NTE8212 Integrated Circuit Schottky, 8–Bit Input/Output Port Description: The NTE8212 input/output port is an integrated circuit in a 24–Lead DIP type package and consists of an 8–bit latch with three–state output buffers along with control and device selection logic. Also included is a service request flip–flop for the control and generation of interrupts to the microprocessor. Features: D Fully Parallel 8–Bit Data Register and Buffer D Service Request Flip–Flop for Interrupt Generation D Low Input Load Current: 0.25mA Max D Three State Outputs D Outputs Sink 15mA D 3.65V Output High Voltge for Direct Interface to 8080A Processor D Asynchronous Register Clear D Replaces Buffers, Latches and Multiplexers in Microcomputer Systems D Reduces System Package Count Absolute Maximum Ratings: (TA = +25°C, Note 1 unless otherwise specified) All Output or Supply Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5V to +7V All Input Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –1.0V to +5.5V Output Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125mA Operating Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0° to +70°C Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65° to +150°C Note 1. Stress above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Electrical Characteristics: (TA = 0° to +70°C, VCC = 5V ±5% unless otherwise specified) Parameter Symbol Test Conditions Min Typ Max Unit – – –0.25 mA DC Characteristics Input Load Current STB, DS2, CLR, DI1 – DI8 Inputs |IL1| VF = 0.45V MD Input |IL2| – – –0.75 mA DS1 Input |IL3| – – –1.0 mA – – 10 µA Input Leakage Current STB, DS, CLR, DI1 – DI8 Inputs |IH1| VR = 5.25V MD Input |IH2| – – 30 µA DS1 Input |IH3| – – 40 µA – – –1.0 V Input Forward Voltge Clamp VC IC = –5mA Input “Low” Voltage VIL – – 0.85 V Input “High” Voltage VIH 2.0 – – V Output “Low” Voltage VOL IOL = 15mA – – 0.48 V Output “High” Voltage VOH IOH = –1mA 3.65 – – V Short Circuit Output Current IO5 VO = 0V, VCC = 5V –15 – –75 mA Output Leakage Current, High Impedance State (DO0 – DO8) IO VO = 0.45V/5.25V – – 20 µA Power Supply Current ICC – – 130 mA 30 – – ns – – 30 ns – – 40 ns 15 – – ns AC Characteritics Pulse Width tpw Data to Output Delay tpd Write Enable to Output Delay twe data Setup Time tset Data Hold Time th 20 – – ns Reset to Output Delay tr – – 40 ns Set to Output Delay ts – – 30 ns te/td – – 45 ns tc – – 55 ns Output Enable/Disable Time (Note 2) Clear to Output Delay Input Pulse Amplitude = 2.5V, Input Rise & Fall Times = 5ns, Between 1V and 2V Measurement made at 1.5V with 15mA and 30pF Test Load Note 2. R1 = 300Ω/10KΩ; R2 = 600Ω/1KΩ Capacitance: (TA = +25°C, VCC = 5V, VBIAS = 2.5V, f = 1MHz, Note 3 unless otherwise specified) Parameter Symbol Test Conditions Min Typ Max Unit Input Capacitance CIN DS1, MD – – 12 pF Input Capacitance CIN DS2, CLR, STB, DI1 – DI8 – – 9 pF DO1 – DO8 – – 12 pF Output Capacitance COUT Note 3. This parameter is periodically sampled and not 100% tested. Functional Description: Data Latch The 8 flip–flops that compose the data latch are of a “D” type design. The output (Q) of the flip–flop follows the data input (D) while the clock input (C) is high. Latching occurs when the clock (C) returns low. The data latch is cleared by an asynchronous reset input (CLR). (NOTE: Clock (C) overrides Reset (CLR).) Output Buffer The outputs of the data latch (Q) are connected to three–state, non–inverting output buffers. These buffers have a common control line (EN); enabling the buffer to transmit the data from the outputs of the data latch (Q) or disabling the buffer, forcing the output into a high impedance state (three–state). This high–impedance state allows the designer to connect the NTE8212 directly to the microprocessor bi–directional data bus. Control Logic The NTE8212 has four control inputs: DS1, DS2, MD and STB. These inputs are employed to control device selection, data latching, output buffer state and the service request flip–flop. DS1, DS2 (Device Select) These two inputs are employed for device selection. When DS1 is low and DS2 is high (DS1 • DS2) the device is selected. In the selected state the output buffer is enabled and the service request flip– flop (SR) is asynchronously set. Service Request Flip–Flop (SR) The (SR) flip–flop is employed to generate and control interrupts in microcomputer systems. It is asynchronously set by the CLR input (active low). When the (SR) flip–flop is set it is in the non–interrupting state. The output (Q) of the (SR) flip–flop is connected to an inverting input of a “NOR” gate. The other input of the “NOR” gate is non–inverting and is connected to the device selection logic (DS1 • DS2). The output of the “NOR” gate (INT) is active low (interrupting state) for connection to active low input priority generating circuits. MD (Mode) This input is employed to control the state of the output buffer and to determine the source of the clock (C) to the data latch. When MD is in the output mode (high) the output buffers are enabled and the source of clock (C) to the data latch is from the device selection logic (DS1 • DS2). When MD is in the input mode (low) the output buffer state is determined by the device selection logic (DS1 • DS2) and the source of clock (C) to the data latch is the STB (Strobe) input. STB (Strobe) STB is employed as the clock (C) to the data latch for the input mode (MD = 0) and to synchronously reset the service request (SR) flip–flop. Note that the SR flip–flop triggers on the negative edge of STB which overrides CLR. Pin Connection Diagram 24 23 22 21 20 19 18 17 16 15 14 13 DS1 1 MD 2 DI1 3 DO1 4 DI2 5 DO2 6 DI3 7 DO3 8 DI4 9 DO4 10 STB 11 GND 12 24 13 1 12 VCC INT DI8 DO8 DI7 DO7 DI6 DO6 DI5 DO5 CLR DS2 1.300 (33.02) Max .520 (13.2) .225 (5.73) Max .100 (2.54) 1.100 (27.94) .126 (3.22) Min .600 (15.24)