SHARP IS487

IS487/IS488
IS487/IS488
Built-in Amp.Type
OPIC Light Detector
■ Features
■ Outline Dimensions
1. Compact type
2. Built-in schmidt trigger circuit
3. LSTTL and TTL compatible output
4. Open collector output
5. Low level output under incident light
(IS487 )
High level output under incident light
( IS488 )
6. A wide range of operating supply voltage
( VCC : 4.5 to 17v )
( Unit : mm )
Internal connection diagram
IS487
IS488
Voltage regulator
Voltage regulator
3
3
2
2
1
1
Amp.
Amp.
1.15
1.5
0.75
4˚
4.0 ± 0.2
4˚
R0.5
+1.5
- 1.0
3-
1.27
1.6
+ 0.3
0.4 - 0.1
3- 0.45 +- 0.3
0.1
1.6 1.27
6˚
6˚
6˚
3
6˚
6˚
2.8
1 GND
2 VO
3 V CC
2
*“ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.
■ Absolute Maximum Ratings
Parameter
Supply voltage
Output voltage
Output current
Power dissipation
Operating temperature
Storage temperature
*1
Soldering temperature
Symbol
V CC
VO
IO
P
Topr
Tstg
Tsol
( Ta= 25˚C )
Rating
- 0.5 to + 35
- 0.5 to + 40
50
175
- 25 to +85
- 40 to +100
260
1.4
2 - 0.8
(1.27)
6˚
1
0.15
18.0
1. Floppy disk drive Units
2. Copiers, printers, facsimiles
3. VCRs
4. Automatic vending machines
4˚
˚
2.6
4˚
60
16.5 ±1.0
■ Applications
3.0
0.8MAX.
Rugged resin
2- C0.5
0.3MAX.
Gate burr
2.95
Unit
V
V
mA
mW
˚C
˚C
˚C
*1 For 5 seconds at the position of 1.4mm from the bottom face of resin package
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ”
IS487/IS488
■ Electro-optical Characteristics
Parameter
Low level output voltage
High level output current
Low level supply current
High level supply current
*4
*5
*6
“ High→Low”
Threshold illuminance
“ Low→High”
Threshold illuminance
Hysteresis
“ Low→High”
Propagation time
Response
time
“ High→Low”
Propagation time
( Unless otherwise specified, Ta= 0 to 70˚C, VCC= 5V )
Symbol
V OL
I OH
I CCL
I CCH
IS487
E VHL
IS488
IS487
E VLH
IS488
IS487
IS488
IS487
IS488
IS487
IS488
E VLH /E VHL
E VHL /E VLH
Rise time
Fall time
Conditions
I OL = 16mA
*3
V CC = 20V, V O= 30V
*2
*3
T a = 25˚C, R L = 280Ω
R L = 280Ω
T a = 25˚C, R L = 280Ω
R L = 280Ω
T a = 25˚C, R L = 280Ω
R L = 280Ω
T a = 25˚C, R L = 280Ω
R L = 280Ω
MIN.
1.5
1
1.5
1
-
TYP.
0.15
1.3
0.7
15
10
10
15
-
MAX.
0.4
100
3.4
2.2
35
50
35
50
Unit
V
µA
mA
mA
T a = 25˚C, R L = 280Ω
0.50
0.65
0.90
-
-
5
3
3
5
0.1
0.05
15
9
9
15
0.5
0.5
µs
*2
t PLH
T a = 25˚C
E V = 50lx
R L = 280 Ω
t PHL
tr
tf
*2 Defines EV = 50lx ( IS487 ) and E V = 0 ( IS488 ) .
*3 Defines EV = 0 (IS487) and E V = 50lx ( IS488 ) .
*4 EVHL represents illuminance by CIE standerd light source A ( tungsten lamp ) when output changes from high
to low.
*5 E VLH represents illuminance by CIE standerd light source A ( tungsten lamp ) when output changes from low
to high.
*6 Hysteresis stands for EVLH /E VHL ( IS487 ) and E VHL /E VLH ( IS488 ) .
■ Recommended Operating Conditions
Parameter
Supply voltage
Output current
Symbol
V CC
I OL
MIN.
4.5
-
MAX.
17
16
Unit
V
mA
In order to stabilize power supply line, connect a by-pass capacitor of 0.01 µ F or more between VCC and GND near
the device.
lx
lx
IS487/IS488
Fig. 2 Power Dissipation vs.
Ambient Temperature
60
300
50
250
Power dissipation P ( mW )
Low level output current I OL ( mA )
Fig. 1 Low Level Output Current vs.
Ambient Temperature
40
30
20
200
175
150
100
50
10
0
- 25
0
25
50
75 85
0
- 25
100
0
Ambient temperature Ta ( ˚C )
Fig. 3 Relative Threshold Illuminance vs.
Supply Voltage
T a = 25˚C
Relative threshold illuminance
1.0
0.9
0.8
0.7
2
E VHL ( IS487 ) , E VLH ( IS488 ) =1
at V CC = 0
0.5
0
5
10
15
Supply voltage V
20
CC
25
(V)
2.5
Supply current I cc ( mA )
E V = 50 lx ( IS487 )
( IS488 )
EV = 0
V CC = 17V
2.0
10V
1.5
5V
ICCL
1.0
V CC = 17V
10V I
CCH
0.5
5V
25
50
V CC =
5V
0.5
0.4
0.3
I OL = 30mA
0.2
16mA
0.1
0
- 25
0
25
50
75
Ambiment temperature Ta ( ˚C )
3.0
0
100
5mA
Fig. 5 Supply Current vs.
Ambient Temperature
0
- 25
75 85
0.6
1 E VHL ( IS487 ) 2 E VLH ( IS487 )
E VLH ( IS488 )
E VHL ( IS488 )
1
0.6
50
Fig. 4 Low Level Output Voltage vs.
Ambient Temperature
Low level output voltage V OL ( V )
1.1
25
Ambient temperature Ta ( ˚C )
75
Ambient temperature Ta ( ˚C )
100
100
IS487/IS488
Fig. 6 Propagation Delay Time vs.
Illuminance
Fig. 7 Rise Time, Fall Time vs.
Load Resistance
0.8
V CC = 5V
RL = 280Ω
T a = 25˚C
11
10
9
8
7
6
5
4
3
2
2
0
0
100
200
300
400
Illuminance E
v(
0.6
0.5
tr
0.4
0.3
0.2
0.1
1 t PLH ( IS487 ) 2 t PHL ( IS487 )
t PHL ( IS488 )
t PLH ( IS488 )
1
T a = 25˚C
V CC = 5V
E V = 50lx
0.7
1
Rise time, fall time t r , t f ( µ s )
Propagation delay time t PLH , t
PHL
( µ s)
12
500
0
600
tf
0.1 0.2
0.5
lx )
1
Test Circuit for Response Time ( IS487)
Amp
0.01 µ F
Amp
Input
50%
50%
tPHL
tPLH
tPLH
90%
10%
tf
Vcc = 5V
RL
Output
t r = tf = 0.01 µ s
Zo = 50 Ω
47 Ω
0.01 µ F
Output
50
Input
Vcc = 5V
RL
Output
tPHL
10 20
Voltage regulater
Input
Input
5
Test Circuit for Response Time ( IS488 )
Voltage regulater
t r = tf = 0.01 µ s
Zo = 50 Ω
47 Ω
2
Load resistance R L ( kΩ )
VOH
VOH
90%
1.5V
Output
1.5V
tr
VOL
tf
10%
tr
Fig. 8 Sensitivity Diagram
Fig. 9 Spectral Sensitivity
( T a = 25˚C )
- 20˚
0
- 10˚
+10˚
+20˚
100
100
- 50˚
- 60˚
80
60
40
90
+30˚
T a = 25˚C
80
+40˚
+50˚
+60˚
20
Relative sensitivity ( % )
- 40˚
Relative radiant intensity ( % )
- 30˚
70
60
50
40
30
- 70˚
+70˚
20
- 80˚
+80˚
10
- 90˚
+90˚
0
Angular displacement θ
● Please refer to the chapter “ Precautions for Use.”
0
400
600
800
1000
Wavelength λ ( nm )
1200