SONY CXA2534Q

CXA2534Q
4-Channel CD Motor Driver
Description
CXA2534Q is a 4-channel H-bridge motor driver IC
designed for portable CD systems. It has a built-in
DC to DC converter controller that allows voltage
step-up to typically 3.2 V; this voltage can be used
to power the system DSP, SSP and micro-controller.
In addition, it also provides a PWM regulated power
supply to the H-bridge output stage so as to ensure
high efficiency.
48 pin QFP (Plastic)
Features
• 4 channels of H-bridge drivers
• PWM regulated power supply for H-bridge output
stages
• Step-up DC to DC converter controller for system
power supply
• Start and off controls with soft start capability
• Reset pulse
• Short circuit protect
• Over-voltage protect
• Low battery voltage detection
• Rechargeable battery charger
• General purpose operational amplifier
• Thermal shut-down for battery charger and Hbridge driver (170 °C/140 °C)
• Direct interface with wired remote controller
possible
Applications
Portable CD player
Structure
Bipolar silicon monolithic IC
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
—1—
E99145-TE
CXA2534Q
Absolute Maximum Ratings (Ta=25 °C)
Item
Supply voltage
Spindle channel output current
Sled channel output current
Focus channel output current
Track channel output current
Allowable power dissipation
operating temperature
Storage temperature
Symbol
VCC1, VCC2, PVCC
Io (spindle)
Io (sled)
Io (focus)
Io (track)
PD
Topr
Tstg
Rating
13.5
400
300
200
200
660
–20 to +75
–65 to +150
Unit
V
mA
mA
mA
mA
mW
°C
°C
Recommended Operating Conditions (Ta=25 °C)
Item
System 1 supply voltage
System 2 supply voltage
Power VCC
Battery supply voltage
Battery charger supply voltage
Operating temperature
Symbol
VCC1
VCC2
PVCC
Batt
ChgVCC
Ta
Min
2.7
2.7
—
Typ
3.2
3.2
PWM
Max
5.5
5.5
Batt
Unit
V
V
V
1.5
3
–10
2.4
4.5
25
8
8
70
V
V
°C
—2—
CXA2534Q
MUTE
12
13
SP IN
11
SP MUTE
14
PGND
10
PVCC
15
SL BRAKE
9
TRACK–
16
SLED IN
8
TRACK+
17
FT MUTE
7
FOCUS–
18
FOCUS IN
6
FOCUS+
19
TRACK IN
5
PVCC
20
VCC2
4
SLED–
21
VREF
3
SLED+
22
VCC1
2
SP–
23
OP+
1
SP+
24
25
RESET
EMP
Block Diagram
OP O
29
START
30
KEY IN
33
GND
34
ISET
PEAK DETECT
PWM DRIVER
PREDRIVER
PREDRIVER
EMPTY
DETECT
WIRED
REMOTE
PRETRIANGLE DRIVER
WAVE
GEN
POWER
ON/OFF
OVER VOLTAGE
PROTECT
RESET
ERROR
GND
SW
DRIVER
SHORT
PROTECT
37
38
39
40
41
42
43
44
45
46
47
48
SEL
BSEN
BATT
SW
DEAD
EO
EI
SPRT
TR
TC
CLK
OP–
36
TSD
CHGVCC
BTL
PREDRIVER
CHARGER
DC IN
35
REMO BATT
BTL
TSD
BRAKE
28
PSW
BTL
MUTE
27
PGND
BTL
32
PWMFIL
31
OFF
26
PGND
—3—
CXA2534Q
Pin Description
Pin
No.
Symbol
Pin
Voltage
Equivalent circuit
Description
VCC1
VCC1
1
OP O
—
Output pin of built-in operational
amplifier
1
VCC1
2
VCC1
Non-inverting input pin of operational
amplifier
OP+
2
48
—
48
OP–
3
VCC1
Inverting input pin of operational
amplifier
Power supply input to DC-DC controller
circuits
3.2 V
VCC2
×4
4
4
VREF
1.6 V
Reference Voltage
30k
75k
5
VCC2
3.2 V
Power supply input to pre-driver circuits
—4—
CXA2534Q
Pin
No.
Symbol
6
TRACK IN
7
FOCUS IN
Pin
Voltage
Equivalent circuit
Description
VCC2
1.6 V
Tracking error signal input pin
Focus error signal input pin
6
11k
7
9
9
SLED IN
Sled error signal input pin
VCC2
8
FT MUTE
Focus and Tracking mute input pin
0V
8
75k
10
10
75k
SL BRAKE
Sled motor brake input pin
11
PGND
0V
Power ground for H-bridge drivers
28
VCC2
12
SP IN
1.6 V
Spindle error signal input pin
12
7.5k
VCC2
75k
13
SP MUTE
0V
75k
13
75k
75k
—5—
Spindle mute input
CXA2534Q
Pin
No.
Symbol
Pin
Voltage
PVCC
—
Equivalent circuit
Description
14
Power supply input for H-bridge drivers
19
15
TRACK–
16
TRACK+
17
FOCUS–
18
FOCUS+
Negative output pin to tracking motor
14
Negative output pin to focus motor
—
20
SLED–
21
SLED+
22
SP–
23
SP+
Positive output pin to tracking motor
19
16
15
18
17
20
19
22
21
Positive output pin to focus motor
Negative output pin to sled motor
Positive output pin to sled motor
11
Negative output pin to spindle motor
28
Positive output pin to spindle motor
24
24
EMP
Battery empty detection output pin
—
VCC1
VCC1
90k
25
RESET
VCC1
25
Reset output pin
—6—
CXA2534Q
Pin
No.
Symbol
Pin
Voltage
Equivalent circuit
VCC1
Description
VCC1
180k
26
OFF
VCC1
30k
Input pin to put IC into standby mode
26
VCC2
VCC2
2k
27
PWMFIL
—
27
PWM filter pin
2k
BATT
BATT
29
29
PSW
—
PWM switching output pin
15
—7—
CXA2534Q
Pin
No.
Symbol
Pin
Voltage
Equivalent circuit
BATT
Description
BATT
390k
30
START
Batt
200k
30
Input pin to start the IC
32
31
KEY IN
Input pin from wired remote to start the
IC
—
200k
50k
31
32
REMO
BATT
Power supply to the built-in wired remote
interface circuit
—
BATT
30k
33
33
DC IN
0V
34
GND
0V
100k
Input pin to start the IC when AC adapter
is inserted
Ground
CHGVCC
35
ISET
1.2 V
36
CHGVCC
4.5 V
Set charging current of built-in battery
charger
950
35
Power supply input to the battery
charger
—8—
CXA2534Q
Pin
No.
Symbol
Pin
Voltage
Equivalent circuit
Description
BATT
220k
68k
37
SEL
—
30k
37
Detection input pin for battery or AC
adapter operation and Battery charging
current output pin
BATT
38
16.5k
71k
38
BSEN
Batt
Detection input pin for battery empty
detection
19k
10k
11.5k
39
BATT
2.4 V
Battery input pin
BATT BATT
40
SW
—
BATT
250
40
9k
—9—
DC to DC controller output pulses
CXA2534Q
Pin
No.
Symbol
Pin
Voltage
Equivalent circuit
Description
VCC1
18k
41
DEAD
0.88 V
41
Soft start pin
65k
50k
VCC1
42
EO
—
VCC1
Output pin of error amplifier
42
VCC1
VCC1
35k
43
EI
1.2 V
Input pin of error amplifier
43
21k
VCC1
44
SPRT
0V
VCC1
Short protection pin
44
220k
—10—
CXA2534Q
Pin
No.
Symbol
Pin
Voltage
Equivalent circuit
Description
VCC1
Together with the capacitor at TC, set
the start-up and free running frequency
of sawtooth
5k
45
TR
1.2 V
45
VCC1
BATT
×3
46
TC
—
46
×2
Together with the resistor at TR, set the
start-up and free running frequency of
sawtooth
420k
VCC1
10k
47
CLK
—
47
Synchronizing clock pulse input
—11—
CXA2534Q
Electrical Specifications
If not specified, Ta=25 °C, Batt=2.4 V, VCC1=VCC2=3.2 V, Vref=1.6 V, ChgVCC=0 V, fCLK=88.2 kHz
Item
Symbol
Min.
Typ.
Max.
Unit
0
2
µA
3.2
mA
PVCC=PWM, FT Mute=3.2 V
Condition
1. Overall
Batt standby current
IST
—
Batt quiescent current
IBAT
—
2
VCC1 quiescent current
IVCC1
—
4.9
6.7
mA
PVCC=0.45 V, FT Mute=3.2 V, EI=0 V
VCC2 quiescent current
IVCC2
4.2
6.4
mA
PVCC=0.45 V, FT Mute=3.2 V
ChgVCC quiescent current
IChgVCC
0.79
1.2
mA
ChgVCC=4.5 V, Rch=open
21.9
23.9
Batt=9 V, VCC1=VCC2=0 V
2. H-Bridge driver
Spindle
Gv (sp)
25.9
dB
Sled
Gv (sled)
14
15.5
17
dB
Focus
Gv (focus)
14
15.5
17
dB
Track
Gv (track)
14
15.5
17
dB
∆Gv
–2
0
2
dB
Spindle
Rin (sp)
5.7
7.5
11
kΩ
Sled
Rin (sled)
8.8
11
15
kΩ
Focus
Rin (focus)
8.8
11
15
kΩ
Track
Rin (track)
8.8
11
15
kΩ
Spindle
Vom (sp)
1.9
2.1
—
V
Maximum
Sled
Vom (sl)
1.9
2.05
—
V
output voltage
Focus
Vom (foc)
1.9
2.05
—
V
Track
Vom (tra)
1.9
2.05
—
V
Spindle
VSAT (sp)
—
280
400
mV
Io=400 mA, SP IN=0 and 3.2 V
Sled
VSAT (sl)
—
280
400
mV
Io=300 mA, SLED IN=0 and 3.2 V
Focus
VSAT (foc)
—
230
400
mV
Io=200 mA, FOCUS IN=0 and 3.2 V
Track
VSAT (tra)
—
230
400
mV
Io=200 mA, TRACK IN=0 and 3.2 V
Spindle
VSATL (sp)
—
230
400
mV
Io=400 mA, SP IN=0 and 3.2 V
Sled
VSATL (sl)
—
250
400
mV
Io=300 mA, SLED IN=0 and 3.2 V
Focus
VSATL (foc)
—
200
400
mV
Io=200 mA, FOCUS IN=0 and 3.2 V
Track
VSATL (tra)
—
200
400
mV
Io=200 mA, TRACK IN=0 and 3.2 V
VOI
–5
0
5
mV
–50
0
50
mV
Voltage gain
Gain difference
Input impedance
Upper Tr
saturation
voltage
Lower Tr
saturation
voltage
Input offset voltage
IN∗=1.7 and 1.8 V
IN=0 and 3.2 V, PVCC=4 V
Spindle
VOO (sp)
Output offset
Sled
VOO (sled)
voltage
Focus
VOO (focus)
Track
VOO (track)
Spindle
VDB (sp)
–5
20
45
mV
Sled
VDB (sled)
–10
15
40
mV
Focus
VDB (focus)
–10
15
40
mV
Track
VDB (track)
–10
15
40
mV
SP IN=1.8V
Dead band
Vref=IN=1.6 V
Spindle mute on
VMSP(on)
2
—
—
V
SP IN=1.8V
Spindle mute off
VMSP(off)
—
—
0.8
V
SLED IN=1.8V
Sled brake on
VBSL(on)
2
—
—
V
SLED IN=1.8V
Sled brake off
VBSL(off)
—
—
0.8
V
∗ IN means SP IN, SLED IN, FOCUS IN or TRACK IN.
—12—
CXA2534Q
Min.
Typ.
Max.
Unit
Focus/Track mute on
Item
VMFT (on)
—
—
0.8
V
FOCUS IN=1.8 V
Focus/Track mute off
VMFT (off)
2
—
—
V
FOCUS IN=1.8 V
Vref on voltage
Vref (on)
1.2
—
—
V
SP IN=1.8 V
Vref off voltage
Vref (off)
—
—
0.8
V
SP IN=1.8 V
PSW output current
IPSW
10
13
17
mA
PVCC shift voltage
VSHIF
0.2
0.3
0.4
V
PVCC leakage current
IPVCC (leakage)
PWM transconductance
GPWM
Symbol
Condition
3. PWM driver for PVCC
—
0
3
µA
1/67.5
1/50
1/32.5
1/kΩ
SLED IN=2.1 V
SLED IN=1.8 V, PVCC–SLED+
PVCC=9 V, VCC1=VCC2=Batt=0 V
SL IN=1.8 V, PVCC=1.2 to 1.4 V
4. DC to DC converter
4.1 Error amplifier
VCC1 threshold voltage
VCC1TH
3.05
3.2
3.37
V
Hi error output voltage
VEOH
1.5
1.65
—
V
EI=0.7 V, Io=–100 µA
Lo error output voltage
VEOL
—
—
0.2
V
EI=1.36 V, Io=100 µA
4.2 Short circuit and Over voltage protection
SPRT voltage (normal)
VSPR
—
0.05
0.1
V
EI=1.36 V
SPRT output current (EO=H)
ISPR1
6
10
16
µA
EI=0.7 V, VSPR=0 V
SPRT output current (OFF=L)
ISPR2
12
20
32
µA
EI=1.36 V, OFF=0 V, VSPR=0 V
ISPR3
12
20
32
µA
EI=1.36 V, Batt=9.5 V, VSPR=0 V
SPRT impedance
RSPR
154
220
297
kΩ
SPRT threshold voltage
VSPR (Th)
1.1
1.23
1.36
V
EI=0.7 V, TC=0 V
Over voltage protect threshold
VBSEN (Th)
8
8.4
9
V
BSEN Voltage
VSWH (start)
0.78
0.98
1.13
V
VSWH (nor)
1
1.5
—
V
SW low output voltage
VSWL (nor)
—
0.1
0.4
V
SW start freq
fSW1
55
85
115
kHz
SW free running freq
fSW2
60
70
82
kHz
TC=420 pF, CLK=0 V
SW synchronized freq
fSW3
—
88.2
—
kHz
TC=420 pF, CLK=88.2 kHz
Start freq duty cycle
DSW1
45
55
65
%
TC=420 pF, VCC1=VCC2=0 V
Free freq duty cycle
DSW2
70
80
90
%
TC=420 pF, EI=0.7 V, CLK=0 V
Synchronized freq duty cycle
DSW3
65
75
85
%
TC=420 pF, EI=0.7 V
DEAD pin impedance
RDEAD
55
80
105
kΩ
DEAD pin voltage
VDEAD
0.72
0.82
0.92
V
SPRT output current
(Over-voltage)
4.3 Sawtooth waveform
SW high output voltage
(Starting)
SW high output voltage
(Normal)
4.4 Soft start
—13—
Batt=TC=1.5 V, VCC1=VCC2=0 V,
Io=–2 mA, START=LO
TC=0 V, Io=–10 mA, EI=0.7 V
SPRT=0 V
TC=2 V, Io=10 mA
TC=420 pF, VCC1=VCC2=0 V,
START=LO
CXA2534Q
Item
Symbol
Min.
Typ.
Max.
Unit
Condition
4.5 Input
OFF threshold voltage
VOFF (th)
—
—
VCC–2
V
EI=1.36 V
OFF current
IOFF
55
80
105
µA
OFF=0 V
START on threshold voltage
VSTART1
—
—
Batt–1
V
VCC1=VCC2=0 V, TC=2 V
—
—
V
VCC1=VCC2=0 V, TC=2 V
9
14
19
µA
START=0 V
START off threshold voltage
VSTART2
START pin current
ISTART
Batt–
0.3
High
VCLKH
2
—
—
V
Low
VCLKL
—
—
0.8
V
ICLK
—
5
10
µA
Start cut threshold voltage
VST (th)
2.3
2.5
2.7
V
Start cut hysteresis
VST (hs)
—
200
—
mV
Discharge threshold voltage
VDIS
1.25
1.45
1.65
V
Empty detect threshold 1
VEMPT1
1.9
2.0
2.1
V
VSEL=0 V (SEL=LOW)
Empty detect threshold 2
VEMPT2
1.5
1.6
1.7
V
ISEL=–2 µA (SEL=HI Z)
Empty detect hysteresis
VEMPH1
—
50
—
mV
VSEL=0 V (SEL=LOW)
Empty detect hysteresis
VEMPH2
—
50
—
mV
ISEL=–2 µA (SEL=HI Z)
EMPTY pin voltage
VEMP
—
—
0.5
V
Io=1 mA, BSEN=1 V
EMPTY pin leakage current
IEMPL
—
—
1
µA
BSEN=2.4 V
BSEN pin impedance
RBSEN
16.5
22.8
29
kΩ
VSEL=0 V
BSEN pin leakage current
IBSENL
—
—
1
µA
VCC1=VCC2=0 V, BSEN=4.5 V
SEL pin threshold voltage
VSEL (th)
1.3
—
—
V
VSEL (th)=Batt–SEL, BSEN=2 V
SEL pin threshold current
ISEL (th)
–2
—
—
µA
Reset threshold voltage
VRST (th)
85
90
95
%
Reset hysteresis
VRST (hy)
—
50
—
mV
RESET pin
VRST
—
—
0.4
V
RESET pin impedance
RRST
66
88
118
kΩ
Input bias current
IBIAS
—
—
250
nA
Input offset voltage
VIO
–5
0
5
mV
High output voltage
VOH
2.9
—
—
V
RL=open
Low output voltage
VOL
—
—
0.2
V
RL=open
Output current (Source)
ISOU
—
–8.5
–3
mA
RL=50 Ω to GND
Output current (Sink)
ISIN
0.4
0.8
—
mA
RL=50 Ω to VCC1
Open loop gain
GVO
—
70
—
dB
Vin=–75 dB, f=1 kHz
Slew rate
SR
0.5
1
1.5
V/µS
Clock input voltage
Clock current
CLK=3.2 V
4.6 Start
VCC1=VCC2=0 V→3.2 V,
START=0 V
START=0 V
5. EMPTY
6. RESET
Io=1 mA, VCC1=VCC2=2.8 V
7. OP AMP
—14—
OP+=1.6 V
CXA2534Q
Item
Symbol
Min.
Typ.
Max.
Unit
Condition
8. BATTERY CHARGER
ChgVCC=4.5 V, ISET=1.8 kΩ
RCHG pin voltage
VRCHG
0.7
0.8
0.9
V
RCHG pin impedance
RRCHG
0.68
0.96
1.16
kΩ
ChgVCC=4.5 V, ISET=0.5 and 0.6 V
ISEL1
—
—
1
µA
ChgVCC=4.5 V, ISET=open
ISEL2
—
—
1
µA
ChgVCC=0.6 V, ISET=1.8 kΩ
VSEL
—
0.45
1
V
ChgVCC=4.5 V, Io=300 mA, ISET=0 Ω
SEL pin leakage current
(RCHG=open)
SEL pin leakage current
(ChgVCC=0.6 V)
SEL pin voltage
9. WIRED REMOTE INTERFACE
DC IN pin threshold voltage
VDCIN (th)
1
—
—
V
KEY IN pin threshold current
IKEYIN (th)
—
—
5
µA
—15—
Batt=4 V, VCC1=VCC2=0 V, TC=2 V,
DC=IN=from 0 to 3 V
Batt=4 V, VCC1=VCC2=0 V, TC=2 V,
IKEYIN=from 0 to 10 µA
0.1µ
C10
2SA1585S
RB400D
D1
47µ
C1
P1
L1
33µH
C2
C3
R1
R100
10p
2200p
I6
B
A
A
B
B
V20
1.8k
V19
B
A
B
A
R2 100k A
V100
V17
B
A
47
B
V18
A
B
A
I7
V16
V15
S27
S26
S24
S23
S22
S20
S19
S18
V13
V21
S17_2
R6
R4
I3
8,1.5W
R9
8,1.5W
R7
I2
I1
36 CHGVCC
35 ISET
34 GND
33 DC IN
32 REMO BATT
31 KEY IN
30 START
29 PSW
28 PGND
27 PWMFIL
26 OFF
25 RESET
V22
A
I8
BA B
S28 S29
R5
10k
I9
I12
I13
B
V24 V25 V26
I10 I11
B A A BA B A B A
S30 S31 S32 S33 S34
V23
CXA2534
IC01
C4
470p
A
PGND 11
SP IN 12
OP O 1
OP+ 2
Vcc1 3
VREF 4
Vcc2 5
TRACK IN 6
FOCUS IN 7
FT MUTE 8
SLED IN 9
A
V28
B
V29
C
S36_1 S36_2
V27
S35
R8
39k
S8
B A
V11
SL BRAKE 10
B
A B C
B AA BB AA B
B AA B B AA B
S17_1
S16 S15
S14 S13 S12 S11
S10 S9
8,1.5W
8,1.5W
SP– 22
39 BATT
I5
R3 51k
SLED+ 21
40 SW
V12
I4
SLED– 20
41 DEAD
S21
FOCUS– 17
44 SPRT
A
TRACK+ 16
45 TR
13
SP MUTE
V14
TRACK– 15
46 TC
EMP 24
37 SEL
PVcc 19
42 EO
SP+ 23
38 BSEN
FOCUS+ 18
43 EI
PVcc 14
47 CLK
—16—
48 OP–
B
C3
R10
10k
S38_2
S38_1
D
C
B
A
1M
V7
470µ
R12 100k
R13 20k
R14
A
S25 B
R15
S37
S2 A
B
50 S1 A
B
S4 B
A
S3 B
A
S6 B
A
S5 B
A
A
S7 B
A
B
1k
V1 SIG
R11
V3
V4
V2
V200
V5
V6
V8
V9
V10
CXA2534Q
Electrical Characteristics Test Circuit
CXA2534Q
Application Circuit
Spindle Motor SLED Motor
Focus Coil
Tracking Coil
40
SP MUTE
12
11
10
9
8
7
FOCUS IN
6
TRACK IN
5
VCC2
4
BRAKE
MUTE
FT MUTE
VREF
3
PVCC
TRACK–
TRACK+
FOCUS–
FOCUS+
PVCC
41
42
43
EI
39
0.1µ
8.2k
44
45
0.022µ
46
47
0.1µ
39k
470p
GND
GND
GND
PGND
SLED IN
VCC1
OP+
OP O
SHORT
PROTECT
EO
38
SL BRAKE
GND
SW
DRIVER
DEAD
SEL
37
PGND
2
CHARGER
TSD
ERROR
SW
WIRED REMOTE BOARD
35
ISET
1.4k
CHGVCC
OVER VOLTAGE
PROTECT
RESET
SP IN
1
WIRED
REMOTE
PRETRIANGLE DRIVER
WAVE
GEN
POWER
ON/OFF
TC
32
EMPTY
DETECT
GND
GND
SLED–
SP–
SP+
PREDRIVER
BSEN
GND
F. R.
PREDRIVER
36
F. F.
13
BTL
TR
30
KEY IN
DC IN
0.1µ
BTL
TSD
PEAK DETECT
PWM DRIVER
33
STOP
BTL
SPRT
29
START
REMO BATT
14
PREDRIVER
34
GND
15
25
PSW
1µ
PLAY/PAUSE
16
PGND
PLAY
GND
17
26
BTL
47
PGND
18
48
OP–
GND
31
GND
19
CLK
10p
100k
PGND
2200p
20
MUTE
BATT
33µH
21
DC-DC CONVERTOR
AC Adapter Input
47µ
100µ
GND
GND
GND
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
—17—
Servo Processor
PWMFIL
22
27
OFF
23
28
0.1µ
PGND
PGND
47µ
24
RESET
SLED+
To System Micro Controller
EMP
To System Micro Controller
CXA2534Q
Description of Operation
1. H-Bridge Driver
a) Gain Setting
The input resistances of the Sled, Focus and Track channels are 11 kΩ (typical); the input resistance of
the Spindle channel is 7.5 kΩ (typical). The gain can be adjusted by connecting a external resistor, R at
the input pin of the channel.
Channel
Sled channel
Focus channel
Track channel
Spindle channel
Unit
GV = 20 log
55 kΩ
11 kΩ + R
dB
GV = 20 log
110 kΩ
7.5 kΩ + R
dB
R - External Resistor
b) Mute
The Spindle channel operates normally when the SP MUTE (pin 13) is open or at LOW (below 0.8 V).
The output will be muted when the SP MUTE pin is at HIGH (above 2 V). This is a high impedance
mute as the spindle output voltage will be not pulled to LOW.
The Focus and Track channels share the same mute pin (pin 8). The channels are muted when the FT
MUTE pin (pin 8) is open or at LOW level (below 0.8 V). When the Focus and Track channels are
muted, the quiescent current at the VCC2 pin is also reduced by almost half. This is because the bias
are removed when the mute is on.
c) Thermal Shutdown
The H-bridge Driver has an internal thermal shutdown circuit. All the channels outputs will be muted
when the chip temperature exceeds 170 °C (typical) and restored when the chip temperature falls to 140
°C (typical).
d) VREF pin
When the VREF pin (pin 4) is below 1 V (typical), the H-bridge driver will be at standby mode and the
quiescent current is zero (typical).
e) Dead Band
Dead band = 2 × input Resistance (attached external resistor + internal resistor) × 0.5 µA
The dead band is depended on input resistance. Thus, the dead band varies with the gain settings.
The dead band is 7.5 mV for Spindle channel and 11 mV for Sled, Focus and Track channels.
—18—
CXA2534Q
f) PWM Driver For PVCC
To ensure the good power efficiency of the H-bridge driver, a Buck DC-to-DC converter may be used to
regulate the PVCC. The controller selects the peak voltage among the channels and used it to control
the duty cycle of the PWM. External components necessary are: PNP transistor, inductor coil, diode
and capacitors. The configuration of a Buck DC-to-DC converter is shown as follow:
BATT
33µ
10pF
47µF
2200pF
0.1µF
100k
47
PWMFIL
27
PSW
PVCC
29
14
PVCC
19
CXA2534Q
g) Bypass Capacitor
To have prevent noise, a bypass capacitor (roughly 0.1 µF) is connected from PVCC pin to the GND pin
as close as possible.
—19—
CXA2534Q
2. DC-to-DC Converter
a) VCC1 Voltage Setting
The VCC1 voltage can be adjusted by varying the two external resistors, R1 and R2. The formula for
VCC1 Voltage setting is:
R1R3
VCC1 = 1.23
R2R4
+
R1+R3
R2+R4
R2R4
R2+R4
(V)
where R1 - External Resistor
R2 - External Resistor
R3 - 35 kΩ
R4 - 21 kΩ
CXA2534Q
VCC1
3
R1
R3
EI
43
R2
R4
1.23V
b) Short Circuit Protection
If the VCC1 falls below the designed voltage for a long time, it will be considered as a short circuit at the
VCC1. In this case, the IC will detect this prolong drop in VCC1 and turn off the IC.
When the VCC1 is below the designed voltage, the error amplifier will output an HIGH at its EO pin (pin
42). The High level at EO pin will cause the SPRT pin’s capacitor (pin 44) to charge up by a constant
current of 10 µA. Once the voltage is above 1.23 V (typical), the IC will turn off. The duration of the
short circuit can be varied by the SPRT pin’s capacitor.
t=
1.23V
× CSPRT
10µA
(sec)
—20—
CXA2534Q
c) Soft Start
During start-up of the IC, the duty cycle of the DC-to-DC converter is increased slowly to a maximum of
80 %. The VCC1 voltage will also increase slowly. This is known as soft start.
During the soft start, the duty cycle of the SW pin (pin 40) is dependent on the voltage at the DEAD pin
(pin 41). The DEAD pin is connected to a capacitor which is being charged up by an internal resistance
of 65 kΩ. Therefore, the time taken for the duty cycle to reach the maximum is
t = CSPRT × R
(sec)
where R = 65 kΩ
d) Power Off
To turn off the DC-to-DC Converter, a LOW level is applied to the OFF pin (pin 26). When the OFF pin
is low, the IC will not turn off the DC-to-DC converter immediately but will charge up the SPRT pin’s
capacitor with a constant current of 20 µA. Once the SPRT pin’s voltage is above 1.23 V, the IC will
then shut down. Therefore, the delay is given by the formula below:
t=
1.23 V
× CSPRT
20 µA
(sec)
e) Over-Voltage Protection
The IC will detect a over-voltage if the voltage at the BSEN pin is above 8.4 V (typical). When overvoltage occurred, the IC will shut down after a time delay. The time delay is determined by the time
taken for the SPRT pin’s capacitor to charge above 1.23 V. The charging current for the SPRT pin
capacitor is constant and is 20 µA.
t=
1.23 V
× CSPRT
20 µA
(sec)
f) Reset Pulse
When the VCC1 voltage rises above 90 % of the designed value, the RESET pin (pin 25) will change
from LOW level to HIGH level. A hysteresis of 50 mV (typical) is implemented to prevent the ‘chattering’
of the output at RESET pin.
g) Empty Detection
The EMP pin (pin 24) is used to indicate low battery voltage. When the BSEN pin falls below a certain
threshold voltage, the EMP pin will change from HIGH to LOW level. There are two threshold voltages,
depending on the SEL pin (pin 37). In order to prevent ‘chattering’ of the output at the EMP pin, a
hysteresis of 50 mV (typical) is implemented.
SEL pin
LOW
High - Z
Threshold Voltage
(typical)
2.0 V
1.6 V
—21—
Recovery Voltage
(typical)
2.05 V
1.65 V
CXA2534Q
3. Battery Charger
The Battery Charger is separated from the rest of the circuit. The ChgVCC pin (pin 36) is the power supply
pin to the charger circuit. The charging current is drawn in from the SEL pin (pin 37) and can be set by an
external resistor at ISET pin (pin 35). The charger has a built-in thermal shut down circuit. The shut down
temperature is set to 170 °C and 140 °C is the recovery temperature.
4. Wired Remote Interface
When the IC is at standby, it can be activated by pulling the START pin (pin 30) or the KEY IN pin (pin 31)
LOW. The START pin is controlled by the PLAY button on the main set and the KEY IN pin is controlled by
the PLAY button on the wired remote control panel.
The wired remote interface circuit is powered at REMO BATT pin (pin 32) which is connected to the BATT.
To ensure that the voltage at REMO BATT pin is not greater than VCC1, a resistor and zener diode (Vz=3.1
V) may be necessary.
The DC IN pin (pin 33) will detect a pulse through a series capacitor when a AC adapter is power on. This
pulse will activate the IC also.
—22—
CXA2534Q
Package Outline
Unit : mm
48PIN QFP (PLASTIC)
15.3 ± 0.4
+ 0.1
0.15 – 0.05
+ 0.4
12.0 – 0.1
0.15
36
25
24
13.5
37
48
+ 0.2
0.1 – 0.1
13
12
0.8
+ 0.15
0.3 – 0.1
0.24
M
0.9 ± 0.2
1
+ 0.35
2.2 – 0.15
PACKAGE STRUCTURE
PACKAGE MATERIAL
EPOXY RESIN
SONY CODE
QFP-48P-L04
LEAD TREATMENT
SOLDER / PALLADIUM
PLATING
EIAJ CODE
QFP048-P-1212
LEAD MATERIAL
42/COPPER ALLOY
PACKAGE MASS
0.7g
JEDEC CODE
NOTE : PALLADIUM PLATING
This product uses S-Pd PPF (Sony Spec.-Palladium Pre-Plated Lead Frame).
—23—