CXA2111R LCD Signal Processor (Gamma Correction) Description The CXA2111R is a signal processor IC developed for LCD panels. Gamma correction, gain and bias, etc., can be adjusted using the I2C bus and external adjustment pins. The output of this IC is ideal as the input of the CXA2112R (LCD sample-and-hold driver IC), and the sample-and-hold position, etc., can also be adjusted using the I2C bus. Features • Independent R, G and B gamma adjustment • Three-point gamma gain and position adjustment (one white side point, two black side points) • Independent R, G and B output amplifier gain and bias adjustment • Various I2C bus-based controls and adjustment of various characteristics by external DC input • Input signal clamp function (variable clamp voltage) • Black side limiter adjustment • CXA2112R adjustment output • Precharge output (for CXA2112R) • High frequency response • High slew rate output 52 pin LQFP (Plastic) Absolute Maximum Ratings –0.3 to +5.5 V • Supply voltage VCC • Input voltage VI –0.3 to VCC + 0.3 V • Storage temperature Tstg –65 to +150 °C • Allowable power dissipation PD 1000 mW Operating Conditions • Supply voltage • Digital input voltage high • Digital input voltage low • Operating temperature VCC VH VL Topr 4.75 to 5.25 2.2 to VCC 0 to 0.8 –20 to +70 V V V V Applications • Liquid crystal projectors • Compact liquid crystal monitors Structure Bipolar silicon monolithic IC Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. –1– E97448-PS CXA2111R GAMG_B2P 40 AMPBBIAS AMPGBIAS AMPRBIAS AMPBGAIN AMPGGAIN AMPRGAIN 36 35 GAMR_WHP GAMG_WHP 38 37 GAMB_WHP GAMB_B1P 39 GAMR_B1P GAMR_B2P GAMG_B1P Pin Configuration and Block Diagram 34 33 32 31 30 29 28 27 26 BIN γ CLAMP AMP DRIVER GAMB_B2P 41 25 CLPLEV GAMR_WHG 42 24 GIN γ CLAMP AMP DRIVER GAMG_WHG 43 23 ATT GAMB_WHG 44 22 RIN γ CLAMP AMP DRIVER GAMR_B1G 45 21 VCC γ • AMP Adjust CLAMP Control GAMG_B1G 46 20 CLPPLS 19 GND GAMB_B1G 47 GAMR_B2G 48 18 ROUT DAC/Control 6bit × 25 GAMG_B2G 49 Input I/F GAMB_B2G 50 SCL 51 DIR_CNT INV_CNT 9 10 11 12 13 GAMOFF DLY_CNT 8 BLKLIM POS_CNT2 7 PRGLEV POS_CNT1 6 PRGPLS 5 SIDLEV 4 V33 3 14 BOUT DATEST 2 PRG/SID SIDOUT 1 16 GOUT 15 PGND Output I/F SDA 52 17 PVCC I2C Bus –2– CXA2111R Pin Description Pin No. 1 Symbol I/O Equivalent circuit POS_CNT1 VCC O 2 Typical pin voltage 0 to 5V (4 value) VCC VCC 1 300 2 70k 3 DLY_CNT O 3 to 5V VCC 25k 300 CXA2112R control. The sample-and-hold position is determined by the I2C data. POS_CNT1 is the low-order 4-value output and POS_CNT2 is the highorder 4-value output for a total of 16value control. I2C data input (2 bits) 00 01 10 11 POS_CNT2 VCC Description 3 Pin output L ↓ ↓ H CXA2112R control. The clock delay time is controlled by output analog value using I2C data. I2C data input (6 bits) all 0 ↓ all 1 Pin output 5V ↓ 3V CXA2112R control. The scan direction is determined by the I2C data. 4 DIR_CNT VCC VCC O L/H (0V/5V) 300 Pin output H L 4 5 5 20k I2C data input (1 bit) 0 1 CXA2112R control. The clock polarity is determined by the I2C data. INV_CNT I2C data input (1 bit) 0 1 Pin output H L VCC VCC Output for CXA2112R. This pin outputs the precharge signal. 6 SIDOUT 7 DATEST O 2.3 to 3.3V 6 Pin 6 output Pin 10 input Level controlled by Pin 11 H Level controlled by Pin 9 L DAC test output. Set the I2C data to "1". This pin is normally open. –3– CXA2111R Pin No. Symbol I/O Typical pin voltage Equivalent circuit Description VCC VCC 8 V33 9 SIDLEV O 3.3V Output for CXA2112R. This pin outputs 3.3V. 8 VCC VCC 50k 50k I 0 to 5V 11 11 These pins determine the Pin 6 output level. See Pin 6. 9 75k 100µ PRGLEV VCC VCC 10 PRGPLS I L/H L: 0 to 0.8V H: 2.2 to 5V BLKLIM I This pin determines the Pin 6 output. See Pin 6. Set to low or high when using SIDOUT (Pin 6) as a DC output. 750µ Output black level (low level side) limit voltage control. Apply voltage of 1V DC or more. 300 10 VCC VCC 12 25µ 1 to 5V 1.6k 12 VCC I2C data input (1bit) VCC 13 GAMOFF I L/H L: 0 to 0.8V H: 2.2 to 5V Gamma characteristics ON/OFF setting. Pin 13 input γ mode H L H L γ ON γ OFF γ OFF γ OFF 50k 0 300 13 1 14 BOUT 14 16 GOUT PVCC PVCC O 1.8 to 3.3V 50 B channel output. G channel output. 16 18 18 ROUT 15 PGND GND 17 PVcc 5V 19 GND GND GND R channel output. GND. 5V GND. –4– CXA2111R Pin No. Symbol I/O Typical pin voltage Equivalent circuit VCC VCC 20 CLPPLS 21 Vcc 22 RIN 24 GIN I L/H L: 0 to 0.8V H: 2.2 to 5V 50µ 300 Pin input H L VCC G channel input. 300 170µ BIN B channel input. VCC VCC 23 ATT I L/H L: 0 to 0.8V H: 2.2 to 5V 50µ VCC 50µ CLPLEV I 0 to 5V 60k 25 20k 2.5V 27 28 AMPRGAIN Input signal gain control. This pin also supports 2Vp-p input. Pin input Clamp block gain Signal level For 1Vp-p H 0dB For 2Vp-p L –6dB 300 23 VCC 25 R channel input. 22 24 26 26 Clamp function ON OFF 5V VCC 1.5 to 3.5V Input signal clamp pulse input. Set to low when not using the clamp function. 20 5V I Description Clamp voltage control during clamp operation. Pin input 5V ↓ 2.5V (open) ↓ 0V Clamp voltage 2.5V ↓ 2.0V ↓ 1.5V VCC 27 AMPGGAIN 2.5V Amplifier gain control. Independent control for R, G and B. Equivalent to 2.5V input when open. 2.5V Amplifier bias control. Independent control for R, G and B. Equivalent to 2.5V input when open. 25k 28 29 29 AMPBGAIN I 30 31 0 to 5V AMPRBIAS AMPGBIAS VCC 30 25k 31 32 32 AMPBBIAS –5– CXA2111R Pin No. Symbol 33 GAMR_WHP I/O Typical pin voltage Equivalent circuit Description VCC 2.5V 34 33 GAMG_WHP 25k 34 Gamma white position control. Independent control for R, G and B. Equivalent to 2.5V input when open. 35 35 GAMB_WHP 36 GAMR_B1P 37 GAMG_B1P 38 GAMB_B1P 39 GAMR_B2P 40 GAMG_B2P 41 GAMB_B2P Gamma black 1 position control. Independent control for R, G and B. Equivalent to 2.5V input when open. I 0 to 5V 43 36 Gamma black 2 position control. Independent control for R, G and B. Equivalent to 2.5V input when open. VCC 44 37 45 38 42 GAMR_WHG 43 GAMG_WHG 47 40 44 GAMB_WHG 48 41 45 GAMR_B1G 46 GAMG_B1G 47 GAMB_B1G 48 GAMR_B2G 49 GAMG_B2G 50 GAMB_B2G 51 SCL 2.5V 25k Gamma white gain control. Independent control for R, G and B. Equivalent to 2.5V input when open. 46 39 49 42 Gamma black 1 gain control. Independent control for R, G and B. Equivalent to 2.5V input when open. 50 Gamma black 2 gain control. Independent control for R, G and B. Equivalent to 2.5V input when open. VCC I I2C bus clock input. 50µ L/H (0V/5V) 52 SDA I/O 4k 51 52 I2C bus data input. –6– CXA2111R I2C Bus Format Slave address: 0111 0110 (76h) Sub address bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 ∗∗∗00000 (00h) AMPRGAIN ∗∗∗00001 (01h) AMPGGAIN ∗∗∗00010 (02h) AMPBGAIN ∗∗∗00011 (03h) AMPRBIAS ∗∗∗00100 (04h) AMPGBIAS ∗∗∗00101 (05h) AMPBBIAS ∗∗∗00110 (06h) GAMR_WHP ∗∗∗00111 (07h) GAMG_WHP ∗∗∗01000 (08h) GAMB_WHP ∗∗∗01001 (09h) GAMR_B1P ∗∗∗01010 (0Ah) GAMG_B1P ∗∗∗01011 (0Bh) GAMB_B1P ∗∗∗01100 (0Ch) GAMR_B2P ∗∗∗01101 (0Dh) GAMG_B2P ∗∗∗01110 (0Eh) GAMB_B2P ∗∗∗01111 (0Fh) GAMR_WHG ∗∗∗10000 (10h) GAMG_WHG ∗∗∗10001 (11h) GAMB_WHG ∗∗∗10010 (12h) GAMR_B1G ∗∗∗10011 (13h) GAMG_B1G ∗∗∗10100 (14h) GAMB_B1G ∗∗∗10101 (15h) GAMR_B2G GAMOFF DATEST ∗∗∗10110 (16h) GAMG_B2G POS_CNT2 ∗∗∗10111 (17h) GAMB_B2G POS_CNT1 ∗∗∗11000 (18h) DLY_CNT DIR_CNT INV_CNT –7– CXA2111R Electrical Characteristics (See the Electrical Characteristics Measurement Circuit.) No. Item (VCC, PVCC = 5V, Ta = 25°C) MeasuSymbol rement Measurement conditions and measurement outline point Min. Typ. [Gamma gain (white, black 1, black 2) = max., amplifier gain = max.] V22, 24, and 26 = 2.5V, V27 to 29 and 42 to 50 = 5V, V30 to 41 = open, Measure the I21 current. 80 135 1 Current consumption Icc 2 Digital input voltage high Vih Excluding the I2C bus pins (Pins 51 and 52). 3 Digital input voltage low Vil Excluding the I2C bus pins (Pins 51 and 52). 4 Maximum input voltage amplitude Vix Pins 22, 24 and 26 input 5 Maximum output voltage amplitude Vox 6 I21 Max. Unit 180 mA 2.2 Vcc V GND 0.8 V 2 V V V14 V16 V18 Pins 14, 16 and 18 output 1.5 Gamma white gain Ggwx max. V14 V16 V18 V27 to 29 and 36 to 44 = 5V, V30 to 35 = open, V45 to 50 = 0V Calculate Vwx/Vo (a) for the maximum Vwx at Vo (e), Vo (f) and Vo (g). 6.0 7.4 9.2 7 Gamma black 1 gain max. Ggb1x V14 V16 V18 V27 to 29, 39 to 41 and 45 to 47 = 5V, V30 to 32 and 36 to 38 = open, V33 to 35, 42 to 44 and 48 to 50 = 0V. Calculate Vb1x/Vo (i) for the maximum Vb1x at Vo (c), Vo (d) Vo (e) and Vo (f). 8.0 9.5 11.6 times 8 Gamma black 2 gain max. Ggb2x V14 V16 V18 V27 to 29, 36 to 38 and 48 to 50 = 5V, V30 to 32 = 3.75V, V33 to 35 and 42 to 47 = 0V, V39 to 41 = 3.3V 16.0 Calculate Vb2x/Vo (h) for the maximum Vb2x at Vo (a), Vo (b) and Vo (c). 19.7 26.8 times 9 Amplifier gain max. Gax V14 V16 V18 V13 = 0V, V27 to 29 = 0V, V30 to 50 = open Calculate Vo (j)/0.1. 1.65 2.26 3.25 times 10 Amplifier gain min. Gan V14 V16 V18 V13 = 0V, V27 to 29 = 5V, V30 to 50 = open Calculate Vo (j)/0.1. 0.28 0.35 0.46 times 11 Amplifier bias output variable range V14 V16 V18 V13 = 0V, V22, 24 and 26 = 2.5V, V27 to 29 = 0.75V, V33 to 50 = open V14, 16 and 18 voltages when V30 to 32 = 0V, open and 5V. Calculate Vb (0V) – Vb (open) and Vb (5V) – Vb (open) at Vb (0V), Vb (open) and Vb (5V). ±0.80 ±0.96 ±1.15 12 Gamma white gain Ggwxi I2C max. V14 V16 V18 V27 to 29 and 36 to 44 = 5V, V30 to 35 and 42 to 44 = open, V45 to 50 = 0V, I2C data = 3Fh Calculate Vwxi/Vo (a) for the maximum Vwxi at Vo (e), Vo (f) and Vo (g). 5.85 7.21 8.65 13 Gamma white gain Ggwni I2C min. V14 V16 V18 V27 to 29 and 36 to 44 = 5V, V30 to 35 and 42 to 44 = open, V45 to 50 = 0V, I2C data = 00h Calculate Vwni/Vo (a) for the maximum Vwni at Vo (e), Vo (f) and Vo (g). 3.80 4.71 5.65 times V14 Ggb1xi V16 V18 V27 to 29, 39 to 41 and 45 to 47 = 5V, V30 to 32, 36 to 38 and 45 to 47 = open, V33 to 35, 42 to 44 and 48 to 50 = 0V, I2C data = 3Fh Calculate Vb1xi/Vo (i) for the maximum Vb1xi at Vo (c), Vo (d) Vo (e) and Vo (f). 7.6 9.11 10.7 times V27 to 29, 39 to 41 and 45 to 47 = 5V, V30 to 32, 36 to 38 and 45 to 47 = open, V33 to 35, 42 to 44 and 48 to 50 = 0V, I2C data = 00h Calculate Vb1ni/Vo (i) for the maximum Vb1ni at Vo (c), Vo (d) Vo (e) and Vo (f). 5.05 6.02 7.00 times V27 to 29, 36 to 38 and 48 to 50 = 5V, V30 to 32 = 3.75V, V33 to 35 and 42 to 47 = 0V, V39 to 41 = 3.3V, V48 to 50 = open, I2C data = 3Fh Calculate Vb2xi/Vo (h) for the maximum Vb2xi at Vo (a), Vo (b) and Vo (c). 15.8 19.5 23.2 times 14 15 16 Gamma black 1 gain I2C max. Gamma black 1 gain I2C min. Gamma black 2 gain I2C max. Vab V14 Ggb1ni V16 V18 V14 Ggb2xi V16 V18 –8– times V times CXA2111R No. Item MeasuSymbol rement Measurement conditions and measurement outline point V27 to 29, 36 to 38 and 48 to 50 = 5V, V30 to 32 = V14 3.75V, V33 to 35 and 42 to 47 = 0V, V39 to 41 = Ggb2ni V16 3.3V, V48 to 50 = open, I2C data = 3Fh V18 Calculate Vb2xi/Vo (h) for the maximum Vb2xi at Vo (a), Vo (b) and Vo (c). Min. Typ. Max. Unit 11.3 14.0 16.7 times 17 Gamma black 2 gain I2C min. 18 Amplifier gain I2C max. Gaxi V14 V16 V18 V13 = 0V, V27 to 50 = open, I2C data = 00h Calculate Vo (j)/0.1. 0.44 0.55 0.67 times 19 Amplifier gain I2C min. Gani V14 V16 V18 V13 = 0V, V27 to 50 = open, I2C data = 3Fh Calculate Vo (j)/0.1. 0.30 0.39 0.47 times 20 Amplifier bias I2C output variable range Vabi V14 V16 V18 V13 = 0V, V22, 24 and 26 = 2.5V, V27 to 29 = 0.75V, V30 to 50 = open V14, 16 and 18 voltages when I2C data = 00h, 20h and 3Fh. Calculate Vbi (00h) – Vbi (20h) and Vbi (3Fh) – Vbi (20h) at Vbi (00h), Vbi (20h) and Vbi (3Fh). ±0.34 ±0.39 ±0.45 21 Frequency response Gf V14 V16 V18 [Gamma OFF, amplifier gain min., ratio of 100MHz to 20MHz] V13 = 0V, V27 to 29 = 5V, V30 to 50 = open Calculate 20∗LOG {Vo (k)/Vo (j)}. –2.7 22 Clamp voltage min. Vcn Vr Vg Vb SW22, 24, 26 = b, SW25 = ON V20 = 5V, V25 = 0V 1.35 1.45 1.55 V 23 Clamp voltage max. Vcx Vr Vg Vb SW22, 24, 26 = b, SW25 = ON V20 = 5V, V25 = 5V 2.75 2.85 2.95 V 24 Black limiter voltage Vbl V14 V16 V18 V12 = 1.3V, V13 = 0V, V22, 24, 26 = 2V, V27 to 29 = 0.75V, V30 to 32 = 0V, V33 to 50 = open 1.00 1.19 1.35 V 25 Output maximum voltage value Vwl (white limiter voltage) V14 V16 V18 V13, 27 to 29 = 0V, V22, 24, 26 = 3.1V, V30 to 32 = 5V, V33 to 50 = open 3.50 3.71 4.00 V 26 SIDOUT output min. Vsn V6 V9 = V11 = 0.5 V, V10 = 0V or 5V 1.75 1.98 2.15 V 27 SIDOUT output max. Vsx V6 V9 = V11 = 4.5 V, V10 = 0V or 5V 3.30 3.48 3.65 V 28 I2C DAC (6-bit) DLE Dle DAC output when DAC data = 00h, 1Fh, 20h and 3Fh. Calculate | {V (20h) – V (1Fh)}/[{V (3Fh) – V (00h}/63] | – 1 at V (00h), V (1Fh), V (20h) and V (3Fh). –0.9 0.6 LSB 29 Output rise/fall time <Reference data> Trf 30 Gamma position max. (white/black 1/black 2) Pgx <Reference data> With input DC 2.0 to 3.0V set as 0 to 100 IRE V33 to V41 = 0V 31 Gamma position min. (white/black 1/black 2) Pgn <Reference data> With input DC 2.0 to 3.0V set as 0 to 100 IRE V33 to V41 = 5V 32 Gamma position I2C max. (white) <Reference data> Pgwxi With input DC 2.0 to 3.0V set as 0 to 100 IRE V33 to 35 = open, I2C data = 3Fh 100 IRE 33 Gamma position I2C min. (white) <Reference data> Pgwni With input DC 2.0 to 3.0V set as 0 to 100 IRE V33 to 35 = open, I2C data = 00h 40 IRE 34 Gamma position I2C max. (black 1/black 2) Pgbxi <Reference data> With input DC 2.0 to 3.0V set as 0 to 100 IRE V36 to 41 = open, I2C data = 00h 70 IRE 35 Gamma position I2C min. (black 1/black 2) <Reference data> With input DC 2.0 to 3.0V set as 0 to 100 IRE V36 to 41 = open, I2C data = 3Fh 0 IRE Pgbni V14 V16 V18 Gamma OFF, gain adjusted so that 1Vp-p pulse input results in 1.5Vp-p output, output 3pF load –9– V dB ns 4 IRE 100 0 IRE GAMB_WHG GAMR_B1G GAMG_B1G GAMB_B1G GAMR_B2G GAMG_B2G GAMB_B2G DLY_CNT POS_CNT1 POS_CNT2 DIR_CNT INV_CNT GAMOFF DATEST 18 19 20 21 22 23 24 25 26 27 28 29 30 31 GAMB_B1P 12 GAMG_WHG GAMG_B1P 11 17 GAMR_B1P 10 GAMR_WHG GAMB_WHP 9 16 GAMG_WHP 8 GAMB_B2P GAMR_WHP 7 15 AMPBBIAS 6 GAMG_B2P AMPGBIAS 5 14 AMPRBIAS 4 GAMR_B2P AMPBGAIN 3 13 AMPGGAIN 2 1 0 0 0 00 00 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h 20h 20h 20h 00h 00h 00h V52 V51 V50 V49 V48 V47 V46 V45 V44 V43 V42 V41 V40 50 49 48 47 46 45 44 43 42 41 40 SCL 51 I2C input (clock) SDA 52 I2C input (data) GAMB_B2G GAMG_B2G GAMR_B2G GAMB_B1G GAMG_B1G GAMR_B1G GAMB_WHG GAMG_WHG GAMR_WHG GAMB_B2P GAMG_B2P 38 V38 V37 37 35 V35 CLAMP Control CLAMP CLAMP CLAMP AMP AMP AMP V6 9 8 7 6 V9 PRG/SID DRIVER DRIVER DRIVER 5 Bus V31 31 4 I2C 6bit × 25 DAC/Control γ • AMP Adjust γ γ γ V32 32 to DAC/Control 33 V33 3 34 V34 2 Output I/F 36 V36 1 Input I/F to DAC/Control V39 39 GAMR_B2P POS_CNT1 Data GAMB_B1P POS_CNT2 Item GAMG_B1P DLY_CNT AMPRGAIN GAMR_B1P DIR_CNT 1 GAMB_WHP INV_CNT No. GAMG_WHP SIDOUT Slave address = 76h GAMR_WHP DATEST <I2C standard data> AMPBBIAS V33 V30 V10 11 29 V11 V29 10 30 AMPRBIAS PRGPLS AMPGBIAS SIDLEV AMPBGAIN PRGLEV 12 V27 27 AMPRGAIN V12 1V 13 V13 5V to CLAMP Control to CLAMP Control to CLAMP Control V28 28 AMPGGAIN BLKLIM – 10 – GAMOFF Electrical Characteristics Measurement Circuit 14 15 16 17 18 19 20 21 22 23 24 25 26 BOUT 0.1µ PGND GOUT PVCC ROUT 0.1µ GND CLPPLS VCC RIN ATT GIN CLPLEV BIN 0.1µ Vb V26 V18 V14 V16 47µ/16V I21 V21 5V V20 0V 47µ/16V V22 V23 5V 0.1µ 0.1µ a SW22 b b SW25 V24 a SW24 a SW26 V25 5V b Vr Vg 2.15Vdc + 0.1Vp-p 20MHz 2.25Vdc + 0.1Vp-p 20MHz 2.35Vdc + 0.1Vp-p 20MHz 2.45Vdc + 0.1Vp-p 20MHz 2.55Vdc + 0.1Vp-p 20MHz 2.65Vdc + 0.1Vp-p 20MHz 2.75Vdc + 0.1Vp-p 20MHz 2.85Vdc + 0.1Vp-p 20MHz 2.95Vdc + 0.1Vp-p 20MHz 2.5Vdc + 0.1Vp-p 20MHz 2.5Vdc + 0.1Vp-p 100MHz In addition, the V14, 16 and 18 output levels for the above inputs (x) are labeled Vo (x). (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) The following sine wave signals are defined as the V22, 24 and 26 inputs. CXA2111R CXA2111R Description of Operation 1. Gamma control The bend positions and respective gains of one white side point and two black side points can be varied. Control is performed independently for R, G and B by the I2C bus or by external DC. In addition, the gamma function can easily be forced OFF (by Pin 13 or the I2C bus). White gain Gamma OFF Black 1 position White position Black 2 position Black 1 gain Black 2 gain 2. Amplifier gain and bias control After adjusting the gamma, the signal gain and DC voltage can also be adjusted. 3. SIDOUT SIDOUT generates the precharge signal. After the CXA2111R determines the DC level (Pins 9 and 11) and the pulse width (Pin 10), the signal is inverted by the CXA2112R and applied to the LCD panel. See the Example of Representative Characteristics for the DC level. PRGPLS input (Pin 10) Voltage determined by Pin 9 SIDOUT output (Pin 6) Voltage determined by Pin 11 Output example 4. I2C bus The various gamma and amplifier controls can be performed in accordance with the I2C Bus Format table. In addition, the sample-and-hold position and other items can also be controlled by connecting the CXA2112R. – 11 – CXA2111R Notes on Operation 1. External DC voltage adjustment, I2C adjustment and variable ranges (a) When varying the external DC voltage Setting the I2C data to the standard setting values (listed in the Electrical Characteristics Measurement Circuit) is recommended when performing the various adjustments using the external pins (Pins 27 to 50). Note that setting data that differs from these standard setting values may clip one side of the variable ranges below. (b) When varying the I2C setting The variable ranges when the external pins are open or 2.5V are as shown in the table below. The I2C variable range position can be altered by changing the voltage applied to the external pins. However, note that characteristics in excess of the range in (a) above cannot be obtained. (a) External voltage adjustment (b) I2C adjustment (external pins open or 2.5V) × 7.4 5V γ white gain ×1 5V γ black 1 gain ×1 3Fh × 4.71 00h 0V (I2C standard setting 00h) × 9.5 × 7.21 The variable position can be altered by changing the external voltage. × 9.11 3Fh × 6.02 00h × 19.5 3Fh × 14.0 00h 0V (I2C standard setting 00h) × 19.7 5V γ black 2 gain ×1 0V (I2C standard setting 00h) – 12 – CXA2111R (a) External voltage adjustment (b) I2C adjustment (external pins open or 2.5V) 100 IRE 0V γ white position 0 IRE 100 IRE 3Fh 40 IRE 00h 70 IRE 00h 0 IRE 3Fh 70 IRE 00h 0 IRE 3Fh 5V (I2C standard setting 00h) 100 IRE 0V γ black 1 position 0 IRE 5V (I2C standard setting 00h) 100 IRE 0V γ black 2 position 0 IRE 5V (I2C standard setting 00h) Note) The 0 to 100 IRE levels here correspond to the following values when ATT (Pin 23) is high. Clamp OFF: Input 2 to 3V (1Vp-p) Clamp ON: Input 1Vp-p (however, Pin 25 = open or 2.5V) – 13 – CXA2111R (a) External voltage adjustment (b) I2C adjustment (external pins open or 2.5V) × 2.26 0V × 0.55 00h × 0.39 3Fh +0.39V 00h 0V 20h –0.39V 3Fh Amplifier gain × 0.35 5V (I2C standard setting 00h) +0.96V 0V Amplifier bias (relative variation) –0.96V 5V 2.5V 0V (I2C standard setting 20h) 2. Input signal level and clamp Set Pin 23 (ATT) low when the input amplitude exceeds 1Vp-p (up to 2Vp-p). In this case, care should be taken for the clamp voltage setting (Pin 25) when applying the clamp. See the figure below. (The input pin voltage should not exceed the range of 1.5V DC to 3.5V DC.) Pin 25 setting voltage range 2.5Vdc ± 2.5V (0 to 5V) 2.5Vdc ± 0V 1Vp-p 2Vp-p Input level 3. I2C bus The CXA2111R requires I2C bus control. The initial values must be set after power-on even when using only external DC adjustment. – 14 – CXA2111R 38 39 GAMG_B2P GAMB_B2P GAMR_WHG GAMG_WHG GAMB_WHG 37 35 36 GAMG_B1G GAMB_B1G 30 29 28 AMPRGAIN AMPGGAIN AMPBGAIN AMPRBIAS AMPGBIAS 31 27 26 to DAC/Control 41 25 to CLAMP Control 42 CLAMP γ AMP DRIVER CLAMP γ AMP DRIVER 43 24 23 to CLAMP Control 44 22 γ CLAMP GAMR_B1G 32 33 34 40 AMPBBIAS GAMR_WHP GAMG_WHP GAMB_WHP GAMR_B1P GAMG_B1P GAMB_B1P GAMR_B2P Application Circuit 45 AMP BIN 0.1µ CLPLEV GIN 0.1µ ATT RIN 0.1µ DRIVER 21 to DAC/Control 5V VCC 47µ/16V CLAMP Control 46 γ • AMP Adjust 20 to CLAMP Control DAC/Control 47 19 CLPPLS 0.1µ GND Clamp pulse 6bit × 25 GAMR_B2G GAMG_B2G Input I/F 48 I2C Bus 18 49 17 ROUT 47 PVCC 47µ/16V 15 52 14 15k ∗ 8 9 10 11 12 13 GAMOFF 7 BLKLIM 6 PRGLEV 5 PRGPLS 4 SIDLEV 3 V33 2 POS_CNT2 POS_CNT1 1 DATEST SDA 16 51 SIDOUT I2C bus (data) PRG/SID INV_CNT SCL DIR_CNT I2C bus (clock) Output I/F 50 DLY_CNT GAMB_B2G GOUT 47 0.1µ PGND BOUT 47 CXA2112R 15k ∗ 1 2 49 13 52 39 42 48 CXA2112R ∗ When using two CXA2112R, connect the ICs directly without inserting resistors. Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same. – 15 – CXA2111R Example of Representative Characteristics (Vcc = 5V, Ta = 25°C) R/G/B gamma white gain (I2C: standard setting) R/G/B gamma black 1 gain (I2C: standard setting) 9 10 8 9 8 7 6 Gain [times] Gain [times] 7 5 4 6 5 4 3 3 2 2 1 1 0 1 2 3 4 5 Control pin voltage (Pins 42, 43 and 44) [V] 0 1 2 3 4 5 Control pin voltage (Pins 45, 46 and 47) [V] R/G/B gamma white gain I2C characteristics (Control pins = open) R/G/B gamma black 2 gain (I2C: standard setting) 8.0 25 7.5 20 Gain [times] Gain [times] 7.0 15 10 6.5 6.0 5.5 5 5.0 0 4.5 0 1 2 3 4 5 Control pin voltage (pins 48, 49 and 50) [V] 00 9.5 21 9.0 20 8.5 19 8.0 18 7.5 7.0 10 20 18 28 I2C setting [HEX] 30 38 3F R/G/B gamma black 2 gain I2C characteristics (Control pins = open) Gain [times] Gain [times] R/G/B gamma black 1 gain I2C characteristics (Control pins = open) 08 17 16 6.5 15 6.0 14 5.5 13 00 08 10 18 28 30 20 I2C setting [HEX] 38 3F 00 – 16 – 08 10 18 28 20 I2C setting [HEX] 30 38 3F CXA2111R R/G/B amplifier gain I2C characteristics (Control pins = open) R/G/B amplifier gain (I2C: Standard setting) 3.0 0.60 2.5 0.55 Gain [times] Gain [times] 2.0 1.5 0.50 0.45 1.0 0.40 0.5 0 0.35 0 1 2 3 4 5 Control pin voltage (Pins 27, 28 and 29) [V] 00 R/G/B output black limiter voltage 08 10 18 20 28 I2C setting [HEX] 30 38 3F R/G/B input clamp voltage characteristics 4.0 3.0 2.8 3.5 Clamp voltage [V] Output voltage [V] 2.6 3.0 2.5 2.0 2.4 2.2 When Pin 25 = open 2.0 1.8 1.5 1.6 1.0 1.4 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Pin 12 (BLKLIM) voltage [V] 4.5 5.0 0 5 R/G/B frequency response (Gamma OFF, amplifier gain = min.) Pin 6 (SIDOUT) output 4.0 –7 3.5 –8 3.0 –9 Gain [dB] Pin 6 voltage [V] 1 2 3 4 Pin 25 (CLPLEV) voltage [V] 2.5 –10 –11 2.0 –12 1.5 0 1 2 3 4 Control voltage (Pin 9/11) [V] 5 – 17 – 0.1 1 10 Frequency [MHz] 100 CXA2111R Package Outline Unit: mm 52PIN LQFP(PLASTIC) + 0.1 1.5 0 12.0 ± 0.2 ∗ 10.0 ± 0.1 0.1 39 27 26 40 B A 52 14 13 1 0.65 + 0.08 0.32 – 0.07 0.13 M 0° to 10° (0.3) (0.125) + 0.04 0.145 – 0.025 + 0.08 0.32 – 0.07 (0.5) (11.0) 0.1 ± 0.1 0.6 ± 0.15 0.25 DETAIL A DETAIL B NOTE: Dimension “∗” does not include mold protrusion. PACKAGE STRUCTURE PACKAGE MATERIAL EPOXY RESIN SONY CODE LQFP-52P-L01 LEAD TREATMENT PALLADIUM PLATING EIAJ CODE LQFP052-P-1010 LEAD MATERIAL COPPER ALLOY PACKAGE MASS 0.3g JEDEC CODE – 18 –