PC905 Long Creepage Distance Photocoupler with Built-in Voltage Detection Circuit PC905 ❈ Lead forming type ( I type ) is also available. ( PC905I ) ❈❈ TUV ( DIN-VDE0884 ) approved type is also available as an option. .. ■ Features ■ Outline Dimensions 1. Built-in voltage deviation detection circuit 2. Long creepage distance type ( Creepage distance : 8mm or more ) 3. Conforms to European Safety Standard ( Internal insulation distance : 0.5mm or more ) 4. High collector-emitter voltage( VCEO : 70V) 5. High isolation voltage between input and output ( Viso : 5 000V rms ) 6. Recognized by UL, file No. E64380 Approved by BSI ( BS415 : No. 6990, BS7002 : No. 7567 ) Approved by SEMKO No. 963501101 Approved by DEMKO No. 392592 ( Unit : mm ) Internal connection diagram 1.2 ± 0.3 0.85 ± 0.3 6 7 5 6.5 ± 0.5 8 1 2 3 Anode mark 5 1 2 3 4 9.66 ± 0.5 3.05 ± 0.5 3.5 ± 0.5 7.62 ± 0.3 0.26 ± 0.1 2.54 ± 0.25 10.16 ± 0.5 1. Switching power supplies 1 2 3 4 ■ Absolute Maximum Ratings Output 6 4 ■ Applications Input 7 PC905 0.5 ± 0.1 Parameter Anode current Anode voltage Reference input current Power dissipation Collector-emitter voltage Emitter-collector voltage Collector current Collector power dissipation Total power dissipation *1 Isolation voltage Operating temperature Storage temperature *2 Soldering temperature 8 Anode Cathode GND Reference 5 6 7 8 NC Emitter Collector NC ( Ta = 25˚C ) Symbol IA VA I REF P V CEO V ECO IC PC P tot V iso T opr T stg T sol Rating 50 30 10 250 70 6 50 150 350 5 000 - 25 to + 85 - 40 to + 125 260 Unit mA V mA mW V V mA mW mW V rms ˚C ˚C ˚C *1 40 to 60% RH, AC for 1 minute *2 For 10 seconds “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ” PC905 ■ Electro-optical Characteristics Parameter Reference voltage *3Temperature change in reference voltage Voltage variation ratio in reference voltage Reference input current *4Temperature change in reference input current Minimum drive current OFF-state anode current Anode-cathode forward voltage Collector dark current *5 Current transfer ratio Collector-emitter saturation voltage Isolation resistance Floating capacitance Input Output Transfer characteristics ( Ta = 25˚C unless otherwise specified. ) Symbol V REF MIN. 2.40 TYP. 2.495 MAX. 2.60 Unit V Fig. 1 - 8 40 mV 1 IA = 10mA, ∆ V A = 30V- V REF - - 1.4 -5 mV/V 2 - 2 10 µA 3 - 0.4 3 µA 3 I MIN I OFF I A = 10mA, R 3 = 10k Ω I A = 10mA, R 3 = 10k Ω , Ta = - 25 to + 85˚C V K = V REF V A = 30V, V REF = GND - 1 0.1 2 2 mA µA 1 4 VF V K = V REF , I A = 10mA - 1.2 1.4 V 1 10 320 A % 5 6 0.2 V 6 1.0 Ω pF - V REF ( dev ) ∆V REF / ∆V A I REF I REF ( dev ) I CEO CTR V CE ( sat ) R ISO Cf Conditions V K = V REF , I A = 10mA V K = V REF , I A = 10mA, Ta = - 25 to + 85˚C V CE = 20V V K = V REF , I A = 10mA, V CE = 5V V K = V REF , I A = 20mA, I C = 1mA 40 to 60% RH, DC500V V = 0, f = 1MHz 40 - 10 - -9 0.1 5 x 1010 1 x 1011 0.6 -7 *3 V REF ( dev ) = VREF ( MAX. ) - V REF (MIN. ) *4 I REF ( dev ) = IREF ( MAX. ) - I REF (MIN. ) *5 CTR = I C / I A x 100 ( % ) ■ Test Circuit Fig. 1 Fig. 2 IA IA 1 A 7 1 7 VF V 6 VK R1 VCC 2 6 4 VCC 4 R2 V VREF 3 VK : Voltage between terminals 2 and 3 VREF : Voltage between terminals 3 and 4 2 VA VREF 3 PC905 Fig. 3 Fig. 4 IOFF IA 1 7 A 1 7 IREF A 2 2 VA 6 VCC 6 4 4 VCC R3 3 3 Fig. 5 Fig. 6 ICEO 1 7 IC IA A 1 7 A VCE V 2 VCE 2 6 6 VK 4 VCC 4 VREF 3 3 Fig. 8 Input Power Dissipation vs. Ambient Temperature 60 300 50 250 Input power dissipation P ( mW ) Anode current I A ( mA ) Fig. 7 Anode Current vs. Ambient Temperature 40 30 20 150 100 50 10 0 - 25 200 0 25 50 75 85 Ambient temperature T a ( ˚C ) 100 0 - 25 0 25 75 85 50 Ambient temperature T a ( ˚C ) 100 PC905 Fig. 9 Collector Power Dissipation vs. Ambient Temperature Fig.10 Power Dissipation vs. Ambient Temperature 600 500 150 Power dissipation P tot ( mW ) Collector power dissipation P C ( mW ) 200 100 50 0 - 25 0 25 50 75 85 100 Ambient temperature T a 200 100 0 - 25 0 25 50 75 85 100 Ambient temperature T a ( ˚C ) ( ˚C ) Fig.12 Collector Dark Current vs. Ambient Temperature V K = V REF I A = 10mA V CE = 5V 10 -5 10 -6 10 -7 10 -8 10 -9 5 Collector dark current I CEO ( A) Relative current transfer ratio ( % ) 350 300 125 Fig.11 Relative Current Transfer Ratio vs. Ambient Temperature 150 400 100 50 V CE = 20V 5 5 5 5 10 - 10 10 - 11 5 0 - 30 0 20 40 60 Ambient temperature T a 80 100 Fig.13-a Anode Current vs. Reference Voltage 1 200 80 100 V K = V REF T a = 25˚C 1 000 Anode current I A ( µ A ) 50 Anode current I A ( mA ) 20 0 40 60 Ambient temperature T a ( ˚C) Fig.13-b Anode Current vs. Reference Voltage V K = V REF T a = 25˚C 40 30 20 800 600 400 200 10 0 0 - 20 ( ˚C ) 1 2 Reference voltage V REF ( V ) 3 0 0 1 2 Reference voltage V REF ( V ) 3 PC905 Fig.15 Reference Voltage vs. Ambient Temperature V A = 30V V REF = GND 10 5 0 - 30 0 20 40 60 Ambient temperature T a 80 100 2 1 50 Ambient temperature T 75 a 100 2.495V 2.40 2.40V 0 20 40 60 80 Ambient temperature T a ( ˚C ) 0 - 10 - 20 - 30 0 5 10 15 20 I F = 2mA T a = 25˚C 80 620 Ω 10 µ F Vin 40 f 10k Ω 20 AV1 = 20 log 0 10 100 35 Vo 10k Ω Frequency f ( kHz ) 30 Test Circuit for Voltage Gain ( 1 ) vs. Frequency 60 1 25 Anode voltage V A ( V ) 100 - 20 0.1 100 I A = 10mA T a = 25˚C ( ˚C ) Fig.18-a Voltage Gain ( 1 ) vs. Frequency Voltage gain ( 1 ) A V1 ( dB ) 2.50 - 30 Reference voltage change ∆V REF ( mV ) Reference input current I REF ( µ A ) IA = 10mA 25 V REF = 2.60V Fig.17 Reference Voltage Change vs. Anode Voltage 3 0 V K = V REF I A = 10mA ( ˚C ) Fig.16 Reference Input Current vs. Ambient Temperature 0 - 25 2.60 Reference voltage V REF ( V ) OFF-state anode current I OFF ( µ A ) Fig.14 OFF-state Anode Current vs. Ambient Temperature 1 000 Vo Vin PC905 Fig.18-b Voltage Gain ( 2 ) vs. Frequency 10 IA = 2mA I C = 1.7mA T a = 25˚C 0 Voltage gain ( 2 ) A V2 ( dB ) Test Circuit for Voltage Gain ( 2 ) vs. Frequency 620 Ω IA - 10 10k Ω 10 µ F RL = 10k Ω - 20 1k Ω RL Vo Vin 100 Ω 10 kΩ f - 30 - 40 - 50 0.1 1 10 100 1 000 Frequency f ( kHz ) Test Circuit for Anode Current vs. Load Capacitance Fig.19 Anode Current vs. Load Capacitance A••• VK = V REF B••• V A = 5V ( at IA = 10mA ) 40 C••• VA = 10V ( at IA = 10mA ) D••• VA = 15V ( at IA = 10mA ) A 30 Oscilating area 150 Ω T a = 25˚C CL B B A Test circuit Stable area Stable area 150 Ω C 20 CL 10 D Test circuit 0 10 (A) 10k Ω Anode current IA ( mA ) 50 -3 10 -2 10 -1 100 ( B, C, D ) 10 Load capacitance C L ( µ F ) Fig.20 Collector-emitter Saturation Voltage vs. Ambient Temperature Fig.21 Current Transfer Ratio vs. Anode Current 0.16 V K = V REF IA = 20mA 100 I C = 1mA Current transfer ratio CTR ( % ) Collector-emitter saturation voltage V CE(sat ) ( V) 0.14 0.12 0.10 0.08 0.06 0.04 V K = V REF V CE = 5V T a = 25˚C 80 60 40 20 0.02 0 - 30 0 20 40 60 80 Ambient temperature T a ( ˚C ) 100 0 10 -4 10 - 3 10 - 2 Anode Current IA (A) ■ Precautions for Use Handle this product the same as with other integrated circuits against static electricity. ● As for other general cautions, refer to the chapter “ Precautions for Use ” 10 -1