IS456 IS456 High Speed Response Type OPIC Light Detector ■ Features ■ Outline Dimensions 0.25 3 2 ■ Applications 3.81 ± 0.3 4 Detector center 5.0 ± 0.1 1 ( Unit : mm ) 2.5 ± 0.2 + 0.7 0.4 - 0.3 0.1 1. High speed response ( t PHL : TYP.230ns ) 2. Uses a pattern to allow for possible positional deviation of the semiconductor laser spot. 3. Compact, mini-flat package 2.75 ±0.2 1. Laser beam printers *1 For 1 minute *2 For 3 seconds at the position shown in the following drawing. *3 Maximum allowable incident light intensity and radiant intensity of laser beam ( λ = 780nm ) to the device. Soldering area + 0.8 - 0.2 0.4 Internal connection diagram Response time *4 E VHL 1, E VHL 10˚ 10˚ 10˚ Gain resistor (Ro) ( Outer mounting ) 1 2 VREF 3 1 2 3 4 RO VO GND V CC *“ OPIC” ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip. Soldering area ( VCC = 5V, Ta= 25˚C ) Symbol V OH V OL I CCH I CCL E VHL1 E VHL2 P IHL “ High→Low” propagation delay time t PHL “ Low→High” propagation delay time t PLH Rise time Fall time 5.0 ± 0.1 10˚ 4 ■ Electro-optical Characteristics Parameter High level output voltage Low level output voltage High level supply current Low level supply current *4 “ High→Low ” threshold illuminance 1 *4 “ High→Low ” threshold illuminance 2 “ High→Low ” threshold incident light intensity 1.07 0.1 1.5 4.4± + Unit V V mA ˚C ˚C ˚C mW mW mW WB + 0.5 0 2.7 - 0.5 - 0.3 0.2 Rating - 0.5 to + 7 7 20 - 25 to + 80 - 40 to + 85 260 150 24 5 60 ( R0.2 ) + Symbol V CC V OH I OL T opr T stg T sol P P RO PI Ee + 0.5 0 2.7 - 0.15 - 0.3 0 Parameter *1 Supply voltage High level output voltage Low level output current Operating temperature Storage temperature *2 Soldering temperature Power dissipation R O terminal power dissipation *3 Incident light intensity *3 Radiant intensity ( Ta= 25˚C) ± 0.1 4.4± 0.1 ■ Absolute Maximum Ratings tr tf Conditions R O=51kΩ , E V=0 I OL =10mA, E V =1 000lx R O=51kΩ , E V =0 R O=51kΩ , E V =1 000lx R O=51kΩ R O=5.1kΩ R O=5.1kΩ , l =780nm CL =15pF, Duty=1: 1 P I=0.2mW, λ =780nm R O=5.1kΩ , R L =510Ω MIN. 4.9 330 - TYP. 0.4 2.6 3.8 470 5 800 100 MAX. 0.6 4.5 6.6 600 - Unit V V mA mA lx lx µW - 230 400 ns - 230 400 ns - 60 20 200 100 ns ns 2 represent illuminance by CIE standard light source A( tungsten lamp ) when output goes from high to low. “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.” IS456 ■ Recommended Operating Conditions Parameter Operating supply voltage Operating temperature Incident light intentity ( λ = 780nm ) Symbol V cc T opr PI MIN. 4.5 0 - MAX. 5.5 60 2.5 Unit V ˚C mW In order to stabilize power supply line, connect a by-pass capacitor of 0.1µ F between Vcc and GND near the device. Fig. 1 Total Power Dissipation vs. Ambient Temperature Fig. 2 Low Level Output Voltage vs. Low Level Output Current 10 200 150 100 50 0 - 25 V CC = 5V T a = 25˚C 5 Low level output voltage V OL ( V ) Total power dissipation P ( mW ) 250 2 1 0.5 0.2 1 0 25 50 75 100 1 2 5 10 20 6 0.6 V CC = 5V IOL= 20mA Supply current I CC ( mA ) Low level output voltage VOL ( mA ) T a = 25˚C ICCL 5 10mA 0.4 0.3 0.2 4 ICCH 3 2 1 0.1 0 - 25 100 Fig. 4 Supply Current vs. Supply Voltage Fig. 3 Low Level Output Voltage vs. Ambient Temperature 0.5 50 Low level output Current I OL ( mA ) Ambient temperature T a ( ˚C ) 0 0 25 50 75 Ambient temperature Ta ( ˚C ) 100 3 4 5 6 Supply voltage V CC ( V ) 7 8 IS456 Fig. 6 “ High →Low ” Threshold Incident Light Intensity vs. Gain Resistanse Fig. 5 Supply Current vs. Ambient Temperature 6 2000 4 I CCL I CCH 2 0 - 25 0 25 50 75 V CC = 5V T a = 25˚C 1000 “ High→Low” threshold incident light intensity P IHL ( µ W ) Supply current I CC ( mA ) V CC = 5.0V 500 200 100 50 20 10 0 100 1 2 3 4 5 6 7 Gain resistance R O ( k Ω ) Ambient temperature T a ( ˚C ) Fig. 7 “ High →Low ” Threshold Incident Light Intensity vs. Ambient Temperature Fig. 8 “High →Low ” Threshold Incident Light Intensity vs. Supply Voltage 200 “ High→Low” threshold incident light intensity P IHL ( µ W ) 140 “ High→Low” threshold incident light intensity P IHL ( µ W ) T a = 25˚C R O = 5.1kΩ V CC = 5.0V R O = 5.1kΩ 120 100 150 100 50 80 0 - 25 25 0 50 0 3 75 80 4 Ambient temperature T a ( ˚C ) Fig. 9 Propagation Delay Time vs. Incident Light Intensity 8 400 PHL ( ns ) VCC = 5V, P I = 0.6mW RL= 510kΩ , T a = 25˚C ,t PLH 150 t PHL 100 t PLH 50 0 0 Propagation delay time t ,t PLH Propagation delay time t 7 500 V CC = 5.0V R L= 510Ω T a = 25˚C RO : Dotted line 200 6 Fig.10 Propagation Delay Time vs. Gain Resistance PHL ( ns ) 250 5 Supply voltage V CC ( V) RO 0.2 0.5 1.0 1.5 Incident light intensity P I ( mW ) 2.0 2.5 t PLH 300 200 t PHL 100 0 0 1 2 3 4 Gain resistance R O ( kΩ) 5 6 IS456 Fig.11 Propagation Delay Time vs. Ambient Temperature 300 V CC = 5V, R O = 5.1KΩ R L = 510Ω 250 t PLH 300 t PHL 200 Rise time, fall time t r , t f ( ns ) Propagation delay time t PLH , t PHL ( ns ) 400 Fig.12 Rise Time, Fall Time vs. Load Resistance t PHL t PLH 100 T a = 25˚C V CC = 5V tr 200 150 100 50 tf 0 - 25 0 25 50 75 0 0 100 1 2 3 4 5 Fig.13 Rise Time, Fall Time vs. Ambient Temperature Fig.14 Spectral Sensitivity 100 100 T a = 25˚C V CC = 5V, R O = 5.1KΩ RL = 510Ω 80 80 tr Relative sensitivity ( % ) Rise time, fall time t r , t f ( ns ) 6 Load resistance R L ( K Ω ) Ambient temperature Ta ( ˚C ) 60 40 60 40 tf 20 0 - 25 20 0 25 50 Ambient temperature Ta ( ˚C ) 75 100 0 300 400 500 600 700 800 Wavelength λ ( nm ) 900 1000 1100 IS456 Test Circuit for Response Time Constant VCC = 5V current 5.1 kΩ Laser diode 510 Ω 0.1 µ F Output Vref CL 0.2mW 0.1mW Incident light intensity 0mW tPLH tPHL 90% 1.5V Output 10% tf ● Please refer to the chapter “Precautions for Use.” tr