOUT, BOUT,
IOL = 1.0mA,
0.5
XDOWN1, XDOWN2, IOL = 5 mA
0.5
VIN = VCCLOG or GNDLOG
Input signal is static,T SENA = H,
WDCAP = OPEN
±1
µA
1
mA
18
30
mA
Data transfer,D
GSCLK = 8 MHz
CLK = 15 MHz,
LED turnon,
RIREF = 590 Ω
3
5
LED turnoff
RIREF = 590 Ω
3
5
LED turnoff,
RIREF = 1180 Ω
15
20
RIREF =590 Ω
VOUT = 1 V.
RIREF = 1180 Ω
All output bits turn on
30
40
25
35
50
70
LED turnoff,
ILED
MAX
VCCLOG
– 0.5
VOUT = 1,
RIREF = 590 Ω
All output bits turn on
V
mA
mA
IOLC1
Constant output current (includes error
between bits)
VOUT = 1 V,
RIREF = 1180 Ω
35
40
45
mA
IOLC2
Constant output current (includes error
between bits)
VOUT = 1 V,
RIREF = 590 Ω
70
80
90
mA
0.1
µA
XDOWN1,2 (VXDOWNn = 15 V)
1
µA
DOUTn,
(VOUTn = VCCLOG or GND)
1
µA
OUT0 to OUT15 (VOUTn = 15 V)
IOLK
Constant out
output
ut leakage current
∆IOLC
Constant output current error between bit
VCCLOG=VCCANA=VCCLED=5 V,
VOUT = 1 V,
RIREF = 590 Ω
All output bits turn on
I∆OLC1
Changes in constant output current depend
on supply voltage
VOUT = 1 V,
VIREF = 1.24 V,
I∆OLC2
±1%
±4%
RIREF = 1180 Ω,
1 bit output turn on
±1
±4
%/V
Changes in constant output current depend
on output voltage
VOUT = 1 V to 3 V, RIREF = 1180 Ω,
VIREF = 1.24 V, 1 bit output turn on
±1
±2
%/V
Ttsd
Twdt
TSD detection temperature
Junction temperature
150
160
170
°C
WDT detection temperature
No external capacitor
5
10
15
ms
VIREF
Voltage reference
BCENA = L,
POST OFFICE BOX 655303
RIREF = 590 Ω
• DALLAS, TEXAS 75265
1.24
V
9
TLC5904
LED DRIVER
SLLS391 – NOVEMBER 1999
switching characteristics, CL = 15pF,
MIN/MAX: VCCLOG= VCCANA = VCCLED = 4.5 V to 5.5, TA = –20 to 85°C
TYP: VCCLOG = VCCANA = VCCLED = 5 V, TA = 25°C (unless otherwise noted)
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
PARAMETER
TEST CONDITIONS
MIN
DOUTn
tr
Rise time
GSOUT, BOUT
OUTn (see Figure 1)
Fall time
GSOUT, BOUT
OUTn (see Figure 1)
30
8
20
10
25
35
60
BLANK↑ – OUT0
350
500
40
70
20
350
500
GSCLK – GSOUT
20
40
70
DCLK – DOUTn
15
30
50
XOE↓ – DOUTn (see Note 2)
10
20
35
XOE↑ – DOUTn (see Note 2)
10
15
GSCLK – XDOWN2 (∆0.1 V)
NOTE 2: Until DOUT will be turned on (drive) or turned off (Hi-Z).
10
13
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
UNIT
ns
ns
200
GSCLK↓ – OUT0
Propagation delay time
30
OUTn+1 – OUTn
BLANK – BOUT
td
MAX
12
250
DOUTn
tf
TYP
25
5000
ns
TLC5904
LED DRIVER
SLLS391 – NOVEMBER 1999
PARAMETER MEASUREMENT INFORMATION
VCC
51 Ω
VCC
IREF
OUTn
GND
590 Ω
15 pF
Figure 1. Rise Time and Fall Time Test Circuit for OUTn
VIH or VOH
100%
VIH
90%
50%
10%
VIL
tr
VIL or VOL
0%
tf
td
100%
VIH
50%
100%
VIH or VOH
50%
0%
VIL
twh
0%
VIL or VOL
twl
Figure 2. Timing Requirements
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
TLC5904
LED DRIVER
SLLS391 – NOVEMBER 1999
PRINCIPLES OF OPERATION
constant current output selection by user (80 mA × 16 bits or 120 mA × 8 bits)
When the MODE terminal is set to high, output is selected as 80 mA × 16 bits. When the MODE terminal is set
to low, output is selected as 120 mA × 8 bits. By this setting, the shift register latch for gray scale data is changed
to the configuration corresponding to the bit selected. Note that two constant output terminals should be tied
to an LED such as OUT0-to-OUT1 and OUT2-to-OUT3 because they operate in a pair when the 8 bits output
mode is selected. Also, in this case, the current value of the constant current output is the same as the 16 bits
output mode. Therefore, when an output current of 120 mA is desired, the resister connected to the IREF
terminal should be selected to the same value as the output current of 60 mA.
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
Table 1. Operation Mode Selection
MODE
OUTPUT
H
80 mA × 16 bits
L
120 mA × 8 bits
On the constant current output terminals (OUT0–15), approximately 37 times the current which flows through
external resistor, RIREF (connected between IREF and GND), can flow. The external resistor value is calculated
using the following equation:
RIREF (Ω) ≅ 37 × 1.24 (V)/IO(LC)(A)
where BCENA is low.
Note that more current flows if IREF is connect to GND directly.
constant output current operation
The constant current output turns on the sink constant current if all the gray scale data in the gray scale latch
is not zero on the falling edge of the gray scale clock after the next rising edge of the gray scale clock when
BLANK goes from high to low. After that, the number of the falling edge is counted by the 8-bit gray scale counter.
Then, the output counted corresponding to gray scale data is turned off (stop to sink constant current). If the
shift register for gray scale is updated during XLATCH high, data on the gray scale data latch is also updated
affecting the constant current output number of the gray scale. Accordingly, during the on-state of constant
current output, the XLATCH should be kept to a low level and the gray scale data latch should be held. If there
are constant current output terminals unconnected (includes LED disconnection), the LED should be turned on
after writing zero to the gray scale data latch corresponding to output unconnected. Unless this action is taken,
the supply current on the constant current driver will increase resulting in the influence of the current value for
the constant current output light on.
shift register latch
The device provides three kinds of shift register latchs including the gray scale data, brightness control, and
OVM. To write data into a shift register, DCLK and DIN are utilized. The selection of a shift register will be done
by RSEL0 and RSEL1 as shown in below table. Note that RSEL0 and RSEL1 should be changed when both
DCLK and XLATCH are low.
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
Table 2. Shift Register Latch Selection
12
RSEL0
RSEL1
L
L
Shift register latch for gray scale data
SHIFT REGISTER LATCH SELECTED
L
H
Shift register latch for brightness control
H
L
Shift register latch for OVM
H
H
N/A (DOUTn is tied to low level)
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLC5904
LED DRIVER
SLLS391 – NOVEMBER 1999
PRINCIPLES OF OPERATION
shift register latch for gray scale data
The shift register latch for the gray scale data is set as an 8 × 1 byte configuration at the 8 bit mode, and as a
16 × 1 byte configuration at the 16 bit mode. The gray scale data, configured as 8 bits, represents the time when
constant current output is being turned on, and the data range is 0 to 255 (00h to FFh). When the gray scale
data is 0, the time is shortest, and the output is not turned on(light off). On the other hand, when the gray scale
data is 255, the time is longest, and it turns on during the time of the 255 clocks from GSCLK. The configuration
of the shift register and latch for gray scale data is shown below.
Latch for Gray Scale Data
XLATCH
OUT15
Data
OUT14
Data
OUT1
Data
OUT0
Data
(8 bits)
(8 bits)
(8 bits)
(8 bits)
2nd byte
DIN7 MSB
DIN0 LSB
1st byte
DIN7 MSB
DIN0 LSB
Shift Register for Gray Scale Data
DOUT0 to 7
16th byte
DIN7 MSB
DIN0 LSB
15th byte
DIN7 MSB
DIN0 LSB
DCLK
DIN0 to 7
16 Bit Mode (MODE=H, RSEL0 and RSEL1=L)
Latch for Gray Scale Data
XLATCH
OUT15, 14
Data
OUT13, 12
Data
OUT3, 2
Data
OUT1, 0
Data
(8 bits)
(8 bits)
(8 bits)
(8 bits)
2nd byte
DIN7 MSB
DIN0 LSB
1st byte
DIN7 MSB
DIN0 LSB
Shift Register for Gray Scale Data
DOUT0 to 7
8th byte
DIN7 MSB
DIN0 LSB
7th byte
DIN7 MSB
DIN0 LSB
DCLK
DIN0 to 7
8 Bit Mode (MODE=L, RSEL0 and RSEL1=L)
Figure 3. Relationship Between Shift Register and Latch for Gray Scale Data
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
13
TLC5904
LED DRIVER
SLLS391 – NOVEMBER 1999
PRINCIPLES OF OPERATION
shift register latch for brightness control and OVM
The shift register latch for both brightness control and OVM (Output Voltage Monitor) is configured with a
1 x 1 byte. In the shift register latch for brightness control, the division ratio of GSCLK can be set and the output
current value on the constant current output can be adjusted. In the shift register latch for OVM, the comparison
voltage at OVM comparator on the constant current output terminals (OUT0 to OUT15) can be set and the output
signal for both XDOWN1 and XDOWN2 can be forced to low level. When power up, the latch data is
indeterminate and the shift register is not initialized. Data should be written to the shift register latch prior to
turning the constant current output on (BLANK=L) when these functions are used. Also, it is inhibited to rewrite
the latch value for brightness control when the constant current output is turned on. When these functions are
not used, the latch value can be set to the default value setting BCENA or MCENA to low level (tied to GND).
The configuration of the shift register and the latch for brightness control and monitor control is shown in below.
Latch for Brightness Control
GSCLK Division Ratio Data Set
XLATCH
0
0
MSB
Current Data Adjusted On Constant Current Output
0
1
LSB
MSB
1
1
1
1
(Note A)
LSB
Shift Register for Brightness Control
DOUT0 to 7
DIN7
DATA
DIN6
DATA
DIN5
DATA
DIN4
DATA
DIN3
DATA
DIN2
DATA
DIN1
DATA
DIN0
DATA
DCLK
DIN0 to 7
Latch for OVM
Monitor Control Data
XLATCH
0
N/A
0
0
MSB
1
(Note B)
LSB
Shift Register for OVM
DOUT0 to 7
DIN7
DATA
DIN6
DATA
DIN5
DATA
DIN4
DATA
DIN3
DATA
DIN2
DATA
DIN1
DATA
DIN0
DATA
DCLK
DIN0 to 7
Note A: Indicates default value at the BCENA terminal = 0 if the brightness control latch = 1
Note B: Indicates default value at the MCENA terminal = 0 if the OVM latch =1
Figure 4. Relationship Between Shift Register and Latch for Brightness Control and OVM
write data to shift register latch
The shift register latch written to is selected using the RSEL0 and RSEL1 terminals. The data is applied to the
DIN data input terminal and is clocked into the shift register synchronizing to the rising edge of DCLK after
XENABLE is pulled low. The shift register for the gray scale data is 8 bits length at 8 bit mode resulting in eight
times DCLK, and 16 bit length at 16 bit mode resulting in sixteen times DCLK, and as for the brigtness control
and monitor control resulting one times DCLK input. At the number of DCLK input for each case, data can be
written into the shift register. In this condition, when XLATCH is pulled high, data in the shift register is clocked
into the latch (data through), and when XLATCH is pulled low, the data is held (latch).
14
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLC5904
LED DRIVER
SLLS391 – NOVEMBER 1999
PRINCIPLES OF OPERATION
brightness control function
By writting data into the brightness control latch, the current on all constant current outputs can be adjusted to
control the variation of brightness between ICs and the division ratio for the gray scale clock can be set to control
the variation of brigtness for the total panel system.
output current adjustment on all constant current outputs – brightness adjustment between ICs
By using the lower 5 bits of the brightness control latch, the output current can be adjusted to 32 steps. 1 step
is 1.6% of the current ratio between 100% and 51.6% when the set output current is 100% by an external resistor.
By using this function, the brightness control between modules (ICs) can be adjusted sending desired data
externally even if ICs are mounted on print-circuit board. When BCENA is pulled low, output current is set to
100%.
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
Table 3. Relative Current Ratio For Total Constant Current Output
CODE
CURRENT RATIO (%)
20 (mA)
80 (mA)
MSB 00000 LSB
51.6
10.3
41.3
VIREF (TYP)
0.63
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
11110
11111†
98.4
19.7
78.7
1.22
100
20.0
80.0
1.24
† BCENA is low.
frequency division ratio setting for gray scale clock – panel brightness adjustment
By using the upper 3 bits of the brightness control latch, the gray scale clock can be divided into a frequency
division ratio of 1/1 to 1/8. If the gray scale clock is set to 8 times the speed (256x8=2048) of frequency during
horizontal scanning time, the brightness can be adjusted to 8 steps selecting the frequency division ratio. By
using this function, the total panel brightness can be adjusted at once, and it applies to the brightness of day
or night circumstances. When BCENA is pulled low, the gray scale clock is not divided. When BCENA is pulled
high, the brightness can be adjusted (see Table 4).
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
Table 4. Relative Brightness Ratio For Total Constant Current Output
CODE
FREQUENCY
DIVISION RATIO
RELATIVE BRIGHTNESS RATIO
(%)
MSB 000 LSB†
1/1
12.5
.
.
.
.
.
.
.
.
.
.
.
.
110
1/7
87.5
111
1/8
100
† BCENA is low.
OVM (output voltage monitor) function
By writing data into the OVM latch, the comparison voltage for the voltage comparator of OUT0 to OUT15 can
be set, and the output signal for XDOWN1 and XDOWN2 can be checked.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
TLC5904
LED DRIVER
SLLS391 – NOVEMBER 1999
PRINCIPLES OF OPERATION
OVM comparator
The OVM comparator compares the voltage on the constant current output terminal during turnon with
comparison voltage set by the OVM latch. When the voltage on the constant current output terminal is lower,
XDOWN2 goes low. As shown in Figure 5, the comparator is provided in every output portion, and the
comparison result corresponding to the output to be turned on appears in the XDOWN2 terminal. Since the
XDOWN2 terminal is an open-collector output, outputs of multiple ICs are brought together.
The output terminal for comparison result is only XDOWN2. The voltage on all the constant current output can
be checked to monitor XDOWN2 turning output on in turn. The voltage on the constant current output, when
turned on, can be also measured changing the comparison voltage set by the OVM latch. Using this function,
sensing (LOD function) an LED disconnection (output voltage is below 0.3 V) and short circuit (output voltage
is extremely high) can be detected and specifies which LED encountered this failure. Also, by monitoring the
output voltage and controlling the voltage across anode of the LED to minimize the voltage on the constant
current output (approximately 0.7 V at IO = 80 mA), the temperature rising of the chip can be minimized.
Furthermore, by setting BLANK to low during LED on, the comparison result immediately before can be held.
Thus, synchronizing timing to check XDOWN2 from the system to the LED lighting timing is not required. Note
that the gray scale data being turned on should be a minimum of 5 µs since XDOWN2 output is required
approximately 5 µs after the constant current output is turned on. The comparison result is also required
approximately 5 µs after the changed latch data.
OUT0
–
+
Internal OUT0
Turn ON Signal
OUT1
–
+
Internal OUT1
Turn ON Signal
XDOWN2
D
Q
OUT14
LATCH
–
+
Internal OUT014
Turn ON Signal
OUT15
Internal OUT015
Turn ON Signal
–
+
BLANK
Comparison Voltage
When BLANK is high, hold the data
When BLANK is low, data is out.
Figure 5. OVM functional diagram
16
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLC5904
LED DRIVER
SLLS391 – NOVEMBER 1999
PRINCIPLES OF OPERATION
output signal check for XDOWN1, XDOWN2
XDOWN1 or XDOWN2 can be forced to low level by setting the appropriate latch value for OVM. This allows
the investigation of the correct connection of XDOWN1 or XDOWN2 to the external system.
OVM comparator setting
Setting the OVM latch is shown in Table 5. Note that the comparison voltage is set to the default value of 0.3
V when MCENA is tied to the low level.
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
Table 5. OVM Setting
MONITOR CONTROL
DATA
COMPARISON
VOLTAGE
XDOWN1
0000
0001†
NO COMPARISON
DEPEND ON TSD/WDT
HI–Z
0.3 V
DEPEND ON TSD/WDT
DEPEND ON OVM COMPARATOR
0010
0.4 V
DEPEND ON TSD/WDT
DEPEND ON OVM COMPARATOR
0011
0.5 V
DEPEND ON TSD/WDT
DEPEND ON OVM COMPARATOR
0100
0.6 V
DEPEND ON TSD/WDT
DEPEND ON OVM COMPARATOR
0101
0.7 V
DEPEND ON TSD/WDT
DEPEND ON OVM COMPARATOR
0110
0.8 V
DEPEND ON TSD/WDT
DEPEND ON OVM COMPARATOR
MSB
LSB
XDOWN2
0111
0.9 V
DEPEND ON TSD/WDT
DEPEND ON OVM COMPARATOR
1000
1.0 V
DEPEND ON TSD/WDT
DEPEND ON OVM COMPARATOR
1001
1.1 V
DEPEND ON TSD/WDT
DEPEND ON OVM COMPARATOR
1010
1.2 V
DEPEND ON TSD/WDT
DEPEND ON OVM COMPARATOR
1011
1/3 × VCCANA
DEPEND ON TSD/WDT
DEPEND ON OVM COMPARATOR
1100
1/2 × VCCANA
DEPEND ON TSD/WDT
DEPEND ON OVM COMPARATOR
1101
2/3 × VCCANA
DEPEND ON TSD/WDT
DEPEND ON OVM COMPARATOR
1110
0.3 V
L
DEPEND ON OVM COMPARATOR
1111
0.3 V
DEPEND ON TSD/WDT
L
† MCENA is low.
DOUT output timing selection
The timing for the DOUT output change can be switched by selecting the DOMODE level. When DOMODE is
low, the DOUT is changed synchronizing to the rising edge of DCLK. When DOMODE is high, the DOUT is
changed synchronizing to the falling edge of DCLK. When the shift operation with DOMODE is high, data can
be protected from a shift error even if the DCLK signal is buffered externally in serial. In this case, when ICs are
connected in cascade, the maximum data transfer speed at will be slower than the case of DOMODE low.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
17
TLC5904
LED DRIVER
SLLS391 – NOVEMBER 1999
PRINCIPLES OF OPERATION
protection
This device incorporates WDT and TSD functions. If WDT or TSD functions, constant current output is stopped
and XDOWN1 goes low. Therefore, by monitoring the XDOWN1 terminal, these failures can be detected
immediately. Since the XDOWN1 output is configured as an open collector, outputs of multiple ICs are brought
together.
WDT (watchdog timer)
The constant current output is forced to turn off and XDOWN1 goes low when the fixed period elapsed after the
signal applied to WDTRG has not been changed. Therefore, by connecting a scan signal (signal to control line
displayed) to WDTRG, the stop of the scan signal can be detected and the constant current output is turned
off. This prevents the LED from burning and damage caused by continuous LED turnon at the dynamic scanning
operation. The detection time can be set using an external capacitor, Cext. The typical value is approximately
10 ms without a capacitor, 160 ms with a 1000 pF capacitor and 1500 ms with a 0.01 µF capacitor. During static
operation, the WDT function is disabled connecting WDCAP to GND (high or low level should be applied to
WDTRG). Note that normal operations will resume changing the WDTRG level when WDT functions.
t – Time – ms
WDT operational time: T (ms) ≅ 10 + 0.15 × Cext (pF)
1500
TLC5904
Scan Signal
WDTRG
WDCAP
160
Cext
10
0
0.001
0.01
Cext – External Capacitor – µF
Figure 6. WDT Operational Time and Usage Example
TSD (thermal shutdown)
When the junction temperature exceeds the limit, TSD starts to function and turns the constant current output
off, and XDOWN1 goes low. When TSD is used, TSENA should be pulled high. When TSD is not used, TSENA
should be pulled low. To recover from the constant current output off-state to normal operations, the power
supply should be turned off or TSENA should be pulled low once.
18
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLC5904
LED DRIVER
SLLS391 – NOVEMBER 1999
PRINCIPLES OF OPERATION
noise reduction
concurrent switching noise reduction
The concurrent switching noise has a potential to occur when multiple outputs turn on or off at the same time.
To prevent this noise, the device has delay output terminals such as XGSOUT and BOUT for GSCLK (gray scale
clock) and BLANK (blanking signal) respectively. By connecting these outputs to the GSCLK and BLANK
terminals of next stage IC, it allows differences in the switching time between ICs. When GSCLK is output to
GSOUT through the device, duty will be changed between input and output, and the number of stages to be
connected will be limited depending on frequency.
output slope
When the output current is 80 mA, the time to change constant current output to turnon and turnoff is
approximately 150 ns and 250 ns respectively. This allows reduced concurrent switching noise when multiple
outputs turn on or off at the same time.
delay between constant current output
The constant current output has a delay time of approximately 30 ns between outputs. This means
approximately 450 ns delay time exists between OUT0 and OUT15. This time differences by delay allows
reduced concurrent switching noise as well as the output slope previously described. This delay time has the
same value at the 8 bits or 16 bits operation mode.
power supply
The followings should be taken into consideration:
1) VCCLOG, VCCANA, and VCCLED should be supplied by a single power supply to minimize voltage
differences between these terminals.
2) The bypass capacitor should be located between the power supply and GND to eliminate the variation of
power supply voltage.
GND
Although GNDLOG, GNDANA, and GNDLED are internally tied together, these terminals should be externally
connected to reduce noise influence.
thermal pad
The thermal pad should be connected to GND to eliminate the noise influence when it is connected to the bottom
side of IC chip. Also, the desired thermal effect will be obtained by connecting this pad to the PCB pattern with
better thermal conductivity.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
19
TLC5904
LED DRIVER
SLLS391 – NOVEMBER 1999
PRINCIPLES OF OPERATION
4.7
3.2
2.4
1.48
0
Output Voltage (Constant Current) – V †
PD – Total Power Dissipation – W
power rating – free-air temperature
0
–20
0
25
85
TA – Free–Air Temperature – °C
† VCCLOG=VCCANA=VCCLED=5.0V, IOLC = 80 mA, ICC is typical value.
NOTES: A. IC is mounted on PCB. PCB size: 102 x 76 × 1.6 [mm3], four layers with the internal two layer being plane. The thermal pad is soldered
to the PCB pattern of 10 × 10 [mm2]. For operation above 25°C free-air temperature, derate linearly at the rate of 38.2 mW/°C.
B. The thermal impedance will be varied depending on mounting conditions. Since the PZP package established low thermal
impedance by radiating heat from the thermal pad, the thermal pad should be soldered to the pattern with low a thermal impedance.
C. Consider thermal characteristics when selecting the material for the PCB, since the temperature will rise around the thermal pad.
Figure 7. Power Rating
20
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLC5904
LED DRIVER
SLLS391 – NOVEMBER 1999
PRINCIPLES OF OPERATION
constant output current
90
80
70
I OLC – mA
60
50
40
30
20
10
0
0.1
1.0
10.0
RIREF – kΩ
NOTE: Conditions: VOUT = 1.0V, VIREF = 1.24V
I OLC(mA) ≅
W
R IREF (k ) ≅
V IREF(V)
R IREF(k )
W
37
47
I OLC(mA)
NOTE: Shows the output current at the 16 bit mode. and at the 8 bit mode (MODE=L). Output current is the sum of both outputs. This sum current
should be set from 10 mA to 120 mA. The resistor, RIREF, should be located as close to the IREF terminal as possible to avoid the noise
influence.
Figure 8. Current on Constant Current Output vs External Resistor
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
21
XOE
XENABLE
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
tsu (XENABLE–DCLK)
th (XENABLE–DCLK)
1/fDCLK
DCLK
tsu (DIN–DCLK)
twl (DCLK)
twh (DCLK)
DIN0
D00_A
D01_A
D02_A
D0E_A
D0F_A
D00_B
D0D_B
D0E_B
D0F_B
D00_C
D01_C
DIN7
D70_A
D71_A
D72_A
D7E_A
D7F_A
D70_B
D7D_B
D7E_B
D7F_B
D70_C
D71_C
th (DIN–DCLK)
th (XLATCH–DCLK)
tsu (XLATCH–DCLK)
XLATCH
twh (XLATCH)
DOUT0
HI–Z
D00_A
D01_A
D0E_A
D0F_A
D00_B
DOUT7
HI–Z
D70_A
D71_A
D7E_A
D7F_A
D70_B
td (XOE↓–DOUT)
td (DCLK–DOUT)
NOTE: MODE = H
Figure 9. Timing Diagram (Shift Register for Gray Scale Data)
td (XOE↑–DOUT)
Template Release Date: 7–11–94
RSEL1
TLC5904
LED DRIVER
SLLS391 – NOVEMBER 1999
22
RSEL0
MCENA
RSEL0
RSEL1
tsu (RSEL–XLATCH)
th (RSEL–XLATCH)
XOE
XENABLE
tsu (RSEL–DCLK)
tsu (RSEL–DCLK)
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
DCLK
DIN0
D0_A
D0_B
D0_C
D0_J
D0_K
D0_L
D0_M
D0_N
D0_O
DIN7
D7_A
D7_B
D7_C
D7_J
D7_K
D7_L
D7_M
D7_N
D7_O
th (XLATCH–DCLK)
XLATCH
twh (XLATCH)
MCL_0
Default Value “1”
Default Value “1”
D<0>_A
(Monitor Control Latch Internal Signal)
MCL_1–3
D<1:3>_A
Default Value “0”
td (XOE↓–DOUT)
Default Value “0”
td (DCLK–DOUT)
td (XOE↑–DOUT)
D0_A
D0_C
D0_E
D0_F
D0_G
D0_H
D0_I
DOUT7
HI–Z
D7_A
D7_C
D7_E
D7_F
D7_G
D7_H
D7_I
23
Figure 10. Timing Diagram (Shift Register for Monitor Control)
TLC5904
LED DRIVER
HI–Z
SLLS391 – NOVEMBER 1999
DOUT0
tsu (RSEL–XLATCH)
th (RSEL–XLATCH)
RSEL1
XOE
XENABLE
tsu (RSEL–DCLK)
tsu (RSEL–DCLK)
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
DCLK
DIN0
D0_A
D0_B
D0_C
D0_J
D0_K
D0_L
D0_M
D0_N
D0_O
DIN7
D7_A
D7_B
D7_C
D7_J
D7_K
D7_L
D7_M
D7_N
D7_O
th (XLATCH–DCLK)
XLATCH
twh (XLATCH)
BCL_0–4
Default Value “1”
Default Value “1”
D<0:4>_A
(Brightness Control Latch Internal Signal)
BCL_5–7
D<5:7>_A
Default Value “0”
td (XOE↓–DOUT)
Default Value “0”
td (DCLK–DOUT)
td (XOE↑–DOUT)
DOUT0
HI–Z
D0_A
D0_C
D0_E
D0_F
D0_G
D0_H
D0_I
DOUT7
HI–Z
D7_A
D7_C
D7_E
D7_F
D7_G
D7_H
D7_I
Figure 11. Timing Diagram (Shift Register for Brightness Control)
Template Release Date: 7–11–94
RSEL0
TLC5904
LED DRIVER
SLLS391 – NOVEMBER 1999
24
BCENA
XLATCH
tsu (XLATCH–GSCLK)
BLANK
1/fGSCLK
tsu (BLANK–GSCLK)
td (BLANK–OUT0)
GSCLK
twl (GSCLK)
twh (GSCLK)
1/fWDT
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
WDTRG
twl (WDTRG)
twh (WDTRG)
td (GSCLK–OUT0)
td (BLANK–OUT0)
OFF
OUT0
twdt
td (GSCLK–OUT0)
ON(Note A)
OFF
td (OUTn+1–OUTn)
(Note A)
OFF
(Note A)
td (OUTn+1–OUTn)
OFF
OUT1
OUT15
ON(Note A)
OFF
......
OFF
ON(Note A)
OFF
(Note A)
(Note A)
OFF
OFF
(Note A)
(Note A)
NOTE A: ON or OFF, or ON time is varied dpend on the gray scale data and BLANK.
HI–Z
XDOWN1
XDOWN2
(Note B)
td (GSCLK–GSOUT)
GSOUT
25
Figure 12. Timing Diagram (Constant Current Output)
TLC5904
LED DRIVER
BOUT
NOTE B: LED disconnection
SLLS391 – NOVEMBER 1999
td (GSCLK–XDOWN2)
td (BLANK–BOUT)
(Note B)
TLC5904
LED DRIVER
SLLS391 – NOVEMBER 1999
MECHANICAL DATA
PZP (S-PQFP-G100)
PowerPAD PLASTIC QUAD FLATPACK
0,27
0,17
0,50
75
0,08 M
51
50
76
Thermal Pad
(see Note D)
26
100
0,13 NOM
1
25
12,00 TYP
Gage Plane
14,20
SQ
13,80
16,20
SQ
15,80
0,25
0,15
0,05
1,05
0,95
0°– 7°
0,75
0,45
Seating Plane
0,08
1,20 MAX
4146929/A 04/99
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion.
The package thermal performance may be enhanced by bonding the thermal pad to an external thermal plane.
This pad is electrically and thermally connected to the backside of the die and possibly selected leads. The demensions of the thermal
pad are 5 mm x 5 mm. The pad is centered on the bottom of the package.
E. Falls within JEDEC MS-026
PowerPAD is a trademark of Texas Instruments Incorporated.
26
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1999, Texas Instruments Incorporated