VISHAY TLCW5100

TLCW5100
VISHAY
Vishay Semiconductors
Ultrabright White LED, ∅ 5 mm Untinted Non-Diffused
Description
The TLCW5100 series is a clear, non diffused 5 mm
LED for high end applications where supreme luminous intensity required.
These lamps with clear untinted plastic case utilize
the highly developed ultrabright InGaN technologies.
The lens and the viewing angle is optimized to
achieve best performance of light output and visibility.
e2 Pb
19223
Features
Pb-free
• Untinted non diffused lens
• Utilizing ultrabright InGaN technology
• High luminous intensity
• Luminous intensity and color categorized for
each packing unit
• ESD-withstand voltage:
1 kV for InGaN
• Lead-free device
Applications
Interior and exterior lighting
Outdoor LED panels
Instrumentation and front panel indicators
Replaces incandescent lamps
Light guide design
Parts Table
Part
TLCW5100
Color, Luminous Intensity
White, IV = 4000 mcd (typ.)
Angle of Half Intensity (±ϕ)
Technology
9°
InGaN / TAG on SiC
Absolute Maximum Ratings
Tamb = 25 °C, unless otherwise specified
TLCW5100
Parameter
Test condition
Reverse voltage
DC forward current
Tamb ≤ 60 °C
Surge forward current
tp ≤ 10 µs
Power dissipation
Tamb ≤ 60 °C
Junction temperature
Operating temperature range
Storage temperature range
Soldering temperature
Thermal resistance junction/
ambient
Document Number 83222
Rev. 1.4, 30-Aug-04
t≤5s
Symbol
Value
Unit
VR
5
V
mA
IF
30
IFSM
0.1
A
PV
135
mW
Tj
100
°C
Tamb
- 40 to + 100
°C
Tstg
- 40 to + 100
°C
Tsd
260
°C
RthJA
300
K/W
www.vishay.com
1
TLCW5100
VISHAY
Vishay Semiconductors
Optical and Electrical Characteristics
Tamb = 25 °C, unless otherwise specified
White
TLCW5100
Symbol
Min
Typ.
Luminous intensity
Parameter
IF = 30 mA
Test condition
IV
1000
4000
Chromaticity coordinate x acc.
to CIE 1931
IF = 30 mA
x
0.33
Chromaticity coordinate y acc.
to CIE 1931
IF = 30 mA
y
0.33
Angle of half intensity
IF = 30 mA
ϕ
±9
Max
Unit
mcd
deg
Forward voltage
IF = 30 mA
VF
Reverse voltage
IR = 10 µA
VR
3.9
4.5
V
Temperature coefficient
of VF
IF = 30 mA
TCVF
-4
mV/K
Temperature coefficient
of IV
IF = 30 mA
TCIV
- 0.5
%/K
5
V
Chromaticity Coordinate Classification
Group
X
Y
min
max
min
max
3a
0.2900
0.3025
Y = 1.4x - 0.121
Y = 1.4x - 0.071
3b
0.3025
0.3150
Y = 1.4x - 0.121
Y = 1.4x - 0.071
3c
0.2900
0.3025
Y = 1.4x - 0.171
Y = 1.4x - 0.121
3d
0.3025
0.3150
Y = 1.4x - 0.171
Y = 1.4x - 0.121
4a
0.3150
0.3275
Y = 1.4x - 0.121
Y = 1.4x - 0.071
4b
0.3275
0.3400
Y = 1.4x - 0.121
Y = 1.4x - 0.071
4c
0.3150
0.3275
Y = 1.4x - 0.171
Y = 1.4x - 0.121
4d
0.3275
0.3400
Y = 1.4x - 0.171
Y = 1.4x - 0.121
5a
0.3400
0.3525
Y = 1.4x - 0.121
Y = 1.4x - 0.071
5b
0.3525
0.3650
Y = 1.4x - 0.121
Y = 1.4x - 0.071
5c
0.3400
0.3525
Y = 1.4x - 0.171
Y = 1.4x - 0.121
5d
0.3525
0.3650
Y = 1.4x - 0.171
Y = 1.4x - 0.121
tolerance ± 0.005
www.vishay.com
2
Document Number 83222
Rev. 1.4, 30-Aug-04
TLCW5100
VISHAY
Vishay Semiconductors
Typical Characteristics (Tamb = 25 °C unless otherwise specified)
100
I F - Forward Current ( mA )
140
PV –Power Dissipation (mW)
120
100
80
60
40
10
20
1
2.0
0
0
18152
10 20 30 40 50 60 70 80 90 100
4.0
4.5
5.0
Figure 4. Forward Current vs. Forward Voltage
I V rel - Relative Luminous Intensity
35
I F - Forward Current ( mA )
3.5
100
40
30
25
20
15
10
5
0
10 20 30 40 50 60 70 80 90 100
Tamb – Ambient Temperature ( °C )
18153
90
80
70
60
50
40
30
20
10
0
400 450 500 550 600 650 700 750 800
0
λ - Wavelength ( nm )
16196
Figure 2. Forward Current vs. Ambient Temperature
Figure 5. Relative Intensity vs. Wavelength
10.00
2.5
I Vrel –Relative Luminous Intensity
I V rel - Relative Luminous Flux
3.0
Tamb – Ambient Temperature ( qC )
Figure 1. Power Dissipation vs. Ambient Temperature
White
1.00
0.10
0.01
1
16064
2.5
V F - Forward Voltage ( V )
16195
10
I F - Forward Current ( mA )
Document Number 83222
Rev. 1.4, 30-Aug-04
1.5
1.0
0.5
0.0
–50
100
Figure 3. Relative Luminous Flux vs. Forward Current
2.0
18155
–25
0
25
50
75
Tamb – Ambient Temperature ( qC )
100
Figure 6. Relative Luminous Intensity vs. Amb. Temperature
www.vishay.com
3
TLCW5100
VISHAY
Vishay Semiconductors
500
30 mA
400
20 mA
300
200
100
10 mA
0
–100
20°
30°
40°
1.0
0.9
50°
0.8
60°
70°
0.7
80°
–200
–300
–50
–25
0
25
50
75
0.6
100
Tamb – Ambient Temperature ( °C )
18154
0.4
0.2
0
0.2
0.4
0.6
94 8351
Figure 7. Change of Forward Voltage vs. Ambient Temperature
f - Chromaticity coordinate shift (x,y)
10°
600
Srel - Relative Sensitivity
∆ VF – Change of Forward Voltage (mV)
0°
Figure 10. Relative Radiant Sensitivity vs. Angular Displacement
0.345
White
0.340
X
0.335
0.330
Y
0.325
0.320
0.315
0
10
16198
20
30
40
50
60
I F - Forward Current ( mA )
Figure 8. Chromaticity Coordinate Shift vs. Forward Current
0.44
Y and Y’ Coordinates
0.42
5b
0.40
5a
0.38
4b
0.36
0.34
0.32
5c
3b
4d
3a
4c
0.30
0.28
5d
4a
3d
3c
0.26
0.24
0.22
0.28 0.29 0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37
X Coordinates
18162
Figure 9. Coordinates of Colorgroups
www.vishay.com
4
Document Number 83222
Rev. 1.4, 30-Aug-04
VISHAY
TLCW5100
Vishay Semiconductors
Package Dimensions in mm
9612121
Document Number 83222
Rev. 1.4, 30-Aug-04
www.vishay.com
5
TLCW5100
VISHAY
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and
operatingsystems with respect to their impact on the health and safety of our employees and the public, as
well as their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are
known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs
and forbid their use within the next ten years. Various national and international initiatives are pressing for an
earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the
use of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments
respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423
www.vishay.com
6
Document Number 83222
Rev. 1.4, 30-Aug-04