CXD2304R 8-bit 20 MSPS RGB 3-Channel D/A Converter Description The CXD2304R is an 8-bit high-speed D/A converter for video band use. It has an input/output equivalent to 3 channels of R, G and B. It is suitable for use of digital TV, graphic display, and others. Features • Resolution 8-bit • Maximum conversion speed 20 MSPS • RGB 3-channel input/output • Differential linearity error ±0.5 LSB • Low power consumption 50 mW (330 Ω load at 1.2 Vp-p output) • Single 3.3 V power supply • Low glitch noise • Stand-by function Structure Silicon gate CMOS IC 48 pin LQFP (Plastic) Absolute Maximum Ratings (Ta=25 °C) • Supply voltage AVDD, DVDD 7 V • Input voltage (All pins) VIN VDD+0.5 to VSS–0.5 V • Output current (Every each channel) IOUT 0 to 15 mA • Storage temperature Tstg –55 to +150 °C Recommended Operating Conditions • Supply voltage AVDD, AVSS 3.0 to 3.6 V DVDD, DVSS 3.0 to 3.6 V • Reference input voltage VREF 1.2 V • Clock pulse width TPW1, TPW0 22.5 ns (min.) to 1.1 µs (max.) • Operating temperature Topr –40 to +85 °C Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. —1— E94307B01 CXD2304R Block Diagram (LSB) R0 1 R1 2 R2 3 R3 4 R4 5 R5 6 R6 7 (MSB) R7 8 (LSB) G0 9 2LSB’S CURRENT CELLS DECODER 47 DVDD 48 DVDD 36 RO 6MSB’S CURRENT CELLS LATCHES 37 RO 27 RCK DECODER CLOCK GENERATOR 43 AVDD 44 AVDD 2LSB’S CURRENT CELLS G1 10 45 AVDD 46 AVDD G2 11 38 GO G3 12 DECODER 6MSB’S CURRENT CELLS LATCHES G4 13 G5 14 G6 15 39 GO 28 GCK DECODER CLOCK GENERATOR (MSB) G7 16 2LSB’S CURRENT CELLS (LSB) B0 17 B1 18 33 AVSS 30 DVSS 31 DVSS B2 19 40 BO B3 20 DECODER 6MSB’S CURRENT CELLS LATCHES B4 21 B5 22 B6 23 41 BO 29 BCK DECODER CLOCK GENERATOR (MSB) B7 24 42 VG 34 VREF BLK 25 CE 26 CURRENT CELLS (FOR FULL SCALE) BIAS VOLTAGE GENERATOR —2— 35 IREF 32 VB CXD2304R RO IREF VREF AVSS VB DVSS DVSS BCK GCK RCK CE BLK Pin Configuration 36 35 34 33 32 31 30 29 28 27 26 25 19 B2 AVDD 43 18 B1 AVDD 44 17 B0 AVDD 45 16 G7 AVDD 46 15 G6 DVDD 47 14 G5 DVDD 48 13 G4 1 2 3 4 5 6 7 8 9 10 11 12 G3 VG G2 20 B3 42 G1 41 G0 BO R7 21 B4 R6 40 R5 BO R4 22 B5 R3 23 B6 GO 39 R2 GO 38 R1 24 B7 R0 RO 37 Pin Description and I/O Pins Equivalent Circuit Pin No. Symbol 1 to 8 R0 to R7 I/O Equivalent circuit DVDD Digital input R0 (LSB) to R7 (MSB) G0 (LSB) to G7 (MSB) B0 (LSB) to B7 (MSB) 1 9 to 16 G0 to G7 I to 24 17 to 24 DVSS B0 to B7 DVDD 25 BLK Description I Blanking input. This is synchronized with the clock input signal for each channel. No signal at “H” (Output 0 V). Output condition at “L”. 25 DVSS DVDD DVDD 32 VB O Connect a capacitor of about 0.1 µF. 32 DVSS —3— CXD2304R Pin No. Symbol 27 RCK I/O Equivalent circuit Description DVDD 27 28 GCK I Clock input. 28 29 29 BCK 30, 31 33 DVSS AVSS DVSS — — Digital GND Analog GND DVDD 26 CE I Chip enable input. This is not synchronized with the clock input signal. No signal (Output 0 V) at “H” and minimizes power consumption. 26 DVSS 35 IREF Reference current output. Connect a resistance 16 times “RIR” that of output resistance value “ROUT”. O AVDD AVDD 35 AVDD AVSS 34 VREF I 34 AVDD AVSS Reference voltage output. Set full scale output value. 42 AVSS 42 VG O Connect a capacitor of about 0.1 µF. 43 to 46 AVDD — Analog VDD —4— CXD2304R Pin No. Symbol 37 RO I/O Equivalent circuit Current output. Voltage output can be obtained by connecting a resistance. AVDD 39 Description GO 37 39 41 41 BO AVSS AVDD O 36 RO 36 38 40 38 Inverted current output. Normally dropped to analog GND. GO AVSS 40 BO 47, 48 DVDD — Digital VDD —5— CXD2304R Electrical Characteristics Item (FCLK=20 MHz, AVDD=DVDD=3.3 V, ROUT=330 Ω, VREF=1.2 V, RIR=5.1 kΩ, Ta=25 °C) Resolution Symbol n Conversion speed FCLK Integral non-linearity error Differential non-linearity error Output full-scale voltage Output full-scale ratio ∗1 Output full-scale current Output offset voltage Glitch energy Crosstalk EL ED VFS FSR IFS VOS GE CT IDD ISTB RIN CI VIH VIL IIH IIL ts th tPD tE tD Supply current Analog input resistance Input capacitance Digital input voltage Digital input current Setup time Hold time Propagation delay time CE enable time ∗2 CE disable time ∗2 ∗1 ∗2 Measurement conditions AVDD=DVDD=3.0 to 3.6 V Ta=–40 to 85 °C Endpoint Min. Typ. 8 Max. Unit bit 0.5 20 MSPS –2.5 –0.5 1.12 0 2.5 0.5 1.36 3.0 LSB LSB V % mA mV pV•s dB 1.24 1.5 3.8 1 When “00000000” data input When 1 kHz sine wave input When 14.3 MHz color CE= “L” bar data input CE= “H” VREF 150 53 15 18 1.2 1 9 AVDD=DVDD=3.0 to 3.6 V Ta=–20 to +75 °C AVDD=DVDD=3.0 to 3.6 V Ta=–20 to +75 °C 2.5 0.5 –5 CE=H→L CE=L→H Full-scale voltage of channel –1 Average of the full-scale voltage of the channels When the external capacitors for the VG pins are 0.1 µF. Full-scale output ratio = —6— MΩ pF V 5 µA 8 8 ns ns ns ms ms 7 3 20 4 4 mA × 100 (%) CXD2304R Electrical Characteristics Measurement Circuit Analog Input Resistance Measurement Circuit Digital Input Current } +3.6V AVDD, DVDD A CXD2304R V AVSS, DVSS Maximum Conversion Velocity Measurement Circuit R0 to R7 1 to 8 8bit COUNTER with LATCH G0 to G7 17 to 24 B0 to B7 17 to 24 RO 37 330 330 AVSS BO 41 330 25 BLK 0.1µ AVSS GO 39 AVSS 26 CE 32 VB AVDD VG 42 DVSS CLK 20MHz SQUARE WAVE 27 RCK VREF 34 28 GCK IREF 35 29 BCK 0.1µ 1k 5.1k AVSS —7— OSCILLOSCOPE CXD2304R Setup Time Hold Time Glitch Energy } Measurement Circuit R0 to R7 1 to 8 8bit COUNTER with LATCH RO 37 G0 to G7 9 to 16 330 AVSS GO 39 B0 to B7 17 to 24 BO 41 330 AVSS 25 BLK 0.1µ DELAY CONTROLLER 26 CE 32 VB AVDD VG 42 DVSS CLK 1MHz SQUARE WAVE OSCILLOSCOPE 330 AVSS DELAY CONTROLLER 27 RCK VREF 34 28 GCK IREF 35 0.1µ 1k 5.1k 29 BCK AVSS Crosstalk Measurement Circuit R0 to R7 1 to 8 DIGITAL WAVEFORM GENERATOR RO 37 ALL “1” 330 G0 to G7 9 to 16 330 B0 to B7 17 to 24 AVSS BO 41 330 25 BLK 0.1µ AVSS GO 39 AVSS 26 CE 32 VB AVDD VG 42 DVSS CLK 20MHz SQUARE WAVE 27 RCK VREF 34 28 GCK IREF 35 0.1µ 1k 5.1k 29 BCK AVSS —8— SPECTRUM ANALYZER CXD2304R DC Characteristics Measurement Circuit R0 to R7 1 to 8 RO 37 330 G0 to G7 9 to 16 CONTROLLER AVSS GO 39 AVSS BO 41 330 25 BLK 0.1µ DVM 330 B0 to B7 17 to 24 AVSS 26 CE 32 VB AVDD VG 42 DVSS CLK 20MHz SQUARE WAVE 27 RCK VREF 34 28 GCK IREF 35 0.1µ 1k 5.1k 29 BCK AVSS Propagation Delay Time Measurement Circuit R0 to R7 1 to 8 FREQUENCY DEMULTIPLIER RO 37 330 G0 to G7 9 to 16 AVSS GO 39 B0 to B7 17 to 24 AVSS BO 41 330 25 BLK 0.1µ OSCILLOSCOPE 330 AVSS 26 CE 32 VB AVDD VG 42 DVSS CLK 1MHz SQUARE WAVE 27 RCK VREF 34 28 GCK IREF 35 0.1µ 1k 5.1k 29 BCK AVSS SNR Measurement Circuit ALL “1” R0 to R7 1 to 8 DIGITAL WAVEFORM GENERATOR RO 37 330 G0 to G7 9 to 16 SPECTRUM ANALYZER 330 B0 to B7 17 to 24 AVSS BO 41 330 25 BLK 0.1µ AVSS GO 39 ALL “1” AVSS 26 CE 32 VB AVDD VG 42 DVSS CLK 20MHz SQUARE WAVE 27 RCK VREF 34 28 GCK IREF 35 0.1µ 1k 5.1k 29 BCK AVSS SNR : Different between primary —9— component and secondary distortion CXD2304R Description of Operation Timing Chart tPW1 tPW0 1.5V CLK AA AA AA AAA AA AA AA AAA AA AAAAAAA ts th ts th ts th DATA tPD D/A OUT 100% 50% tPD tPD 0% I/O Chart (when full scale output voltage at 1.2 V) Input code MSB LSB 1 1 1 1 1 1 1 1 : 1 0 0 0 0 0 0 0 : 0 0 0 0 0 0 0 0 Output voltage 1.2 V 0.6 V 0V B (Blue) OUT Application Circuit 330 AVSS G (Green) OUT 330 AVDD DVDD AVSS R (Red) OUT 0.1µ 330 48 47 46 45 44 43 42 41 40 39 38 37 AVSS (LSB) • • • R (Red) IN • • (MSB) (LSB) • • 1 36 2 35 3 34 4 5 33 6 31 7 30 8 (BCK) 29 9 (GCK) 28 10 (RCK) 27 11 26 12 25 • • • • • • 5.1k AVSS AVSS 0.1µF DVSS CLOCK IN DVSS (MSB) (LSB) • (MSB) • AVDD 1k 32 13 14 15 16 17 18 19 20 21 22 23 24 G (Green) IN 1.2V B (Blue) IN Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same. —10— CXD2304R Notes on Operation • How to select the output resistance The CXD2304R is a D/A converter of the current output type. To obtain the output voltage connect the resistance to the current output pins R0, G0 and B0. For specifications we have; Output full scale voltage VFS=1.12 to 1.36 [V] Output full scale current IFS=3.8 [mA] (typ.) Calculate the output resistance value from the relation of VFS=IFS × ROUT. Also, 16 times resistance of the output resistance ROUT is connected to reference current pin IREF. In some cases, however, this turns out to be a value that does not actually exist. In such a case a value close to it can be used as a substitute. Here please note that VFS becomes VFS=VREF × 16ROUT/RIR. VREF is the voltage set at the reference voltage pin VREF and ROUT is the resistance connected to the current output pins RO, GO and BO while RIR is connected to IREF pin. Increasing the resistance value can curb power consumption. On the other hand glitch energy and data settling time will inversely increase. Set the most suitable value according to the desired application. • Phase relation between data and clock To obtain the expected performance as a D/A converter, it is necessary to set properly the phase relation between data and clock applied from the exterior. Be sure to satisfy the provisions of the setup time (tS) and hold time (tH) as stipulated in the Electrical Characteristics. • Power supply and ground To reduce noise effects separate analog and digital systems in the device periphery. For power supply pins, both digital and analog, bypass respective grounds by using a ceramic capacitor of about 0.1 µF, as close as possible to the pin. • Latch up Digital power supply and analog power supply have to be common at the PCB power supply source. This is to prevent latch up due to voltage difference between AVDD and DVDD pins when power supply is turned ON. • RO, GO and BO pins The RO, GO and BO pins are the inverted current output pins described in the Pin Description. The sums shown below become the constant value for any input data. a) The sum of the currents output form RO and RO b) The sum of the currents output form GO and GO c) The sum of the currents output form BO and BO However, the performances such as the linearity error of the inverted current output pin output current is not guaranteed. • Output full-scale voltage For the applications using the RGB signal, the color balance may be broken up when the no-adjusted output full-scale voltage is used. —11— CXD2304R Latch Up Prevention The CXD2304R is a CMOS IC which required latch up precautions. Latch up is mainly generated by the lag in the voltage rising time of AVDD (Pins 43 to 46) and DVDD (Pins 47 and 48), when power supply is ON. 1. Correct usage a. When analog and digital supplies are from different sources DVDD AVDD 43 44 45 46 47 AVDD +5V 48 DVDD +5V CXD2304R C C AVSS DIGITAL IC DVSS 33 30 31 AVSS DVSS b. When analog and digital supplies are from a common source (i) DVDD 43 44 45 46 47 AVDD 48 DVDD +5V CXD2304R C AVSS C DIGITAL IC C DIGITAL IC DVSS 33 30 31 47 48 AVSS DVSS (ii) DVDD 43 44 45 46 AVDD DVDD +5V C CXD2304R AVSS DVSS 33 30 31 AVSS DVSS —12— CXD2304R 2. Example when latch up easily occurs a. When analog and digital supplies are from different sources DVDD AVDD 43 44 45 46 47 AVDD +5V 48 DVDD +5V CXD2304R C C AVSS DIGITAL IC DVSS 33 30 31 AVSS DVSS b. When analog and digital supplies are from common source (i) DVDD AVDD 43 44 45 46 47 AVDD 48 DVDD +5V CXD2304R C AVSS C DIGITAL IC C DIGITAL IC DVSS 33 30 31 47 48 AVSS DVSS (ii) DVDD AVDD 43 44 45 46 AVDD DVDD +5V CXD2304R AVSS DVSS 33 30 31 AVSS DVSS —13— CXD2304R SNR (Difference between primary and secondary) (dB) Example of Representative Characteristics Crosstalk CT (dB) 80 60 40 20 0.1M 1M Output frequency FO (Hz) Fig. 1. Crosstalk 10M Power supply current IDD (mA) Output fullscale voltage VFS (V) 0 1.27 1.26 0 Glitch energy GE (pV•s) 60 40 20 0 25 75 0 50 Ambient temperature Ta (°C) Fig. 3. Ambient temperature vs. Output full scale voltage 0.1M 1M 10M Output frequency FO (Hz) Fig. 2. SNR (Difference between primary component and secondary distortion) 20 10 0 –25 10k 1M 100k 10M Output frequency FO (Hz) Fig. 4. Output frequency vs. Power supply current Reference measurement condition and description • AVDD=3.3 V • DVDD=3.3 V • VREF=1.2 V • RIR=5.1 kΩ (≈16 ROUT in Fig. 5 only) • Ta=25 °C (Except Fig. 3) • Fig. 1, 2 Refer to the measurement circuit. • Fig. 3 is input data=all 1 • Fig. 4 is input data=output of incremental counter. 400 200 0 80 600 200 400 Output resistance ROUT (Ω) Fig. 5. Output resistance vs. Glitch energy —14— CXD2304R Unit : mm 48PIN LQFP (PLASTIC) 9.0 ± 0.2 ∗ 7.0 ± 0.1 36 S 25 13 0.5 ± 0.2 B A 48 (8.0) 24 37 (0.22) 12 1 + 0.05 0.127 – 0.02 0.5 + 0.08 0.18 – 0.03 + 0.2 1.5 – 0.1 0.13 M 0.1 S (0.18) 0° to 10° DETAIL B:SOLDER DETAIL A 0.18 ± 0.03 0.127 ± 0.04 + 0.08 0.18 – 0.03 (0.127) +0.05 0.127 – 0.02 0.1 ± 0.1 0.5 ± 0.2 Package Outline DETAIL B:PALLADIUM NOTE: Dimension “∗” does not include mold protrusion. PACKAGE STRUCTURE PACKAGE MATERIAL EPOXY RESIN SONY CODE LQFP-48P-L01 LEAD TREATMENT SOLDER/PALLADIUM PLATING EIAJ CODE LQFP048-P-0707 LEAD MATERIAL 42/COPPER ALLOY PACKAGE MASS 0.2g JEDEC CODE —15—