IS487/IS488 IS487/IS488 Built-in Amp.Type OPIC Light Detector ■ Features ■ Outline Dimensions 1. Compact type 2. Built-in schmidt trigger circuit 3. LSTTL and TTL compatible output 4. Open collector output 5. Low level output under incident light (IS487 ) High level output under incident light ( IS488 ) 6. A wide range of operating supply voltage ( VCC : 4.5 to 17v ) ( Unit : mm ) Internal connection diagram IS487 IS488 Voltage regulator Voltage regulator 3 3 2 2 1 1 Amp. Amp. 1.15 1.5 0.75 4˚ 4.0 ± 0.2 4˚ R0.5 +1.5 - 1.0 3- 1.27 1.6 + 0.3 0.4 - 0.1 3- 0.45 +- 0.3 0.1 1.6 1.27 6˚ 6˚ 6˚ 3 6˚ 6˚ 2.8 1 GND 2 VO 3 V CC 2 *“ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip. ■ Absolute Maximum Ratings Parameter Supply voltage Output voltage Output current Power dissipation Operating temperature Storage temperature *1 Soldering temperature Symbol V CC VO IO P Topr Tstg Tsol ( Ta= 25˚C ) Rating - 0.5 to + 35 - 0.5 to + 40 50 175 - 25 to +85 - 40 to +100 260 1.4 2 - 0.8 (1.27) 6˚ 1 0.15 18.0 1. Floppy disk drive Units 2. Copiers, printers, facsimiles 3. VCRs 4. Automatic vending machines 4˚ ˚ 2.6 4˚ 60 16.5 ±1.0 ■ Applications 3.0 0.8MAX. Rugged resin 2- C0.5 0.3MAX. Gate burr 2.95 Unit V V mA mW ˚C ˚C ˚C *1 For 5 seconds at the position of 1.4mm from the bottom face of resin package “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ” IS487/IS488 ■ Electro-optical Characteristics Parameter Low level output voltage High level output current Low level supply current High level supply current *4 *5 *6 “ High→Low” Threshold illuminance “ Low→High” Threshold illuminance Hysteresis “ Low→High” Propagation time Response time “ High→Low” Propagation time ( Unless otherwise specified, Ta= 0 to 70˚C, VCC= 5V ) Symbol V OL I OH I CCL I CCH IS487 E VHL IS488 IS487 E VLH IS488 IS487 IS488 IS487 IS488 IS487 IS488 E VLH /E VHL E VHL /E VLH Rise time Fall time Conditions I OL = 16mA *3 V CC = 20V, V O= 30V *2 *3 T a = 25˚C, R L = 280Ω R L = 280Ω T a = 25˚C, R L = 280Ω R L = 280Ω T a = 25˚C, R L = 280Ω R L = 280Ω T a = 25˚C, R L = 280Ω R L = 280Ω MIN. 1.5 1 1.5 1 - TYP. 0.15 1.3 0.7 15 10 10 15 - MAX. 0.4 100 3.4 2.2 35 50 35 50 Unit V µA mA mA T a = 25˚C, R L = 280Ω 0.50 0.65 0.90 - - 5 3 3 5 0.1 0.05 15 9 9 15 0.5 0.5 µs *2 t PLH T a = 25˚C E V = 50lx R L = 280 Ω t PHL tr tf *2 Defines EV = 50lx ( IS487 ) and E V = 0 ( IS488 ) . *3 Defines EV = 0 (IS487) and E V = 50lx ( IS488 ) . *4 EVHL represents illuminance by CIE standerd light source A ( tungsten lamp ) when output changes from high to low. *5 E VLH represents illuminance by CIE standerd light source A ( tungsten lamp ) when output changes from low to high. *6 Hysteresis stands for EVLH /E VHL ( IS487 ) and E VHL /E VLH ( IS488 ) . ■ Recommended Operating Conditions Parameter Supply voltage Output current Symbol V CC I OL MIN. 4.5 - MAX. 17 16 Unit V mA In order to stabilize power supply line, connect a by-pass capacitor of 0.01 µ F or more between VCC and GND near the device. lx lx IS487/IS488 Fig. 2 Power Dissipation vs. Ambient Temperature 60 300 50 250 Power dissipation P ( mW ) Low level output current I OL ( mA ) Fig. 1 Low Level Output Current vs. Ambient Temperature 40 30 20 200 175 150 100 50 10 0 - 25 0 25 50 75 85 0 - 25 100 0 Ambient temperature Ta ( ˚C ) Fig. 3 Relative Threshold Illuminance vs. Supply Voltage T a = 25˚C Relative threshold illuminance 1.0 0.9 0.8 0.7 2 E VHL ( IS487 ) , E VLH ( IS488 ) =1 at V CC = 0 0.5 0 5 10 15 Supply voltage V 20 CC 25 (V) 2.5 Supply current I cc ( mA ) E V = 50 lx ( IS487 ) ( IS488 ) EV = 0 V CC = 17V 2.0 10V 1.5 5V ICCL 1.0 V CC = 17V 10V I CCH 0.5 5V 25 50 V CC = 5V 0.5 0.4 0.3 I OL = 30mA 0.2 16mA 0.1 0 - 25 0 25 50 75 Ambiment temperature Ta ( ˚C ) 3.0 0 100 5mA Fig. 5 Supply Current vs. Ambient Temperature 0 - 25 75 85 0.6 1 E VHL ( IS487 ) 2 E VLH ( IS487 ) E VLH ( IS488 ) E VHL ( IS488 ) 1 0.6 50 Fig. 4 Low Level Output Voltage vs. Ambient Temperature Low level output voltage V OL ( V ) 1.1 25 Ambient temperature Ta ( ˚C ) 75 Ambient temperature Ta ( ˚C ) 100 100 IS487/IS488 Fig. 6 Propagation Delay Time vs. Illuminance Fig. 7 Rise Time, Fall Time vs. Load Resistance 0.8 V CC = 5V RL = 280Ω T a = 25˚C 11 10 9 8 7 6 5 4 3 2 2 0 0 100 200 300 400 Illuminance E v( 0.6 0.5 tr 0.4 0.3 0.2 0.1 1 t PLH ( IS487 ) 2 t PHL ( IS487 ) t PHL ( IS488 ) t PLH ( IS488 ) 1 T a = 25˚C V CC = 5V E V = 50lx 0.7 1 Rise time, fall time t r , t f ( µ s ) Propagation delay time t PLH , t PHL ( µ s) 12 500 0 600 tf 0.1 0.2 0.5 lx ) 1 Test Circuit for Response Time ( IS487) Amp 0.01 µ F Amp Input 50% 50% tPHL tPLH tPLH 90% 10% tf Vcc = 5V RL Output t r = tf = 0.01 µ s Zo = 50 Ω 47 Ω 0.01 µ F Output 50 Input Vcc = 5V RL Output tPHL 10 20 Voltage regulater Input Input 5 Test Circuit for Response Time ( IS488 ) Voltage regulater t r = tf = 0.01 µ s Zo = 50 Ω 47 Ω 2 Load resistance R L ( kΩ ) VOH VOH 90% 1.5V Output 1.5V tr VOL tf 10% tr Fig. 8 Sensitivity Diagram Fig. 9 Spectral Sensitivity ( T a = 25˚C ) - 20˚ 0 - 10˚ +10˚ +20˚ 100 100 - 50˚ - 60˚ 80 60 40 90 +30˚ T a = 25˚C 80 +40˚ +50˚ +60˚ 20 Relative sensitivity ( % ) - 40˚ Relative radiant intensity ( % ) - 30˚ 70 60 50 40 30 - 70˚ +70˚ 20 - 80˚ +80˚ 10 - 90˚ +90˚ 0 Angular displacement θ ● Please refer to the chapter “ Precautions for Use.” 0 400 600 800 1000 Wavelength λ ( nm ) 1200