SST SST65P542R-8-C-SG

Remote Controller MCU
SST65P542R
SST65P542RMicrocontroller
Advance Information
FEATURES:
• 8-bit MCU Core
– Enhanced 6502 Microprocessor Megacell emulating
the reduced 6805 instruction set
• 4 MHz Typical Oscillator Clock Frequency
• 8 MHz Maximum Oscillator Clock Frequency
• Low Voltage Operation: 2.2-3.2V
• 20 Re-configurable General Purpose I/O leads
• SuperFlash Memory
– 16 KByte of Flash Memory
– 128 Byte sectors for SoftPartition
– 100,000 endurance cycles (typical)
– 100 years data retention
– Fast Write:
- Chip-Erase: 70 ms (typical)
- Sector-Erase: 18 ms (typical)
- Byte-Program: 60 µs (typical)
– In-Application Programming (IAP)
• External Host Programming Mode for
Programmer Support
– JEDEC Standard Command Sets
• 352 Byte On-Chip SRAM
• In-System Programming (ISP) Support
through Firmware
• IR Input Pin for Learning Mode
• Carrier Modulator Transmitter
– Supports Baseband, Pulse Length Modulator
(PLM), and Frequency Shift Keying (FSK)
• Core Timer / Counter
– 14-stage multifunctional ripple counter
– Includes timer overflow, POR, RTI, and CWT
• External Reset Input and Low Power Pins
• Power Management
– Hardware enable bits programmable by software
for entering STOP and IDLE modes
• Package Available
– 28-lead SOIC
PRODUCT DESCRIPTION
The SST65P542R is a member of SST’s 8-bit application
specific microcontroller family targeted for IR remote controller applications.
The SST65P542R microcontroller provides high functionality to infrared remote controller products. The device offers
flexibility to store different remote control configurations for
controlling multiple appliances. The configurations are
either programmed at the factory during the manufacturing
process or downloaded through firmware.
Using SST’s SuperFlash nonvolatile memory technology,
the SST65P542R enhances the functionality and reduces
the cost of conventional universal remote controller devices
by integrating multiple functions of a remote controller system in a single chip solution. The built-in LED I/O ports can
directly drive LED indicators. The IR transmitter port drives
signals to the infrared transmitter, which, in turn, remotely
controls the appliances.
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01
368
1
The SoftPartition architecture allows seamless flash memory partitioning of the program code, protocol tables, and
user data in the small granularity of 128 Byte sectors. The
small sector size and fast Write capability of the device
greatly decreases the time and power when altering the
contents of the flash memory.
The highly reliable, patented SuperFlash technology
provides significant advantage over conventional flash
memory technology. These advantages translate into
significant cost saving and reliability benefits for the
customers.
SST, the SST logo, and SuperFlash are Trademarks registered by Silicon Storage Technology, Inc. in the U.S. Patent and Trademark Office.
In-Application Programming, IAP, and SoftPartition are trademarks of Silicon Storage Technology, Inc.
These specifications are subject to change without notice.
Remote Controller MCU
SST65P542R
Advance Information
TABLE OF CONTENTS
PRODUCT DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.0 FUNCTIONAL BLOCKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.0 PIN ASSIGNMENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.0 I/O REGISTERS AND MEMORY ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 SRAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 SuperFlash Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.0 PARALLEL INPUT/OUTPUT PORTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.0 FLASH MEMORY PROGRAMMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1 In-Application Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.1 Chip-Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.2 Sector-Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.3 Byte-Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 External Host Programming Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.2.9
External Host Mode Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Host Mode Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Host Mode Byte-Program Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Host Mode Chip-Erase Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Host Mode Sector-Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operation Status Detection - Program Timer Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operation Status Detection - RY/BY# Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Exiting The External Host Programming Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flash Read Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21
22
22
22
22
23
23
23
23
6.0 RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.1 External Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 External Low Power Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.3 Internal Power-on and Brown-out Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.4 COP Watchdog Timer Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.5 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
2
Remote Controller MCU
SST65P542R
Advance Information
7.0 INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.1 Software Interrupt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2 External Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.3 CMT Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.4 Core Timer Interrupt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.0 OPERATION MODES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.1 User Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.2 Learning Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9.0 PERIPHERALS AND OTHERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9.1 Core Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9.2 Carrier Modulator Transmitter (CMT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9.3 Clock Input Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9.4 Crystal/Ceramic Resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9.5 External Clock Drive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
10.0 POWER SAVING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
10.1 STOP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
10.2 IDLE Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
11.0 ELECTRICAL SPECIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
11.1 Absolute Maximum Stress Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
11.2 Reliability Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
11.3 DC Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
11.4 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
11.5 AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
12.0 PRODUCT ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
12.1 Valid Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
13.0 PACKAGING DIAGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
3
Remote Controller MCU
SST65P542R
Advance Information
LIST OF FIGURES
FIGURE 2-1: Pin Assignments for 28-lead SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
FIGURE 3-1: Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
FIGURE 4-1: Port B Interrupt and Pull-Up Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
FIGURE 6-1: Reset Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
FIGURE 9-1: Using the Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
FIGURE 9-2: External Clock Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
FIGURE 10-1: Stop Mode and Idle Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
FIGURE 11-1: External Host Programming Mode - Setup Cycle Timing Diagram. . . . . . . . . . . . . . . . . . . . 32
FIGURE 11-2: External Host Programming Mode - Read Cycle Timing Diagram . . . . . . . . . . . . . . . . . . . . 32
FIGURE 11-3: External Host Programming Mode - Write Cycle Timing Diagram . . . . . . . . . . . . . . . . . . . . 33
FIGURE 11-4: External Host Programming Mode - Chip-Erase Timing Diagram . . . . . . . . . . . . . . . . . . . . 33
FIGURE 11-5: External Host Programming Mode Sector-Erase Timing Diagram . . . . . . . . . . . . . . . . . . . . 34
FIGURE 11-6: External Host Programming Mode Byte-Program Timing Diagram . . . . . . . . . . . . . . . . . . . 34
FIGURE 11-7: AC Input/Output Reference Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
FIGURE 11-8: A Test Load Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
FIGURE 11-9: Byte-Program Command Sequence for External Host Programming Mode . . . . . . . . . . . . 36
FIGURE 11-10: Wait Options for External Host Programming Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
FIGURE 11-11: Chip-/Sector-Erase Command Sequence for External Host Programming Mode . . . . . . . 38
LIST OF TABLES
TABLE 2-1: Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
TABLE 3-1: Register Descriptions and Bit Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
TABLE 3-5: Interrupt/Reset Sector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
TABLE 5-1: SFFR Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
TABLE 5-2: External Host Programming Mode Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
TABLE 5-3: External Host Programming Mode Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
TABLE 5-4: Software Command Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
TABLE 8-1: Pin Assignment For Different Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
TABLE 11-1: Reliability Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
TABLE 11-2: Recommended DC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
TABLE 11-3: DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
TABLE 11-4: Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
TABLE 11-5: External Host Programming-Mode Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
4
Remote Controller MCU
SST65P542R
Advance Information
1.0 FUNCTIONAL BLOCKS
FUNCTIONAL BLOCK DIAGRAM
Interrupt
Control
MCU Core
SuperFlash
Memory
IRQ#
RAM
352K x8
16K x8
Port A
IRO
Carrier Modulator
Transmitter
Port B
Port C
Timer/Counter Interrupt
Real-Time
Counter
Core Timer
/ Counter
COP Watchdog
Timer
368 ILL B1.8
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
5
Remote Controller MCU
SST65P542R
Advance Information
2.0 PIN ASSIGNMENTS
PB0
1
28
OSC1
PB1
2
27
OSC2
PB2
3
26
VDD
PB3
4
25
IRQ#
PB4
5
24
RST#
PB5
6
23
IRO
PB6
7
28-lead SOIC
22
VSS
PB7
8
Top View
21
LPRST#
PA0
9
20
PC3
PA1
10
19
PC2
PA2
11
18
PC1
PA3
12
17
PC0
PA4
13
16
PA7
PA5
14
15
PA6
368 28-soic ILL P01.5
FIGURE
2-1: PIN ASSIGNMENTS FOR 28-LEAD SOIC
2.1 Pin Descriptions
TABLE
2-1: PIN DESCRIPTIONS
Symbol
Type
Name and Functions
PA[7:0]
I/O1
Port A: The state of any pin in Port A is software programmable and every line is configured as
an input during any reset.
PB[7:0]
I/O
Port B: The state of any pin in Port B is software programmable and every line is configured as an
input during any reset. Each I/O line contains a programmable interrupt/pull-up for keyscan.
PC[3:0]
I/O
Port C: Every pin in Port C is a high-current pin and its state is software programmable. All lines
are configured as inputs during any reset.
IRO
O
IRO: Suitable for driving IR LED biasing logic, the IRO pin is the high-current source and sink output of the carrier modulator transmitter subsystem. Default state is low after any reset.
LPRST#
I
Low-Power Reset: An active-low pin, LPRST# function sets MCU to low-power reset mode. Once the
device is in low-power reset mode, it is held in reset with all processor clocks and crystal oscillator halted.
An internal Schmitt trigger is included in the LPRST# pin to improve noise immunity.
RST#
I
Reset: By setting the RST# pin low, the device is reset to a default state. An internal Schmitt trigger is included in the RST# pin to improve noise immunity.
OSC1
I
Oscillator 1,2: These 2 pins interface with external oscillator circuits. A crystal
OSC2
O
resonator, a ceramic resonator, or an external clock signal can be used.
IRQ#
I
Interrupt Request: The IRQ# is negative edge-sensitive triggered. An internal Schmitt trigger is
included in the IRQ# pin to improve noise immunity.
VDD
PWR
Power Supply: Supply Voltage (2.2-3.2V)
VSS
PWR
Ground: Circuit ground. (0V reference)
T2-1.14 368
1. I = Input, O = Output
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
6
Remote Controller MCU
SST65P542R
Advance Information
3.0 I/O REGISTERS AND MEMORY ORGANIZATION
The SST65P542R has a total of 64 KByte of addressable memory space. A memory map is located in Figure 3-1.
The on-chip memory consists of 32 Bytes of I/O registers, 352 Bytes of SRAM, 16 KByte of user flash memory and
128 Bytes of user vectors.
0180H
I/O
Registers
Reserved
001FH
0020H
3FEFH
CWT Reset
0000H
352 Bytes
SRAM
3FF0H
017FH
0180H
3FF1H
Reserved
BFFFH
C000H
BFFFH
User
Memory
Flash Memory
(128 sectors)
FFF6H Core Timer Vector - (High Byte)
FFF7H
Core Timer Vector - (Low Byte)
FFF8H
CMT Vector (High Byte)
FFF9H
CMT Vector (Low Byte)
FFFAH
IRQ/Port B Vector (High Byte)
FFFBH
IRQ/Port B Vector (Low Byte)
FFFCH
SWI Vector (High Byte)
FFFDH
SWI Vector (Low Byte)
FFFEH
Reset Vector (High Byte)
FFFFH
Reset Vector (Low Byte)
FIGURE
Flash Memory
Read Protection
16,256
Bytes
FF80H
FF7FH
FF80H
FF81H
Reserved
Reset and
Interrupt
Vectors
FFF5H
FFF6H
127 Sectors
(128 Bytes per sector)
User
Vector
FFFFH
FFFFH
368 ILL F02.9
3-1: MEMORY MAP
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
7
Remote Controller MCU
SST65P542R
Advance Information
3.1 I/O Registers
The 32 Bytes of I/O registers occupy address locations from 0000H to 001FH that include general purpose I/O registers, the SuperFlash Function Register, and on-chip peripheral control registers.
TABLE
3-1: REGISTER DESCRIPTIONS
AND
BIT DEFINITIONS (1 OF 2)
Bit Address, Bit Symbol
Direct
Address
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Reset
Value2,3
Port A Data
Register
0000H
PA7
PA6
PA5
PA4
PA3
PA2
PA1
PA0
00H
PORTB
Port B Data
Register
0001H
PB7
PB6
PB5
PB4
PB3
PB2
PB1
PB0
00H
PORTC
Port C Data
Register
0002H
-
-
-
-
PC3
PC2
PC1
PC0
00H
Symbol1
Description
PORTA
Reserved
0003H
-
-
-
-
-
-
-
-
-
DDRA
-
Port A Data
Direction
Register
0004H
DDRA7
DDRA6
DDRA5
DDRA4
DDRA3
DDRA2
DDRA1
DDRA0
00H
DDRB
Port B Data
Direction
Register
0005H
DDRB7
DDRB6
DDRB5
DDRB4
DDRB3
DDRB2
DDRB1
DDRB0
00H
DDRC
Port C Data
Direction
Register
0006H
-
-
-
-
DDRC3
DDRC2
DDRC1
DDRC0
00H
Reserved
0007H
-
-
-
-
-
-
-
-
-
CTSCR
Core Timer
Control and
Status
Register
0008H
CTOF
RTIF
TOFE
RTIE
TOFC
RTFC
RT1
RT0
03H
CTCR
Core Timer
Counter
Register
0009H
CTD7
CTD6
CTD5
CTD4
CTD3
CTD2
CTD1
CTD0
00H
PBIC
Port B
Interrupt
Control
Register
000AH
INPRB7
INPRB6
INPRB5
INPRB4
INPRB3
INPRB2
INPRB1
INPRB0
00H
SFFR
SuperFlash
Function
Register
000BH
PREN
MEREN
SEREN
-
PROG
MERA
SERA
-
00H
PBPUC
Port B Pull-up
Control
Register
000CH
-
-
-
-
-
-
PU1
PU0
03H
CWTC
CWT Control
Register
000DH
-
-
-
-
-
-
-
CWT_EN
00000001b
Reserved
000EH
-
-
-
-
-
-
-
-
-
-
-
Reserved
000FH
-
-
-
-
-
-
-
-
-
CHR1
Carrier
Generator
High Data
Register 1
0010H
IROLN
CMTPOL
PH5
PH4
PH3
PH2
PH1
PH0
00UUUUUUb
CLR1
Carrier
Generator
Low Data
Register 1
0011H
IROLP
-
PL5
PL4
PL3
PL2
PL1
PL0
00UUUUUUb
CHR2
Carrier
Generator
High Data
Register 2
0012H
-
-
SH5
SH4
SH3
SH2
SH1
SH0
00UUUUUUb
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
8
Remote Controller MCU
SST65P542R
Advance Information
TABLE
Symbol1
3-1: REGISTER DESCRIPTIONS
Description
AND
BIT DEFINITIONS (CONTINUED) (2 OF 2)
Bit Address, Bit Symbol
Direct
Address
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Reset
Value2,3
CLR2
Carrier
Generator
Low Data
Register 2
0013H
-
-
SL5
SL4
SL3
SL2
SL1
SL0
00UUUUUUb
MCSR
Modulator
Control and
Status
Register
0014H
EOC
DIV2
EIMSK
EXSPC
BASE
MODE
EOCIE
MCGEN
00H
MDR1
Modulator
Data
Register 1
0015H
MB11
MB10
MB9
MB8
SB11
SB10
SB9
SB8
UUUUUUUUb
MDR2
Modulator
Data
Register 2
0016H
MB7
MB6
MB5
MB4
MB3
MB2
MB1
MB0
UUUUUUUUb
MDR3
Modulator
Data
Register 3
0017H
SB7
SB6
SB5
SB4
SB3
SB2
SB1
SB0
UUUUUUUUb
PSCR
Power
Saving
Control
Register
0018H
EN
-
-
-
-
-
STOP
IDL
10000011b
-
Reserved
0019H
-
-
-
-
-
-
-
-
-
-
Reserved
001AH
-
-
-
-
-
-
-
-
-
-
Reserved
001BH
-
-
-
-
-
-
-
-
-
-
Reserved
001CH
-
-
-
-
-
-
-
-
-
-
Reserved
001DH
-
-
-
-
-
-
-
-
-
-
Reserved
001EH
-
-
-
-
-
-
-
-
-
-
Reserved
001FH
-
-
-
-
-
-
-
-
-
COP
Watchdog
Timer Reset
Register
3FF0H
-
-
-
-
-
-
-
CWT_CLR
01H
CWTC
T3-1.8 368
1. “-” = reserved bits
2. “U” = unaffected by any reset
3. These registers can be reset by either external or internal reset.
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
9
Remote Controller MCU
SST65P542R
Advance Information
PORT A Data Register (PORTA)
Location
7
6
5
4
3
2
1
0
Reset Value
0000H
PA7
PA6
PA5
PA4
PA3
PA2
PA1
PA0
00H
Symbol
Function
PA[7:0]
Port A data register bit 0 to 7. These bits are for both reading and writing. Write the data to this
register will output data to port A pins when it’s in output mode. If the pins are set to input mode,
only the output data register is updated, port A pins are tri-stated. Reading the data from this
register will read the state of port A pins when set in input mode. If the pins are set to output
mode, it reads the output data register. See Table 3-2 for details. For a detailed explanation of
each parallel I/O port, please refer to Section 4.0, “Parallel Input/Output Ports” on page 20.
PORT B Data Register (PORTB)
Location
7
6
5
4
3
2
1
0
Reset Value
0001H
PB7
PB6
PB5
PB4
PB3
PB2
PB1
PB0
00H
Symbol
Function
PB[7:0]
Port B data register bit 0 to 7. These bits are for both reading and writing. Writing data to this
register will output data to port B pins when it’s in output mode. If the pins are set to input mode,
only the output data register is updated, port B pins are tri-stated. Reading the data from this
register will read the state of port B pins when set in input mode. If the pins are set to output
mode, it reads the output data register. See Table 3-2 for details.
PORT C Data Register (PORTC)
Location
7
6
5
4
3
2
1
0
Reset Value
0003H
-
-
-
-
DDRC3
DDRC2
DDRC1
DDRC0
00H
Symbol
Function
PC[3:0]
Port C data register bit 0 to 3. These bits are for both reading and writing. Writing data to this
register will output data to port C pins when it’s in output mode. If the pins are set to input mode,
only output data register is updated, port C pins are tri-stated. Reading data from this register will
read the state of port C pins when set in input mode. If the pins are set to output mode, it reads
the output data register. See Table 3-2 for details.
TABLE
3-2: I/O PIN FUNCTIONS
Access
DDRA, DDRB, DDRC
AS
GENERAL PURPOSE I/O
Mode
Write
0
Input
Write
1
Output
Read
0
Input
Read
1
Output
I/O Pin Functions
Data is written into the output data register.
Data is written into the output data register and
output to the I/O pins.
The state of I/O is read
The output data register is read
T3-2.0 368
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
10
Remote Controller MCU
SST65P542R
Advance Information
PORT A Data Direction Register (DDRA)
Location
0004H
7
6
5
4
3
2
1
0
Reset Value
DDRA7
DDRA6
DDRA5
DDRA4
DDRA3
DDRA2
DDRA1
DDRA0
00H
Symbol
Function
DDRA[7:0]
Port A data direction register bit 0 to 7. These bits are for both reading and writing.
See Table 3-2 for details.
0: Port A is input
1: Port A is output
PORT B Data Direction Register (DDRB)
Location
7
6
5
4
3
2
1
0
Reset Value
0005H
DDRB7
DDRB6
DDRB5
DDRB4
DDRB3
DDRB2
DDRB1
DDRB0
00H
Symbol
Function
DDRB[7:0]
Port B data direction register bit 0 to 7. These bits are for both reading and writing.
See Table 3-2 for details.
0: Port B is input
1: Port B is output
PORT C Data Direction Register (DDRC)
Location
7
6
5
4
3
2
1
0
Reset Value
0006H
-
-
-
-
PC3
PC2
PC1
PC0
00H
Symbol
Function
DDRC[3:0]
Port C data direction register bit 0 to 3. These bits are for both reading and writing.
See Table 3-2 for details.
0: Port C is input
1: Port C is output
PORT B Interrupt Control Register (PBIC)
Location
7
6
5
4
3
2
1
0
Reset Value
000AH
INPRB7
INPRB6
INPRB5
INPRB4
INPRB3
INPRB2
INPRB1
INPRB0
00H
Symbol
Function
INPRB[7:0]
Port B interrupt control bits
0: Interrupt is enabled
1: Interrupt is disabled
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
11
Remote Controller MCU
SST65P542R
Advance Information
PORT B Pull-up Control Register (PBPUC)
Location
7
6
5
4
3
2
1
0
Reset Value
000CH
-
-
-
-
-
-
PU1
PU0
03H
Symbol
Function
PU1,PU0
Port B pull-up control bits. The following table shows pull-up strength.
Defaults to strong pull-up when reset.
TABLE
3-3: PULL-UP CONTROL BIT DESCRIPTION
PU1
PU0
0
0
No pull-up for Port B bit
Pull-up
0
1
Weak pull-up for each Port B bit
1
0
Weak pull-up for each Port B bit
1
1
Strong pull-up for each Port B bit1
T3-3.1 368
1. Default value after Power-on or Reset
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
12
Remote Controller MCU
SST65P542R
Advance Information
Core Timer Control Status Register (CTCSR)
Location
7
6
5
4
3
2
1
0
Reset Value
0008H
CTOF
RTIF
TOFE
RTIE
TOFC
RTFC
RT1
RT0
03H
Symbol
Function
CTOF
Core timer overflow bit. CTOF is a real-only status bit, this bit is set when the 8-bit ripple counter
rolls over from FFH to 00H. Writing to this bit has not effect. Reset clears CTOF. CTOF set to
zero by writing a one to TOFC.
RTIF
Real-time Interrupt bit. RTIF is a read-only status bit. Writing has no effect on this bit. Reset
clears RTIF. The real time interrupt circuit consists of a divider and a one-of-four selector. The
input clock frequency that drives the RTI circuit is E/212 with three additional divider stages that
allows a maximum interrupt period of 16 ms at the internal peripheral clock rate of 2.048 MHz.
0: Writing a one to RTFC clears the RTIF.
1: When the output of the chosen (one-of-four selector) stage goes active.
TOFE
Timer overflow enable bit. TOFE is statuses bit for both read and write. Reset clears this bit.
0: If the CTOF is not set or no timer overflow occurs.
1: If the CTOF is set and a CPU interrupt request is generated
RTIE
Real time interrupt enable bit. RTIE is a status bit for both read and write. Reset clears this bit.
0: If the RTIF is not set.
1: If the RTIF is set and a CPU interrupt request is generated.
TOFC
Timer overflow flag clear bit. This bit is for writing only.
0: Writing a zero has no effect on the CTOF bit. This bit always reads as zero.
1: When a one is written to this bit, CTOF is cleared.
RTFC
Real time interrupt flag clear bit. This bit is for writing only.
0: Writing a zero has no effect on the RTIF bit. This bit always reads as zero.
1: When a one is written to this bit, RTIF is cleared.
RT[1:0]
TABLE
Real time interrupt rate select bit. These two bits select one of four taps from the interrupt logic.
See Table 3-4. Reset sets these two bits, which selects the lowest periodic rate and gives the
maximum. Care should be taken when altering RT0 and RT1 if the timeout period is imminent or
uncertain. The CWT should be cleared before changing RTI taps. If the selected tap is modified
during a cycle in which the counter is switching, an RTIF could be missed or an additional one
could be generated.
3-4: RTI
AND
RTI Rate
CWT RATES
AT
4.096 MHZ OSCILLATOR, PRESCALER=1
Minimum CWT Rates
RT1-RT0
2ms
212/E1
00
(215-212)/E
4ms
213/E
8ms
214/E
16ms
215/E
Maximum CWT Rates
14ms
(215)/E
16ms
01
(216-213)/E
28ms
(216)/E
32ms
10
(217-214)/E
56ms
(217)/E
64ms
11
(218-215)/E
112ms
(218)/E
128ms
T3-4.2 368
1. E is the internal peripheral clock frequency and E = FOSC/2
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
13
Remote Controller MCU
SST65P542R
Advance Information
Core Timer Counter Register (CTCR)
Location
7
6
5
4
3
2
1
0
Reset Value
0009H
CTD7
CTD6
CTD5
CTD4
CTD3
CTD2
CTD1
CTD0
00H
Symbol
Function
CTD[7:0]
The core timer counter register bit 0 to bit 7. This is a read only status register in which contains
the current value of the 8-bit ripple counter. This counter is clocked by the CPU clock (E/4) and
can be used for various functions, including a software input capture. Extended time can be
achieved by using the timer overflow function to increment a variable to simulate a 16-bit
counter.
SuperFlash Function Register (SFFR)
Location
7
6
5
4
3
2
1
0
Reset Value
000BH
PREN
MEREN
SEREN
-
PROG
MERA
SERA
-
00H
Symbol
PREN
Function
Byte program enable bit.
0: Disable the byte program.
1: Enable the byte program.
MEREN
Mass (chip) program enable.
0: Disable the mass (chip) erase or program.
1: Enable the mass (chip) erase or program.
SEREN
Sector program enable.
0: Disable the sector erase or program.
1: Enable the sector erase or program.
PROG
Byte program control bit.
0: Not performs the byte program
1: Performs the byte program.
MERA
Mass (chip) program active bit.
0: Not performs the chip program
1: Performs the chip program.
SERA
Sector program active bit.
0: Not performs the sector program.
1: Performs the sector program.
Therefore, when SFFR=22H, the MCU will perform the Sector-Erase, SFFR=44H, the MCU will perform the ChipErase, and SFFR=88H, the MCU will perform the Byte-Program. For a detailed explanation of MCU flash control,
please refer to Section 5.1, “In-Application Programming” on page 21.
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
14
Remote Controller MCU
SST65P542R
Advance Information
COP Watchdog Timer Control Register (CWTC)
Location
7
6
5
4
3
2
1
0
Reset Value
000DH
-
-
-
-
-
-
-
CWT_EN
01H
Symbol
Function
CWT_EN
COP watchdog timer enable bit.
0: COP watchdog timer is enabled.
1: COP watchdog timer is disabled.
COP Watchdog Timer Reset Register (CWTR)
Location
7
6
5
4
3
2
1
0
Reset Value
3FF0H
-
-
-
-
-
-
-
CWT_CLR
01H
Symbol
Function
CWT_CLR
This bit is for writing only. For detail explanation of COP Watchdog Timer Reset, please refer to
Section 6.4
0: Write zero to this bit will clear COP watchdog timer.
1: Write one to this bit has no effect. Read this bit will always returns one.
Carrier Generator High Data Register1 (CHR1)
Location
7
6
5
4
3
2
1
0
Reset Value
0010H
IROLN
CMTPOL
PH5
PH4
PH3
PH2
PH1
PH0
00UUUUUUb
Symbol
Function
IROLN
IRO latch control bit. Reading IROLN bit reads the state of the IRO latch. Writing IROLN updates
the IRO latch with the data being written on the negative edge of the internal processor clock
(FOSC/2). The IRO latch is clear out of reset. Writing to CHR1 to update IROLN will also update
the primary carrier high data value. In addition, writing to CHR1 to update IROLN will update the
CMT polarity bit. Bit 6 should contain the data of CMTPOL polarity bit.
CMTPOL
CMT output polarity bit. This bit controls the polarity of the CMT output (IRO).
0: the CMT output is active high.
1: the CMT output is active low.
PH[5:0]
Primary carrier high time data values. When selected, these bits contain the number of input
clocks required to generate the carrier high time periods. When operating in timer mode, CHR1
and CLR1 are always selected. When operating in FSK mode, CHR1, CLR1 and CHR2, CLR2
are alternately selected under control of the modulator. The primary carrier high and low time
values are undefined on the reset. These bits must be written to non-zero values that before the
carrier generator is enabled to avoid spurious results.
Bit 0 to Bit 7 of CHR1 can be used for both reading and writing.
Note:“U” indicates that the bit is unaffected after reset.
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
15
Remote Controller MCU
SST65P542R
Advance Information
Carrier Generator Low Data Register1 (CLR1)
Location
7
6
5
4
3
2
1
0
Reset Value
0011H
IROLP
-
PL5
PL4
PL3
PL2
PL1
PL0
00UUUUUUb
Symbol
Function
IROLP
IRO latch control bit. Reading IROLP bit reads the state of the IRO latch. Writing IROLP updates
the IRO latch with the data being written on the negative edge of the internal processor clock
(FOSC/2). Writing to CLR1 to update IROLP will also update the primary carrier low data value.
Care should be taken that bits 5-0 of the data to be written to CHR1 or CLR1.
PL[5:0]
Primary carrier low time data values. The function of these bits is the same as PH[5:0].
Carrier Generator High Data Register2 (CHR2)
Location
7
6
5
4
3
2
1
0
Reset Value
0012H
-
-
SH5
SH4
SH3
SH2
SH1
SH0
00UUUUUUb
Symbol
Function
SH[5:0]
Secondary carrier high time data values. When selected, these bits contain the number of input
clocks required to generate the carrier high time periods. When operating in time mode, CHR2
and CLR2 is never selected. When operating in FSK mode, CHR2, CLR2 and CHR1, CLR1 are
alternately selected under control of the modulator. The secondary carrier high and low time
values are undefined on the reset. These bits must be written to nonzero values before the
carrier generator is enabled when operating in FSK mode.
Carrier Generator Low Data Register2 (CLR2)
Location
7
6
5
4
3
2
1
0
Reset Value
0013H
-
-
SL5
SL4
SL3
SL2
SL1
SL0
00UUUUUUb
Symbol
Function
SL[5:0]
Secondary carrier low time data values. The function of these bits is the same as SH[5:0].
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
16
Remote Controller MCU
SST65P542R
Advance Information
Modulator Control and Status Register (MCSR)
Location
7
6
5
4
3
2
1
0
Reset Value
0014H
EOC
DIV2
EIMSK
EXSPC
BASE
MODE
EOCIE
MCGEN
00H
Symbol
Function
EOC
End of modulation cycle status bit. This bit is read only. EOC is set when a match occurs
between the contents of the space period register SREG and the down counter. At the end of
cycle, the counter is initialized with the contents of the mark period buffer, MBUFF and SREG is
loaded with the space period buffer SBUFF. This flag is cleared by reading the MCSR followed
by an access of MDR2 or MDR3. EOC is cleared by reset.
0: current modulation cycle in progress.
1: end of modulator cycle has occurred.
DIV2
Divide by two scaler bit. The divide-by-two prescaler causes the CMT to be clocked at the bus
rate, when the two times of bus rate is enabled and the FOSC is disabled. Since this bit is not
double buffered, this bit should not be set during a transmission.
0: divide-by-two prescaler disabled.
1: divide-by-two prescaler enabled.
EIMSK
External Interrupt Mask bit. This bit is used to mask IRQ and keyscan interrupts. This bit is
cleared by reset.
0: IRQ and keyscan interrupts enabled.
1: IRQ and keyscan interrupts disabled.
EXSPC
Extended Space Enable bit. For detailed description of extended space operation, please refer
to 65P542R Programming User’s Manual.
0: Extended space disabled.
1: Extended space enabled
BASE
Baseband Enable bit. This bit disables the carrier generator and forces the carrier output high for
generation of baseband protocols. When BASE is cleared, the carrier generator is enabled and
the carrier output toggles at the frequency determined by values stored in the carrier data
registers. This bit is cleared by reset. This bit is not double buffered and should not be written
during a transmission.
0: Baseband disabled.
1: Baseband enabled.
MODE
Mode select bit. This bit is cleared by reset. This bit is not double buffered and should not be
written during a transmission.
0: CMT operates in Time mode.
1: CMT operates in FSK mode.
EOCIE
Interrupt enable bit. Interrupt request will be generated when EOC is set and EOCIE is set.
Otherwise, interrupt will not be generated
0: interrupt disabled.
1: interrupt enabled.
MCGEN
Modulator and carrier generator enable bit. Set this bit will initialize the carrier and modulator and
will enable all clocks. Once enabled, the carrier generator and modulator will function
continuously.
0: if this bit is zero, the current modulator cycle will be allowed to expire before all carrier and
modulator clocks are disabled and the modulator output is forced low. To prevent spurious
operation, the user should initialize all data and control registers before enabling the system.
This bit is cleared by reset.
All bits except Bit 0 can be used for both reading and writing.
1: Modulator and carrier generator enabled.
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
17
Remote Controller MCU
SST65P542R
Advance Information
Modulator Data Register 1 (MDR1)
Location
7
6
5
4
3
2
1
0
Reset Value
0015H
MB11
MB10
MB9
MB8
SB11
SB10
SB9
SB8
UUUUUUUUb
Symbol
Function
MB[11:8]
MBUFF high 4 bits.
SB[11:8]
SBUFF high 4 bits.
These bits can be used for both reading and writing.
Modulator Data Register 2 (MDR2)
Location
7
6
5
4
3
2
1
0
Reset Value
0016H
MB7
MB6
MB5
MB4
MB3
MB2
MB1
MB0
UUUUUUUUb
Symbol
Function
MB[7:0]
MBUFF lower 8 bits. These bits can be used for both reading and writing.
Modulator Data Register 3 (MDR3)
Location
7
6
5
4
3
2
1
0
Reset Value
0016H
SB7
SB6
SB5
SB4
SB3
SB2
SB1
SB0
UUUUUUUUb
Symbol
Function
SB[7:0]
SBUFF lower 8 bits. The bits can be used for reading and writing.
Power Saving Control Register (PSCR)
Location
7
6
5
4
3
2
1
0
Reset Value
0018H
EN
-
-
-
-
-
STOP
IDL
10000011b
Symbol
Function
EN
This bit enable or disable MCU to stop and idle mode. This bit can be used for both reading and
writing.
0: STOP and IDLE mode enable
1: STOP and IDLE mode disable.
STOP
Stop mode enable bit
0: write 0 to this bit will make the device entering the stop mode if EN=0
1: write 1 to this bit has no effect. Read returns one.
IDL
Idle mode enable bit
0: write 0 to this bit will make the device entering the idle mode if EN=0
1: write 1 to this bit has no effect. Read returns one.
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
18
Remote Controller MCU
SST65P542R
Advance Information
3.2 SRAM
TABLE
3-5: INTERRUPT/RESET SECTOR
Address
Location
There are 352 Bytes of SRAM available. The SRAM
addresses start from location 0020H to 017FH. The stack
pointer can address 64 Bytes of stack beginning at address
location 00FFH and ending at 00C0H.
FF80H
FF81H-FFF5H
User Vectors
Flash Memory Read Protection
Unused
FFF6H
Core Timer Vector - (High Byte)
3.3 SuperFlash Memory
FFF7H
Core Timer Vector - (Low Byte)
The SST65P542R has 16 KByte of SuperFlash EEPROM
memory. The memory is organized as 128 sectors of 128
Bytes each. The minimum erasable memory unit is one
sector or 128 Bytes. The user programmable flash memory
occupies the address space from C000H to FF7FH. The
user vector area consists of 128 Bytes starting from
address location FF80H to FFFFH. Address FF80H is for
flash memory read protection. There are five predetermined user vectors from FFF6H through FFFFH dedicated
to the reset and interrupts. Every vector consists of two
bytes to be loaded into program counter for jumping to an
interrupt service routine (ISR). See Table 3-5 for detailed
descriptions of these vectors.
FFF8H
CMT Vector (High Byte)
FFF9H
CMT Vector (Low Byte)
FFFAH
IRQ/Port B Vector (High Byte)
FFFBH
IRQ/Port B Vector (Low Byte)
FFFCH
SWI Vector (High Byte)
FFFDH
SWI Vector (Low Byte)
FFFEH
Reset Vector (High Byte)
FFFFH
Reset Vector (Low Byte)
T3-5.5 368
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
19
Remote Controller MCU
SST65P542R
Advance Information
4.0 PARALLEL INPUT/OUTPUT PORTS
4.1 Port A
4.2 Port B
Port A consists of eight individual pins driven by one data
register and one direction register to control the usage of
these pins as either inputs or outputs. All Port A pins are set
to Input mode during any Reset. Software must set the
right direction register first before performing any Read or
Write operation. Any Read operation to the port that was
set as output will read back the data from an internal latch
register instead of the I/O pins. For details, please refer to
Section 3.1 Port A data register and Port A data direction
register.
Port B pins are similar to Port A pins except that each of the
Port B pins has a programmable interrupt generation
option which can be enabled for any Port B pins. Port B
pins have optional programmable pull-ups. There is a
choice between pull-up strengths which could be selected
by PU0 or PU1. For details, please refer to Section 3.1, Port
B Interrupt Control Register and Port B Pull-up Control
Register.
VDD
WEAK0
WEAK1
PU0
PU1
INPRB7
DDRB7
PB7
..
.
Interrupt
Logic
From all other Port B Pins
368 ILL F03.3
FIGURE
4-1: PORT B INTERRUPT AND PULL-UP OPTIONS
4.3 Port C
Port C is a 4-bit bi-directional port (PC3-PC0). Every Port C
pin has high current driving capability. Reset clears the Port
C Data Register and the data direction register, thereby
returning the ports to inputs. For details, please refer to
Section 3.1 Port C data register and Port C data direction
register.
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
20
Remote Controller MCU
SST65P542R
Advance Information
5.0 FLASH MEMORY PROGRAMMING
5.1 In-Application Programming
5.2 External Host Programming Mode
SST65P542R allows “In-Application Programming” (IAP)
to update the user code in the internal 16 Kbyte SuperFlash memory. All Write/Erase operations require setting
the enable bit in the SuperFlash Function Register (SFFR)
located at 000BH. The following sections describe the
operations that the MCU performs to alter the contents of
SuperFlash Memory. For detailed explanation of the SuperFlash Function Register, please refer to Section 3.1.
The external host programming mode is to provide programmer access to the 16KB embedded flash memory of
the SST65P542R. To enter the external host programming
mode, users must follow the setup sequences on the pins
(See Figure 11-1):
1. RY/BY# (pin 12) and POROUT# (pin 13) are output pins. Do not drive.
2. Drive RST# (pin 24) low.
5.1.1 Chip-Erase
3. Drive LPRST# (pin 21) low.
The Chip-Erase operation requires MEREN and MERA
bits to be set to logical “1”. After setting these bits, writing
any data to any address location of the flash memory will
trigger the Chip-Erase operation. The MCU is idle while
SST65P542R is busy doing erases on all memory locations.
4. Drive LPRST# (pin 21) high after TRST.
5. Drive PROG_RST (pin 9) low.
6. Drive 9 clocks on TCLKIN. On each clock's rising
edge provide one bit of data on TDIN (pin 19) as
shown in Figure 11-1. The data bits are
“11010011”.
5.1.2 Sector-Erase
7. Wait for RY/BY# (pin 12) and POROUT# to go
high.
The Sector-Erase operation requires SEREN and SERA
bits to be set to logical “1”. After setting these bits, writing
any data to the address within the sector to be erased will
erase the data in the sector. The MCU is idle while
SST65P542R is busy doing erase on the sector.
8. Drive at least 24 clocks on TCLKIN.
9. If Read-protect byte is set, then RY/BY# will go
low. Otherwise, RY/BY# will stay high. If RY/BY# is
low, wait for RY/BY# (pin 12) to go high. Now the
SST65P542R is in external host programming
mode and is ready for embedded flash Read or
Write operations.
5.1.3 Byte-Program
The Byte-Program operation requires PREN and PROG
bits to be set to logical “1”. After setting these bits, and then
writing the data to the target address to be programmed.
The MCU is idle while SST65P542R is busy doing programming on the byte. Refer to the following summary for
all different functions.
Now the SST65P542R is in the external host programming
mode and is ready for embedded flash by the external host
Read or Write.
.
TABLE
As soon as the RST# is released to ‘1’, chip exits external
host programming mode and then enters user mode.
5-1: SFFR COMMANDS
Function
Command
Writes to
SFFR
Comment
5.2.1 External Host Mode Read Operation
Chip-Erase
44H
Erase the whole flash memory
Sector-Erase
22H
Erase the sector
addressed by CXXXH
Byte-Program
88H
Program one data byte to
address CXXXH.
Write data to CXXXH
before Byte-Program can be
performed, a Chip-Erase or
Sector-Erase must be issued
to erase the target
programming locations.
As shown in Figure 11-2, the Read operation needs two
address setup cycles and one data setup cycle. The low to
high transition on SCLK latches the high order address
A[13:8] from the pin AD[5:0] while MODE[1:0] inputs are
set to 0H; the low to high transition on SCLK latches the
low order address A[7:0] from the pin AD[7:0] while the
MODE[1:0] inputs are set to 3H and setting the signal OE#
to low; the low to high transition on SCLK latches the data
D[7:0] on the pin AD[7:0] while the MODE[1:0] is set to 1H
for reading. After reading the data, the external host should
set the signal OE# to high.
T5-1.1 368
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
21
Remote Controller MCU
SST65P542R
Advance Information
5.2.2 External Host Mode Write Operation
low order address A[7:0] from the pin AD[7:0] while
MODE[1:0] inputs are set to 2H; the low to high transition
on SCLK latches the data D[0:7] from the pin AD[7:0] while
the MODE[1:0] is set to 1H for writing. However, the actual
Write operation to embedded flash memory occurs on the
rising edge of WE#.
As shown in Figure 11-3, the Write operation needs two
address setup cycles and one data setup cycle. The low to
high transition on SCLK latches the high order address
A[13:8] from the pin AD[5:0] while the MODE[1:0] inputs
are set to 0H; the low to high transition on SCLK latches the
TABLE
5-2: EXTERNAL HOST PROGRAMMING MODE PIN DESCRIPTIONS
Symbol
Type1
8-1
AD[7:0]
I/O1
10,20
MODE[1:0]
I
Pins
Name and Functions
Embedded flash memory address and data bus multiplex on AD[7:0] by selecting MODE[1:0]
Address and data bus selection bits in the external host programming mode
11
SLCK
I
Clock for latch address and data after entering the external host programming mode
9
PROG_RST
I
Reset signal for the external host programming mode
13
POROUT#
O
Embedded flash memory power-on reset output
12
RY/BY#
O
Embedded flash Ready/Busy output. High is ready
17
WE#
I
Write Enable: embedded flash memory data write enable, low active
18
OE#
I
Output Enable: embedded flash memory data out enable, low active
21
LPRST#
I
Signal for entering the external host programming mode
19
TDIN
I
Data input for entering the external host programming mode
23
TCLKIN
I
22
VSS
PWR
Ground: Circuit ground (0V reference)
26
VDD
PWR
Power Supply: Supply voltage (3.2V)
This clock will latch TDIN for entering the external host programming mode
T5-2.3 368
1. I = Input; O = Output
5.2.3 External Host Mode Byte-Program Operation
operation will be ignored. See Table 5-4 for the software
command sequence, Figure 11-4 for the flash Chip-Erase
timing diagram, and Figure 11-11 for the Chip-Erase command sequence flowchart.
This device is programmed on a byte by byte basis. The
Byte-Program operation consists of three steps. The first
step is the three-byte load sequence for Software Data Protection. The second step is to load the byte address and
the byte data. The third step is the internal Program operation which is initiated after the rising edge of the fourth
WE#. The end of the Byte-Program operation can be
determined by using the RY/BY#. Any commands written
during the Byte-Program operation will be ignored. See
Table 5-4 for the software command sequence, Figure 11-5
for the flash Byte-Program timing diagram, and Figure 11-9
for the Byte-Program command sequence flowchart.
5.2.5 External Host Mode Sector-Erase Operation
The Sector-Erase operation allows the system to erase the
device on a sector-by-sector basis. The sector architecture
is based on uniform sector size of 128 Bytes. The SectorErase operation is initiated by executing a six-byte command sequence for Software Data Protection, the last byte
sequence is the sector address SA with the Sector-Erase
command 30H. The address lines A[13:7] will be used to
determine the sector address. The internal Erase operation
begins after the sixth write enable’s (WE#) rising edge. The
End-of-Erase can be determined by using the signal RY/
BY#. Any commands written during the Sector-Erase operation will be ignored. See Table 5-4 for the software command sequence, Figure 11-5 for the flash Sector-Erase
timing diagram, and Figure 11-11 for the Sector-Erase
command sequence flowchart.
5.2.4 External Host Mode Chip-Erase Operation.
The device provides a Chip-Erase operation, which allows
the user to erase the entire memory array to the ’1’s state.
This is useful when the device must be quickly erased
entirely. The Chip-Erase operation is initiated by executing
a six-byte Software Data Protection command sequence,
the last byte Sequence is the address 1555H with the ChipErase command 10H. The Chip-Erase operation begins
with of the sixth write enable’s (WE#) rising edge. The end
of the Chip-Erase can be determined by using the signal
RY/BY#. Any commands written during the Chip-Erase
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
22
Remote Controller MCU
SST65P542R
Advance Information
5.2.6 Operation Status Detection - Program Timer
Method
5.2.9 Flash Read Protection
To protect the program code from piracy the flash memory
location 3F80H (user memory address FF80H, flash memory is mapped to C000H through FFFFH, see Figure 3-1)
is evaluated by the internal hardware to determine the read
protect mode state. During this evaluation period, only the
RY/BY# pin is valid and all other pins are blocked. If this
byte is A3H (read protect is active), a Chip-Erase will be
performed by internal hardware before the external host
programming mode is activated. While the Chip-Erase
could take TSCE (See Table 11-5) as maximum time, users
may use RY/BY# pin to determine the completion of the
Chip-Erase. If this byte is not A3H (not read protected), all
of the flash memory are visible by using the external host
programming. During the internal Program or Erase operation, the signal RY/ BY# indicates the status of the operation. When the internal Program or Erase operation is in
progress, the RY/BY# will be driven low. When the internal
Program or Erase operation is completed, the RY/BY# will
be driven high. The device is then ready for the next operation. See Figure 11-10 for the Program Timer flowchart.
During the Program or Erase operation, the programmer
can use the timer to decide the completion of the operation.
When a Program or Erase operation is started, system setup a timer for TBP (for Byte-Program), TSCE (for ChipErase), and TSE (for Sector-Erase) time period. After this
timer time-out, the operation is completed. See Figure 1110 for Program Timer flowchart.
5.2.7 Operation Status Detection - RY/BY# Method
During the internal Program or Erase operation, the signal
RY/BY# indicates the status of the operation. When the
internal Program or Erase operation is in progress, the signal RY/BY# will be driven low. When the internal Program
or Erase operation is completed, the signal RY/BY# will be
driven high. The device is then ready for the next operation.
See Figure 11-10 for the Program Timer flowchart.
5.2.8 Exiting The External Host Programming Mode
To exit the external host programming mode, the external
host must set the RST# pin to high, and the PROG_RST is
reset to high. The device will exit the host programming and
enter the user mode. The MCU starts execution codes out
of the User Memory Space from the reset vector.
TABLE
Note: After writing A3H to the flash read protection
register, the device needs to continue power-on
prior to finishing the programming function.
The programming function may include the
Program-Verify function.
5-3: EXTERNAL HOST PROGRAMMING MODE PIN ASSIGNMENT
MODE0=0
MODE1=0
MODE0=0
MODE1=1
MODE0=1
MODE1=0
MODE0=1
MODE1=1
AD[0]
Input A8
Input A0
Input D0
Output D0
AD[1]
Input A9
Input A1
Input D1
Output D1
AD[2]
Input A10
Input A2
Input D2
Output D2
AD[3]
Input A11
Input A3
Input D3
Output D3
AD[4]
Input A12
Input A4
Input D4
Output D4
AD[5]
Input A13
Input A5
Input D5
Output D5
AD[6]
Input A6
Input D6
Output D6
AD[7]
Input A7
Input D7
Output D7
T5-3.1 368
TABLE
5-4: SOFTWARE COMMAND SEQUENCE
Command
Sequence
1st Bus Write
Cycle
2nd Bus Write
Cycle
3rd Bus Write
Cycle
4th Bus Write
Cycle
5th Bus Write
Cycle
6th Bus Write
Cycle
Addr1
Data
Addr1
Data
Addr1
Data
Addr1
Data
Addr1
Data
Addr1
Data
Sector-Erase
1555H
AAH
2AAAH
55H
1555H
80H
1555H
AAH
2AAAH
55H
SAX2
30H
2AAAH
55H
1555H
10H
Chip-Erase
1555H
AAH
2AAAH
55H
1555H
80H
1555H
AAH
Byte-Program
1555H
AAH
2AAAH
55H
1555H
A0H
WA3
Data
T5-4.3 368
1. Address format A13-A0 (Hex)
2. SAX for Sector-Erase; uses A13-A7 address lines
3. WA = Program Byte address
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
23
Remote Controller MCU
SST65P542R
Advance Information
6.0 RESET
The 65P542R can be reset from five sources: two external inputs and three internal restart conditions.
OSC
Data
Address
COP
Watchdog
Reset
Address
Illegal
Address
Reset
Reset
Control
Internal
Reset
RST#
LPRST#
4064 Bus
Clock Cycle
Delay
FIGURE
368 ILL F16.2
6-1: RESET BLOCK DIAGRAM
6.1 External Reset
to 1.9-2.1V. If the voltage is below the threshold values,
the device will reset in order to protect against the inadvertent Write to the flash memory.
A low-level input on the RST# pin causes the program
counter to be set to the contents of location FFFEH and
FFFFH (Reset Vector). The MCU is initialized to a known
state. Stack pointer will be reset to FFH. Hardware Reset
is the highest priority input to the chip. An internal Schmitt
trigger is implemented on the RST# input to enhance the
noise immunity.
6.4 COP Watchdog Timer Reset
SST65P542R has a COP (Computer Operating Properly)
watchdog timer for monitoring the proper operations of
MCU. In normal operation, clearing the COP watchdog
timer is executed by software within a preset period of time
to avoid reaching time-out condition. To clear the COP
watchdog timer, software write “0” to location 3FF0H. The
COP Watchdog Reset is asserted and resets the MCU
when the time-out condition occurs. The COP watchdog
timer is disabled during any external reset. To enable CWT,
write logical “0” to CWT control register (000DH). Refer to
the SST65P542R Programming User’s Manual for more
information.
6.2 External Low Power Reset
The LPRST# is one of the two external sources of a reset.
The signal LPRST# allows the MCU to go into low power
reset mode. All clocks and oscillator to the processor are
halted when the LPRST# is held low. After the LPRST# is
de-asserted (driven high), a delay of 4064 bus clock cycles
is automatically enabled to wait for stable crystal oscillation.
This pin also implements an internal Schmitt trigger to
enhance the noise immunity.
6.5 Illegal Address Reset
6.3 Internal Power-on and Brown-out
Reset
An illegal address reset is generated when the MCU
attempts to fetch an instruction from I/O address space
(0000H to 001FH). Those addresses are reserved for I/O
registers only.
The internal reset signal will reset the CPU and all
peripheral components. Please refer to Figure 6-1. When
the device is powered up, the internal power-up voltage is
2.0-2.2V. In addition, the internal brown-out voltage is set
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
24
Remote Controller MCU
SST65P542R
Advance Information
7.0 INTERRUPTS
SST65P542R accepts five sources of interrupts with highest to lowest priority: Software Interrupt, External Interrupts
(IRQ# pin / Port B), CMT Interrupt, and Core Timer Interrupt. Whenever multiple interrupt requests are active at the
same time, the higher priority one will be serviced first. All
interrupts are maskable except Software Interrupt which is
generated by executing SWI instruction. To mask interrupts, set the interrupt mask bit of Process Status Word
(PSW). Before serving the interrupt, the MCU registers are
pushed onto the stack in the sequence of PCL, PCH, IDX,
ACC, PSW. The interrupt service routine should clear the
source of interrupt before exiting. By executing RTI instruction, the stored MCU registers are popped from the stack
and the program resumes from the interrupted location.
The external interrupts, IRQ# pin and Port B interrupts are
edge-sensitive and asserted on the falling edge of the pins.
The Port B Interrupt Control Register enables or disables
interrupts on each individual pin of port B. The External
Interrupt Mask Bit (EIMSK) of Modulator Control and Status Register can be used to mask all external interrupts so
that lower priority interrupts such as timer interrupts can be
served. The state of any external interrupt received during
the masked period is preserved. When the EIMSK bit is
clear, the pending interrupts activate the MCU interrupt processing again. The external interrupt causes MCU to load
the contents of memory locations FFFAH and FFFBH into
Program Counter.
7.3 CMT Interrupt
7.1 Software Interrupt
A CMT interrupt is generated when the end of cycle flag
(EOC) and the end of cycle interrupt enable (EOCIE) bits
are set in the modulator control and status register
(MCSR). This interrupt will vector to the interrupt service
routine located at the address specified by the contents of
memory locations FFF8H and FFF9H.
The SWI instruction causes MCU to load the contents
of memory locations FFFCH and FFFDH into Program
Counter regardless of the interrupt mask bit in PSW
register.
7.2 External Interrupts
7.4 Core Timer Interrupt
Upon completion of the current instruction, the MCU
responds to the interrupt request that is latched internally.
IRQ# must be asserted (low) for at least one TILIH (125 ns).
Following the completion of the current instruction, the
interrupt latch is tested. If both interrupt mask bit (I bit) in the
PSW is clear and the interrupt request is pending, the interrupt service routine is entered. An external resistor to VDD
is required by the IRQ# input for wired-AND operation.
The core timer is a 14-stage multifunctional ripple timer.
User can select overflow or real-time interrupt by the setting
of the Core Timer Control Status Register. Please see the
timer section for more details. The timer interrupt causes
MCU to load the contents of memory locations FFF6H and
FFF7H into Program Counter.
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
25
Remote Controller MCU
SST65P542R
Advance Information
8.0 OPERATION MODES
8.2 Learning Mode
The device can operate in two different modes. The Operation mode includes the User mode and the Learning mode.
The pin definitions vary between different operation modes
as described in Table 8-1.
To enter the learning mode, input the IR signal to the IRQ#
pin, then use the BIL and BIH instruction set to record the
input signal width. For detail information on learning mode,
please refer to the application note “Remote Controller
Learning Algorithm using SST65P542R.”
8.1 User Mode
In the user mode, the embedded MCU fetches program
codes from the user memory space. Please refer to the
SST65P542R Programming User’s Manual for instruction
sets and the internal MCU programming information.
TABLE
Pin #
8-1: PIN ASSIGNMENT FOR DIFFERENT OPERATION MODES
Normal Interface Modes
External Host
Programming Mode1
User Mode
Learning Mode
1
PB[0]
PB[0]
AD[0]
2
PB[1]
PB[1]
AD[1]
3
PB[2]
PB[2]
AD[2]
4
PB[3]
PB[3]
AD[3]
5
PB[4]
PB[4]
AD[4]
6
PB[5]
PB[5]
AD[5]
7
PB[6]
PB[6]
AD[6]
8
PB[7]
PB[7]
AD[7]
9
PA[0]
PA[0]
PROG_RST
10
PA[1]
PA[1]
MODE[1]
11
PA[2]
PA[2]
SCLK
12
PA[3]
PA[3]
RY/BY#
13
PA[4]
PA[4]
POROUT#
14
PA[5]
PA[5]
VIL
15
PA[6]
PA[6]
VIL
16
PA[7]
PA[7]
VIH
17
PC[0]
PC[0]
WE#
18
PC[1]
PC[1]
OE#
19
PC[2]
PC[2]
TDIN
20
PC[3]
PC[3]
MODE[0]
21
LPRST#
LPRST#
LPRST#
22
VSS
VSS
VSS
23
IRO
IRO
TCLKIN
24
RST#
RST#
VIL
25
IRQ#
IRIN
VIH
26
VDD
VDD
VDD
27
OSC2
OSC2
Do not use2
28
OSC1
OSC1
VIL
T8-1.8 368
1. See Table 5-2 for pin description.
2. OSC2 is an output, not used during external host program mode.
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
26
Remote Controller MCU
SST65P542R
Advance Information
9.0 PERIPHERALS AND OTHERS
9.1 Core Timer
Core Timer provides the following features:
1. Real Time Interrupt (RTI)
OSC1
2. Timer Overflow
30 pF
4.0
MHz
3. COP watchdog timer
5
MΩ
30 pF
4. Power-on reset (POR)
OSC2
Please refer to SST65P542R Programming User’s
Manual for programming information.
VSS
9.2 Carrier Modulator Transmitter (CMT)
368 ILL F05a.6
SST65P542R integrates a carrier modulator transmitter for
supporting various encoding methods. The purpose of this
module is to reduce the loading of the MCU. Three major
functions are performed by this block: carrier generation,
modulation, and transmission.
FIGURE
Please refer to SST65P542R Programming User’s Manual
for programming information.
9-1: USING
THE
CRYSTAL
EXTERNAL
CLOCK
SIGNAL
9.3 Clock Input Options
DON'T
CONNECT
Control connections for the 2-lead on-chip oscillator are the
OSC1 and OSC2 pins. OSC1 is input and OSC2 is output.
A crystal resonator, ceramic resonator, or external clock
signal can drive the oscillator.
OSC1
OSC2
VSS
368 ILL F05b.3
9.4 Crystal/Ceramic Resonator
FIGURE
A crystal/ceramic oscillator circuit is shown in Figure 9-1. A
ceramic resonator instead of a crystal may be used to
reduce costs. It is recommended that the resonator and
capacitors be mounted as close to the pins as possible to
minimize output distortion.
9-2: EXTERNAL CLOCK DRIVE
9.5 External Clock Drive
If external clock source is provided, OSC1 is the clock input
and OSC2 is don’t connect. Leave OSC2 open.
Crystal manufacturer, supply voltage, and other factors
may cause circuit performance to differ from one application to another. C1 and C2 should be adjusted
appropriately for each design.
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
27
Remote Controller MCU
SST65P542R
Advance Information
10.0 POWER SAVING MODES
SST65P542R provides two power saving modes: Stop
mode and Idle mode. These two modes can be entered
through the setting of the Power Saving Control Register.
Refer to Section 3.1 for power saving control register.
device is recovered from STOP mode. There are three
conditions that will recover the device from the STOP
mode: external IRQ#/Port B interrupt (EIMSK=0), RST# or
external reset LPRST#. The STOP bit will be set to 1 when
the device has been brought out of STOP mode. The interrupt mask bit (I bit) will not be affected.
10.1 STOP Mode
Writing a logic ’0’ to the STOP bit of the Power Saving Control Register enters the STOP mode. To achieve the lowest
possible power consumption, the implementation uses
STOP bit to gate off the internal clock. See Figure 10-1 for
illustration of clock arrangement in the STOP mode. Since
there is no clock input, the internal states are maintained
and not changed including I/O registers and RAM memory
except that the core timer counter bits are cleared. The
external IRQ interrupt can brought the device out of the
STOP mode, but all other interrupts are not served until the
10.2 IDLE Mode
Writing a logic ’0’ to the IDLE bit of the Power Saving Control Register enters the IDLE mode. In the IDLE mode, the
timer is still running. Any internal or external interrupt will
recover the device from IDLE mode. If both STOP and
IDLE bits are ’0’, then STOP mode takes effect. The IDLE
bit will be set to 1 when the device has been brought out of
the IDLE mode. The interrupt mask bit (I bit) will not be
affected.
CLK
Clock Generator
÷2
Peripherals
STOP
IDLE
CPU
368 ILL F04.2
FIGURE 10-1: STOP MODE
AND IDLE
MODE
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
28
Remote Controller MCU
SST65P542R
Advance Information
11.0 ELECTRICAL SPECIFICATION
11.1 Absolute Maximum Stress Ratings
Absolute Maximum Stress Ratings (Applied conditions greater than those listed under “Absolute Maximum
Stress Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation
of the device at these conditions or conditions greater than those defined in the operational sections of this data
sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.)
Ambient Temperature Under Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55°C to +125 °C
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65 °C to + 150 °C
DC Voltage on Any Pin to Ground Potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to VDD+0.5V
Transient Voltage (<20 ns) on any Pin to Ground Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1.0V to VDD+1.0V
Package Power Dissipation Capability (TA = 25 °C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0W
Surface Mount Lead Soldering Temperature (3 Seconds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 °C
Output Short Circuit Current1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA
1. Outputs shorted for no more than one second. No more than one output shorted at a time.
(Based on package heat transfer limitations, not devices power consumption.)
11.2 Reliability Characteristics
TABLE 11-1: RELIABILITY CHARACTERISTICS
Symbol
Parameter
Minimum
Specification
Units
Test Method
NEND
Endurance
10,000
Cycles
JEDEC Standard A117
TDR1
Data Retention
100
Years
JEDEC Standard A103
ILTH1
Latch Up
100+IDD
mA
JEDEC Standard 78
T11-1.3 368
1. The parameter is measured only for initial qualification and after a design or process change that could affect this parameter.
11.3 DC Specifications
TABLE 11-2: RECOMMENDED DC OPERATING CONDITIONS (TA= 0°C
TO
+70°C)
Symbol
Parameter
Min
Max
VDD
Supply Voltage
2.2
3.2
Unit
V
TA
Temperature
0
+70
°C
FOSC
Osc. Frequency
0
8
MHz
T11-2.0 368
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
29
Remote Controller MCU
SST65P542R
Advance Information
11.4 DC Electrical Characteristics
TABLE 11-3: DC ELECTRICAL CHARACTERISTICS (TA = 0°C
Symbol
IDD
1
Parameter
TO
+70°C, VDD = 2.2-3.2V, VSS = 0V)
Min
Max
Typ
Unit
Run without Flash Erase/Program Operation
-
8
2.5
mA
Run with Flash Erase/Program Operation
-
Supply Current
20
10
mA
2.75
0.8
mA
25°
6
4
µA
0°to +70°
15
9
µA
2
-
µA
µA
Idle2
Stop
IOZ
I/O Ports Hi-Z Leakage current
Port A, Port B, Port C
IIN
-2
Input Current
IRQL, RESETL, LPRSTL, OSC1
-1
1
-
Port B with Strong Pull-ups Enable (VIN = 0.2xVDD)
-34
-74
-50
Port B with Strong Pull-ups Enabled (VIN = 0.8xVDD)
-15
-36
-25
Port B with Weak Pull-ups Enable (VIN = 0.2xVDD)
-17
-37
-25
Port B with Weak Pull-ups Enabled (VIN = 0.8xVDD)
-7.5
-18
-12.5
-
0.4
-
VDD-0.4
-
-
Output Voltage
VOL
(ILOAD = 1 mA) OSC2
VOH
(ILOAD = -500 µA) OSC2
VOH
Output High Voltage
VOL
VIH
VIL
µA
(ILOAD = -1.2 mA) Port A, Port B
VDD-0.4
VDD-0.3
(ILOAD = -6 mA) IRO
VDD-0.8
VDD-0.3
(ILOAD = -4 mA) Port C
VDD-0.5
VDD-0.3
V
Output Low Voltage
(ILOAD = 1.8 mA) Port A, Port B
0.4
0.2
(ILOAD = 12 mA) IRO
0.8
0.3
(ILOAD = 8 mA) Port C
0.5
0.3
V
Input High Voltage
Port A, Port B, Port C, OSC1
0.8 VDD
VDD
-
IRQL, RESETL, LPRSTL
0.8 VDD
VDD
-
Port A, Port B, Port C, OSC1
VSS
0.2 VDD
-
IRQL, RESETL, LPRSTL
VSS
0.2 VDD
-
V
Input Low Voltage
V
T11-3.3 368
1. Test conditions for IDD are 8 MHz and 20 pf loading.
2. Idle current IDD is 0.4 mA typical, 0.6 mA maximum at 4 MHz, 2.2V, and 20 pf loading.
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
30
Remote Controller MCU
SST65P542R
Advance Information
11.5 AC Electrical Characteristics
TABLE 11-4: CONTROL TIMING (TA = 0°C
Symbol
TO
+70°C, VDD = 2.2 TO 3.2V, VSS = 0V)
Characteristic
Min
Max
Unit
Crystal
8
MHz
External clock
8
MHz
4
MHz
100
ms
Frequency of operation
FOSC
FEXT
FOP
Internal Operating Frequency
TCYC
Cycle Time
TOXOV1
Crystal Oscillator Startup Time
TILCH1
Stop Recovery Startup Time
TRL1
RST# Pulse Width
1.5
TILIH1
Interrupt Pulse Width Low (Edge-Triggered)
125
ns
TOH,TOL1
OSC1 Pulse Width
90
ns
125
ns
100
ms
TCYC
T11-4.2 368
1. Guaranteed by design.
TABLE 11-5: EXTERNAL HOST PROGRAMMING-MODE TIMING PARAMETERS
Symbol
Parameter
TAS1
TCP1
TAH1
Min
Address/Data Setup Time
30
ns
SCLK Cycle Time
130
ns
Address/Data Hold Time
45
ns
TCPH1
SCLK Pulse Width High
65
ns
TSE
Sector-Erase Time2
25
ms
TSCE
Chip-Erase Time2
100
ms
80
µs
Time2
TBP
Byte-Program
TDH1
TDIN Hold Time
TDS
1
Max
45
Units
ns
TDIN Setup Time
30
ns
TDP1
TCLKIN Pulse Width
65
ns
TDPH1
TCLKIN Pulse Width High
65
ns
TRST1
Reset Time
720
ns
TOE1
Output Enable Time
TWES1
Address Latch Setup Time
TWEH
TAA1
1
50
65
ns
ns
Data Latch Setup Time
30
ns
Read Access Time
65
ns
T11-5.6 368
1. Guaranteed by design.
2. Applies to IAP as well
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
31
Remote Controller MCU
SST65P542R
Advance Information
TDP TDPH
TCLKIN
(pin 23)
24 Clocks
RESET#
(pin 24)
TRST
LPRST#
(pin 21)
TDH
PROG_RST
(pin 9)
TDS
1
TDIN
(pin 19)
1
0
1
0
0
1
1
TSCE1
RY/BY#
(pin 12)
POROUT#
(pin 13)
OSC1
(pin 8)
WE#/OE#
(pins 17, 18)
SCLK
(pin 11)
368 ILL F06.13
1. Low if Read-Protect byte is set.
FIGURE 11-1: EXTERNAL HOST PROGRAMMING MODE - SETUP CYCLE TIMING DIAGRAM
TCP
TAA
TCPH
SCLK
(pin 11)
TOE
AD[7:0]
(pin 8-1)
XXXXX
A[13:8]
TAS
Mode[1:0]
(pin 10, 20)
XXXXX
A[7:0]
Data
TAH
0
2
3
XXXXXXXXX
OE#
(pin 18)
WE#
(pin 17)
368 ILL F07b.9
FIGURE 11-2: EXTERNAL HOST PROGRAMMING MODE - READ CYCLE TIMING DIAGRAM
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
32
Remote Controller MCU
SST65P542R
Advance Information
TCP
TCPH
SCLK
(pin 11)
AD[7:0]
(pin 8-1)
A[13:8]
TAS
A[7:0]
TAH
Mode[1:0]
(pin 10, 20)
XXXXXXX XXXX
Data/Cmd
TDS
0
2
TDH
XXXXXXX XXXX
1
OE#
(pin 18)
WE#
(pin 17)
TWES
TWEH
368 ILL F07a.10
FIGURE 11-3: EXTERNAL HOST PROGRAMMING MODE - WRITE CYCLE TIMING DIAGRAM
SIX-BYTE WRITE COMMAND
FOR CHIP-ERASE
AD[7:0]
TSCE
15
55
AA
2A
AA
55
15
55
80
15
55
AA
2A
AA
55
15
55
10
0
2
1
0
2
1
0
2
1
0
2
1
0
2
1
0
2
1
SCLK
Mode[1:0]
WE#
RY/BY#
368 ILL F08.9
FIGURE 11-4: EXTERNAL HOST PROGRAMMING MODE - CHIP-ERASE TIMING DIAGRAM
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
33
Remote Controller MCU
SST65P542R
Advance Information
SIX-BYTE WRITE COMMAND
FOR SECTOR-ERASE
AD[7:0]
TSE
15
55
AA
2A
AA
55
15
55
80
15
55
AA
2A
AA
55
SAH
SAL
30
0
2
1
0
2
1
0
2
1
0
2
1
0
2
1
0
2
1
SCLK
Mode[1:0]
WE#
RY/BY#
Note: SAH and SAL = Sector Address, A13-A7 are used
368 ILL F09.9
FIGURE 11-5: EXTERNAL HOST PROGRAMMING MODE SECTOR-ERASE TIMING DIAGRAM
FOUR-BYTE WRITE COMMAND
FOR BYTE-PROGRAM
AD[7:0]
15
55
AA
2A
AA
55
15
55
0
2
1
0
2
1
0
2
TBP
A0 BAH BAL Data
SCLK
Mode[1:0]
1
0
2
1
WE#
RY/BY#
Note: BAH BAL = Byte Address, A13-A0 are used
368 ILL F10.9
FIGURE 11-6: EXTERNAL HOST PROGRAMMING MODE BYTE-PROGRAM TIMING DIAGRAM
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
34
Remote Controller MCU
SST65P542R
Advance Information
VIHT
INPUT
VIT
REFERENCE POINTS
VOT
OUTPUT
VILT
368 ILL F14.0
AC test inputs are driven at VIHT (0.9 VDD) for a logic “1” and VILT (0.1 VDD) for a logic “0”.
Measurement reference points for inputs and outputs are at VIT (0.5 VDD) and VOT (0.5 VDD)
Input rise and fall times (10% ↔ 90%) are <5 ns.
Note: VHT - VHIGH Test
VLT - VLOW Test
VIHT - VINPUT HIGH Test
VILT - VINPUT LOW Test
FIGURE 11-7: AC INPUT/OUTPUT REFERENCE WAVEFORM
TO TESTER
TO DUT
CL
368 ILL F15.0
FIGURE 11-8: A TEST LOAD EXAMPLE
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
35
Remote Controller MCU
SST65P542R
Advance Information
Start
Write data: AAH
Address: 1555H
Write data: 55H
Address: 2AAAH
Write data: A0H
Address: 1555H
Write Address Data
Wait for end of
Program
(TBP, RY/BY#)
Program
Completed
368 ILL F11.6
FIGURE 11-9: BYTE-PROGRAM COMMAND SEQUENCE
©2001 Silicon Storage Technology, Inc.
FOR
EXTERNAL HOST PROGRAMMING MODE
S71170-03-000 12/01 368
36
Remote Controller MCU
SST65P542R
Advance Information
Program Timer
RY/BY# Polling
Program/Erase
Initiated
Program/Erase
Initiated
RY/BY#
Wait TBP,
TSCE, or TSE
No
Program/Erase
Completed
RY/BY# = High
Yes
Program/Erase
Completed
368 ILL F12.3
FIGURE 11-10: WAIT OPTIONS
FOR
EXTERNAL HOST PROGRAMMING MODE
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
37
Remote Controller MCU
SST65P542R
Advance Information
Chip-Erase
Command Sequence
Sector-Erase
Command Sequence
Load data: AAH
Address: 1555H
Load data: AAH
Address: 1555H
Load data: 55H
Address: 2AAAH
Load data: 55H
Address: 2AAAH
Load data: 80H
Address: 1555H
Load data: 80H
Address: 1555H
Load data: AAH
Address: 1555H
Load data: AAH
Address: 1555H
Load data: 55H
Address: 2AAAH
Load data: 55H
Address: 2AAAH
Load data: 10H
Address: 1555H
Load data: 30H
Address: SAX
Wait for
End-of-Erase
(TSCE, RY/BY#)
Wait for
End-of-Erase
(TSE, RY/BY#)
Chip erased
to FFFFH
Sector erased
to FFFFH
368 ILL F13.7
FIGURE 11-11: CHIP-/SECTOR-ERASE COMMAND SEQUENCE
©2001 Silicon Storage Technology, Inc.
FOR
EXTERNAL HOST PROGRAMMING MODE
S71170-03-000 12/01 368
38
Remote Controller MCU
SST65P542R
Advance Information
12.0 PRODUCT ORDERING INFORMATION
SST65
SSTXX
P
X
54
XX
2
X
R-8
XX
-
C
X
- SG
XX
Package Modifier
G = 28 leads
Package Type
S = SOIC
Operation Temperature
C = Commercial: 0°C to +70°C
Operating Frequency
8 = 8.0 MHz
Function
R = Remote Controller
On-Chip SRAM Size
2 = 352 Bytes
Flash Memory Size
4 = 16 KByte
Core Sub-Block
5 = Enhanced 6502 core
Voltage
2.2- 3.2V
Device Family
12.1 Valid Combinations
SST65P542R-8-C-SG
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
39
Remote Controller MCU
SST65P542R
Advance Information
13.0 PACKAGING DIAGRAMS
7.40
7.60
10.01
10.64
Pin #1
Identifier
17.70
18.10
2.36
2.64
.33
.51
Note:
1.27 BSC
.10
.30
.23
.30
1. Complies with JEDEC publication 95 MS-013 AE dimensions, although some dimensions may be more stringent.
2. All linear dimensions are in millimeters (min/max).
3. Coplanarity: 0.1 (±.05) mm.
4. Maximum allowable mold flash is 0.15mm at the package ends, and 0.25mm between leads.
0.4
1.27
28.soicSG-ILL.5
28-LEAD SMALL OUTLINE IC (SOIC)
SST PACKAGE CODE: SG
Silicon Storage Technology, Inc. • 1171 Sonora Court • Sunnyvale, CA 94086 • Telephone 408-735-9110 • Fax 408-735-9036
www.SuperFlash.com or www.ssti.com
©2001 Silicon Storage Technology, Inc.
S71170-03-000 12/01 368
40