SHARP PC905

PC905
Long Creepage Distance
Photocoupler with Built-in
Voltage Detection Circuit
PC905
❈ Lead forming type ( I type ) is also available. ( PC905I )
❈❈ TUV ( DIN-VDE0884 ) approved type is also available as an option.
..
■ Features
■ Outline Dimensions
1. Built-in voltage deviation detection circuit
2. Long creepage distance type
( Creepage distance : 8mm or more )
3. Conforms to European Safety Standard
( Internal insulation distance : 0.5mm or
more )
4. High collector-emitter voltage( VCEO : 70V)
5. High isolation voltage between input and
output ( Viso : 5 000V rms )
6. Recognized by UL, file No. E64380
Approved by BSI ( BS415 : No. 6990, BS7002 : No. 7567 )
Approved by SEMKO No. 963501101
Approved by DEMKO No. 392592
( Unit : mm )
Internal
connection diagram
1.2 ± 0.3
0.85 ± 0.3
6
7
5
6.5 ± 0.5
8
1
2
3
Anode mark
5
1
2
3
4
9.66 ± 0.5
3.05 ± 0.5
3.5 ± 0.5
7.62 ± 0.3
0.26 ± 0.1
2.54 ± 0.25
10.16 ± 0.5
1. Switching power supplies
1
2
3
4
■ Absolute Maximum Ratings
Output
6
4
■ Applications
Input
7
PC905
0.5 ± 0.1
Parameter
Anode current
Anode voltage
Reference input current
Power dissipation
Collector-emitter voltage
Emitter-collector voltage
Collector current
Collector power dissipation
Total power dissipation
*1
Isolation voltage
Operating temperature
Storage temperature
*2
Soldering temperature
8
Anode
Cathode
GND
Reference
5
6
7
8
NC
Emitter
Collector
NC
( Ta = 25˚C )
Symbol
IA
VA
I REF
P
V CEO
V ECO
IC
PC
P tot
V iso
T opr
T stg
T sol
Rating
50
30
10
250
70
6
50
150
350
5 000
- 25 to + 85
- 40 to + 125
260
Unit
mA
V
mA
mW
V
V
mA
mW
mW
V rms
˚C
˚C
˚C
*1 40 to 60% RH, AC for 1 minute
*2 For 10 seconds
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ”
PC905
■ Electro-optical Characteristics
Parameter
Reference voltage
*3Temperature change in
reference voltage
Voltage variation ratio
in reference voltage
Reference input current
*4Temperature change in
reference input current
Minimum drive current
OFF-state anode current
Anode-cathode forward
voltage
Collector dark current
*5
Current transfer ratio
Collector-emitter
saturation voltage
Isolation resistance
Floating capacitance
Input
Output
Transfer
characteristics
( Ta = 25˚C unless otherwise specified. )
Symbol
V REF
MIN.
2.40
TYP.
2.495
MAX.
2.60
Unit
V
Fig.
1
-
8
40
mV
1
IA = 10mA, ∆ V A = 30V- V REF
-
- 1.4
-5
mV/V
2
-
2
10
µA
3
-
0.4
3
µA
3
I MIN
I OFF
I A = 10mA, R 3 = 10k Ω
I A = 10mA, R 3 = 10k Ω ,
Ta = - 25 to + 85˚C
V K = V REF
V A = 30V, V REF = GND
-
1
0.1
2
2
mA
µA
1
4
VF
V K = V REF , I A = 10mA
-
1.2
1.4
V
1
10
320
A
%
5
6
0.2
V
6
1.0
Ω
pF
-
V REF ( dev )
∆V REF / ∆V A
I REF
I REF ( dev )
I CEO
CTR
V CE ( sat )
R ISO
Cf
Conditions
V K = V REF , I A = 10mA
V K = V REF , I A = 10mA,
Ta = - 25 to + 85˚C
V CE = 20V
V K = V REF , I A = 10mA, V CE = 5V
V K = V REF , I A = 20mA,
I C = 1mA
40 to 60% RH, DC500V
V = 0, f = 1MHz
40
-
10
-
-9
0.1
5 x 1010 1 x 1011
0.6
-7
*3 V REF ( dev ) = VREF ( MAX. ) - V REF (MIN. )
*4 I REF ( dev ) = IREF ( MAX. ) - I REF (MIN. )
*5 CTR = I C / I A x 100 ( % )
■ Test Circuit
Fig. 1
Fig. 2
IA
IA
1
A
7
1
7
VF
V
6
VK
R1
VCC
2
6
4
VCC
4
R2
V VREF
3
VK : Voltage between terminals 2 and 3
VREF : Voltage between terminals 3 and 4
2
VA
VREF
3
PC905
Fig. 3
Fig. 4
IOFF
IA
1
7
A
1
7
IREF
A
2
2
VA
6
VCC
6
4
4
VCC
R3
3
3
Fig. 5
Fig. 6
ICEO
1
7
IC
IA
A
1
7
A
VCE
V
2
VCE
2
6
6
VK
4
VCC
4
VREF
3
3
Fig. 8 Input Power Dissipation vs.
Ambient Temperature
60
300
50
250
Input power dissipation P ( mW )
Anode current I A ( mA )
Fig. 7 Anode Current vs. Ambient
Temperature
40
30
20
150
100
50
10
0
- 25
200
0
25
50
75 85
Ambient temperature T a ( ˚C )
100
0
- 25
0
25
75 85
50
Ambient temperature T
a
( ˚C )
100
PC905
Fig. 9 Collector Power Dissipation vs.
Ambient Temperature
Fig.10 Power Dissipation vs. Ambient
Temperature
600
500
150
Power dissipation P tot ( mW )
Collector power dissipation P C ( mW )
200
100
50
0
- 25
0
25
50
75 85 100
Ambient temperature T
a
200
100
0
- 25
0
25
50
75
85
100
Ambient temperature T a ( ˚C )
( ˚C )
Fig.12 Collector Dark Current vs.
Ambient Temperature
V K = V REF
I A = 10mA
V CE = 5V
10
-5
10
-6
10
-7
10
-8
10
-9
5
Collector dark current I CEO ( A)
Relative current transfer ratio ( % )
350
300
125
Fig.11 Relative Current Transfer Ratio vs.
Ambient Temperature
150
400
100
50
V CE = 20V
5
5
5
5
10
- 10
10
- 11
5
0
- 30
0
20
40
60
Ambient temperature T
a
80
100
Fig.13-a Anode Current vs. Reference
Voltage
1 200
80
100
V K = V REF
T a = 25˚C
1 000
Anode current I A ( µ A )
50
Anode current I A ( mA )
20
0
40
60
Ambient temperature T a ( ˚C)
Fig.13-b Anode Current vs. Reference
Voltage
V K = V REF
T a = 25˚C
40
30
20
800
600
400
200
10
0
0
- 20
( ˚C )
1
2
Reference voltage V REF ( V )
3
0
0
1
2
Reference voltage V REF ( V )
3
PC905
Fig.15 Reference Voltage vs.
Ambient Temperature
V A = 30V
V REF = GND
10
5
0
- 30
0
20
40
60
Ambient temperature T
a
80
100
2
1
50
Ambient temperature T
75
a
100
2.495V
2.40
2.40V
0
20
40
60
80
Ambient temperature T a ( ˚C )
0
- 10
- 20
- 30
0
5
10
15
20
I F = 2mA
T a = 25˚C
80
620 Ω
10 µ F
Vin
40
f
10k Ω
20
AV1 = 20 log
0
10
100
35
Vo
10k Ω
Frequency f ( kHz )
30
Test Circuit for Voltage Gain ( 1 ) vs.
Frequency
60
1
25
Anode voltage V A ( V )
100
- 20
0.1
100
I A = 10mA
T a = 25˚C
( ˚C )
Fig.18-a Voltage Gain ( 1 ) vs. Frequency
Voltage gain ( 1 ) A V1 ( dB )
2.50
- 30
Reference voltage change ∆V REF ( mV )
Reference input current I REF ( µ A )
IA = 10mA
25
V REF = 2.60V
Fig.17 Reference Voltage Change vs.
Anode Voltage
3
0
V K = V REF
I A = 10mA
( ˚C )
Fig.16 Reference Input Current vs.
Ambient Temperature
0
- 25
2.60
Reference voltage V REF ( V )
OFF-state anode current I OFF ( µ A )
Fig.14 OFF-state Anode Current vs.
Ambient Temperature
1 000
Vo
Vin
PC905
Fig.18-b Voltage Gain ( 2 ) vs. Frequency
10
IA = 2mA
I C = 1.7mA
T a = 25˚C
0
Voltage gain ( 2 ) A V2 ( dB )
Test Circuit for Voltage Gain ( 2 ) vs.
Frequency
620 Ω
IA
- 10
10k Ω
10 µ F
RL = 10k Ω
- 20
1k Ω
RL
Vo
Vin
100 Ω
10
kΩ
f
- 30
- 40
- 50
0.1
1
10
100
1 000
Frequency f ( kHz )
Test Circuit for Anode Current vs.
Load Capacitance
Fig.19 Anode Current vs. Load Capacitance
A••• VK = V REF
B••• V A = 5V
( at IA = 10mA )
40 C••• VA = 10V
( at IA = 10mA )
D••• VA = 15V
( at IA = 10mA )
A
30
Oscilating
area
150 Ω
T a = 25˚C
CL
B
B
A
Test circuit
Stable area
Stable area
150 Ω
C
20
CL
10
D
Test circuit
0
10
(A)
10k Ω
Anode current IA ( mA )
50
-3
10
-2
10
-1
100
( B, C, D )
10
Load capacitance C L ( µ F )
Fig.20 Collector-emitter Saturation Voltage
vs. Ambient Temperature
Fig.21 Current Transfer Ratio vs.
Anode Current
0.16
V K = V REF
IA = 20mA
100
I C = 1mA
Current transfer ratio CTR ( % )
Collector-emitter saturation voltage
V CE(sat ) ( V)
0.14
0.12
0.10
0.08
0.06
0.04
V K = V REF
V CE = 5V
T a = 25˚C
80
60
40
20
0.02
0
- 30
0
20
40
60
80
Ambient temperature T a ( ˚C )
100
0
10
-4
10 - 3
10 - 2
Anode Current IA (A)
■ Precautions for Use
Handle this product the same as with other integrated circuits against static electricity.
● As for other general cautions, refer to the chapter “ Precautions for Use ”
10
-1