NTE NTE2631

NTE2631
Integrated Circuit
Quad Differential Line Driver
Functional Description:
The NTE2631 is a quad differential line driver constructed using Advanced Low–Power Schottky
processing in a 16–Lead DIP type package designed for digital data transmission over balanced lines.
This device meets all the requirements of EIA standard RS–422 and federal standard 1020 and is
designed to provide unipolar differential drive to twisted–pair or parallel–wire transmission lines.
The NTE2631 provides an enable and disable function common to all four drivers and features
3–state outputs and logical OR–ed complemtary enable inputs. The inputs are all LS cxompatible
and are all one unit load.
Features:
D 2.0ns Output Skew Typical
D Operation from Single +5V Supply
D Output won’t Load Line when VCC = 0
D Four Line Drivers in One Package for Maximum Package Density
D Output Short–Circuit Protection
D Complementary Outputs
D Meets the Requirements of EIA Standard RS–422
D High Output Drive Capability for 100Ω Terminated Transmission Lines
D Advanced Low–Power Schottky Processing
Absolute Maximum Ratings: (above which the useful life may be impaired)
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.0V
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.0V
Output Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5V
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +165°C
Electrical Characteristics: (VCC = 5V ±5%, TA = 0° to +70°C, Note 1 unless otherwise specified)
Parameter
Symbol
Test Conditions
Min
Typ
Max
Unit
2.5
3.2
–
V
–
0.32
0.5
V
Output HIGH Voltage
VOH
VCC = Min, IOH = –20mA
Output LOW Voltage
VOL
VCC = Min, IOL = 20mA
Input HIGH Voltage
VIH
VCC = Min
2.0
–
–
V
Input LOW Voltage
VIL
VCC = Max
–
–
0.8
V
Input LOW Current
IIL
VCC = Max, VIN = 0.4V
–
–0.20
–0.36
mA
Input HIGH Current
IIH
VCC = Max, VIN = 2.7V
–
0.5
20
µA
Input Reverse Current
II
VCC = Max, VIN = 7.0V
–
0.001
0.1
mA
Off–State (High Impedance)
Output Current
IO
VCC = Max, VO = 5.5V
–
0.5
20
µA
VO = 0.5V
–
0.5
–20
µA
Input Clamp Voltage
VI
VCC = Min, IIN = 18mA
–
–0.8
–1.5
V
Output Short Circuit Current
ISC
VCC = Max
–30
–60
–150
mA
Power Supply Current
ICC
VCC = Max, all outputs disabled
–
60
80
mA
Input to Output
tPLH
VCC = 5V, TA = +25°C, Load = Note 2
–
12
20
ns
tPHL
–
12
20
ns
Output to Output
SKEW
–
2.0
6.0
ns
Enable to Output
tLZ
–
23
35
ns
–
17
30
ns
–
35
45
ns
–
30
40
ns
VCC =
Max,
VCC = 5V, TA = +25°C, CL = 10pF
tHZ
tZL
VCC = 5V, TA = +25°C, Load = Note 2
tZH
Note 1. All typical values are VCC = 5V, TA = +25°C.
Note 2. CL = 30pF, VIN = 1.3V to VOUT = 1.3V, VPULSE = 0V to +3.0V.
Pin Connection Diagram
Input A 1
16 VCC
(+) Output A 2
15 Input D
(–) Output A 3
14 (+) Output D
ENABLE 4
13 (–) Output D
(+) Output B 5
12 ENABLE
(–) Output B 6
11 (–) Output C
Input B 7
10 (+) Output C
GND 8
16
9 Input C
9
.260 (6.6) Max
1
8
.785 (19.9) Max
.300 (7.62)
.200 (5.08)
Max
.245
(6.22)
Min
.100 (2.54)
.700 (17.7)