SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 D Low Supply-Voltage Range, 1.8 V to 3.6 V D Ultralow-Power Consumption: D D D D D D On-Chip Comparator D Serial Communication Interface (USART), − Active Mode: 160 µA at 1 MHz, 2.2 V − Standby Mode: 0.9 µA − Off Mode (RAM Retention) : 0.1 µA Five Power-Saving Modes Wake-Up From Standby Mode in less than 6 µs 16-Bit RISC Architecture, 125-ns Instruction Cycle Time 16-Bit Timer_B With Three Capture/Compare-With-Shadow Registers 16-Bit Timer_A With Three Capture/Compare Registers D D D D D Software Selects Asynchronous UART or Synchronous SPI Programmable Code Protection With Security Fuse Family Members Include: − MSP430C1331: 8KB ROM, 256B RAM − MSP430C1351: 16KB ROM, 512B RAM Available in 64-Pin Quad Flat Pack (QFP) Emulation: Use MSP430F13xIPM For Complete Module Descriptions, See the MSP430x1xx Family User’s Guide, Literature Number SLAU049 description The Texas Instruments MSP430 family of ultralow-power microcontrollers consist of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low power modes is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that attribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6 µs. The MSP430C13x1 is a microcontroller configuration with two built-in 16-bit timers, one universal serial synchronous/asynchronous communication interfaces (USART), and 48 I/O pins. Typical applications include sensor systems that capture analog signals, convert them to digital values, and process and transmit the data to a host system. The timers make the configurations ideal for industrial control applications, hand-held meters, etc. AVAILABLE OPTIONS PACKAGED DEVICES TA −40°C to 85°C PLASTIC 64-PIN QFP (PM) MSP430C1331IPM MSP430C1351IPM Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 2001 − 2004, Texas Instruments Incorporated !" #!$% &"' &! #" #" (" " " !" && )*' &! #"+ &" ""%* %!&" "+ %% #""' POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 AVCC DVSS AV SS P6.2 P6.1 P6.0 RST/NMI TCK TMS TDI/TCLK TDO/TDI XT2IN XT2OUT P5.7/TBOUTH PM PACKAGE (TOP VIEW) 1 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 2 47 3 46 4 45 5 44 6 43 7 42 8 41 9 40 10 39 11 38 12 37 13 36 14 35 15 34 33 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 P1.5/TA0 P1.6/TA1 P1.7/TA2 P2.0/ACLK P2.1/TAINCLK P2.2/CAOUT/TA0 P2.3/CA0/TA1 P2.4/CA1/TA2 P2.5/Rosc P2.6 P2.7/TA0 P3.0/STE0 P3.1/SIMO0 P3.2/SOMI0 P3.3/UCLK0 P3.4/UTXD0 DVCC P6.3 P6.4 P6.5 P6.6 P6.7 NC XIN XOUT NC NC P1.0/TACLK P1.1/TA0 P1.2/TA1 P1.3/TA2 P1.4/SMCLK P5.6/ACLK P5.5/SMCLK pin designation, MSP430C1331, MSP430C1351 NC − No internal connection 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P5.4/MCLK P5.3 P5.2 P5.1 P5.0 P4.7/TBCLK P4.6 P4.5 P4.4 P4.3 P4.2/TB2 P4.1/TB1 P4.0/TB0 P3.7 P3.6 P3.5/URXD0 SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 functional block diagrams MSP430C13x1 XIN XOUT/TCLK DVCC DVSS AVCC P1 AVSS RST/NMI 8 ROSC Oscillator XT2IN System Clock XT2OUT ACLK 16KB ROM 512B RAM SMCLK 8KB ROM 256B RAM P2 P3 8 I/O Port 1/2 16 I/Os, with Interrupt Capability P4 8 P5 8 P6 8 I/O Port 3/4 16 I/Os 8 I/O Port 5/6 16 I/Os MCLK Test MAB, 4 Bit MAB,MAB, 16 Bit16-Bit JTAG CPU Emulation Module MCB Incl. 16 Reg. Bus Conv MDB, 16-Bit MDB, 16 Bit MDB, 8 Bit 4 TMS Watchdog Timer TCK TDI 15/16-Bit TDO/TDI Timer_B3 Timer_A3 3 CC Reg Shadow Reg 3 CC Reg POR Comparator A USART0 UART Mode SPI Mode Terminal Functions TERMINAL NAME NO. I/O DESCRIPTION AVCC AVSS 64 Supply voltage, positive terminal. AVCC and DVCC are internally connected together. 62 Supply voltage, negative terminal. AVSS and DVSS are internally connected together. DVCC 1 Supply voltage, positive terminal. AVCC and DVCC are internally connected together. DVSS 63 Supply voltage, negative terminal. AVSS and DVSS are internally connected together. P1.0/TACLK 12 I/O General-purpose digital I/O pin/Timer_A, clock signal TACLK input P1.1/TA0 13 I/O General-purpose digital I/O pin/Timer_A, capture: CCI0A input, compare: Out0 output P1.2/TA1 14 I/O General-purpose digital I/O pin/Timer_A, capture: CCI1A input, compare: Out1 output P1.3/TA2 15 I/O General-purpose digital I/O pin/Timer_A, capture: CCI2A input, compare: Out2 output P1.4/SMCLK 16 I/O General-purpose digital I/O pin/SMCLK signal output P1.5/TA0 17 I/O General-purpose digital I/O pin/Timer_A, compare: Out0 output P1.6/TA1 18 I/O General-purpose digital I/O pin/Timer_A, compare: Out1 output P1.7/TA2 19 I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output P2.0/ACLK 20 I/O General-purpose digital I/O pin/ACLK output P2.1/TAINCLK 21 I/O General-purpose digital I/O pin/Timer_A, clock signal at INCLK P2.2/CAOUT/TA0 22 I/O General-purpose digital I/O pin/Timer_A, capture: CCI0B input/Comparator_A output P2.3/CA0/TA1 23 I/O General-purpose digital I/O pin/Timer_A, compare: Out1 output/Comparator_A input P2.4/CA1/TA2 24 I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output/Comparator_A input P2.5/ROSC P2.6 25 I/O General-purpose digital I/O pin/input for external resistor defining the DCO nominal frequency 26 I/O General-purpose digital I/O pin P2.7/TA0 27 I/O General-purpose digital I/O pin/Timer_A, compare: Out0 output P3.0/STE0 28 I/O General-purpose digital I/O pin/slave transmit enable – USART0/SPI mode POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 Terminal Functions (Continued) TERMINAL NAME NO. I/O DESCRIPTION P3.1/SIMO0 29 I/O General-purpose digital I/O pin/slave in/master out of USART0/SPI mode P3.2/SOMI0 30 I/O General-purpose digital I/O pin/slave out/master in of USART0/SPI mode P3.3/UCLK0 31 I/O General-purpose digital I/O pin/external clock input − USART0/UART or SPI mode, clock output – USART0/SPI mode P3.4/UTXD0 32 I/O General-purpose digital I/O pin/transmit data out – USART0/UART mode P3.5/URXD0 33 I/O General-purpose digital I/O pin/receive data in – USART0/UART mode P3.6 34 I/O General-purpose digital I/O pin P3.7 35 I/O General-purpose digital I/O pin P4.0/TB0 36 I/O General-purpose digital I/O pin/Timer_B, capture: CCI0A/B input, compare: Out0 output P4.1/TB1 37 I/O General-purpose digital I/O pin/Timer_B, capture: CCI1A/B input, compare: Out0 output P4.2/TB2 38 I/O General-purpose digital I/O pin/Timer_B, capture: CCI2A/B input, compare: Out0 output P4.3 39 I/O General-purpose digital I/O pin P4.4 40 I/O General-purpose digital I/O pin P4.5 41 I/O General-purpose digital I/O pin P4.6 42 I/O General-purpose digital I/O pin P4.7/TBCLK 43 I/O General-purpose digital I/O pin/Timer_B, clock signal TBCLK input P5.0 44 I/O General-purpose digital I/O pin P5.1 45 I/O General-purpose digital I/O pin P5.2 46 I/O General-purpose digital I/O pin P5.3 47 I/O General-purpose digital I/O pin P5.4/MCLK 48 I/O General-purpose digital I/O pin/main system clock MCLK output P5.5/SMCLK 49 I/O General-purpose digital I/O pin/submain system clock SMCLK output P5.6/ACLK 50 I/O General-purpose digital I/O pin/auxiliary clock ACLK output P5.7/TBOUTH 51 I/O General-purpose digital I/O pin/switch all PWM digital output ports to high impedance − Timer_B7 TB0 to TB2 P6.0 59 I/O General-purpose digital I/O pin P6.1 60 I/O General-purpose digital I/O pin P6.2 61 I/O General-purpose digital I/O pin P6.3 2 I/O General-purpose digital I/O pin P6.4 3 I/O General-purpose digital I/O pin P6.5 4 I/O General-purpose digital I/O pin P6.6 5 I/O General-purpose digital I/O pin P6.7 6 I/O General-purpose digital I/O pin RST/NMI 58 I Reset input, nonmaskable interrupt input port TCK 57 I Test clock. TCK is the clock input port for device programming test. TDI/TCLK 55 I Test data input or test clock input. TDI is used as a data input port. The device protection fuse is connected to TDI. TDO/TDI 54 I/O 56 I TMS Test data output port. TDO/TDI data output Test mode select. TMS is used as an input port for device test. NC 7, 10, 11 XIN 8 I Input port for crystal oscillator XT1. Standard or watch crystals can be connected. XOUT 9 O Output terminal of crystal oscillator XT1 XT2IN 53 I Input port for crystal oscillator XT2. Only standard crystals can be connected. XT2OUT 52 O Output terminal of crystal oscillator XT2 4 No internal connection POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 short-form description CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. Program Counter PC/R0 Stack Pointer SP/R1 SR/CG1/R2 Status Register Constant Generator The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers. Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions. instruction set The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; the address modes are listed in Table 2. CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 General-Purpose Register R11 General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 Table 1. Instruction Word Formats Dual operands, source-destination e.g. ADD R4,R5 R4 + R5 −−−> R5 Single operands, destination only e.g. CALL PC −−>(TOS), R8−−> PC Relative jump, un/conditional e.g. JNE R8 Jump-on-equal bit = 0 Table 2. Address Mode Descriptions ADDRESS MODE S D Indirect D D D D D Indirect autoincrement Register Indexed Symbolic (PC relative) Absolute Immediate NOTE: S = source D D D D SYNTAX EXAMPLE MOV Rs,Rd MOV R10,R11 MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) OPERATION R10 −−> R11 M(2+R5)−−> M(6+R6) MOV EDE,TONI M(EDE) −−> M(TONI) MOV &MEM,&TCDAT M(MEM) −−> M(TCDAT) MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) −−> M(Tab+R6) D MOV @Rn+,Rm MOV @R10+,R11 M(R10) −−> R11 R10 + 2−−> R10 D MOV #X,TONI MOV #45,TONI #45 −−> M(TONI) D = destination POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 operating modes The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request and restore back to the low-power mode on return from the interrupt program. The following six operating modes can be configured by software: D Active mode AM; − All clocks are active D Low-power mode 0 (LPM0); − CPU is disabled ACLK and SMCLK remain active. MCLK is disabled D Low-power mode 1 (LPM1); − CPU is disabled ACLK and SMCLK remain active. MCLK is disabled DCO’s dc-generator is disabled if DCO not used in active mode D Low-power mode 2 (LPM2); − CPU is disabled MCLK and SMCLK are disabled DCO’s dc-generator remains enabled ACLK remains active D Low-power mode 3 (LPM3); − CPU is disabled MCLK and SMCLK are disabled DCO’s dc-generator is disabled ACLK remains active D Low-power mode 4 (LPM4); − 6 CPU is disabled ACLK is disabled MCLK and SMCLK are disabled DCO’s dc-generator is disabled Crystal oscillator is stopped POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 interrupt vector addresses The interrupt vectors and the power-up starting address are located in the address range 0FFFFh − 0FFE0h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY Power-up External reset Watchdog WDTIFG (see Note 1) Reset 0FFFEh 15, highest NMI Oscillator fault NMIIFG (see Notes 1 & 4) OFIFG (see Notes 1 & 4) (Non)maskable (Non)maskable 0FFFCh 14 Timer_B3 TBCCR0 CCIFG (see Note 2) Maskable 0FFFAh 13 Timer_B3 TBCCR1 and TBCCR2 CCIFGs, TBIFG (see Notes 1 & 2) Maskable 0FFF8h 12 Comparator_A CAIFG Maskable 0FFF6h 11 Watchdog timer WDTIFG Maskable 0FFF4h 10 USART0 receive URXIFG0 Maskable 0FFF2h 9 USART0 transmit UTXIFG0 Maskable 0FFF0h 8 0FFEEh 7 Timer_A3 TACCR0 CCIFG (see Note 2) Maskable 0FFECh 6 Timer_A3 TACCR1 and TACCR2 CCIFGs, TAIFG (see Notes 1 & 2) Maskable 0FFEAh 5 I/O port P1 (eight flags) P1IFG.0 to P1IFG.7 (see Notes 1 & 2) Maskable 0FFE8h 4 0FFE6h 3 0FFE4h 2 0FFE2h 1 0FFE0h 0, lowest I/O port P2 (eight flags) NOTES: 1. 2. 3. 4. P2IFG.0 to P2IFG.7 (see Notes 1 & 2) Maskable Multiple source flags Interrupt flags are located in the module. Nonmaskable: neither the individual nor the general interrupt-enable bit will disable an interrupt event. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable can not disable it. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 special function registers Most interrupt and module-enable bits are collected in the lowest address space. Special-function register bits not allocated to a functional purpose are not physically present in the device. This arrangement provides simple software access. interrupt enable 1 and 2 7 Address 0h 6 UTXIE0 rw-0 5 4 URXIE0 3 2 NMIIE rw-0 1 0 OFIE rw-0 rw-0 WDTIE rw-0 WDTIE: Watchdog Timer interrupt enable. Inactive if watchdog mode is selected. Active if Watchdog Timer is configured in interval timer mode. OFIE: Oscillator-fault-interrupt enable NMIIE: Nonmaskable-interrupt enable URXIE0: USART0: UART and SPI receive-interrupt enable UTXIE0: USART0: UART and SPI transmit-interrupt enable 7 Address 6 5 4 3 2 4 3 2 1 0 01h interrupt flag register 1 and 2 7 Address 02h 6 UTXIFG0 rw-1 5 URXIFG0 NMIIFG rw-0 1 0 OFIFG rw-0 rw-1 WDTIFG rw-(0) WDTIFG: Set on Watchdog Timer overflow (in watchdog mode) or security key violation. Reset on VCC power-up or a reset condition at RST/NMI pin in reset mode. OFIFG: Flag set on oscillator fault NMIIFG: Set via RST/NMI pin URXIFG0: USART0: UART and SPI receive flag UTXIFG0: USART0: UART and SPI transmit flag 7 Address 6 5 4 3 2 1 0 5 4 3 2 1 0 03h module enable registers 1 and 2 7 UTXE0 Address 04h rw-0 8 6 URXE0 USPIE0 rw-0 URXE0: USART0: UART receive enable UTXE0: USART0: UART transmit enable USPIE0: USART0: SPI (synchronous peripheral interface) transmit and receive enable POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 7 Address 6 5 4 3 2 1 0 05h Legend: rw: rw-0,1: rw-(0,1): Bit Can Be Read and Written Bit Can Be Read and Written. It Is Reset or Set by PUC. Bit Can Be Read and Written. It Is Reset or Set by POR. SFR Bit Not Present in Device memory organization MSP430C1331 MSP430C1351 Size ROM ROM 8KB 0FFFFh − 0FFE0h 0FFFFh − 0E000h 16KB 0FFFFh − 0FFE0h 0FFFFh − 0C000h Size 256 Byte 02FFh − 0200h 512 Byte 03FFh − 0200h 16-bit 8-bit 8-bit SFR 01FFh − 0100h 0FFh − 010h 0Fh − 00h 01FFh − 0100h 0FFh − 010h 0Fh − 00h Memory Interrupt vector Code memory RAM Peripherals peripherals Peripherals are connected to the CPU through data, address, and control busses and can be handled using all instructions. For complete module descriptions, see the MSP430x1xx Family User’s Guide, literature number SLAU049. digital I/O There are six 8-bit I/O ports implemented—ports P1 through P6: D D D D All individual I/O bits are independently programmable. Any combination of input, output, and interrupt conditions is possible. Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2. Read/write access to port-control registers is supported by all instructions. oscillator and system clock The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal oscillator, an internal digitally-controlled oscillator (DCO) and a high frequency crystal oscillator. The basic clock module is designed to meet the requirements of both low system cost and low-power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 µs. The basic clock module provides the following clock signals: D Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high frequency crystal. D Main clock (MCLK), the system clock used by the CPU. D Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules. watchdog timer The primary function of the watchdog timer (WDT) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 USART0 The MSP430C13x1 devices have one hardware universal synchronous/asynchronous receive transmit (USART0) peripheral module that is used for serial data communication. The USART supports synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels. comparator_A The primary function of the comparator_A module is to support precision slope analog−to−digital conversions, battery−voltage supervision, and monitoring of external analog signals. timer_A3 Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Timer_A3 Signal Connections Input Pin Number Device Input Signal Module Input Name 12 - P1.0 TACLK TACLK ACLK ACLK SMCLK SMCLK 21 - P2.1 TAINCLK INCLK 13 - P1.1 TA0 CCI0A TA0 CCI0B DVSS DVCC GND 22 - P2.2 14 - P1.2 15 - P1.3 TA1 VCC CCI1A CAOUT (internal) CCI1B DVSS DVCC GND TA2 VCC CCI2A ACLK (internal) CCI2B DVSS DVCC 10 GND Module Block Module Output Signal Timer NA 13 - P1.1 17 - P1.5 CCR0 TA0 27 - P2.7 14 - P1.2 18 - P1.6 CCR1 TA1 23 - P2.3 15 - P1.3 19 - P1.7 CCR2 VCC POST OFFICE BOX 655303 Output Pin Number • DALLAS, TEXAS 75265 TA2 24 - P2.4 SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 timer_B3 Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Timer_B3 Signal Connections Input Pin Number Device Input Signal Module Input Name 43 - P4.7 TBCLK TBCLK ACLK ACLK SMCLK SMCLK 43 - P4.7 TBCLK INCLK 36 - P4.0 TB0 CCI0A 36 - P4.0 TB0 CCI0B DVSS DVCC GND 37 - P4.1 37 - P4.1 TB1 VCC CCI1A TB1 CCI1B DVSS DVCC GND 38 - P4.2 TB2 VCC CCI2A 38 - P4.2 TB2 CCI2B DVSS DVCC GND Module Block Module Output Signal Timer NA Output Pin Number 36 - P4.0 CCR0 TB0 37 - P4.1 CCR1 TB1 38 - P4.2 CCR2 TB2 VCC POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 peripheral file map PERIPHERALS WITH WORD ACCESS Watchdog Watchdog Timer control WDTCTL 0120h Timer_B3 Timer_B interrupt vector TBIV 011Eh Timer_B control TBCTL 0180h Capture/compare control 0 TBCCTL0 0182h Capture/compare control 1 TBCCTL1 0184h Capture/compare control 2 TBCCTL2 0186h Reserved 0188h Reserved 018Ah Reserved 018Ch Reserved 018Eh Timer_B register TBR 0190h Capture/compare register 0 TBCCR0 0192h Capture/compare register 1 TBCCR1 0194h Capture/compare register 2 TBCCR2 0196h Reserved 0198h Reserved 019Ah Reserved 019Ch Reserved Timer_A3 019Eh Timer_A interrupt vector TAIV 012Eh Timer_A control TACTL 0160h Capture/compare control 0 TACCTL0 0162h Capture/compare control 1 TACCTL1 0164h Capture/compare control 2 TACCTL2 0166h Reserved 0168h Reserved 016Ah Reserved 016Ch Reserved 016Eh Timer_A register TAR 0170h Capture/compare register 0 TACCR0 0172h Capture/compare register 1 TACCR1 0174h Capture/compare register 2 TACCR2 0176h Reserved 0178h Reserved 017Ah Reserved 017Ch Reserved 017Eh PERIPHERALS WITH BYTE ACCESS USART0 12 Transmit buffer U0TXBUF 077h Receive buffer U0RXBUF 076h Baud rate U0BR1 075h Baud rate U0BR0 074h Modulation control U0MCTL 073h Receive control U0RCTL 072h Transmit control U0TCTL 071h USART control U0CTL 070h POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 peripheral file map (continued) PERIPHERALS WITH BYTE ACCESS (CONTINUED) Comparator_A Basic Clock Port P6 Port P5 Port P4 Port P3 Port P2 Port P1 Special Functions Comparator_A port disable CAPD 05Bh Comparator_A control2 CACTL2 05Ah Comparator_A control1 CACTL1 059h Basic clock system control2 BCSCTL2 058h Basic clock system control1 BCSCTL1 057h DCO clock frequency control DCOCTL 056h Port P6 selection P6SEL 037h Port P6 direction P6DIR 036h Port P6 output P6OUT 035h Port P6 input P6IN 034h Port P5 selection P5SEL 033h Port P5 direction P5DIR 032h Port P5 output P5OUT 031h Port P5 input P5IN 030h Port P4 selection P4SEL 01Fh Port P4 direction P4DIR 01Eh Port P4 output P4OUT 01Dh Port P4 input P4IN 01Ch Port P3 selection P3SEL 01Bh Port P3 direction P3DIR 01Ah Port P3 output P3OUT 019h Port P3 input P3IN 018h Port P2 selection P2SEL 02Eh Port P2 interrupt enable P2IE 02Dh Port P2 interrupt-edge select P2IES 02Ch Port P2 interrupt flag P2IFG 02Bh Port P2 direction P2DIR 02Ah Port P2 output P2OUT 029h Port P2 input P2IN 028h Port P1 selection P1SEL 026h Port P1 interrupt enable P1IE 025h Port P1 interrupt-edge select P1IES 024h Port P1 interrupt flag P1IFG 023h Port P1 direction P1DIR 022h Port P1 output P1OUT 021h Port P1 input P1IN 020h SFR module enable 2 ME2 005h SFR module enable 1 ME1 004h SFR interrupt flag 2 IFG2 003h SFR interrupt flag 1 IFG1 002h SFR interrupt enable 2 IE2 001h SFR interrupt enable 1 IE1 000h POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 absolute maximum ratings over operating free-air temperature (unless otherwise noted)† Voltage applied at VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to + 4.1 V Voltage applied to any pin (see Note) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to VCC+0.3 V Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA Storage temperature (unprogrammed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C Storage temperature (programmed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE: All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is applied to the TDI/TCLK pin when blowing the JTAG fuse. recommended operating conditions PARAMETER MIN NOM MAX UNITS Supply voltage during program execution, VCC (AVCC = DVCC = VCC) 1.8 3.6 Supply voltage, VSS (AVSS = DVSS = VSS) 0.0 0.0 V Operating free-air temperature range, TA −40 85 °C 450 8000 kHz 1000 8000 kHz 450 8000 1000 8000 DC 4.15 DC 8 LFXT1 crystal frequency, f(LFXT1) (see Notes 1 and 2) LF selected, XTS=0 Watch crystal XT1 selected, XTS=1 Ceramic resonator XT1 selected, XTS=1 Crystal Ceramic resonator XT2 crystal frequency, f(XT2) Crystal VCC = 1.8 V VCC = 3.6 V Processor frequency (signal MCLK), f(System) 32768 V Hz kHz MHz NOTES: 1. In LF mode, the LFXT1 oscillator requires a watch crystal and the LFXT1 oscillator requires a 5.1-MΩ resistor from XOUT to VSS when VCC < 2.5 V. In XT1 mode, the LFXT1. and XT2 oscillators accept a ceramic resonator or a 4-MHz crystal frequency at VCC ≥ 2.2 V. In XT1 mode, the LFXT1 and XT2 oscillators accept a ceramic resonator or an 8-MHz crystal frequency at VCC ≥ 2.8 V. 2. In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, FXT1 accepts a ceramic resonator or a crystal. f(System) MHz 8.0 MHz 4.15 MHz 1.8 V 2.7 V 3 V Supply Voltage − V 3.6 V Figure 1. Frequency vs Supply Voltage 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) supply current into AVCC + DVCC excluding external current PARAMETER TEST CONDITIONS Active mode, (see Note 1) f(MCLK) = f(SMCLK) = 1 MHz, f(ACLK) = 32,768 Hz, XTS=0, SELM=(0,1) TA = −40°C to 85°C Active mode, (see Note 1) f(MCLK) = f(SMCLK) = 4 096 Hz, f(ACLK) = 4,096 Hz XTS=0, SELM=(0,1), XTS=0, SELM=3 TA = −40°C to 85°C I(LPM0) Low-power mode, (LPM0) (see Note 1) TA = −40°C to 85°C I(LPM2) Low-power mode, (LPM2), f(MCLK) = f (SMCLK) = 0 MHz, f(ACLK) = 32.768 Hz, SCG0 = 0 TA = −40°C to 85°C I(AM) I(LPM3) I(LPM4) TA = −40°C TA = 25°C Low-power mode, (LPM3) f(MCLK) = f(SMCLK) = 0 MHz, f(ACLK) = 32,768 Hz, SCG0 = 1 (see Note 2) NOM MAX VCC = 2.2 V 160 200 VCC = 3 V 240 300 VCC = 2.2 V 2.5 7 VCC = 3 V 2.5 7 VCC = 2.2 V VCC = 3 V 32 45 55 70 VCC = 2.2 V 11 14 VCC = 3 V 17 22 0.8 1.5 0.9 1.5 1.6 2.8 1.8 2.2 1.8 2.2 2.3 3.9 0.1 0.5 0.1 0.5 0.8 2.5 0.1 0.5 UNIT µA A A µA VCC = 2.2 V TA = 85°C TA = −40°C Low-power mode, (LPM4) f(MCLK) = 0 MHz, f(SMCLK) = 0 MHz, f(ACLK) = 0 Hz, SCG0 = 1 MIN TA = 25°C TA = 85°C TA = −40°C VCC = 3 V TA = 25°C TA = 85°C VCC = 2.2 V TA = −40°C TA = 25°C µA A µA A µA µA µA 0.1 0.5 VCC = 3 V µA TA = 85°C 0.8 2.5 NOTES: 1. Timer_B is clocked by f(DCOCLK) = 1 MHz. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. 2. Timer_B is clocked by f(ACLK) = 32,768 Hz. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The current consumption in LPM2 and LPM3 are measured with ACLK selected. Current consumption of active mode versus system frequency I(AM) = I(AM) [1 MHz] × f(System) [MHz] Current consumption of active mode versus supply voltage I(AM) = I(AM) [3 V] + 175 µA/V × (VCC – 3 V) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) SCHMITT-trigger inputs − Ports P1, P2, P3, P4, P5, and P6 PARAMETER TEST CONDITIONS VIT+ Positive-going input threshold voltage VIT− Negative-going input threshold voltage Vhys Input voltage hysteresis (VIT+ − VIT−) MIN TYP MAX VCC = 2.2 V VCC = 3 V VCC = 2.2 V 1.1 1.5 1.5 1.9 0.4 0.9 VCC = 3 V VCC = 2.2 V 0.90 1.3 0.3 1.1 0.4 1 VCC = 3 V UNIT V V V standard inputs − RST/NMI; JTAG: TCK, TMS, TDI/TCLK, TDO/TDI PARAMETER VIL VIH TEST CONDITIONS Low-level input voltage VCC = 2.2 V / 3 V High-level input voltage MIN TYP VSS 0.8×VCC MAX UNIT VSS+0.6 VCC V V input frequency − Ports P1, P2, P3, P4, P5, and P6 PARAMETER TEST CONDITIONS f(IN) MIN TYP VCC = 2.2 V VCC = 3 V t(h) = t(L) MAX 8 10 UNIT MHz capture timing _ Timer_A3: TA0, TA1, TA2; Timer_B3: TB0, TB1, TB2 PARAMETER t(int) TEST CONDITIONS Ports P2, P4: External trigger signal for the interrupt flag (see Notes 1 and 2) VCC = 2.2 V/3 V VCC = 2.2 V MIN TYP MAX 1.5 UNIT Cycle 62 VCC = 3 V 50 NOTES: 1. The external signal sets the interrupt flag every time t(int) is met. It may be set even with trigger signals shorter than t(int). The conditions to set the flag must be met independently of this timing constraint. t(int) is defined in MCLK cycles. 2. The external signal needs additional timing because of the maximum input-frequency constraint. ns external interrupt timing PARAMETER t(int) TEST CONDITIONS Ports P1, P2: External trigger signal for the interrupt flag (see Notes 1 and 2) VCC = 2.2 V/3 V VCC = 2.2 V MIN TYP MAX 1.5 UNIT Cycle 62 VCC = 3 V 50 NOTES: 1. The external signal sets the interrupt flag every time t(int) is met. It may be set even with trigger signals shorter than t(int). The conditions to set the flag must be met independently of this timing constraint. t(int) is defined in MCLK cycles. 2. The external signal needs additional timing because of the maximum input-frequency constraint. ns leakage current (see Note 1) PARAMETER Ilkg(P1.x) Ilkg(P2.x) Leakage current TEST CONDITIONS Port P1 Port P2 V(P1.x) (see Note 2) V(P2.3) V(P2.4) (see Note 2) MIN TYP VCC = 2.2 V/3 V NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted. 2. The port pin must be selected as input and there must be no optional pullup or pulldown resistor. 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MAX ±50 ±50 UNIT nA SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) outputs − Ports P1, P2, P3, P4, P5, and P6 PARAMETER VOH VOL High-level output voltage Low-level output voltage TEST CONDITIONS MIN IOH(max) = −1.5 mA, IOH(max) = −6 mA, VCC = 2.2 V, VCC = 2.2 V, See Note 1 IOH(max) = −1.5 mA, IOH(max) = −6 mA, VCC = 3 V, VCC = 3 V, See Note 1 IOL(max) = 1.5 mA, IOL(max) = 6 mA, VCC = 2.2 V, VCC = 2.2 V, See Note 1 IOL(max) = 1.5 mA, IOL(max) = 6 mA, VCC = 3 V, VCC = 3 V, See Note 1 See Note 2 See Note 2 TYP MAX VCC−0.25 VCC−0.6 VCC VCC VCC−0.25 VCC−0.6 VCC VCC VSS VSS VSS+0.25 VSS+0.6 VSS VSS VSS+0.25 VSS+0.6 See Note 2 See Note 2 UNIT V V NOTES: 1. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±12 mA to satisfy the maximum specified voltage drop. 2. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±48 mA to satisfy the maximum specified voltage drop. output frequency PARAMETER TEST CONDITIONS fTAx, fTBx TA0..2, TB0..2 Internal clock source, SMCLK signal applied (see Note 1) fACLK, fMCLK, fSMCLK P5.6/ACLK, P5.4/MCLK, P5.5/SMCLK CL = 20 pF TYP DC MAX UNIT fSystem MHz CL = 20 pF fSystem P2.0/ACLK CL = 20 pF, VCC = 2.2 V / 3 V tXdc MIN Duty cycle of output frequency P1.4/SMCLK, CL = 20 pF, VCC = 2.2 V / 3 V fACLK = fLFXT1 = fXT1 fACLK = fLFXT1 = fLF fACLK = fLFXT1/n fSMCLK = fLFXT1 = fXT1 fSMCLK = fLFXT1 = fLF 40% 60% 30% 70% 50% 40% 60% 35% 65% fSMCLK = fLFXT1/n 50%− 15 ns 50% 50%− 15 ns fSMCLK = fDCOCLK 50%− 15 ns 50% 50%− 15 ns NOTE 1: The limits of the system clock MCLK has to be met; the system (MCLK) frequency should not exceed the limits. MCLK and SMCLK frequencies can be different. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) outputs − Ports P1, P2, P3, P4, P5, and P6 (continued) TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE 50 30 −40°C 25 VCC = 3 V 45 I OL− Low-Level Output Current − mA I OL− Low-Level Output Current − mA VCC = 2.2 V 25°C 85°C 20 15 10 5 −40°C 40 25°C 35 85°C 30 25 20 15 10 5 0 0 0.5 1 1.5 2 0 2.5 0 0.5 1 1.5 2 2.5 3 VOL − Low-Level Output Voltage − V VOL − Low-Level Output Voltage − V Figure 2 Figure 3 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE −35 −60 −40°C −30 I OH− High-Level Output Current − mA I OH− High-Level Output Current − mA VCC = 2.2 V −40°C −25 85°C 25°C −20 −15 −10 −5 0 0 0.5 1 1.5 2 2.5 VCC = 3 V −50 85°C −40 25°C −30 −20 −10 0 0 0.5 1 1.5 Figure 5 Figure 4 POST OFFICE BOX 655303 2 2.5 3 VOH − High-Level Output Voltage − V VOH − High-Level Output Voltage − V 18 3.5 • DALLAS, TEXAS 75265 3.5 SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) wake-up LPM3 PARAMETER TEST CONDITIONS MIN TYP f = 1 MHz t(LPM3) f = 2 MHz Delay time MAX UNIT 6 6 VCC = 2.2 V/3 V f = 3 MHz µs 6 RAM PARAMETER TEST CONDITIONS VRAMh CPU HALTED (see Note 1) MIN TYP MAX 1.6 UNIT V NOTE 1: This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution should take place during this supply voltage condition. Comparator_A (see Note 1) PARAMETER TEST CONDITIONS TYP MAX VCC = 2.2 V VCC = 3 V MIN 30 47 55 74 I(DD) CAON=1, CARSEL=0, CAREF=0 CAON=1, CARSEL=0, CAREF=1/2/3, no load at P2.3/CA0/TA1 and P2.4/CA1/TA2 VCC = 2.2 V 40 57 I(Refladder/Refdiode) VCC = 3 V 60 87 CAON =1 VCC = 2.2 V/3 V 0 PCA0=1, CARSEL=1, CAREF=1, no load at P2.3/CA0/TA1 and P2.4/CA1/TA2 VCC = 2.2 V/3 V 0.23 0.24 0.25 PCA0=1, CARSEL=1, CAREF=2, no load at P2.3/CA0/TA1 and P2.4/CA1/TA2 VCC = 2.2 V/3 V 0.47 0.48 0.5 PCA0=1, CARSEL=1, CAREF=3, no load at P2.3/CA0/TA1 and P2.4/CA1/TA2 TA = 85°C VCC = 2.2 V 390 480 540 VCC = 3 V 400 490 550 V(IC) V(Ref025) V(Ref050) Common-mode input voltage Voltage at 0.25 V V node CC Voltage at 0.5V V CC CC node CC VCC−1 UNIT µA µA V V(RefVT) (see Figure 6 and Figure 7) V(offset) Vhys Offset voltage See Note 2 30 mV CAON=1 VCC = 2.2 V/3 V VCC = 2.2 V/3 V −30 Input hysteresis 0 0.7 1.4 mV TA = 25 25°C, C, Overdrive 10 mV, Without filter: CAF=0 VCC = 2.2 V VCC = 3 V 130 210 300 80 150 240 TA = 25 25°C, C, Overdrive 10 mV, With filter: CAF=1 VCC = 2.2 V VCC = 3 V 1.4 1.9 3.4 0.9 1.5 2.6 25°C, TA = 25 C, Overdrive 10 mV, Without filter: CAF=0 VCC = 2.2 V VCC = 3 V 130 210 300 80 150 240 TA = 25 25°C, C, Overdrive 10 mV, With filter: CAF=1 VCC = 2.2 V VCC = 3 V 1.4 1.9 3.4 0.9 1.5 2.6 t(response LH) t(response HL) mV ns µs ns µs NOTES: 1. The leakage current for the Comparator_A terminals is identical to Ilkg(Px.x) specification. 2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements. The two successive measurements are then summed together. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 650 650 VCC = 2.2 V V(REFVT) − Reference Volts −mV V(REFVT) − Reference Volts −mV VCC = 3 V 600 Typical 550 500 450 400 −45 −25 −5 15 35 55 75 600 Typical 550 500 450 400 −45 95 −25 −5 15 35 55 TA − Free-Air Temperature − °C 0 V VCC 1 CAF CAON Low Pass Filter V+ V− + _ 0 0 1 1 To Internal Modules CAOUT Set CAIFG Flag τ ≈ 2.0 µs Figure 8. Block Diagram of Comparator_A Module VCAOUT Overdrive V− 400 mV V+ t(response) Figure 9. Overdrive Definition 20 95 Figure 7. V(RefVT) vs Temperature, VCC = 2.2 V Figure 6. V(RefVT) vs Temperature, VCC = 3 V 0 75 TA − Free-Air Temperature − °C POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) PUC/POR PARAMETER TEST CONDITIONS t(POR_Delay) Internal time delay to release POR VPOR VCC threshold at which POR release delay time begins (see Note 1) TA = −40°C TA = 25°C VCC threshold required to generate a POR (see Note 2) VCC |dV/dt| ≥ 1V/ms V(min) MIN VCC = 2.2 V/3 V TA = 85°C TYP MAX UNIT 150 250 µs 1.4 1.8 V 1.1 1.5 V 0.8 1.2 V 0.2 V t(reset) RST/NMI low time for PUC/POR Reset is accepted internally 2 µs NOTES: 1. VCC rise time dV/dt ≥ 1V/ms. 2. When driving VCC low in order to generate a POR condition, VCC should be driven to 200mV or lower with a dV/dt equal to or less than −1V/ms. The corresponding rising VCC must also meet the dV/dt requirement equal to or greater than +1V/ms. V Vcc V POR No POR POR V (min) POR t Figure 10. Power-On Reset (POR) vs Supply Voltage 2 1.8 1.8 1.5 V POR − V 1.6 1.4 1.2 1.4 1.2 1 1.2 0.8 0.8 0.6 0.4 25°C 0.2 0 −40 −20 0 20 40 60 80 TA − Temperature − °C Figure 11. VPOR vs Temperature POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21 SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) DCO (see Note 1) PARAMETER f(DCO03) f(DCO13) f(DCO23) f(DCO33) f(DCO43) f(DCO53) f(DCO63) f(DCO73) TEST CONDITIONS MIN Rsel = 0, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C Rsel = 1, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C Rsel = 2, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C Rsel = 3, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C Rsel = 4, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C Rsel = 5, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C Rsel = 6, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C MAX UNIT VCC = 2.2 V VCC = 3 V 0.08 0.12 0.15 0.08 0.13 0.16 VCC = 2.2 V VCC = 3 V 0.14 0.19 0.23 0.14 0.18 0.22 VCC = 2.2 V VCC = 3 V 0.22 0.30 0.36 0.22 0.28 0.34 VCC = 2.2 V VCC = 3 V 0.37 0.49 0.59 0.37 0.47 0.56 VCC = 2.2 V VCC = 3 V 0.61 0.77 0.93 0.61 0.75 0.90 VCC = 2.2 V VCC = 3 V 1 1.2 1.5 1 1.3 1.5 VCC = 2.2 V VCC = 3 V Rsel = 7, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C NOM 1.6 1.9 2.2 1.69 2.0 2.29 2.4 2.9 3.4 2.7 3.2 3.65 fDCO40 × 1.7 fDCO40 × 2.1 fDCO40 × 2.5 VCC = 2.2 V VCC = 3 V f(DCO47) Rsel = 4, DCO = 7, MOD = 0, DCOR = 0, TA = 25°C VCC = 2.2 V/3 V f(DCO77) Rsel = 7, DCO = 7, MOD = 0, DCOR = 0, TA = 25°C VCC = 2.2 V VCC = 3 V S(Rsel) S(DCO) SR = fRsel+1 / fRsel SDCO = fDCO+1 / fDCO VCC = 2.2 V/3 V VCC = 2.2 V/3 V Dt Temperature drift, Rsel = 4, DCO = 3, MOD = 0 (see Note 2) VCC = 2.2 V VCC = 3 V DV Drift with VCC variation, Rsel = 4, DCO = 3, MOD = 0 (see Note 2) VCC = 2.2 V/3 V 4 4.5 4.9 4.4 4.9 5.4 1.35 1.65 2 1.07 1.12 1.16 −0.31 −0.36 −0.40 −0.33 −0.38 −0.43 0 5 10 MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz %/°C %/V Frequency Variance NOTES: 1. The DCO frequency may not exceed the maximum system frequency defined by parameter processor frequency, f(System). 2. This parameter is not production tested. Max f DCO_7 Min Max f DCO_0 Min ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ 1 f DCOCLK ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ 2.2 3 VCC − V 0 1 Figure 12. DCO Characteristics 22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2 3 4 5 6 7 DCO SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) main DCO characteristics D Individual devices have a minimum and maximum operation frequency. The specified parameters for f(DCOx0) to f(DCOx7) are valid for all devices. D All ranges selected by Rsel(n) overlap with Rsel(n+1): Rsel0 overlaps Rsel1, ... Rsel6 overlaps Rsel7. D DCO control bits DCO0, DCO1, and DCO2 have a step size as defined by parameter SDCO. D Modulation control bits MOD0 to MOD4 select how often f(DCO+1) is used within the period of 32 DCOCLK cycles. The frequency f(DCO) is used for the remaining cycles. The frequency is an average equal to: f average + MOD 32 f (DCO) f (DCO)1) f (DCO))(32*MOD) f (DCO)1) DCO when using ROSC (see Note 1) PARAMETER TEST CONDITIONS fDCO, DCO output frequency Rsel = 4, DCO = 3, MOD = 0, DCOR = 1, TA = 25°C Dt, Temperature drift Rsel = 4, DCO = 3, MOD = 0, DCOR = 1 Dv, Drift with VCC variation Rsel = 4, DCO = 3, MOD = 0, DCOR = 1 VCC 2.2 V MIN NOM MAX UNIT 2.0±15% MHz 2.1±15% MHz 2.2 V/3 V ±0.1 %/°C 2.2 V/3 V 10 %/V 3V NOTES: 1. ROSC = 100kΩ. Metal film resistor, type 0257. 0.6 watt with 1% tolerance and TK = ±50ppm/°C. crystal oscillator, LFXT1 oscillator (see Note 1) PARAMETER CXIN Integrated input capacitance CXOUT Integrated output capacitance VIL VIH Input levels at XIN TEST CONDITIONS MIN NOM XTS=0; LF oscillator selected VCC = 2.2 V/3 V UNIT 12 XTS=1; XT1 oscillator selected VCC = 2.2 V/3 V pF 2 XTS=0; LF oscillator selected VCC = 2.2 V/3 V 12 XTS=1; XT1 oscillator selected VCC = 2.2 V/3 V VCC = 2.2 V/3 V (see Note 2) MAX pF 2 VSS 0.8 × VCC 0.2 × VCC V VCC V NOTES: 1. The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer. 2. Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator. crystal oscillator, XT2 oscillator (see Note 1) PARAMETER CXIN Integrated input capacitance CXOUT Integrated output capacitance VIL VIH Input levels at XT2IN TEST CONDITIONS MIN NOM VCC = 2.2 V/3 V VCC = 2.2 V/3 V MAX 2 pF 2 VCC = 2.2 V/3 V (see Note 2) VSS 0.8 × VCC UNIT pF 0.2 × VCC V VCC V NOTES: 1. The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer. 2. Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator. USART0 (see Note 1) PARAMETER t(τ) ( ) USART0: deglitch time TEST CONDITIONS VCC = 2.2 V VCC = 3 V MIN NOM MAX 200 430 800 150 280 500 UNIT ns NOTE 1: The signal applied to the USART0 receive signal/terminal (URXD0) should meet the timing requirements of t(τ) to ensure that the URXS flip-flop is set. The URXS flip-flop is set with negative pulses meeting the minimum-timing condition of t(τ). The operating conditions to set the flag must be met independently from this timing constraint. The deglitch circuitry is active only on negative transitions on the URXD0 line. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23 SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) JTAG Interface TEST CONDITIONS PARAMETER fTCK TCK input frequency see Note 1 VCC MIN 2.2 V 3V RInternal Internal pull-up resistance on TMS, TCK, TDI/TCLK see Note 2 2.2 V/ 3 V NOTES: 1. fTCK may be restricted to meet the timing requirements of the module selected. 2. TMS, TDI/TCLK, and TCK pull-up resistors are implemented in all versions. NOM MAX UNIT 0 5 MHz 0 10 MHz kΩ 25 60 90 VCC MIN NOM MAX 3.6V 5 JTAG Fuse (see Note 1) TEST CONDITIONS PARAMETER VFB IFB Voltage level on TDI/TCLK for fuse-blow Supply current into TDI/TCLK during fuse blow UNIT 5.5 V 100 mA tFB Time to blow fuse 20 ms NOTES: 1. Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched to bypass mode. 24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 APPLICATION INFORMATION input/output schematic port P1, P1.0 to P1.7, input/output with Schmitt-trigger P1SEL.x 0 P1DIR.x Direction Control From Module 1 Pad Logic P1.0/TACLK .. 0 P1OUT.x Module X OUT 1 P1.7/TA2 P1IN.x EN Module X IN D P1IRQ.x P1IE.x Q P1IFG.x EN Set Interrupt Flag Interrupt Edge Select P1IES.x P1SEL.x PnSel.x PnDIR.x Dir. CONTROL FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN PnIE.x PnIFG.x PnIES.x P1Sel.0 P1DIR.0 P1DIR.0 P1OUT.0 DVSS P1IN.0 P1IE.0 P1IFG.0 P1IES.0 P1IN.1 TACLK† CCI0A† P1IE.1 P1IFG.1 P1IES.1 P1IE.2 P1IFG.2 P1IES.2 P1IE.3 P1IFG.3 P1IES.3 P1Sel.1 P1DIR.1 P1DIR.1 P1OUT.1 P1Sel.2 P1DIR.2 P1DIR.2 P1OUT.2 Out0 signal† Out1 signal† P1Sel.3 P1DIR.3 P1DIR.3 P1OUT.3 Out2 signal† P1IN.3 CCI1A† CCI2A† P1Sel.4 P1DIR.4 P1DIR.4 P1OUT.4 unused P1IE.4 P1IFG.4 P1IES.4 P1DIR.5 P1DIR.5 P1OUT.5 P1IN.5 unused P1IE.5 P1IFG.5 P1IES.5 P1Sel.6 P1DIR.6 P1DIR.6 P1OUT.6 SMCLK Out0 signal† Out1 signal† P1IN.4 P1Sel.5 P1IN.6 unused P1IE.6 P1IFG.6 P1IES.6 P1Sel.7 P1DIR.7 P1DIR.7 P1OUT.7 Out2 signal† P1IN.7 unused P1IE.7 P1IFG.7 P1IES.7 P1IN.2 † Signal from or to Timer_A POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25 SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 APPLICATION INFORMATION input/output schematic (continued) port P2, P2.0 to P2.2, P2.6, and P2.7 input/output with Schmitt-trigger P2SEL.x 0 P2DIR.x Direction Control From Module 0: Input 1: Output 1 0 P2OUT.x Module X OUT 1 P2.0/ACLK P2.1/TAINCLK P2.2/CAOUT/TA0 Pad Logic P2.6 P2.7/TA0 P2IN.x EN Module X IN Bus Keeper D P2IE.x P2IRQ.x P2IFG.x Set Interrupt Flag CAPD.X Interrupt Edge Select EN Q P2IES.x P2SEL.x x: Bit Identifier 0 to 2, 6, and 7 for Port P2 PnSel.x PnDIR.x Dir. CONTROL FROM MODULE PnOUT.x P2Sel.0 P2DIR.0 P2DIR.0 P2Sel.1 P2DIR.1 P2DIR.1 MODULE X OUT PnIN.x MODULE X IN PnIE.x PnIFG.x PnIES.x P2OUT.0 ACLK P2IN.0 P2IE.0 P2IFG.0 P2IES.0 P2OUT.1 DVSS P2IN.1 P2IE.1 P2IFG.1 P2IES.1 P2Sel.2 P2DIR.2 P2DIR.2 P2OUT.2 CAOUT† P2IN.2 unused INCLK‡ CCI0B‡ P2IE.2 P2IFG.2 P2IES.2 P2Sel.6 P2DIR.6 P2DIR.6 P2OUT.6 DVSS P2IN.6 unused P2IE.6 P2IFG.6 P2IES.6 P2Sel.7 P2DIR.7 P2DIR.7 P2OUT.7 Out0 signal§ P2IN.7 unused P2IE.7 P2IFG.7 P2IES.7 † Signal from Comparator_A ‡ Signal to Timer_A § Signal from Timer_A 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 APPLICATION INFORMATION input/output schematic (continued) port P2, P2.3 to P2.4, input/output with Schmitt-trigger P2SEL.3 0: Input 1: Output 0 P2DIR.3 Direction Control From Module 1 Pad Logic P2.3/CA0/TA1 0 P2OUT.3 Module X OUT 1 P2IN.3 EN Module X IN Bus Keeper D P2IRQ.3 P2IE.3 P2IFG.3 EN Set Q Interrupt Edge Select CAPD.3 Comparator_A Interrupt Flag P2IES.3 P2SEL.3 CAREF CAF + CCI1B To Timer_A3 − P2SEL.4 P2IES.4 Interrupt Flag P2IFG.4 P2IRQ.4 CAEX P2CA Set EN Q P2IE.4 CAREF Reference Block Edge Select Interrupt CAPD.4 D Module X IN Bus Keeper EN P2IN.4 Module X OUT P2OUT.4 From Module Direction Control P2DIR.4 1 0 1 P2.4/CA1/TA2 Pad Logic 1: Output 0: Input 0 P2SEL.4 PnSel.x PnDIR.x DIRECTION CONTROL FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN PnIE.x PnIFG.x PnIES.x P2Sel.3 P2DIR.3 P2DIR.3 P2OUT.3 P2IN.3 unused P2IE.3 P2IFG.3 P2IES.3 P2Sel.4 P2DIR.4 † Signal from Timer_A P2DIR.4 P2OUT.4 Out1 signal† Out2 signal† P2IN.4 unused P2IE.4 P2IFG.4 P2IES.4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 27 SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 APPLICATION INFORMATION input/output schematic (continued) port P2, P2.5, input/output with Schmitt-trigger and Rosc function for the basic clock module 0: Input 1: Output P2SEL.5 0 P2DIR.5 Direction Control From Module Pad Logic 1 P2.5/Rosc 0 P2OUT.5 Module X OUT 1 Bus Keeper P2IN.5 EN Module X IN P2IRQ.5 D P2IE.5 Q P2IFG.5 EN Set Interrupt Flag VCC Edge Select Interrupt Internal to Basic Clock Module 0 1 To DC Generator P2IES.5 P2SEL.5 DCOR CAPD.5 DCOR: Control Bit From Basic Clock Module If it Is Set, P2.5 Is Disconnected From P2.5 Pad PnSel.x PnDIR.x DIRECTION CONTROL FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN PnIE.x PnIFG.x PnIES.x P2Sel.5 P2DIR.5 P2DIR.5 P2OUT.5 DVSS P2IN.5 unused P2IE.5 P2IFG.5 P2IES.5 28 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 APPLICATION INFORMATION input/output schematic (continued) port P3, P3.0 and P3.4 to P3.7, input/output with Schmitt-trigger P3SEL.x 0: Input 1: Output 0 P3DIR.x Direction Control From Module 1 Pad Logic P3OUT.x Module X OUT 0 P3.0/STE0 1 P3.4/UTXD0 P3.5/URXD0 P3.6 P3.7 P3IN.x EN D Module X IN x: Bit Identifier, 0 and 4 to 7 for Port P3 PnSel.x PnDIR.x P3Sel.0 P3DIR.0 P3Sel.4 P3DIR.4 P3Sel.5 P3DIR.5 P3Sel.6 P3DIR.6 P3Sel.7 P3DIR.7 DIRECTION CONTROL FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN DVSS DVCC DVSS P3OUT.0 DVSS UTXD0† P3IN.0 STE0 P3OUT.4 P3IN.4 P3OUT.5 DVSS P3IN.5 Unused URXD0‡ DVCC DVSS P3OUT.6 DVSS P3IN.6 Unused P3OUT.7 DVSS P3IN.7 Unused † Output from USART0 module ‡ Input to USART0 module port P3, P3.1, input/output with Schmitt-trigger P3SEL.1 SYNC MM STC STE 0 P3DIR.1 0: Input 1: Output 1 DCM_SIMO Pad Logic P3.1/SIMO0 0 P3OUT1 (SI)MO0 From USART0 1 P3IN.1 EN SI(MO)0 To USART0 D POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 29 SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 APPLICATION INFORMATION input/output schematic (continued) port P3, P3.2, input/output with Schmitt-trigger P3SEL.2 SYNC MM STC STE 0 P3DIR.2 0: Input 1: Output 1 DCM_SOMI Pad Logic P3.2/SOMI0 0 P3OUT.2 SO(MI)0 From USART0 1 P3IN.2 EN (SO)MI0 To USART0 D port P3, P3.3, input/output with Schmitt-trigger P3SEL.3 SYNC MM STC STE 0 P3DIR.3 0: Input 1: Output 1 DCM_UCLK Pad Logic P3.3/UCLK0 0 P3OUT.3 UCLK.0 From USART0 1 P3IN.3 EN UCLK0 D To USART0 NOTE: UART mode: The UART clock can only be an input. If UART mode and UART function are selected, the P3.3/UCLK0 is always an input. SPI, slave mode: The clock applied to UCLK0 is used to shift data in and out. SPI, master mode: The clock to shift data in and out is supplied to connected devices on pin P3.3/UCLK0 (in slave mode). 30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 APPLICATION INFORMATION input/output schematic (continued) port P4, P4.0 to P4.6, input/output with Schmitt-trigger P4SEL.x 0 P4DIR.x Direction Control From Module TBOUTHiZ 0: Input 1: Output 1 Pad Logic 0 P4OUT.x Module X OUT 1 P4.0/TB0 P4.1/TB1 P4.2/TB2 P4.3 P4.4 P4.5 P4.6 Bus Keeper P4IN.x EN Module X IN D x: bit identifier, 0 to 6 for Port P4 PnSel.x PnDIR.x DIRECTION CONTROL FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN P4Sel.0 P4DIR.0 P4DIR.0 P4OUT.0 P4IN.0 P4Sel.1 P4DIR.1 P4DIR.1 P4OUT.1 Out0 signal† Out1 signal† P4IN.1 CCI0A / CCI0B‡ CCI1A / CCI1B‡ P4Sel.2 P4DIR.2 P4DIR.2 P4OUT.2 Out2 signal† P4IN.2 CCI2A / CCI2B‡ P4Sel.3 P4DIR.3 P4DIR.3 P4OUT.3 DVSS P4IN.3 Unused P4Sel.4 P4DIR.4 P4DIR.4 P4OUT.4 DVSS P4IN.4 Unused P4Sel.5 P4DIR.5 P4DIR.5 P4OUT.5 DVSS P4IN.5 Unused P4Sel.6 P4DIR.6 P4DIR.6 P4OUT.6 DVSS P4IN.6 Unused † Signal from Timer_B ‡ Signal to Timer_B NOTE: TBoutHiZ signal is used by port module P4, pins P4.0 to P4.6. The function TBoutHiZ is mainly used with Timer_B. Port pins P4.3 to P4.6 have the TBoutHiZ function, but no Timer_B output is available for secondary functions. The port selection function can be used to get the port pin to high impedance and to use the P4DIR.x bits. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 31 SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 APPLICATION INFORMATION input/output schematic (continued) port P4, P4.7, input/output with Schmitt-trigger P4SEL.7 0: Input 1: Output 0 P4DIR.7 1 Pad Logic P4.7/TBCLK 0 P4OUT.7 DVSS 1 P4IN.7 EN Timer_B, D TBCLK port P5, P5.0 to P5.7, input/output with Schmitt-trigger P5SEL.x 0: Input 1: Output 0 P5DIR.x Direction Control From Module 1 Pad Logic 0 P5OUT.x Module X OUT 1 P5.0 P5.1 P5.2 P5.3 P5.4/MCLK P5IN.x P5.5/SMCLK EN Module X IN P5.6/ACLK/ TBOUTH D x: Bit Identifier, 0 to 7 for Port P5 PnSel.x PnDIR.x Dir. CONTROL FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN P5Sel.0 P5DIR.0 P5OUT.0 DVSS P5IN.0 unused P5Sel.1 P5DIR.1 DVSS DVCC P5OUT.1 DVSS P5IN.1 unused P5Sel.2 P5DIR.2 DVSS P5IN.2 unused P5DIR.3 DVCC DVCC P5OUT.2 P5Sel.3 P5OUT.3 DVSS P5IN.3 unused P5Sel.4 P5DIR.4 MCLK P5IN.4 unused P5DIR.5 DVCC DVCC P5OUT.4 P5Sel.5 P5OUT.5 SMCLK P5IN.5 unused P5Sel.6 P5DIR.6 DVCC DVSS P5OUT.6 ACLK P5IN.6 unused P5Sel.7 P5DIR.7 P5OUT.7 DVSS P5IN.7 TBOUTHiZ NOTE: TBOUTHiZ signal is used by port module P4, pins P4.0 to P4.6. The function of TBOUTHiZ is mainly useful when used with Timer_B. 32 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 APPLICATION INFORMATION input/output schematic (continued) port P6, P6.0 to P6.7, input/output with Schmitt-trigger P6SEL.x 0 P6DIR.x Direction Control From Module 0: Input 1: Output 1 Pad Logic P6.0 .. P6.7 0 P6OUT.x Module X OUT 1 Bus Keeper P6IN.x EN Module X IN D x: Bit Identifier, 0 to 7 for Port P6 PnSel.x PnDIR.x DIR. CONTROL FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN P6Sel.0 P6DIR.0 P6DIR.0 P6OUT.0 DVSS P6IN.0 unused P6Sel.1 P6DIR.1 P6DIR.1 P6OUT.1 DVSS P6IN.1 unused P6Sel.2 P6DIR.2 P6DIR.2 P6OUT.2 DVSS P6IN.2 unused P6Sel.3 P6DIR.3 P6DIR.3 P6OUT.3 DVSS P6IN.3 unused P6Sel.4 P6DIR.4 P6DIR.4 P6OUT.4 DVSS P6IN.4 unused P6Sel.5 P6DIR.5 P6DIR.5 P6OUT.5 DVSS P6IN.5 unused P6Sel.6 P6DIR.6 P6DIR.6 P6OUT.6 DVSS P6IN.6 unused P6Sel.7 P6DIR.7 P6DIR.7 P6OUT.7 DVSS P6IN.7 unused NOTE: Direction control bits P6DIR.x and P6SEL.x control whether the port function is active (P6DIR.x=0) or whether the input P6.x is in the high-impedance state. This is identical to the port P6 function in the MSP430F13x devices (used for emulation/prototyping), but different from other digital-only ports such as P5. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 33 SLAS341B − SEPTEMBER 2001 − REVISED SEPTEMBER 2004 APPLICATION INFORMATION JTAG pins TMS, TCK, TDI, TDO/TDI, input/output with Schmitt-trigger TDO Controlled by JTAG Controlled by JTAG JTAG TDO/TDI Controlled by JTAG DVCC TDI Fuse Burn & Test Fuse TDI/TCLK Test and Emulation Module DVCC TMS TMS DVCC During Blowing of the Fuse, Pin TDO/TDI Is Used to Apply the Test Input Data for JTAG Circuitry TCK TCK JTAG fuse check mode MSP430 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current, ITF , of 1 mA at 3 V can flow from the TDI/TCLK pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption. Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated. The fuse check current will only flow when the fuse check mode is active and the TMS pin is in a low state (see Figure 13). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition). Time TMS Goes Low After POR TMS ITDI/TCLK ITF Figure 13. Fuse Check Mode Current 34 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2004, Texas Instruments Incorporated