SONY CXL1502M

CXL1502M
CMOS-CCD Signal Processor
For the availability of this product, please contact the sales office.
Description
The CXL1502M is a CMOS-CCD signal processor
designed for 8-mm video signal processing. In
combination with the 8-mm video Y/C signal
processing IC CXA1200Q, this IC configures a comb
filter for Y/C separation in recording an image,
elimination of line crawling and crosstalk in playing
back.
Features
• Single power supply 5V
• Low power consumption
• Built-in peripheral circuits
• Completely adjustment free
• Built-in triple progression PLL circuit
• For PAL signals
30 pin SOP (Plastic)
Absolute Maximum Ratings (Ta = 25°C)
6
V
• Supply voltage
VDD
• Operating temperature
Topr –10 to +60 °C
• Storage temperature
Tstg –55 to +150 °C
• Allowable power dissipation PD
500
mW
Recommended Operating Conditions (Ta = 25°C)
Supply voltage
VDD
5 ± 5%
V
Functions
• 1H comb filter, 2H comb filter output
• Dropout compensation
• PLL circuit (triple progression)
• Clock driver
• Autobias circuit
• Sync tip clamp circuit
• Sample and hold circuit
• Delay time matching through output (THR)
Recommended Clock Conditions (Ta = 25°C)
• Input clock amplitude
VCLK 0.3 to 1.0 Vp-p
(0.4Vp-p Typ.)
• Clock frequency
fCLK
4.433619 MHz
• Input clock waveform
sine wave
Input Signal Amplitude
VSIG
Structure
CMOS-CCD
575 mVp-p
(Max.)
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
–1–
E80334-PS
29
CCD3
CLK
18
19
15
14
13
12
11
10
9
8
7
6
5
4
ADJC
3
CCD2-C
2
CCDY
1
VSS
Bias circuit (B)
CCD1
Output circuit, S/H circuit
Output circuit, S/H circuit
Output circuit, S/H circuit
16
Bias circuit (A)
17
NC
VSS
VDD
VCO OUT
VSS
D
D
D
20
Output circuit, S/H circuit
21
VSS
NC
22
ADJY
ABN
23
YD
TH
2H + D
φ1
φ2
24
Clock driver
VCO IN
Phase
comparator
25
VSS
1/3 divider
26
PC OUT
27
VDD
VGGA
VCO
VDD
28
VSS
VGGB
Autobias
circuit (N)
Autobias
circuit (P)
ABP
30
Y-YD
C-CD
–2–
VSS
Block Diagram
CXL1502M
CXL1502M
Pin Description
Pin No.
Symbol
Description
I/O
Impedance (Ω)
1
VSS
2
CCDY
I
Signal input 4 (Reverse phase signal)
> 100k (at no clamp)
3
CCD2-C
I
Signal input 2 (Reverse phase signal)
> 100k (at no clamp)
4
ADJC
O
Forward CCD bias DC output
600 to 2k
5
CCD1
I
Signal input 1 (Reverse phase signal)
> 100k (at no clamp)
6
NC
—
7
VDD
—
5V power supply
8
VSS
—
GND
9
NC
—
10
ABN
O
Reverse phase autobias DC output
2k to 200k
11
TH
O
THR signal output (Forward phase signal)
40 to 500
12
VGGA
O
Gate bias (A) DC output
2k to 10k
13
VGGB
O
Gate bias (B) DC output
2k to 10k
14
C-CD
O
2H comb filter signal output
40 to 500
15
VSS
—
GND
16
Y-YD
O
1H comb filter signal output
17
VSS
—
GND
18
VDD
—
5V power supply
19
YD
O
DOC signal output (Reverse phase signal)
40 to 500
20
ADJY
O
Reverse phase CCD bias DC output
600 to 2k
21
VSS
—
GND
22
VCO OUT
O
VCO output
23
VSS
—
GND
24
VSS
—
GND
25
CLK
I
26
VDD
—
5V power supply
27
PC OUT
O
Phase comparator output
2k to 5k
28
VCO IN
I
VCO input
> 100k
29
ABP
O
Forward phase autobias DC output
2k to 200k
30
CCD3
I
Signal input 3 (Forward phase signal)
> 100k (at no clamp)
—
GND
40 to 500
4k to 40k
Clock input
–3–
–4–
Differential
phase
Differential
gain
Frequency
response
High frequency
gain
Low frequency
gain
Supply current
Item
a
a
c
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
b←
→c
b←
→c
b←
→c
h
h
h
h
h
h
h
h
DGC
DGY
DGT
DPC
DPY
DPT
DPD
DGD
fT
fD
fY
5-staircase
wave∗7
5-staircase
wave∗7
a
a
a
a
203.126kHz
←
→
4.437525MHz
150mVp-p
sine wave
b←
→c
fc
GHT
a
a
a
c
GHD
GHY
a
a
a
c
GHC
c
a
a
a
GLT
4.437525MHz
150mVp-p
sine wave
a
a
GLD
GLY
a
a
a
a
a
a
a
a
a
203.126kHz
500mVp-p
sine wave
—
3
2
1
a
GLC
IDD
Symbol Test conditions∗1
Electrical Characteristics
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
4
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
5
a
a
a
a
a
a
a
a
b
b
b
b
b
b
b
b
a
a
a
a
a
6
a
a
a
a
a
a
a
a
b
b
b
b
b
b
b
b
a
a
a
a
a
7
a
a
a
a
a
a
a
a
b
b
b
b
b
b
b
b
a
a
a
a
a
8
SW conditions
a
a
a
a
a
a
a
a
b
b
b
b
b
b
b
b
a
a
a
a
d
a
b
c
d
a
b
c
d
a
b
c
d
a
b
c
d
a
b
c
c
c
c
c
c
c
c
c
b
b
b
b
b
b
b
b
b
b
b
b
a — —
9 10 11
—
—
VBIAS
2
—
—
VBIAS
3
—
—
VBIAS
4
—
—
—
—
—
—
—
—
VID
VIY
VIC
VIT
+0.25 –0.25 –0.25 –0.25
VID
VIY
VIC
VIT
+0.25 –0.25 –0.25 –0.25
—
—
VBIAS
1
Bias conditions∗2 (V)
0
0
–3.0
–7.0
–5.0
50
Min.
3
3
–2.0
–5.0
–3.0
60
7
7
–1.0
–3.0
–1.0
70
Typ. Max.
deg
deg
dB
dB
dB
mA
∗7
∗7
∗6
∗5
∗4
∗3
Unit Note
(Ta = 25°C, VDD = 5V, fCLK = 4.433619MHz, VCLK = 400mVp-p sine wave)
See the Electrical Characteristics Test Circuit.
CXL1502M
–5–
Y-comb
depth min. gain
Chroma comb
depth min. gain
S/H pulse
coupling
S/N ratio
Item
b
b
b
— b
No-signal input — b
— b
VPY
VPD
VPT
YCD
CCD
2.000011MHz
←
→
1.992198MHz
200mVp-p
sine wave
4.437525MHz
←
→
4.441431MHz
200mVp-p
sine wave
f←
→g
a
a
a
b
— b
VPC
a
b
b
— b
SNT
d←
→e
b
b
— b
SND
b
— b
No-signal
input∗8
SNY
a
a
b
b
b
b
b
b
b
— b
SNC
4
3
1
a
a
b
b
b
b
b
b
b
b
5
b
b
b
b
b
b
a
a
a
a
6
b
b
a
a
a
a
a
a
a
a
7
b
b
a
a
a
a
a
a
a
a
8
SW conditions
2
Symbol Test conditions∗1
b
b
a
a
a
a
a
a
a
a
b
c
d
a
b
c
d
a
b
c
b
b
a
a
a
a
d
d
d
d
9 10 11
VID
+0.3
VID
+0.3
VID
+0.5
—
VBIAS
1
VIY
–0.3
VIY
–0.3
—
—
VBIAS
2
VIC
–0.3
VIC
–0.3
—
—
VBIAS
3
VIT
–0.3
VIT
–0.3
—
—
VBIAS
4
Bias conditions∗2 (V)
—
—
—
—
Min.
—
—
—
–56
dB
–15
–24
dB
dB
∗11
∗10
∗9
∗8
Unit Note
350 mVp-p
–52
Typ. Max.
CXL1502M
–6–
4.433619MHz
500mVp-p
sine wave
5-staircase
wave
1.992198MHz
150mVp-p
sine wave
2.000011MHz
150mVp-p
sine wave
4.441431MHz
150mVp-p
sine wave
4.437525MHz
150mVp-p
sine wave
h
g
f
–1
–1
b
1µ
1µ
1µ
51k
51k
51k
51k
a SW5
b
a SW4
b
VBIAS1 VBIAS3
VBIAS2 VBIAS4
e SW1
d
c
–1
a SW3
V1
b
SW7
V2
b
SW8
a
1M
a
V3
b
SW9
1M
a
30
V4
2
3
22
4
5V
3.3µ 0.01µ
8
9
7
23
6
24
5
25
0.01µ
26
3.3µ
27
1µ
100
28
1k
29
1
1M
1µ
ADJC
b
CCD3
0.1µ
CCD1
1M
CCD2-C
0.1µ
CLK
NC
SW6
a
VSS
VDD
203.126kHz
150mVp-p
sine wave
b
ABP
VSS
VSS
1µ
VCO IN
VSS
PC OUT
CCDY
VDD
VCOOUT
NC
a
1µ
21
VSS
10
ABN
b
–50
[dB]
0
–3
20
1µ
ADJY
1µ
17
0.01µ
18
12
14
1µ
3.3µ
13
19
0
6M 13.3M
Frequency [Hz]
NOTE 1)
LPF frequency response
11
TH
203.126kHz
500mVp-p
sine wave
YD
VGGA
CLK
fSC (4.43619MHz) 400mVp-p sine wave
VDD
VGGB
a SW2
VSS
C-CD
–1
16
Y-YD
Fig. 1
–50
[dB]
0
–3
15
VSS
Electrical Characteristics Test Circuit
9V
9V
9V
9V
c
b
SW10
d
0 200
6M 13.3M
Frequency [Hz]
a
Oscilloscope
Spectrum
analyzer
NOTE 1) ×3
c
Vector
LPF
scope
×3
d
Noise
BPF
meter
NOTE 2)
SW11
b
a
NOTE 2)
BPF frequency response
1.2k
1.2k
1.2k
1.2k
CXL1502M
CXL1502M
Notes)
∗1 Adjust the output amplitude of the inversion and the non-inversion amplifiers in the signal input block to an
equal value, as well as the phase difference to a precise 180°.
Also set the clock and input signal frequency accurately.
∗2 VIC, VIY, VID and VIT are defined as follows:
VIC, VIY, VID and VIT are input signal clamp levels. They clamps the Video signal sync tip level. They are
the pin voltages at no-input signal for pins 3, 2, 30 and 5, respectively.
VID
Input (CCD3)
30
L1502
2
5
3
Input (CCDY)
VIY
VIT
Input (CCD2-C)
VIC
Input (CCD1)
Testing of VIC, VIY, VID and VIT is executed with a voltmeter under the following SW conditions:
SW conditions
1
2
3
4
5
6
7
8
9
10
11
Test
point
VIC
—
b
b
b
b
a
a
a
a
—
—
V3
VIY
—
b
b
b
b
a
a
a
a
—
—
V2
VID
—
b
b
b
b
a
a
a
a
—
—
V1
VIT
—
b
b
b
b
a
a
a
a
—
—
V4
Item
∗3 This is the IC supply current value during clock and signal input.
∗4 GLC, GLY, GLD and GLT are output gains of C-CD, Y-YD, YD and TH pins when a 500mVp-p,
203.126kHz sine wave is simultaneously fed to CCD2-C, CCDY, CCD3 and CCD1 pins, respectively.
(Example of calculation)
GLC = 20 log
C-CD pin output voltage [mVp-p]
500 [mVp-p]
[dB]
–7–
CXL1502M
∗5 GHC, GHY, GHD and GHT are output gains of C-CD, Y-YD, YD and TH pins when a 150mVp-p,
4.437525MHz sine wave is simultaneously fed to CCD2-C, CCDY, CCD3 and CCD1 pins, respectively. Bias
at input (VBIAS1, VBIAS2, VBIAS3 and VBIAS4) is tested respectively at VID + 0.25V, VIY – 0.25V, VIC – 0.25V
and VIT – 0.25V.
(Example of calculation)
C-CD pin output voltage [mVp-p]
150 [mVp-p]
GHC = 20 log
[dB]
∗6 Indicates the dissipation at 4.437525MHz in relation to 203.126kHz. From the output voltage at TH, C-CD,
Y-YD and YD pins when a 150mVp-p, 203.126kHz sine wave is simultaneously fed to CCD1, CCD2-C,
CCDY and CCD3 pins, and from the output voltage at TH, C-CD, Y-YD and YD pins when a 150mVp-p,
4.437525MHz sine wave is simultaneously fed to same, calculation is made according to the following formula.
The input block bias for VBIAS1, VBIAS2, VBIAS3 and VBIAS4 is tested at VID + 0.25V, VIY – 0.25V, VIC – 0.25V
and VIT – 0.25V, respectively.
(Example of calculation)
fT = 20 log
TH pin output voltage (4.437525MHz) [mVp-p]
TH pin output voltage (203.126kHz) [mVp-p]
[dB]
∗7 The differential gain (DG) and the differential phase (DP), when the 5-staircase wave in the following figure
is fed, are tested with a vector scope:
150mV
275mV
500mV
150mV
1H 64µs
CCD3 pin input waveform (the input waveform of CCD1, CCD2-C and CCDY pins is the inverted waveform
of the figure above.)
∗8 The noise level of output signal at no-input signal is tested with a video noise meter in the Sub Carrier Trap
mode at BPF 100kHz to 5MHz. Vn [Vrms]
The signal component is determined either by testing the output voltage (the same test system as that of
noise level) at input of 350mVp-p, 203.126kHz, or by performing calculation from the values of GLT, GLC,
GLY and GLD in accordance with the following formula. Vs [Vp-p]
(Example of VS calculation)
VS-T = 0.35 × 10
GLT
20
(VS-T: TH output voltage)
(Example of S/N ratio calculation)
SNT = 20 log
VN-T (noise component) [Vrms]
[dB]
VS-T (signal component) [Vp-p]
–8–
CXL1502M
∗9 The internal clock component to the output signal during no-signal input and the leakage of that high
harmonic component are tested. The input block bias for VBIAS1 is tested at VID + 0.5V and VIC – 0.25V.
Test value [mVp-p]
∗10 C-CD is calculated in accordance with the following formula from the C-CD pin output voltage when a
200mVp-p, 4.437525MHz sine wave is simultaneously fed to CCD1, CCD2-C, CCDY and CCD3 pins and
from the C-CD pin output voltage when a 200mVp-p, 4.441431MHz sine wave is simultaneously fed to
same. The input block bias for VBIAS1, VBIAS2, VBIAS3 and VBIAS4 is set to VID + 0.3V, VIY – 0.3V, VIC – 0.3V
and VIT – 0.3V, respectively.
C-CD = 20 log
C-CD pin output voltage (4.437525MHz)
[dB]
C-CD pin output voltage (4.441431MHz)
∗11 Y-CD is calculated in accordance with the following formula from the Y-YD pin output voltage when a
200mVp-p, 2.000011MHz sine wave is simultaneously fed to CCD1, CCD2-C, CCDY and CCD3 pins and
from the Y-YD pin output voltage when a 200mVp-p, 1.992198MHz sine wave is simultaneously fed to
same. The input block bias is set to the same conditions as in testing CCD.
Y-CD = 20 log
Y-YD pin output voltage (1.992198MHz)
[dB]
Y-YD pin output voltage (2.000011MHz)
CLOCK
fsc (4.433619MHz) sine wave
0.3Vp-p to 1.0Vp-p (0.4Vp-p Typ.)
–9–
– 10 –
1M
1
30
1µ
2
29
1M
1k
3
28
1M
1µ
100
4
27
0.1µ
3.3µ
5
26
1M
3.3µ
6
25
0.01µ
7
24
0.1µ
23
5V
0.01µ
8
CXL1502M
fSC
0.4Vp-p sine wave
9
22
1µ
10
21
11
20
1µ
1.8k
1µ
13
18
3fsc
1.8k
2SC403
5V
14
17
0.01µ
15
16
THR output
(forward phase signal)
1.2k
C-CD output
1.2k
Y-YD output
1.2k
YD output
(Reverse phase signal)
1.2k
Signal output
Transistor used : 2SA1175
9V
When using pin 22 (3 fsc output)
22
1µ
12
19
3.3µ
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
CCD1 input
(Reverse phase signal)
1µ
CCD2-C input
(Reverse phase signal)
1µ
CCDY input
(Reverse phase signal)
1µ
CCD3 input
(forward phase signal)
1µ
Composite video signal input
Application Circuit
CXL1502M
CXL1502M
Low frequency gain vs. Ambient temperature
High frequency gain vs. Ambient temperature
High frequency gain [dB]
Low frequency gain [dB]
–1
–2
–3
–4
–3
–4
–5
–6
–5
0
20
40
60
Ta – Ambient temperature [°C]
0
20
40
60
Ta – Ambient temperature [°C]
Frequency response vs. Ambient temperature
Differential gain vs. Ambient temperature
8
0
Differential gain [%]
Frequency response [dB]
10
–1
–2
6
4
2
–3
0
0
20
40
60
Ta – Ambient temperature [°C]
Chroma comb depth min. gain vs. Ambient temperature
Y comb depth min. gain vs. Ambient temperature
–10
–10
Y comb depth min. gain [dB]
Chroma comb depth min. gain [dB]
0
20
40
60
Ta – Ambient temperature [°C]
–20
–30
–40
–50
–20
–30
–40
–50
0
20
40
60
Ta – Ambient temperature [°C]
0
20
40
60
Ta – Ambient temperature [°C]
– 11 –
CXL1502M
Low frequency gain vs. Supply voltage
High frequency gain vs. Supply voltage
High frequency gain [dB]
Low frequency gain [dB]
–1
–2
–3
–4
–3
–4
–5
–6
–5
4.75
5.00
VDD – Supply voltage [V]
5.25
4.75
Frequency response vs. Supply voltage
5.00
VDD – Supply voltage [V]
5.25
Differential gain vs. Supply voltage
8
0
Differential gain [dB]
Frequency response [dB]
10
–1
–2
5.00
VDD – Supply voltage [V]
0
4.75
5.25
5.00
VDD – Supply voltage [V]
5.25
Y comb depth min. gain vs. Supply voltage
–10
–10
Y comb depth min. gain [dB]
Chroma comb depth min. gain [dB]
Chroma comb depth min. gain vs. Supply voltage
–20
–30
–40
–50
4.75
4
2
–3
4.75
6
–20
–30
–40
–50
5.00
VDD – Supply voltage [V]
5.25
4.75
– 12 –
5.00
VDD – Supply voltage [V]
5.25
CXL1502M
Y comb response (Y-YD output)
0
–10
–10
Gain [dB]
0
–20
–20
–30
–30
–40
–40
4.4285M
4.4385M
4.4335M
f – Frequency [Hz]
1.982M
1.992M
f – Frequency [Hz]
Frequency response (TH, YD output)
0
–2
Gain [dB]
Gain [dB]
Chroma comb response (C-CD output)
–4
–6
–8
10k
100k
f – Frequency [Hz]
– 13 –
1M
2.002M
CXL1502M
Package Outline
Unit: mm
30PIN SOP (PLASTIC)
+ 0.4
2.3 – 0.15
+ 0.4
18.8 – 0.1
16
15
1
1.27
0.45 ± 0.1
0.24
+ 0.2
0.1 – 0.05
0.5 ± 0.2
9.3 ± 0.3
10.3 ± 0.4
0.15
+ 0.3
7.6 – 0.1
30
+ 0.1
0.15 – 0.05
M
PACKAGE STRUCTURE
PACKAGE MATERIAL
SONY CODE
SOP-30P-L01
EIAJ CODE
SOP030-P-0375
EPOXY RESIN
LEAD TREATMENT
SOLDER PLATING
LEAD MATERIAL
42 ALLOY
PACKAGE MASS
0.7g
JEDEC CODE
– 14 –