SONY CXD2309

CXD2309Q
10-bit 85MSPS 3-Channel D/A Converter
Description
The CXD2309Q is a 10-bit high-speed D/A
converter for video band, featuring RGB 3-channel
input/output. This is ideal for use in high-definition
TVs and high-resolution displays.
Features
• Resolution 10-bit
• Maximum conversion speed 85MSPS
• RGB 3-channel input/output
• Differential linearity error ±0.5 LSB
• Low power consumption 275 mW
(200 Ω load for 2 Vp-p output)
• Single +5 V power supply
• Low glitch
• 48-pin QFP package
Structure
Silicon gate CMOS IC
48 pin QFP (Plastic)
Absolute Maximum Ratings (Ta=25 °C)
• Supply voltage AVDD, DVDD
7
V
• Input voltage (All pins)
VIN
VDD+0.5 to VSS–0.5 V
• Output current IOUT
0 to 15
mA
• Storage temperature
Tstg
–55 to +150
°C
Recommended Operating Conditions
• Supply voltage AVDD, AVSS 4.75 to 5.25
DVDD, DVSS 4.75 to 5.25
• Reference input voltage
VREF
0.5 to 2.0
• Clock pulse width
TPW1, TPW0
9 (min.)
• Operating temperature
Topr
–20 to +85
V
V
V
ns
°C
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
—1—
E94341B01
CXD2309Q
Block Diagram
(LSB) R0
1
R1
2
R2
3
R3
4
R4
5
6
R6 7
R5
R7
8
R8
9
4LSB’S
CURRENT
CELLS
43 AVSS
42 RO
6LSB’S
CURRENT
CELLS
LATCHES
DECODER
DECODER
CLOCK
GENERATOR
(MSB) R9 10
RCK 31
(LSB) G0 11
4LSB’S
CURRENT
CELLS
G1 12
45 AVSS
44 GO
G2 13
G3 14
G4 15
G5 16
6LSB’S
CURRENT
CELLS
LATCHES
DECODER
G6 17
G7 18
G8 19
DECODER
CLOCK
GENERATOR
(MSB) G9 20
GCK 32
(LSB) B0 21
4LSB’S
CURRENT
CELLS
B1 22
47 AVSS
46 BO
B2 23
B3 24
B4 25
B5 26
6LSB’S
CURRENT
CELLS
LATCHES
DECODER
B6 27
41 AVDD
40 AVDD
39 AVDD
B7 28
B8 29
DECODER
CLOCK
GENERATOR
(MSB) B9 30
38 VG
BCK 33
DVDD 48
BIAS VOLTAGE
GENERATOR
CURRENT CELLS
(FOR FULL SCALE)
VB 35
DVSS 34
—2—
37 VREF
36 IREF
CXD2309Q
IREF
VB
DVSS
BCK
GCK
RCK
B9 (MSB)
B8
B7
B6
B5
B4
Pin Configuration
36
35
34
33
32
31
30
29
28
27
26
25
VREF 37
24 B3
VG 38
23 B2
AVDD 39
22 B1
AVDD 40
21 B0 (LSB)
AVDD 41
20 G9 (MSB)
RO 42
19 G8
AVSS 43
18 G7
GO 44
17 G6
AVSS 45
16 G5
BO 46
15 G4
47
14 G3
AVSS
3
4
5
6
7
8
9
R2
R3
R4
R5
R6
R7
R8
(MSB) R9
12
G1
2
11
(LSB) G0
1
R1
13 G2
10
(LSB) R0
DVDD 48
1
to
35 , 48
Digital system
36 to 47 Analog system
Pin Description and Equivalent Circuit
Pin No.
Symbol
1 to 10
R0 to R9
I/O
Equivalent circuit
11 to 20 G0 to G9
21 to 30
B0 to B9
31
RCLK
32
GCLK
33
BCLK
34
DVSS
Digital input.
1 pin R0 (LSB) to 10 pin R9 (MSB)
11 pin G0 (LSB) to 20 pin G9 (MSB)
21 pin B0 (LSB) to 30 pin B9 (MSB)
DVDD
I
Description
1 to 33
DVSS
Clock input.
—
Digital ground.
DVDD
DVDD
35
VB
Connect an approximately 0.1µF
capacitor.
O
35
DVSS
—3—
CXD2309Q
Pin No.
36
Symbol
IREF
I/O
Equivalent circuit
O
AVDD
Description
AVDD
Reference current output.
Connect an “RIR” resistor which are
16 times the output resistance
“ROUT”.
36
AVDD
37
VREF
I
AVDD
Reference voltage input.
Sets an output full-scale value.
AVSS
Connect an approximately 0.1µF
capacitor.
AVSS
37
38
AVSS
38
VG
O
39 to 41
AVDD
—
42
RO
Analog power supply.
AVDD
42
Current output. Output can be
obtained by connecting a resistor
(200 Ω typ.).
44
44
GO
O
46
AVSS
46
BO
43, 45, 47
48
AVSS
DVDD
AVSS
—
—
Analog ground.
Digital power supply.
—4—
CXD2309Q
(fCLK=85 MHz, AVDD=DVDD=5 V, ROUT=200 Ω, VREF=2.0 V, RIR=3.3 kΩ, Ta=25°C)
Electrical Characteristics
Resolution
Item
Symbol
n
Conversion speed
fCLK
Integral non-linearity error
Differential non-linearity error
Precision guaranteed
output voltage range
Output full-scale voltage
Output full-scale ratio ∗1
EL
ED
Output full-scale current
Output offset voltage
Glitch energy
Unit
bit
0
85
MSPS
–2.0
–0.5
2.0
0.5
LSB
LSB
2.0
V
VFS
FSR
IFS
VOS
GE
1.8
0
9.0
1.92
2.0
3
10
1
V
%
mA
mV
pV•s
SNR
Supply current
IDD
Analog input resistance
Input capacitance
Output capacitance
RIN
CI
CO
VIH
VIL
IIH
IIL
ts
th
tPD
tr
tf
∗1
Endpoint
Max.
1.92
SN ratio
Setup time
Hold time
Propagation delay time
Rise time
Fall time
Ta=–20 to +85 °C
When “0000000000” data input
ROUT=100 Ω, 1 Vp-p output
When 10 MHz
FCLK=50 MHz
sin wave input
FCLK=85 MHz
When 1 MHz
FCLK=50 MHz
sin wave input
FCLK=85 MHz
When 10 MHz
FCLK=50 MHz
sin wave output FCLK=85 MHz
VREF
40
50
9.6
50
42
40
55
50
48
55
dB
dB
58
1
9
125
AVDD=DVDD=4.75 to 5.25 V
Ta=–20 to +75 °C
AVDD=DVDD=4.75 to 5.25 V
Ta=–20 to +75 °C
2.15
0.85
–5
5
4
1
14
26.5
26.0
Full-scale voltage of channel
–1
Average of the full-scale voltage of the channels
Full-scale output ratio =
Typ.
10
1.8
CT
Digital input current
AVDD=DVDD=4.75 to 5.25 V
Min.
VOC
Crosstalk
Digital input voltage
Measurement conditions
Electrical Characteristics Measurement Circuit
Analog Input Resistance
Measurement Circuit
Digital Input Current
}
+5.25V
AVDD, DVDD
A
CXD2309Q
V
AVSS, DVSS
—5—
× 100 (%)
mA
MΩ
pF
pF
V
µA
ns
ns
ns
ns
ns
CXD2309Q
Conversion Rate Measurement Circuit
R0 to R9
RO 42
1 to 10
G0 to G9
11 to 20 AVSS 43
B0 to B9
GO 44
21 to 30
10bit
COUNTER
with
LATCH
35 VB
200
AVSS
OSCILLOSCOPE
200
AVSS 45
0.1µ
AVSS
BO 46
200
DVSS
CLK
50MHz
SQUARE
WAVE
31 RCK
AVSS 47
32 GCK
VG 38
33 BCK
AVSS
AVDD
VREF 37 2V
0.1µ
IREF 36
3.3k
AVSS
Setup Time
Hold Time
Glitch Energy
}
Measurement Circuit
R0 to R9
RO 42
1 to 10
G0 to G9
11 to 20 AVSS 43
B0 to B9
21 to 30
GO 44
10bit
COUNTER
with
LATCH
VB
35
CLK
50MHz
SQUARE
WAVE
AVSS
OSCILLOSCOPE
200
AVSS 45
0.1µ
DELAY
CONTROLLER
200
AVSS
BO 46
DVSS
31 RCK
AVSS 47
GCK
VG 38
32
DELAY
CONTROLLER
33 BCK
200
AVSS
AVDD
VREF 37 2V
0.1µ
IREF 36
3.3k
AVSS
Crosstalk Measurement Circuit
DVDD
R0 to R9 RO 42
1 to 10
G0 to G9
11 to 20 AVSS 43
B0 to B9
21 to 30
GO 44
DIGITAL
WAVEFORM
GENERATOR
35
VB
0.1µ
AVSS
200
AVSS 45
AVSS
BO 46
DVSS
CLK
50MHz
SQUARE
WAVE
200
31 RCK
AVSS 47
32 GCK
VG 38
33 BCK
VREF 37 2V
200
AVSS
AVDD
0.1µ
IREF 36
3.3k
AVSS
—6—
SPECTRUM
ANALYZER
CXD2309Q
DC Characteristics Measurement Circuit
R0 to R9
RO 42
1 to 10
G0 to G9
11 to 20 AVSS 43
B0 to B9
GO 44
21 to 30
CONTROLLER
35 VB
AVSS
DVM
200
AVSS 45
0.1µ
AVSS
BO 46
DVSS
CLK
50MHz
SQUARE
WAVE
200
31 RCK
AVSS 47
GCK
VG 38
32
33 BCK
200
AVSS
AVDD
VREF 37 2V
0.1µ
IREF 36
3.3k
AVSS
Propagation Delay Time Measurement Circuit
R0 to R9 RO 42
1 to 10
G0 to G9
11 to 20 AVSS 43
B0 to B9
GO 44
21 to 30
10bit
COUNTER
with
LATCH
35 VB
CLK
50MHz
SQUARE
WAVE
AVSS
OSCILLOSCOPE
200
AVSS 45
0.1µ
DELAY
CONTROLLER
200
AVSS
BO 46
DVSS
31 RCK
AVSS 47
GCK
VG 38
32
DELAY
CONTROLLER
33 BCK
200
AVSS
AVDD
VREF 37 2V
0.1µ
IREF 36
3.3k
AVSS
SNR Measurement Circuit
DIGITAL
WAVEFORM
GENERATOR
R0 to R9 RO 42
1 to 10
G0 to G9
11 to 20 AVSS 43
B0 to B9
GO 44
21 to 30
ALL “1”
ALL “1”
35 VB
0.1µ
AVSS
200
AVSS 45
AVSS
BO 46
DVSS
CLK
50MHz
SQUARE
WAVE
200
31 RCK
AVSS 47
32 GCK
VG 38
33 BCK
VREF 37 2V
200
AVSS
AVDD
0.1µ
IREF 36
3.3k
AVSS
—7—
SPECTRUM
ANALYZER
CXD2309Q
Description of Operation
Timing Chart
tPW1
tPW0
1.5V
CLK
AA
AA
AA
AAA
AA
AA
AA
AAA
AA AAAAAAA
ts th
ts th
ts th
DATA
1.5V
D/A OUT
100%
90%
50%
tPD
tr
I/O Correspondence Table (output full-scale voltage: 2.00 V)
Input code
Output voltage
MSB
LSB
1 1 1 1 1 1 1 1 1 1
2.0 V
:
1 0 0 0 0 0 0 0 0 0
1.0 V
:
0 0 0 0 0 0 0 0 0 0
0V
—8—
tf
10%
0%
CXD2309Q
Notes on Operation
• Selecting the Output Resistance
CXD2309Q is a current output type D/A converter. The output voltage can be obtained by connecting the
resistor ROUT to the current output pins RO, GO and BO.
Specifications:
Output full-scale voltage VFS = 1.8 to 2.0 [V]
Output full-scale current IFS = 9.0 to 10.0 [mA]
Calculate the output resistance from VFS = IFS × ROUT. Connect a resistance sixteen times the output
resistance to the reference current output pin IREF. In some cases, as this value may not exist, a similar
value can be used instead.
Note that the VFS will be the following.
VFS = VREF × 16ROUT/RIR
VREF is the voltage set at the reference voltage input pin VREF, ROUT is the resistor to be connected to the
current output pins RO, GO, BO and RIR is the resistor to be connected to the IREF. Power consumption can
be reduced by increasing the resistance, but this will on the contrary increase the glitch energy and data
setting time. Set the best values according to the purpose of use.
• Correlation between Data and Clock
For CXD2309Q to display the desired performance as a D/A converter, the data transmitted from outside and
the clock must be synchronized properly. Adjust the setup time (ts) and hold time (th) as specified in
“Electrical Characteristics”.
• Power supply, ground
Separate the analog and digital signals around the device to reduce noise effects. Bypass the power supply
pin to each ground with a 0.1 µF ceramics capacitor as near as possible to the pin for both the digital and
analog signals.
• Latch up
Analog and digital power supplies must be able to share the same power supply of the board. This is to
prevent latch up caused by potential difference between the two pins when the power is turned on.
• IREF
The IREF pin is very sensitive to improve the AC characteristics. Pay attention for capacitance component not
to attach to this pin because its output may become unstable.
• VG pin
It is recommended to use a 1 µF capacitor to improve the AC characteristics though the typical capacitance
value externally connected to the VG pin is 0.1 µF.
• Output full-scale voltage
For the applications using the RGB signal, the color balance may be broken up when the RO, GO and BO
output full-scale voltages are used with not adjustment.
—9—
CXD2309Q
Application Circuit
C
C
R2
MSB
Clock input
36
35
34
33
32
31
30
29
28
27
26
25
R3
C
R1
R1
R1
24
38
23
39
22
40
21
LSB
41
20
MSB
42
19
43
18
44
17
45
16
46
15
47
14
48
13
2
3
4
LSB
1
•
•
•
•
•
•
5
6
R ch
input
AVDD
DVDD
AVSS
DVSS
7
8
9
10
11
LSB
C
37
MSB
C
R4
B ch input
G ch input
12
When the power supply (AVDD and DVDD) is 5.0 V.
R1=200 Ω
R2=3.3 kΩ
R3=3.0 kΩ
R4=2.0 kΩ
C=0.1 µF
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
—10—
CXD2309Q
Latch Up Prevention
The CX2309Q is a CMOS IC which requires latch up precautions. Latch up is mainly generated by the lag in
the voltage rising time of AVDD (Pin 39, 40 and 41) and DVDD (Pin 48), when power supply is ON.
1. Correct usage
a. When analog and digital supplies are from different sources
DVDD
AVDD
39
40
41
48
AVDD
+5V
DVDD
+5V
CXD2309Q
C
AVSS
43
45
C
DIGITAL IC
DVSS
47
34
AVSS
b. When analog and digital supplies are from a common source
(i)
DVDD
39
40
41
AVDD
48
DVDD
+5V
CXD2309Q
C
AVSS
43
45
C
DIGITAL IC
C
DIGITAL IC
DVSS
47
34
AVSS
(ii)
DVDD
39
40
41
AVDD
48
DVDD
+5V
CXD2309Q
C
AVSS
43
33
45
DVSS
47
31
34
AVSS
—11—
CXD2309Q
2. Example when latch up easily occurs
a. When analog and digital supplies are from different sources
DVDD
AVDD
39
40
41
48
AVDD
+5V
DVDD
+5V
CXD2309Q
C
AVSS
43
45
C
DIGITAL IC
DVSS
47
34
AVSS
b. When analog and digital supplies are from common source
(i)
DVDD
AVDD
39
40
41
AVDD
48
DVDD
+5V
CXD2309Q
C
AVSS
43
45
C
DIGITAL IC
C
DIGITAL IC
DVSS
47
34
AVSS
(ii)
DVDD
AVDD
39
40
41
AVDD
48
DVDD
+5V
CXD2309Q
AVSS
43
45
DVSS
47
34
AVSS
—12—
CXD2309Q
2.0
Glitch energy GE [pV•s]
Output full-scale voltage VFS [V]
Example of Representative Characteristics
1.0
0
1.0
100
50
2.0
0
100
200
Output resistance ROUT [Ω]
Fig. 2. Output resistance vs. Glitch energy
Reference voltage VREF [V]
Fig. 1. Reference voltage vs. Output full-scale voltage
1.95
Supply current IDD [mA]
Output full-scale voltage VFS [V]
70
1.90
∆V=0.02mV/°C
0
–25
0
25
50
sin wave output
60
50
40
75
1 2
Ambient temperature Ta [°C]
Fig. 3. Ambient temperature vs. Output full-scale voltage
5
10
20
30
40 42
Output frequency Fo [MHz]
Fig. 4. Output frequency vs. Supply current
Standard Measurement Conditions
• AVDD=DVDD=5.0 V
• VREF=2.0 V
• FCLK=85 MHZ
• ROUT=200 Ω
• RIR=3.3 kΩ
• Ta=25 °C
—13—
CXD2309Q
fout=1MHz sin wave
50
IDD
40
IA [Analog]
30
20
10
fout=10MHz sin wave
60
Supply current IDD [mA]
Supply current IDD [mA]
60
IDD
40
IA [Analog]
30
20
ID [Digital]
10
ID [Digital]
20
50
85
50
20
Clock frequency FCLK [MHz]
Fig. 5. Clock frequency vs. Supply current
Clock frequency FCLK [MHz]
Fig. 6. Clock frequency vs. Supply current
0
sin wave output
Output level [dBm]
Cross talk CT [dB]
60
50
85
50
40
30
20
–10
–20
10
0
1
2
5
10
20
42
0
1
2
5
10
20
50
Output frequency Fo [MHz]
Fig. 8. Output frequency vs. Output level
(Including primary hold characteristics sinx/x)
Output frequency Fo [MHz]
Fig. 7. Output frequency vs. Cross talk
Standard Measurement Conditions
• AVDD=DVDD=5.0 V
• VREF=2.0 V
• FCLK=85 MHZ
• ROUT=200 Ω
• RIR=3.3 kΩ
• Ta=25 °C
—14—
CXD2309Q
1000
Input current [µA]
SNR [dB]
50
40
500
30
0
1
2
5
10
20
50
–1
0
1
5
6
Input voltage [V]
Output frequency Fo [MHz]
Fig. 9. Output frequency vs. SNR
500
1000
Fig. 10. Input terminal V-I characteristics
Standard Measurement Conditions
• AVDD=DVDD=5.0 V
• VREF=2.0 V
• FCLK=85 MHZ
• ROUT=200 Ω
• RIR=3.3 kΩ
• Ta=25 °C
—15—
CXD2309Q
Package Outline
Unit : mm
48PIN QFP (PLASTIC)
15.3 ± 0.4
+ 0.1
0.15 – 0.05
+ 0.4
12.0 – 0.1
0.15
36
25
24
13.5
37
48
+ 0.2
0.1 – 0.1
13
12
0.8
+ 0.15
0.3 – 0.1
0.24
M
0.9 ± 0.2
1
+ 0.35
2.2 – 0.15
PACKAGE STRUCTURE
SONY CODE
QFP-48P-L04
EIAJ CODE
QFP048-P-1212
JEDEC CODE
PACKAGE MATERIAL
EPOXY RESIN
LEAD TREATMENT
SOLDER / PALLADIUM
PLATING
LEAD MATERIAL
42/COPPER ALLOY
PACKAGE MASS
0.7g
—16—