MVTX2801 Unmanaged 4-Port 1000 Mbps Ethernet Switch Data Sheet Features • October 2003 4 Gigabit Ports with GMII and PCS interface - Ordering Information Gigabit Port can also support 100/10 Mbps MII interface MVTX2801AG 596-pin HSBGA • High Performance Layer 2 Packet Forwarding (11.904M packets per second) and Filtering at Full-Wire Speed • Maximum throughput is 4 Gbps non-blocking • Centralized shared-memory architecture Provides 2 level dropping precedence with WRED mechanism • Consists of two Memory Domains at 133 MHz - • -40°C to +85°C • • Frame Buffer Domain: one bank of ZBT-SRAM with 1M/2MB total Switch Database Domain with 256K/512K SRAM. Up to 64K MAC addresses to provide large node aggregation in wiring closet switches Traffic Classification • Classify traffic into 8 transmission priorities per port • Supports Delay bounded, Strict Priority, and WFQ User controlled thresholds for WRED Classification based on layer 2, 3 markings - VLAN Priority field in VLAN tagged frame. - DS/TOS field in IP packet - The precedence of above two classifications can be programmable • QoS Support • Supports IEEE 802.1p/Q Quality of Service with 8 Priority • Buffer Management: reserve buffers on per class and per port basis Frame Data Buffer A ZBT-SRAM (1M/2MB) SRAM 256/512K SW Databasee MAC Table VTX2800 32bit SDB Interface 64bit FDB Interface LED Search Engine NM Database Frame Engine Scheduler Management Module GMII /PCS GMII /PCS GMII /PCS GMII /PCS Port 0 Port 1 Port 2 Port 3 Serial / I2C Figure 1 - Chip Block Diagram 1 Zarlink Semiconductor Inc. Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright 2003, Zarlink Semiconductor Inc. All Rights Reserved. MVTX2801 Data Sheet • Port-based Priority: VLAN Priority with Tagged frame can be overwritten by the priority of PVID • QoS features can be configured on a per port basis Control • Full Duplex Ethernet IEEE 802.3x Flow Control • Provides Ethernet Multicast and Broadcast Control • 2 Port Trunking groups, max of 3 ports per group (Trunking can be based on source MAC and/or destination MAC and source port) • LED signals provided by a serial or parallel interface • Synchronous Serial Interface and I2C interface in unmanaged mode. • Hardware auto-negotiation through serial management interface (MDIO) for Gigabit Ethernet ports, supports 10/100/1000 Mbps • BIST for internal and external SRAM-ZBT • I2C EEPROM or synchronous serial port for configuration • Packaged in 596-pin BGA Description The MVTX2800 family is a group of 1000 Mbps non-blocking Ethernet switch chips with on-chip address memory. A single chip provides a maximum of eight 1000 Mbps ports and a dedicated CPU interface with a 16/8-bit bus for managed and unmanaged switch applications. The MVTX2800 family consists of the following four products: • MVTX2804 8 Gigabit ports Managed • MVTX2803 8 Gigabit ports Unmanaged • MVTX2802 4 Gigabit ports Managed • MVTX2801 4 Gigabit ports Unmanaged The MVTX2801 supports up to 64K MAC addresses to aggregate traffic from multiple wiring closet stacks. The centralized shared-memory architecture allows a very high performance packet-forwarding rate of 11.904M packet per second at full wire speed. The chip is optimized to provide a low-cost, high performance workgroup, and wiring closet, layer 2 switching solution with 4 Gigabit Ethernet ports. One Frame Buffer Memory domain utilize cost effective, high-performance ZBT-SRAM with aggregated bandwidth of 8.5Gbps to support full wire speed on all external ports simultaneously. With Strict priority, Delay Bounded, and WRR transmission scheduling, plus WRED memory congestion scheme, the chip provides powerful QoS functions for convergent network multimedia and mission-critical applications. The chip provides 8 transmission priorities and 2 level drop precedence. Traffic is assigned its transmission priority and dropping precedence based on the frame VLAN Tag priority. The MVTX2801 supports port trunking/load sharing on the 1000 Mbps ports with fail-over capability. The port trunking/load sharing can be used to group ports between interlinked switches to increase the effective network bandwidth. In full-duplex mode, IEEE 802.3x flow control is provided. The Physical Coding Sublayer (PCS) is integrated onchip to provide a direct 10-bit GMII interface, or the PCS can be bypassed to provide an interface to existing fiberbased Gigabit Ethernet transceivers. The MVTX2801 is fabricated using 0.25(µm technology. Inputs, however, are 3.3V tolerant and the outputs are capable of directly interfacing to LVTTL levels. The MVTX2801 is packaged in a 596-pin Ball Grid Array package. 2 Zarlink Semiconductor Inc. MVTX2801 Data Sheet Table of Contents 1.0 Block Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.1 Frame Data Buffer (FDB) Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2 Switch Database (SDB) Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3 GMII/PCS MAC Module (GMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Frame Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 Search Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.6 LED Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.7 Internal Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.0 System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.1 Start Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.2 Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.3 Data Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.4 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.5 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.6 Stop Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Synchronous Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Write Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 Read Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.0 Data Forwarding Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1 Unicast Data Frame Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 Multicast Data Frame Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.0 Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.2 Detailed Memory Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.0 Search Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.1 Search Engine Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.2 Basic Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.3 Search, Learning, and Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.3.1 MAC Search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.3.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.3.3 Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.3.4 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6.0 Frame Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6.1 Data Forwarding Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6.2 Frame Engine Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6.2.1 FCB Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6.2.2 Rx Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.2.3 RxDMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.2.4 TxQ Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.3 Port Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.4 TxDMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 7.0 Quality of Service and Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 7.1 Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 7.2 Four QoS Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7.3 Delay Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7.4 Strict Priority and Best Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7.5 Weighted Fair Queuing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 7.6 Shaper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 7.7 WRED Drop Threshold Management Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 7.8 Buffer Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 Zarlink Semiconductor Inc. MVTX2801 Data Sheet 7.8.1 Dropping When Buffers Are Scarce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 7.9 Flow Control Basics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 7.9.1 Unicast Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7.9.2 Multicast Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7.10 Mapping to IETF Diffserv Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 8.0 Port Trunking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 8.1 Features and Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 8.2 Unicast Packet Forwarding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 8.3 Multicast Packet Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 8.4 Preventing Multicast Packets from Looping Back to the Source Trunk. . . . . . . . . . . . . . . . . . . . . . . . . . . 25 9.0 LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 9.2 Serial Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 9.3 Parallel Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 9.4 LED Control Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 10.0 Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 10.1 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 10.2 Group 0 Address - MAC Ports Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 10.2.1 ECR1Pn: Port N Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 10.2.2 ECR2Pn: Port N Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 10.2.3 GGControl 0- Extra GIGA Port Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 10.2.4 GGControl 1- Extra GIGA Port Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 10.3 Group 1 Address - VLAN Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 10.3.1 AVTCL - VLAN Type Code Register Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 10.3.2 AVTCH - VLAN Type Code Register High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 10.3.3 PVMAP00_0 - Port 00 Configuration Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 10.3.4 P PVMAP00_3 - Port 00 Configuration Register 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 10.3.5 PVMODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 10.4 Group 2 Address - Port Trunking Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 10.4.1 TRUNK0_MODE - Trunk group 0 and 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 10.4.2 TX_AGE - Tx Queue Aging timer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 10.5 Group 4 Address - Search Engine Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 10.5.1 AGETIME_LOW - MAC address aging time Low. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 10.5.2 AGETIME_HIGH -MAC address aging time High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 10.5.3 SE_OPMODE - Search Engine Operation Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 10.6 Group 5 Address - Buffer Control/QOS Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 10.6.1 FCBAT - FCB Aging Timer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 10.6.2 QOSC - QOS Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 10.6.3 FCR - Flooding Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 10.6.4 AVPML - VLAN Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 10.6.5 AVPMM - VLAN Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 10.6.6 AVPMH - VLAN Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 10.6.7 TOSPML - TOS Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 10.6.9 TOSPMH - TOS Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 10.6.10 AVDM - VLAN Discard Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 10.6.11 TOSDML - TOS Discard Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 10.6.12 BMRC - Broadcast/Multicast Rate Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 10.6.13 UCC - Unicast Congestion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 10.6.14 MCC - Multicast Congestion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 10.6.15 PRG - Port Reservation for Giga ports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 10.6.16 SFCB - Share FCB Size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 10.6.17 C2RS - Class 2 Reserved Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 10.6.18 C3RS - Class 3 Reserved Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 10.6.19 C4RS - Class 4 Reserved Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4 Zarlink Semiconductor Inc. MVTX2801 Data Sheet 10.6.20 C5RS - Class 5 Reserved Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 10.6.21 C6RS - Class 6 Reserved Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 10.6.22 C7RS - Class 7 Reserved Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 10.6.23 QOSC00 - BYTE_C2_G0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 10.6.24 QOSC01 - BYTE_C3_G0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 10.6.25 QOSC02 - BYTE_C4_G0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 10.6.26 QOSC03 - BYTE_C5_G0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 10.6.27 QOSC04 - BYTE_C6_G0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 10.6.28 QOSC05 - BYTE_C7_G0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 10.6.29 QOSC06 - BYTE_C2_G1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 10.6.30 QOSC07 - BYTE_C3_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 10.6.31 QOSC08 - BYTE_C4_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 10.6.32 QOSC09 - BYTE_C5_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 10.6.33 QOSC0A - BYTE_C6_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 10.6.34 QOSC0B - BYTE_C7_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 10.6.35 QOSC0C - BYTE_C2_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 10.6.36 QOSC0D - BYTE_C3_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 10.6.37 QOSC0E - BYTE_C4_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 10.6.38 QOSC0F - BYTE_C5_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 10.6.39 QOSC10 - BYTE_C6_G2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 10.6.40 QOSC11 - BYTE_C7_G2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 10.6.41 QOSC12 - BYTE_C2_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 10.6.42 QOSC13 - BYTE_C3_G3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 10.6.44 QOSC15 - BYTE_C5_G3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 10.6.45 QOSC16 - BYTE_C6_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 10.6.46 QOSC17 - BYTE_C7_G3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 10.6.47 QOSC33 - CREDIT_C0_G0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 10.6.48 QOSC34 - CREDIT_C1_G0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 10.6.49 QOSC35 - CREDIT_C2_G0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 10.6.50 QOSC36 - CREDIT_C3_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 10.6.51 QOSC37 - CREDIT_C4_G0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 10.6.52 QOSC38 - CREDIT_C5_G0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 10.6.53 QOSC39- CREDIT_C6_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 10.6.54 QOSC3A- CREDIT_C7_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 10.6.55 QOSC3B - CREDIT_C0_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 10.6.56 QOSC3C - CREDIT_C1_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 10.6.57 QOSC3D - CREDIT_C2_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 10.6.58 QOSC3E - CREDIT_C3_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 10.6.59 QOSC3F - CREDIT_C4_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 10.6.60 QOSC40 - CREDIT_C5_G1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 10.6.61 QOSC41- CREDIT_C6_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 10.6.62 QOSC42- CREDIT_C7_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 10.6.63 QOSC43 - CREDIT_C0_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 10.6.64 QOSC44 - CREDIT_C1_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 10.6.65 QOSC45 - CREDIT_C2_G2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 10.6.66 QOSC46 - CREDIT_C3_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 10.6.67 QOSC47 - CREDIT_C4_G2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 10.6.68 QOSC48 - CREDIT_C5_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 10.6.69 QOSC49- CREDIT_C6_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 10.6.70 QOSC4A- CREDIT_C7_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 10.6.71 QOSC4B - CREDIT_C0_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 10.6.72 QOSC4 - CREDIT_C1_G3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 10.6.73 QOSC4D - CREDIT_C2_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 10.6.74 QOSC4E - CREDIT_C3_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5 Zarlink Semiconductor Inc. MVTX2801 Data Sheet 10.6.75 QOSC4F - CREDIT_C4_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 10.6.76 QOSC50 - CREDIT_C5_G3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 10.6.77 QOSC51- CREDIT_C6_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 10.6.78 QOSC52- CREDIT_C7_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 10.6.79 QOSC73 - TOKEN_RATE_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 10.6.80 QOSC74 - TOKEN_LIMIT_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 10.6.81 QOSC75 - TOKEN_RATE_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 10.6.82 QOSC76 - TOKEN_LIMIT_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 10.6.83 QOSC77 - TOKEN_RATE_G2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 10.6.84 QOSC78 - TOKEN_LIMIT_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 10.6.85 QOSC79 - TOKEN_RATE_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 10.6.86 QOSC7A - TOKEN_LIMIT_G3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 10.6.87 RDRC0 - WRED Rate Control 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 10.6.88 RDRC1 - WRED Rate Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 10.7 Group 6 Address - MISC Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 10.7.1 MII_OP0 - MII Register Option 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 10.7.2 MII_OP1 - MII Register Option 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 10.7.3 FEN - Feature Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 10.7.4 MIIC0 - MII Command Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 10.7.5 MIIC1 - MII Command Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 10.7.6 MIIC2 - MII Command Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 10.7.7 MIIC3 - MII Command Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 10.7.8 MIID0 - MII Data Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 10.7.9 MIID1 - MII Data Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 10.7.10 LED Mode - LED Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 10.7.11 CHECKSUM - EEPROM Checksum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 10.7.12 LED User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 10.7.13 LEDUSER0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 10.7.14 LEDUSER1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 10.7.15 LEDUSER2/LEDSIG2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 10.7.16 LEDUSER3/LEDSIG3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 10.7.17 LEDUSER4/LEDSIG4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 10.7.18 LEDUSER5/LEDSIG5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 10.7.19 LEDUSER6/LEDSIG6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 10.7.20 LEDUSER7/LEDSIG1_0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 10.7.21 MIINP0 - MII Next Page Data Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 10.7.22 MIINP1 - MII Next Page Data Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 10.8 Group F Address - CPU Access Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 10.8.1 GCR-Global Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 10.8.2 DCR-Device Status and Signature Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 10.8.3 DCR01-Giga port status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 10.8.4 DCR23-Giga port status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 10.8.5 DPST - Device Port Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 10.8.6 DTST - Data Read Back Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 11.0 BGA and Ball Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 11.1 BGA Views (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 11.2 Ball- Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 11.3 Ball Signal Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 11.4 Characteristics and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 11.4.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 11.4.2 DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 11.4.3 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 11.5 AC Characteristics and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 11.5.1 Typical Reset & Bootstrap Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6 Zarlink Semiconductor Inc. MVTX2801 Data Sheet 11.5.2 Local Frame Buffer ZBT SRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 11.5.2.1 Local ZBT SRAM Memory Interface A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 11.5.3 Local Switch Database SBRAM Memory Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 11.5.3.1 Local SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 11.5.4 Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 11.5.5 Gigabit Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 11.5.6 PCS Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 11.5.7 LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 11.5.8 MDIO Input Setup and Hold Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 11.5.9 I2C Input Setup Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 11.5.10 Serial Interface Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7 Zarlink Semiconductor Inc. MVTX2801 Data Sheet List of Figures Figure 1 - Chip Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 2 - Data Transfer Format for I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 3 - SRAM Interface Block Diagram (DMAs for Gigabit Ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 4 - Buffer Partition Scheme Used in the MVTX2801. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 5 - BGA Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Figure 6 - Typical Reset & Bootstrap Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Figure 7 - Local Memory Interface - Input setup and hold timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Figure 8 - Local Memory Interface - Output valid delay timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Figure 9 - Local Memory Interface - Input setup and hold timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Figure 10 - Local Memory Interface - Output valid delay timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Figure 11 - AC Characteristics - Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Figure 12 - AC Characteristics - Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Figure 13 - AC Characteristics- GMII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Figure 14 - AC Characteristics - Gigabit Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Figure 15 - AC Characteristics - PCS Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Figure 16 - AC Characteristics - PCS Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Figure 17 - AC Characteristics - LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Figure 18 - MDIO Input Setup and Hold Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Figure 19 - MDIO Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Figure 20 - I2C Input Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Figure 21 - I2C Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Figure 22 - Serial Interface Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Figure 23 - Serial Interface Output Delay Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 8 Zarlink Semiconductor Inc. MVTX2801 Data Sheet List of Tables Table 1 - Two-dimensional World Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Table 2 - Four QoS configurations per port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 3 - WRED Dropping Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 4 - Mapping between MVTX2801 and IETF Diffserv Classes for Gigabit Ports . . . . . . . . . . . . . . . . . . . . . . 23 Table 5 - MVTX2801 Features Enabling IETF Diffserv Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 6 - Timing diagram for serial mode in LED interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 7 - MVTX2801 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 8 - Ball- Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Table 9 - Ball Signal Name. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Table 10 - Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Table 11 - Reset & Bootstrap Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Table 12 - AC Characteristics - Local frame buffer ZBT-SRAM Memory Interface A. . . . . . . . . . . . . . . . . . . . . . . 96 Table 13 - AC Characteristics - Local Switch Database SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . 97 Table 14 - AC Characteristics - Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Table 15 - AC Characteristics - Gigabit Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Table 16 - AC Characteristics - PCS Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Table 17 - AC Characteristics - LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Table 18 - MDIO Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Table 19 - I2C Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Table 20 - Serial Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 9 Zarlink Semiconductor Inc. MVTX2801 1.0 Block Functionality 1.1 Frame Data Buffer (FDB) Interfaces Data Sheet The FDB interface supports pipelined ZBT-SRAM memory at 133 MHz. To ensure a non-blocking switch, one memory domain is required. Each domain has a 64-bit wide memory bus. At 133 MHz, the aggregate memory bandwidth is 8.5 Gbps, which is enough to support 4 Gigabit ports at full wire speed switching. A patent pending scheme is used to access the FDB memory. Each slot has one tick to read or write 8 bytes. 1.2 Switch Database (SDB) Interface A pipelined synchronous burst SRAM (SBRAM) memory is used to store the switch database information including MAC Table. Search Engine accesses the switch database via SDB interface. The SDB bus has 32-bit wide bus at 133MHz. 1.3 GMII/PCS MAC Module (GMAC) The GMII/PCS Media Access Control (MAC) module provides the necessary buffers and control interface between the Frame Engine (FE) and the external physical device (PHY). The MVTX2801 has two interfaces, GMII or PCS. The MAC of the MVTX2801 meets the IEEE 802.3z specification and supports the MII interface. It is able to operate 10M/100M/1G in Full Duplex mode with a back pressure/flow control mechanism. It has the options to insert Source Address/CRC/VLAN ID to each frame. The GMII/PCS Module also supports hot plug detection. 1.4 Frame Engine The main function of the frame engine is to forward a frame to its proper destination port or ports. When a frame arrives, the frame engine parses the frame header (64 bytes) and formulates a switching request, which is sent to the search engine to resolve the destination port. The arriving frame is moved to the FDB. After receiving a switch response from the search engine, the frame engine performs transmission scheduling based on the frame's priority. The frame engine forwards the frame to the MAC module when the frame is ready to be sent. 1.5 Search Engine The Search Engine resolves the frame's destination port or ports according to the destination MAC address (L2) by searching the database. It also performs MAC learning, priority assignment, and trunking functions. 1.6 LED Interface The LED interface can be operated in a serial mode or a parallel mode. In the serial mode, the LED interface uses 3 pins for carrying 4 port status signals. In the parallel mode, the interface can drive LEDs by 8 status pins. The LED port is shared with bootstrap pins. In order to avoid error when reading the bootstraps, a buffer must be used to isolate the LED circuitry from the bootstrap pins during bootstrap cycle (the bootstrap pins are sampled at the rising edge of the Reset). 1.7 Internal Memory Several internal tables are required and are described as follows: • Frame Control Block (FCB) - Each FCB entry contains the control information of the associated frame stored in the FDB, e.g. frame size, read/write pointer, transmission priority, etc. • MCT Link Table - The MCT Link Table stores the linked list of MCT entries that have collisions in the external MAC Table. 10 Zarlink Semiconductor Inc. MVTX2801 2.0 Data Sheet System Configuration The MVTX2801 can be configured by EEPROM (24C02 or compatible) via an I2C interface at boot time, or via a synchronous serial interface during operation. I2C Interface 2.1 The I2C interface uses two bus lines, a serial data line (SDA) and a serial clock line (SCL). The SCL line carries the control signals that facilitate the transfer of information from EEPROM to the switch. Data transfer is 8-bit serial and bi-directional, at 50 Kbps. Data transfer is performed between master and slave IC using a request / acknowledgment style of protocol. The master IC generates the timing signals and terminates data transfer. The figure below shows the data transfer format. START SLAVE ADDRESS R/W ACK DATA 1 (8 bits) ACK DATA 2 ACK DATA M ACK STOP Figure 2 - Data Transfer Format for I 2C Interface 2.1.1 Start Condition Generated by the master, the MVTX2801. The bus is considered to be busy after the Start condition is generated. The Start condition occurs if while the SCL line is High, there is a High-to-Low transition of the SDA line. Other than in the Start condition (and Stop condition), the data on the SDA line must be stable during the High period of SCL. The High or Low state of SDA can only change when SCL is Low. In addition, when the I2C bus is free, both lines are High. 2.1.2 Address The first byte after the Start condition determines which slave the master will select. The slave in our case is the EEPROM. The first seven bits of the first data byte make up the slave address. 2.1.3 Data Direction The eighth bit in the first byte after the Start condition determines the direction (R/W) of the message. A master transmitter sets this bit to W; a master receiver sets this bit to R. 2.1.4 Acknowledgment Like all clock pulses, the master generates the acknowledgment-related clock pulse. However, the transmitter releases the SDA line (High) during the acknowledgment clock pulse. Furthermore, the receiver must pull down the SDA line during the acknowledge pulse so that it remains stable Low during the High period of this clock pulse. An acknowledgment pulse follows every byte transfer. If a slave receiver does not acknowledge after any byte, then the master generates a Stop condition and aborts the transfer. If a master receiver does not acknowledge after any byte, then the slave transmitter must release the SDA line to let the master generate the Stop condition. 2.1.5 Data After the first byte containing the address, all bytes that follow are data bytes. Each byte must be followed by an acknowledge bit. Data is transferred MSB-first. 11 Zarlink Semiconductor Inc. MVTX2801 2.1.6 Data Sheet Stop Condition Generated by the master. The bus is considered to be free after the Stop condition is generated. The Stop condition occurs if while the SCL line is High, there is a Low-to-High transition of the SDA line. The I2C interface serves the function of configuring the MVTX2801 at boot time. The master is the MVTX2801, and the slave is the EEPROM memory. 2.2 Synchronous Serial Interface The synchronous serial interface serves the function of configuring the MVTX2801 not at boot time but via a PC. The PC serves as master and the MVTX2801 serves as slave. The protocol for the synchronous serial interface is nearly identical to the I2C protocol. The main difference is that there is no acknowledgment bit after each byte of data transferred. The unmanaged MVTX2801 uses a synchronous serial interface to program the internal registers. To reduce the number of signals required, the register address, command and data are shifted in serially through the PS_DI pin. PS_STROBE pin is used as the shift clock. PS_DO pin is used as data return path. Each command consists of four parts. • START pulse • Register Address • Read or Write command • Data to be written or read back Any command can be aborted in the middle by sending an ABORT pulse to the MVTX2801. A START command is detected when PS_DI is sampled high at PS_STROBE - leading edge, and PS_DI is sampled low when STROBE- falls. An ABORT command is detected when PS_DI is sampled low at PS_STROBE - leading edge, and PS_DI is sampled high when PS_STROBE - falls. 2.2.1 Write Command PS-STROBE2 Extra clocks after last transfer PS_DI A0 START A1 A2 ... A9 ADDRESS A10 A11 W D0 D1 D2 D3 COMMAND 12 Zarlink Semiconductor Inc. D4 DATA D5 D6 D7 MVTX2801 2.2.2 Data Sheet Read Command PS_STROBE- PS_DI A0 START A1 A2 ... A9 ADDRESS A10 A11 R COMMAND DATA D0 D1 D2 D3 D4 D5 D6 D7 PS_DO All registers in the MVTX2801 can be modified through this synchronous serial interface. 3.0 Data Forwarding Protocol 3.1 Unicast Data Frame Forwarding When a frame arrives, it is assigned a handle in memory by the Frame Control Buffer Manager (FCB Manager). An FCB handle will always be available, because of advance buffer reservations. The memory (ZBT-SRAM) interface is a 64-bit bus, connected to a ZBT-SRAM domain. The Receive DMA (RxDMA) is responsible for multiplexing the data and the address. On a port's “turn,” the RxDMA will move 8 bytes (or up to the end-of-frame) from the port's associated RxFIFO into memory (Frame Data Buffer, or FDB). Once an entire frame has been moved to the FDB, and a good end-of-frame (EOF) has been received, the Rx interface makes a switch request. The RxDMA arbitrates among multiple switch requests. The switch request consists of the first 64 bytes of a frame, containing among other things, the source and destination MAC addresses of the frame. The search engine places a switch response in the switch response queue of the frame engine when done. Among other information, the search engine will have resolved the destination port of the frame and will have determined that the frame is unicast. After processing the switch response, the Transmission Queue Manager (TxQ manager) of the frame engine is responsible for notifying the destination port that it has a frame to forward to it. But first, the TxQ manager has to decide whether or not to drop the frame, based on global FDB reservations and usage, as well as TxQ occupancy at the destination. If the frame is not dropped, then the TxQ manager links the frame's FCB to the correct per-port-per-class TxQ. Unicast TxQ's are linked lists of transmission jobs, represented by their associated frames' FCB's. There is one linked list for each transmission class for each port. There are 8 classes for each of the 4 Gigabit ports - a total of 32 unicast queues. The TxQ manager is responsible for scheduling transmission among the queues representing different classes for a port. When the port control module determines that there is room in the MAC Transmission FIFO (TxFIFO) for another frame, it requests the handle of a new frame from the TxQ manager. The TxQ manager chooses among the head-of-line (HOL) frames from the per-class queues for that port, using a Zarlink Semiconductor scheduling algorithm. 13 Zarlink Semiconductor Inc. MVTX2801 Data Sheet As at the transmit end, each of the 4 ports has time slots devoted solely to reading data from memory at the address calculated by port control. The Transmission DMA (TxDMA) is responsible for multiplexing the data and the address. On a port's turn, the TxDMA will move 8 bytes (or up to the EOF) from memory into the port's associated TxFIFO. After reading the EOF, the port control requests a FCB release for that frame. The TxDMA arbitrates among multiple buffer release requests. The frame is transmitted from the TxFIFO to the line. 3.2 Multicast Data Frame Forwarding After receiving the switch response, the TxQ manager has to make the dropping decision. A global decision to drop can be made, based on global FDB utilization and reservations. If so, then the FCB is released and the frame is dropped. In addition, a selective decision to drop can be made, based on the TxQ occupancy at some subset of the multicast packet's destinations. If so, then the frame is dropped at some destinations but not others, and the FCB is not released. If the frame is not dropped at a particular destination port, then the TxQ manager formats an entry in the multicast queue for that port and class. Multicast queues are physical queues (unlike the linked lists for unicast frames). There are 4 multicast queues for each of the 4 Gigabit ports. During scheduling, the TxQ manager treats the unicast queue and the multicast queue of the same class as one logical queue. The port control requests a FCB release only after the EOF for the multicast frame has been read by all ports to which the frame is destined. 4.0 Memory Interface 4.1 Overview The figure below illustrates the first part of the ZBT-SRAM interface for the MVTX2801. As shown, a 64 bit bus ZBT-SRAM bank A is used for Tx/RxDMA access. Because the clock frequency is 133 MHz, the total memory bandwidth is 64-bits x 133 MHz = 8.5 Gbps, for frame data buffer (FDB) access. ZBT-SRAM Bank A TX DMA 0-1 TX DMA 2-3 RX DMA 0-1 RX DMA 2-3 Figure 3 - SRAM Interface Block Diagram (DMAs for Gigabit Ports) 14 Zarlink Semiconductor Inc. MVTX2801 4.2 Data Sheet Detailed Memory Information Because the memory bus is 64 bits wide, frames are broken into 8-byte granules, written to and read from each memory access. In the worst case, a 1-byte-long EOF granule gets written to memory Bank. This means that a 7-byte segment of memory bus is idle. The scenario results in a maximum 7 bytes of waste per frame, which is always acceptable because the interfame gap is 20 bytes. 5.0 Search Engine 5.1 Search Engine Overview The MVTX2801 search engine is optimized for high throughput searching, with enhanced features to support: • Up to 64K MAC addresses • 4 groups of port trunking • Traffic classification into 8 transmission priorities, and 2 drop precedence levels 5.2 Basic Flow Shortly after a frame enters the MVTX2801 and is written to the Frame Data Buffer (FDB), the frame engine generates a Switch Request, which is sent to the search engine. The switch request consists of the first 64 bytes of the frame, which contain all the necessary information for the search engine to perform its task. When the search engine is done, it writes to the Switch Response Queue, and the frame engine uses the information provided in that queue for scheduling and forwarding. In performing its task, the search engine extracts and compresses the useful information from the 64-byte switch request. Among the information extracted are the source and destination MAC addresses, the transmission and discard priorities, whether the frame is unicast or multicast. Requests are sent to the external SRAM Switch Database to locate the associated entries in the external MCT table. When all the information has been collected from external SRAM, the search engine has to compare the MAC address on the current entry with the MAC address for which it is searching. If it is not a match, the process is repeated on the internal MCT Table. All MCT entries other than the first of each linked list are maintained internal to the chip. If the desired MAC address is still not found, then the result is either learning (source MAC address unknown) or flooding (destination MAC address unknown). If the destination MAC address belongs to a port trunk, then the trunk number is retrieved instead of the port number. But on which port of the trunk will the frame be transmitted? This is easily computed using a hash of the source and destination MAC addresses. When all the information is compiled, the switch response is generated, as stated earlier. 5.3 5.3.1 Search, Learning, and Aging MAC Search The search block performs source MAC address and destination MAC address searching. As we indicated earlier, if a match is not found, then the next entry in the linked list must be examined, and so on until a match is found or the end of the list is reached. In port based VLAN mode, a bitmap is used to determine whether the frame should be forwarded to the outgoing port. The bitmap is not dynamic. Ports cannot enter and exit groups dynamically. The MAC search block is also responsible for updating the source MAC address timestamp, used for aging. 15 Zarlink Semiconductor Inc. MVTX2801 5.3.2 Data Sheet Learning The learning module learns new MAC addresses and performs port change operations on the MCT database. The goal of learning is to update this database as the networking environment changes over time. Learning and port change will be performed based on memory slot availability only. 5.3.3 Aging Aging time is controlled by register 400h and 401h. The aging module scans and ages MCT entries based on a programmable “age out” time interval. As we indicated earlier, the search module updates the source MAC address and VLAN port association timestamps for each frame it processes. When an entry is ready to be aged, the entry is removed from the table. 5.3.4 Data Structure The MCT data structure is used for searching for MAC addresses. The structure is maintained by hardware in the search engine. The database is essentially a hash table, with collisions resolved by chaining. The database is partially external, and partially internal, as described earlier: the first MCT entry of each linked list is always located in the external SRAM, and the subsequent MCTs are located internally. 6.0 Frame Engine 6.1 Data Forwarding Summary • Enters the device at the RxMAC, the RxDMA will move the data from the MAC RxFIFO to the FDB. Data is moved in 8-byte granules in conjunction with the scheme for the SRAM interface. • A switch request is sent to the Search Engine. The Search Engine processes the switch request. • A switch response is sent back to the Frame Engine and indicates whether the frame is unicast or multicast, and its destination port or ports. • A Transmission Scheduling Request is sent in the form of a signal notifying the TxQ manager. Upon receiving a Transmission Scheduling Request, the device will format an entry in the appropriate Transmission Scheduling Queue (TxSch Q) or Queues. There are 8 TxSch Queues for each Gigabit port, one for each priority. Creation of a queue entry either involves linking a new job to the appropriate linked list if unicast, or adding an entry to a physical queue if multicast. • When the port is ready to accept the next frame, the TxQ manager will get the head-of-line (HOL) entry of one of the TxSch Qs, according to the transmission scheduling algorithm (so as to ensure per-class quality of service). The unicast linked list and the multicast queue for the same port-class pair are treated as one logical queue. • The TxDMA will pull frame data from the memory and forward it granule-by-granule to the MAC TxFIFO of the destination port. 6.2 Frame Engine Details This section briefly describes the functions of each of the modules of the MVTX2801 frame engine. 6.2.1 FCB Manager The FCB manager allocates FCB handles to incoming frames, and releases FCB handles upon frame departure. The FCB manager is also responsible for enforcing buffer reservations and limits. The default values can be determined by referring to Chapter 8. In addition, the FCB manager is responsible for buffer aging, and for linking unicast forwarding jobs to their correct TxSch Q. The buffer aging can be enabled or disabled by the bootstrap pin and the aging time is defined in register FCBAT. 16 Zarlink Semiconductor Inc. MVTX2801 6.2.2 Data Sheet Rx Interface The Rx interface is mainly responsible for communicating with the RxMAC. It keeps track of the start and end of frame and frame status (good or bad). Upon receiving an end of frame that is good, the Rx interface makes a switch request. 6.2.3 RxDMA The RxDMA arbitrates among switch requests from each Rx interface. It also buffers the first 64 bytes of each frame for use by the search engine when the switch request has been made. 6.2.4 TxQ Manager First, the TxQ manager checks the per-class queue status and global Reserved resource situation, and using this information, makes the frame dropping decision after receiving a switch response. If the decision is not to drop, the TxQ manager requests that the FCB manager link the unicast frame's FCB to the correct per-port-per-class TxQ. If multicast, the TxQ manager writes to the multicast queue for that port and class. The TxQ manager can also trigger source port flow control for the incoming frame's source if that port is flow control enabled. Second, the TxQ manager handles transmission scheduling; it schedules transmission among the queues representing different classes for a port. Once a frame has been scheduled, the TxQ manager reads the FCB information and writes to the correct port control module. 6.3 Port Control The port control module calculates the SRAM read address for the frame currently being transmitted. It also writes start of frame information and an end of frame flag to the MAC TxFIFO. When transmission is done, the port control module requests that the buffer be released. 6.4 TxDMA The TxDMA multiplexes data and address from port control, and arbitrates among buffer release requests from the port control modules. 7.0 Quality of Service and Flow Control 7.1 Model Quality of service (QoS) is an all-encompassing term for which different people have different interpretations. In this chapter, by quality of service assurances, we mean the allocation of chip resources so as to meet the latency and bandwidth requirements associated with each traffic class. We do not presuppose anything about the offered traffic pattern. If the traffic load is light, then ensuring quality of service is straightforward. But if the traffic load is heavy, the MVTX2801 must intelligently allocate resources so as to assure quality of service for high priority data. We assume that the network manager knows his applications, such as voice, file transfer, or web browsing, and their relative importance. The manager can then subdivide the applications into classes and set up a service contract with each. The contract may consist of bandwidth or latency assurances per class. Sometimes it may even reflect an estimate of the traffic mix offered to the switch, though this is not required. The table below shows examples of QoS applications with eight transmission priorities, including best effort traffic for which we provide no bandwidth or latency assurances. 17 Zarlink Semiconductor Inc. MVTX2801 Class Example Assured Bandwidth (user defined) Data Sheet Low Drop Subclass (If class is oversubscribed, these packets are the last to be dropped.) High Drop Subclass (If class is oversubscribed, these packets are the first to be dropped.) Highest transmission priorities, P7 Latency < 200 µs 300 Mbps Sample application: control information Highest transmission priorities, P6 Latency < 200 µs 200 Mbps Sample applications: phone calls; circuit emulation Sample application: training video; other multimedia Middle transmission priorities, P5 Latency < 400 µs 125 Mbps Sample application: interactive activities Sample application: non-critical interactive activities Middle transmission priorities, P4 Latency < 800 µs 250 Mbps Sample application: web business Low transmission priorities, P3 Latency < 1600 µs 80 Mbps Sample application: file backups Low transmission priorities, P2 Latency < 3200 µs 45 Mbps Sample application: email Best effort, P1-P0 TOTAL - Sample application: web research Sample application: casual web browsing 1 Gbps Table 1 - Two-dimensional World Traffic It is possible that a class of traffic may attempt to monopolize system resources by sending data at a rate in excess of the contractually assured bandwidth for that class. A well-behaved class offers traffic at a rate no greater than the agreed-upon rate. By contrast, a misbehaving class offers traffic that exceeds the agreed-upon rate. A misbehaving class is formed from an aggregation of misbehaving microflows. To achieve high link utilization, a misbehaving class is allowed to use any idle bandwidth. However, the quality of service (QoS) received by well-behaved classes must never suffer. As Table 1 illustrates, each traffic class may have its own distinct properties and applications. As shown, classes may receive bandwidth assurances or latency bounds. In the example, P7, the highest transmission class, requires that all frames be transmitted within 0.2 ms, and receives 30% of the 1 Gbps of bandwidth at that port. Best-effort (P1-P0) traffic forms a lower tier of service that only receives bandwidth when none of the other classes have any traffic to offer. In addition, each transmission class has two subclasses, high-drop and low-drop. Well-behaved users should not lose packets. But poorly behaved users, users who send data at too high a rate, will encounter frame loss, and the first to be discarded will be high-drop. Of course, if this is insufficient to resolve the congestion, eventually some low-drop frames are dropped as well. Table 1 shows that different types of applications may be placed in different boxes in the traffic table. For example, web search may fit into the category of high-loss, high-latency-tolerant traffic, whereas VoIP fits into the category of low-loss, low-latency traffic. 18 Zarlink Semiconductor Inc. MVTX2801 7.2 Data Sheet Four QoS Configurations There are four basic pieces to QoS scheduling in the MVTX2801: strict priority (SP), delay bound, weighted fair queuing (WFQ), and best effort (BE). Using these four pieces, there are four different modes of operation, as shown in Table 2. P7 P6 P5 P4 Op1 (default) Delay Bound Op2 SP Delay Bound Op3 SP WFQ Op4 WFQ P3 P2 P1 P0 BE BE Table 2 - Four QoS configurations per port The default configuration is six delay-bounded queues and two best-effort queues. The delay bounds per class are 0.16 ms for P7 and P6, 0.32 ms for P5, 0.64 ms for P4, 1.28 ms for P3, and 2.56 ms for P2. Best effort traffic is only served when there is no delay-bounded traffic to be served. P1 has strict priority over P0. We have a second configuration in which there are two strict priority queues, four delay bounded queues, and two best effort queues. The delay bounds per class are 0.32 ms for P5, 0.64 ms for P4, 1.28 ms for P3, and 2.56 ms for P2. If the user is to choose this configuration, it is important that P7-P6 (SP) traffic be either policed or implicitly bounded (e.g. if the incoming SP traffic is very light and predictably patterned). Strict priority traffic, if not admission-controlled at a prior stage to the MVTX2801, can have an adverse effect on all other classes' performance. P7 and P6 are both SP classes, and P7 has strict priority over P6. The third configuration contains two strict priority queues and six queues receiving a bandwidth partition via WFQ. As in the second configuration, strict priority traffic needs to be carefully controlled. In the fourth configuration, all queues are served using a WFQ service discipline 7.3 Delay Bound In the absence of a sophisticated QoS server and signaling protocol, the MVTX2801 may not be assured of the mix of incoming traffic ahead of time. To cope with this uncertainty, our delay assurance algorithm dynamically adjusts its scheduling and dropping criteria, guided by the queue occupancies and the due dates of their head-of-line (HOL) frames. As a result, we assure latency bounds for all admitted frames with high confidence, even in the presence of system-wide congestion. Our algorithm identifies misbehaving classes and intelligently discards frames at no detriment to well-behaved classes. Our algorithm also differentiates between high-drop and low-drop traffic with a weighted random early drop (WRED) approach. Random early dropping prevents congestion by randomly dropping a percentage of high-drop frames even before the chip's buffers are completely full, while still largely sparing low-drop frames. This allows high-drop frames to be discarded early, as a sacrifice for future low-drop frames. Finally, the delay bound algorithm also achieves bandwidth partitioning among classes. 7.4 Strict Priority and Best Effort When strict priority is part of the scheduling algorithm, if a queue has even one frame to transmit, it goes first. Two of our four QoS configurations include strict priority queues. The goal is for strict priority classes to be used for IETF expedited forwarding (EF), where performance guarantees are required. As we have indicated, it is important that strict priority traffic be either policed or implicitly bounded, so as to keep from harming other traffic classes. When best effort is part of the scheduling algorithm, a queue only receives bandwidth when none of the other classes have any traffic to offer. Two of our four QoS configurations include best effort queues. The goal is for best effort 19 Zarlink Semiconductor Inc. MVTX2801 Data Sheet classes to be used for non-essential traffic, because we provide no assurances about best effort performance. However, in a typical network setting, much best effort traffic will indeed be transmitted, and with an adequate degree of expediency. Because we do not provide any delay assurances for best effort traffic, we do not enforce latency by dropping best effort traffic. Furthermore, because we assume that strict priority traffic is carefully controlled before entering the MVTX2801, we do not enforce a fair bandwidth partition by dropping strict priority traffic. To summarize, dropping to enforce quality of service (i.e. bandwidth or delay) does not apply to strict priority or best effort queues. We only drop frames from best effort and strict priority queues when global buffer resources become scarce. 7.5 Weighted Fair Queuing In some environments - for example, in an environment in which delay assurances are not required, but precise bandwidth partitioning on small time scales is essential (WFQ may be preferable to a delay-bounded scheduling discipline). The MVTX2801 provides the user with a WFQ option with the understanding that delay assurances cannot be provided if the incoming traffic pattern is uncontrolled. The user sets eight WFQ “weights” such that all weights are whole numbers and sum to 64. This provides per-class bandwidth partitioning with error within 2%. In WFQ mode, though we do not assure frame latency, the MVTX2801 still retains a set of dropping rules that helps to prevent congestion and trigger higher level protocol end-to-end flow control. As before, when strict priority is combined with WFQ, we do not have special dropping rules for the strict priority queues, because the input traffic pattern is assumed to be carefully controlled at a prior stage. However, we do indeed drop frames from SP queues for global buffer management purposes. In addition, queues P1 and P0 are treated as best effort from a dropping perspective, though they still are assured a percentage of bandwidth from a WFQ scheduling perspective. What this means is that these particular queues are only affected by dropping when the global buffer count becomes low. 7.6 Shaper Although traffic shaping is not a primary function of the MVTX2801, the chip does implement a shaper for expedited forwarding (EF). Our goal in shaping is to control the peak and average rate of traffic exiting the MVTX2801. Shaping is limited to class P6 (the second highest priority). This means that class P6 will be the class used for EF traffic. (By contrast, we assume class P7 will be used for control packets only.) If shaping is enabled for P6, then P6 traffic must be scheduled using strict priority. With reference to Table 2, only the middle two QoS configurations may be used. Peak rate is set using a programmable whole number, no greater than 64 (register QOS-CREDIT_C6_Gn). For example, if the setting is 32, then the peak rate for shaped traffic is 32/64 x 1000 Mbps = 500 Mbps. Average rate is also a programmable whole number, no greater than 64, and no greater than the peak rate. For example, if the setting is 16, then the average rate for shaped traffic is (16/64) x 1000 Mbps = 250 Mbps. As a consequence of the above settings in our example, shaped traffic will exit the MVTX2801 at a rate always less than 500 Mbps, and averaging no greater than 250 Mbps. Also, when shaping is enabled, it is possible for a P6 queue to explode in length if fed by a greedy source. The reason is that a shaper is by definition not work-conserving; that is, it may hold back from sending a packet even if the line is idle. Though we do have global resource management, we do nothing to prevent this situation locally. We assume SP traffic is policed at a prior stage to the MVTX2801. 7.7 WRED Drop Threshold Management Support To avoid congestion, the Weighted Random Early Detection (WRED) logic drops packets according to specified parameters. The following table summarizes the behavior of the WRED logic. 20 Zarlink Semiconductor Inc. MVTX2801 P7 P6 P5 P4 P3 Data Sheet P2 Level 1 N > 240 Level 2 N > 280 |P7| > A KB |P6| > B KB |P5| > C KB |P4| > D KB |P3| > E KB |P2| > F KB High Drop Low Drop X% 0% Y% 100% Level 3 N > 320 Z% 100% Table 3 - WRED Dropping Scheme In the table, |Px| is the byte count in queue Px. The WRED logic has three drop levels, depending on the value of N, which is based on the number of bytes in the priority queues. If delay bound scheduling is used, N equals 16|P7| + 16|P6| + 8|P5| + 4|P4| + 2|P3| + |P2|. If WFQ scheduling is used, N equals |P7| + |P6| + |P5| + |P4| + |P3| + |P2|. Each drop level has defined high-drop and low-drop percentages, which indicate the percentage of high-drop and low-drop packets that will be dropped at that level. The X, Y, and Z percent parameters can be programmed using the registers RDRC0 and RDRC1. Parameters A-F are the byte count thresholds for each priority queue, and are also programmable. When using delay bound scheduling, the values selected for A-F also control the approximate bandwidth partition among the traffic classes; see application note. 7.8 Buffer Management Because the number of frame data buffer (FDB) slots is a scarce resource, and because we want to ensure that one misbehaving source port or class cannot harm the performance of a well-behaved source port or class, we introduce the concept of buffer management into the MVTX2801. Our buffer management scheme is designed to divide the total buffer space into numerous reserved regions and one shared pool (see Figure 4). As shown in the figure, the FDB pool is divided into several parts. A reserved region for temporary frames stores frames prior to receiving a switch response. Such a temporary region is necessary, because when the frame first enters the MVTX2801, its destination port and class are as yet unknown, and so the decision to drop or not needs to be temporarily postponed. This ensures that every frame can be received first before subjecting it to the frame drop discipline after classifying. Six reserved sections, one for each of the highest six priority classes, ensure a programmable number of FDB slots per class. The lowest two classes do not receive any buffer reservation. Another segment of the FDB reserves space for each of the 4 ports. These source port buffer reservations are programmable. These 8 reserved regions make sure that no well-behaved source port can be blocked by another misbehaving source port. In addition, there is a shared pool, which can store any type of frame. The registers related to the Buffer Management logic are: • PRG- Port Reservation for Gigabit Ports • SFCB- Share FCB Size • C2RS- Class 2 Reserved Size • C3RS- Class 3 Reserved Size • C4RS- Class 4 Reserved Size • C5RS- Class 5 Reserved Size • C6RS- Class 6 Reserved Size • C7RS- Class 7 Reserved Size 21 Zarlink Semiconductor Inc. MVTX2801 Data Sheet Temporary Reservation RTMP Per-Class Reservations Rp7, Rp6 ... Rp2 Shared Pool S Per-Source Reservations 8 . R1G Figure 4 - Buffer Partition Scheme Used in the MVTX2801 7.8.1 Dropping When Buffers Are Scarce Summarizing the two examples of local dropping discussed earlier in this chapter: • If a queue is a delay-bounded queue, we have a multilevel WRED drop scheme, designed to control delay and partition bandwidth in case of congestion. • If a queue is a WFQ-scheduled queue, we have a multilevel WRED drop scheme, designed to prevent congestion. In addition to these reasons for dropping, the MVTX2801 also drops frames when global buffer space becomes scarce. The function of buffer management is to ensure that such droppings cause as little blocking as possible. 7.9 Flow Control Basics Because frame loss is unacceptable for some applications, the MVTX2801 provides a flow control option. When flow control is enabled, scarcity of buffer space in the switch may trigger a flow control signal; this signal tells a source port, sending a packet to this switch, to temporarily hold off. While flow control offers the clear benefit of no packet loss, it also introduces a problem for quality of service. When a source port receives an Ethernet flow control signal, all microflows originating at that port, well-behaved or not, are halted. A single packet destined for a congested output can block other packets destined for uncongested outputs. The resulting head-of-line blocking phenomenon means that quality of service cannot be assured with high confidence when flow control is enabled. In the MVTX2801, each source port can independently have flow control enabled or disabled. For flow control enabled ports, by default all frames are treated as lowest priority during transmission scheduling. This is done so that those frames are not exposed to the WRED Dropping scheme. Frames from flow control enabled ports feed to only one queue at the destination, the queue of lowest priority. What this means is that if flow control is enabled for a given source port, then we can guarantee that no packets originating from that port will be lost, but at the possible expense of minimum bandwidth or maximum delay assurances. In addition, these “downgraded” frames may only use the shared pool or the per-source reserved pool in the FDB; frames from flow control enabled sources may not use reserved FDB slots for the highest six classes (P2-P7). The MVTX2801 does provide a system-wide option of permitting normal QoS scheduling (and buffer use) for frames 22 Zarlink Semiconductor Inc. MVTX2801 Data Sheet originating from flow control enabled ports. When this programmable option is active, it is possible that some packets may be dropped, even though flow control is on. The reason is that intelligent packet dropping is a major component of the MVTX2801's approach to ensuring bounded delay and minimum bandwidth for high priority flows. 7.9.1 Unicast Flow Control For unicast frames, flow control is triggered by source port resource availability. Recall that the MVTX2801's buffer management scheme allocates a reserved number of FDB slots for each source port. If a programmed number of a source port's reserved FDB slots have been used, then flow control Xoff is triggered. Xon is triggered when a port is currently being flow controlled, and all of that port's reserved FDB slots have been released. Note that the MVTX2801's per-source-port FDB reservations assure that a source port that sends a single frame to a congested destination will not be flow controlled. 7.9.2 Multicast Flow Control When port based Vlan is not used, a global buffer counter (64 packets) triggers flow control for multicast frames. When the system exceeds a programmable threshold of multicast packets, Xoff is triggered. Xon is triggered when the system returns below this threshold. MCC register programs the threshold. When port based Vlan is used, each Vlan has a global buffer counter. In addition, each source port has an 8-bit port map recording which port or ports of the multicast frame's fanout were congested at the time Xoff was triggered. All ports are continuously monitored for congestion, and a port is identified as uncongested when its queue occupancy falls below a fixed threshold. When all those ports that were originally marked as congested in the port map have become uncongested, then Xon is triggered, and the 8-bit vector is reset to zero. The MVTX2801 also provides the option of disabling VLAN multicast flow control. Note: If port flow control is on, QoS performance will be affected. To determine the most efficient way to program, please refer to the QoS Application Note. 7.10 Mapping to IETF Diffserv Classes The mapping between priority classes discussed in this chapter and elsewhere is shown below. MVTX2801 P7 P6 P5 P4 P3 P2 P1 P0 IETF NM EF AF0 AF1 AF2 AF3 BE0 BE1 Table 4 - Mapping between MVTX2801 and IETF Diffserv Classes for Gigabit Ports As the table illustrates, P7 is used solely for network management (NM) frames. P6 is used for expedited forwarding service (EF). Classes P2 through P5 correspond to an assured forwarding (AF) group of size 4. Finally, P0 and P1 are two best effort (BE) classes. Features of the MVTX2801 that correspond to the requirements of their associated IETF classes are summarized in the table below. 23 Zarlink Semiconductor Inc. MVTX2801 Data Sheet Network management (NM) and Expedited forwarding (EF) • • • • Global buffer reservation for NM and EF Shaper for EF traffic Option of strict priority scheduling No dropping if admission controlled Assured forwarding (AF) • • Four AF classes Programmable bandwidth partition, with option of WFQ service Option of delay-bounded service keeps delay under fixed levels even if not admission-controlled Random early discard, with programmable levels Global buffer reservation for each AF class • • • Best effort (BE) • • • • Two BE classes Service only when other queues are idle means that QoS not adversely affected Random early discard, with programmable levels Traffic from flow control enabled ports automatically classified as BE Table 5 - MVTX2801 Features Enabling IETF Diffserv Standards 8.0 Port Trunking 8.1 Features and Restrictions A port group (i.e. trunk) can include up to 4 physical ports, but all of the ports in a group must be in the same MVTX2801. The MVTX2801 provides several pre-assigned trunk group options, containing as many as 4 ports per group, or alternatively, as many as 4 total groups. Load distribution among the ports in a trunk for unicast is performed using hashing based on source MAC address and destination MAC address. The other options include source MAC address only, destination MAC address only. Load distribution for multicast is performed similarly. If a VLAN includes any of the ports in a trunk group, all the ports in that trunk group should be in the same VLAN member map. The MVTX2801 also provides a safe fail-over mode for port trunking automatically. If one of the ports in the trunking group goes down, the MVTX2801 will automatically redistribute the traffic over to the remaining ports in the trunk in unmanaged mode. In managed mode, the software can perform similar tasks. 8.2 Unicast Packet Forwarding The search engine finds the destination MCT entry, and if the status field says that the destination address found belongs to a trunk, then the group number is retrieved instead of the port number. In addition, if the source address belongs to a trunk, then the source port's trunk membership register is checked to determine if the address has moved. A hash key is used to determine the appropriate forwarding port, based on some combination of the source and destination MAC addresses for the current packet. 24 Zarlink Semiconductor Inc. MVTX2801 Data Sheet The search engine retrieves the VLAN member ports from the VLAN index table, which consists of 4K entries. The search engine retrieves the VLAN member ports from the ingress port's VLAN map. Based on the destination MAC address, the search engine determines the egress port from the MCT database. If the egress port is a member of a trunk group, the packet can be distributed to the other members of that trunk group. The VLAN map is used to check whether the egress port is a member of the VLAN, based on the ingress port. If it is a member, the packet is forwarded otherwise it is discarded. 8.3 Multicast Packet Forwarding For multicast packet forwarding, the device must determine the proper set of ports from which to transmit the packet based on the VLAN index and hash key. Two functions are required in order to distribute multicast packets to the appropriate destination ports in a port trunking environment. • Determining one forwarding port per group. • For multicast packets, all but one port per group, the forwarding port, must be excluded. 8.4 Preventing Multicast Packets from Looping Back to the Source Trunk The search engine needs to prevent a multicast packet from sending to a port that is in the same trunk group with the source port. This is because, when we select the primary forwarding port for each group, we do not take the source port into account. To prevent this, we simply apply one additional filter, so as to block that forwarding port for this multicast packet. 9.0 LED Interface 9.1 Introduction The MVTX2801 LED block provides two interfaces: a serial output channel, and a parallel time-division interface. The serial output channel provides port status information from the MVTX2801 chip in a continuous serial stream. This means that a low cost external device must be used to decode the serial data and to drive an LED array for display. By contrast, the parallel time-division interface supports a glueless LED module. Indeed, the parallel interface can directly drive low-current LEDs without any extra logic. The pin LED_PM is used to select serial or parallel mode. For some LED signals, the interface also provides a blinking option. Blinking may be enabled for LED signals TxD, RxD, COL, and FC (to be described later). The pin LED_BLINK is used to enable blinking, and the blinking frequency is around 160 ms. 9.2 Serial Mode In serial mode, the following pins are utilized: • LED_SYNCO - a sync pulse that defines the boundary between status frames • LED_CLKO - the clock signal • LED_DO - a continuous serial stream of data for all status LEDs that repeats once every frame time In each cycle (one frame of status information, or one sync pulse), 16x8 bits of data are transmitted on the LED_DO signal. The sequence of transmission of data bits is as shown in the figure below: 25 Zarlink Semiconductor Inc. MVTX2801 Data Sheet LE_SYNCO LE_DO P0 info P1 info P2 info P3 info P4 info P5 info P6 info P7 info U0 U1 U2 U3 0 1 2 3 4 5 6 7 FC TxD RxD LNK SP0 SP1 FDX COL U4 U5 U6 U7 LE_CLKO Table 6 - Timing diagram for serial mode in LED interface The status bits shown in here are flow control (FC), transmitting data (TxD), receiving data (RxD), link up (LNK), speed (SP0 and SP1), full duplex (FDX), and collision (COL). Note that SP[1:0] is defined as 10 for 1 Gbps, 01 for 100 Mbps, and 00 for 10 Mbps. Also note that U0-U7 represent user-defined sub-frames in which additional status information may be embedded. We will see later that the MVTX2801 provides registers that can be written by the CPU to indicate this additional status information as it becomes available. 9.3 Parallel Mode In parallel mode, the following pins are utilized: • LED_PORT_SEL[3:0] - indicates which of the 4 Gigabit port status bytes is being read out • LED_PORT_SEL[7:4] - No use. • LED_PORT_SEL[9:8] - indicates which of the 2 user-defined status bytes is being read out • LED_BYTEOUT_[7:0] - provides 8 bits for 4 different port status indicators. Note that these bits are active low. By default, the system is in parallel mode. In parallel mode, the 10 status bytes are scanned in a continuous loop, with one byte read out per clock cycle, and the appropriate port select bit asserted. 9.4 LED Control Registers An LED Control Register can be used for programming the LED clock rate, sample hold time, and pattern in parallel mode. In addition, the MVTX2801 provides 8 registers called LEDUSER[7:0] for user-defined status bytes. During operation, the CPU can write values to these registers, which will be read out to the LED interface output (serial or parallel). Only LEDUSER[1:0] are used in parallel mode. The content of the LEDUSER registers will be sent out by the LED serial shift logic, or in parallel mode, a byte at a time. Because in parallel mode there are only two user-defined registers, LEDUSER[7:2] is shared with LEDSIG[7:2]. For LEDSIG[j], where j = 2, 3, ..., 6, the corresponding register is used for programming the LED pin LED_BYTEOUT_[j]. The format is as follows: 7 COL FDX SP1 4 3 SP0 COL 26 Zarlink Semiconductor Inc. 0 FDX SP1 SP0 MVTX2801 Bits [3:0] Signal polarity: 0: do not invert polarity (high true) 1: invert polarity Bits [7:4] Signal select: 0: do not select 1: select the corresponding bit Data Sheet For j = 2, 3, ..., 5, the value of LED_BYTEOUT_[j] equals the logical AND of all selected bits. For j = 6, the value is equal to the logical OR. Therefore, the programmable LEDSIG[5:2] registers allow any conjunctive formula including any of the 4 status bits (COL, FDX, SP1, SP0) or their negations to be sent to the LED_BYTEOUT_[5:2] pins. Similarly, the programmable LEDSIG[6] register allows any disjunctive formula including any of the 4 status bits or their negations to be sent to pin LED_BYTEOUT_[6]. LEDSIG[7] is used for programming both LED_BYTEOUT_[1] and LED_BYTEOUT_[0]. As we will see, it has other functions as well. The format is as follows: 7 GP Bits [7] • RxD TxD 4 3 FC P6 0 RxD TxD FC Global output polarity: this bit controls the output polarity of all LED_BYTEOUT_ and LED_PORT_SEL pins. (Default 0) - 0: do not invert polarity (LED_BYTEOUT_[7:0] are high activated; LED_PORT_SEL[9:0] are low activated) - 1: invert polarity (LED_BYTEOUT_[7:0] are low activated; LED_PORT_SEL[9:0] are high activated) Bits [6:4] • Signal select: - 0: do not select - 1: select the corresponding bit Bit [3] • The value of LED_BYTEOUT_[1] equals the logical OR of all selected bits. (Default 110) • Polarity control of LED_BYTEOUT_[6] (Default 0) - 0: do not invert - 1: invert Bits [2:0] • Signal select: - 0: do not select - 1: select the corresponding bit • The value of LED_BYTEOUT_[0] equals the logical OR of all selected bits. (Default 001) 27 Zarlink Semiconductor Inc. MVTX2801 10.0 10.1 Data Sheet Register Definition Register Description Register Description CPU Addr (Hex) R/W I 2C Addr (Hex) Default 0. ETHERNET Port Control Registers - Substitute [N] with Port number (0..3) ECR1P”N” Port Control Register 1 for Port N 000 + 2N R/W 000+2N c0 ECR2P”N” Port Control Register 2 for Port N 001 + 2N R/W 001+2N 00 GGCONTROL0 Extra Gigabit Port Control -port 0,1 012 R/W N/A 00 GGCONTROL1 Extra Gigabit Port Control -port 2,3 013 R/W N/A 00 ACTIVELINK Active Link status port 3:0 016 R/W N/A 00 1. VLAN Control Registers - Substitute [N] with Port number (0..3) AVTCL VLAN Type Code Register Low 100 R/W 012 00 AVTCH VLAN Type Code Register High 101 R/W 013 81 PVMAP”N”_0 Port “N” Configuration Register 0 102 + 4N R/W 014+4N ff PVMAP”N”_3 Port “N” Configuration Register 3 105 + 4N R/W 017+4N 00 PVMODE VLAN Operating Mode 126 R/W 038 00 TRUNK0_MODE Trunk Group 0 Mode 207 R/W 039 00 TRUNK1_MODE Trunk Group 1 Mode 20E R/W 03A 00 Transmission Queue Aging Time 312 R/W 03B 08 AGETIME_LOW MAC Address Aging Time Low 400 R/W 03C 2c AGETIME_HIGH MAC Address Aging Time High 401 R/W 03D 00 SE_OPMODE Search Engine operation mode 403 R/W NA 00 2. TRUNK Control Registers 3. CPU Port Configuration TX_AGE 4. Search Engine Configurations 5. Buffer Control and QOS Control FCBAT FCB Aging Timer 500 R/W 03E ff QOSC QOS Control 501 R/W 03F 00 FCR Flooding Control Register 502 R/W 040 08 AVPML VLAN Priority Map Low 503 R/W 041 88 AVPMM VLAN Priority Map Middle 504 R/W 042 c6 AVPMH VLAN Priority Map High 505 R/W 043 fa TOSPML TOS Priority Map Low 506 R/W 044 88 TOSPMM TOS Priority Map Middle 507 R/W 045 c6 Table 7 - MVTX2801 Register Description 28 Zarlink Semiconductor Inc. Notes MVTX2801 Register Data Sheet CPU Addr (Hex) Description R/W I 2C Addr (Hex) Default TOSPMH TOS Priority Map High 508 R/W 046 fa AVDM VLAN Discard Map 509 R/W 047 00 TOSDML TOS Discard Map 50A R/W 048 00 BMRC Broadcast/Multicast Rate Control 50B R/W 049 00 UCC Unicast Congestion Control 50C R/W 04A 07 MCC Multicast Congestion Control 50D R/W 04B 48 PR100 Port Reservation for 10/100 Ports 50E R/W 04C 00 PRG Port Reservation for Giga Ports 50F R/W 04D 26 SFCB Share FCB Size 510 R/W 04E 37 C2RS Class 2 Reserved Size 511 R/W 04F 00 C3RS Class 3 Reserved Size 512 R/W 050 00 C4RS Class 4 Reserved Size 513 R/W 051 00 C5RS Class 5 Reserved Size 514 R/W 052 00 C6RS Class 6 Reserved Size 515 R/W 053 00 C7RS Class 7 Reserved Size 516 R/W 054 00 QOSC”N” QOS Control (N=0 - 2F) 517-546 R/W 055-084 QOSC”N” QOS Control (N=30 - 82) 547-599 R/W NA RDRC0 WRED Rate Control 0 59A R/W 085 8e RDRC1 WRED Rate Control 1 59B R/W 086 68 MII_OP0 MII Register Option 0 600 R/W 0B1 00 MII_OP1 MII Register Option 1 601 R/W 0B2 00 FEN Feature Registers 602 R/W 0B3 10 MIIC0 MII Command Register 0 603 R/W N/A 00 MIIC1 MII Command Register 1 604 R/W N/A 00 MIIC2 MII Command Register 2 605 R/W N/A 00 MIIC3 MII Command Register 3 606 R/W N/A 00 MIID0 MII Data Register 0 607 RO N/A 00 MIID1 MII Data Register 1 608 RO N/A 00 LED LED Control Register 609 R/W 0B4 38 CHECKSUM EEPROM Checksum Register 60B R/W 0C5 00 LEDUSER0 LED User Define Register 0 60C R/W 0BB 00 LEDUSER1 LED User Define Register 1 60D R/W 0BC 00 6. MISC Configuration Register Table 7 - MVTX2801 Register Description (continued) 29 Zarlink Semiconductor Inc. Notes MVTX2801 Register Data Sheet CPU Addr (Hex) Description R/W I 2C Addr (Hex) Default LEDUSER2 LED User Define Reg. 2/LED_byte pin 2 60E R/W 0BD 80 LEDUSER3 LED User Define Reg. 3/LED_byte pin 3 60F R/W 0BE 33 LEDUSER4 LED User Define Reg. 4/LED_byte pin 4 610 R/W 0BF 32 LEDUSER5 LED User Define Reg. 5/LED_byte pin 5 611 R/W 0C0 20 LEDUSER6 LED User Define Reg. 6/LED_byte pin 6 612 R/W 0C1 40 LEDUSER7 LED User Define Reg. 7/LED_byte pin 1 & 0 613 R/W 0C2 61 MIINP0 MII NEXT PAGE DATA REGISTER0 614 R/W 0C3 00 MIINP1 MII NEXT PAGE DATA REGISTER1 615 R/W 0C4 00 DTSRL Test Register Low E00 R/W N/A 00 DTSRM Test Register Medium E01 R/W N/A 01 DTSRH Test Register High E02 R/W N/A 00 TDRB0 TEST MUX read back register [7:0] E03 RO N/A TDRB1 TEST MUX read back register [15:8] E04 RO N/A DTCR Test Counter Register E05 R/W N/A 00 MASK0 MASK Timeout 0 E06 R/W 0B6 00 MASK1 MASK Timeout 1 E07 R/W 0B7 00 MASK2 MASK Timeout 2 E08 R/W 0B8 00 MASK3 MASK Timeout 3 E09 R/W 0B9 00 MASK4 MASK Timeout 4 E0A R/W 0BA 00 GCR Global Control Register F00 R/W N/A 00 DCR Device Status and Signature Register F01 RO N/A DCR01 Gigabit Port0 Port1 Status Register F02 RO NA DCR23 Gigabit Port2 Port3 Status Register F03 RO NA DCR45 Gigabit Port4 Port5 Status Register F04 RO NA DCR67 Gigabit Port6 Port7 Status Register F05 RO NA DPST Device Port Status Register F06 R/W N/A DTST Data read back register F07 RO N/A PLLCR PLL Control Register F08 R/W N/A 00 LCLKCR LCLK Control Register F09 R/W N/A 00 BCLKCR BCLK Control Register F0A R/W N/A 00 E. Test Group Control F. Device Configuration Register Table 7 - MVTX2801 Register Description (continued) 30 Zarlink Semiconductor Inc. 00 Notes MVTX2801 Register Data Sheet CPU Addr (Hex) Description I 2C R/W Default Addr (Hex) BSTRRB0 BOOT STRAP read back register 0 F0B RO N/A BSTRRB1 BOOT STRAP read back register 1 F0C RO N/A BSTRRB2 BOOT STRAP read back register 2 F0D RO N/A BSTRRB3 BOOT STRAP read back register 3 F0E RO N/A BSTRRB4 BOOT STRAP read back register 4 F0F RO N/A BSTRRB5 BOOT STRAP read back register 5 F10 RO N/A DA DA Register FFF RO N/A Notes da Table 7 - MVTX2801 Register Description (continued) Note: 1. se = Search Engine 2. fe = Frame Engine 3. pgs = Port Group01, 23, 45, and 67 4. mc = MAC Control 5. tm = timer 10.2 Group 0 Address - MAC Ports Group 10.2.1 ECR1Pn: Port N Control Register I2C Address h00+2n; Serial Interface Address: h000+2n (n=0 to 3) (For the 2600 it is different) Accessed by serial interface and I2C (R/W) 7 6 Sp State Bit [4:0] • 5 4 3 A-FC 2 1 0 Port Mode Port Mode (Default 2'b00) Bit [4:3] - 00 - Automatic Enable Auto-Negotiation - This enables hardware state machine for auto-negotiation. - 01 - Limited Disable auto-Negotiation - This disables hardware for speed auto-negotiation. Hardware Polls MII for link status. - 10 - Link Down - Force link down (disable the port). Does not talk to PHY. - 11 - Link Up - Does not talk to PHY. User ERC1 [2:0] for config. Bit [2] - 1 - 10Mbps (Default 1'b0) - 0 - 100Mbps • Bit [1] Bit 2 is used only when the port is in MII (10/100) mode. - 1 - Half Duplex (Do not use) (Default 1'b0) - 0 - Full Duplex 31 Zarlink Semiconductor Inc. MVTX2801 Bit [0] - 1 - Flow Control Off (Default 1'b0) - 0 - Flow Control On • • • • Bit [5] Data Sheet • When flow control is on: In full duplex mode, the MAC transmitter sends Flow Control Frames when necessary. The MAC receiver interprets and processes incoming flow control frames. The Flow Control Frame Received counter is incremented whenever a flow control frame is received. When flow control is off: In full duplex mode, the MAC transmitter does not send flow control frames. The MAC receiver does not interpret or process the flow control frames. The Flow Control Frame Receiver counter is not incremented. Asymmetric Flow Control Enable. - 0 - Disable asymmetric flow control - 1 - Enable asymmetric flow control • Bit [7:6] 10.2.2 When this bit is set, and flow control is on (bit[0] = 0), don't send out a flow control frame. But MAC Receiver interprets and process flow control frames. (Default is 0) - SS - Spanning tree state (802.1D spanning tree protocol). (Default 2'b11) 00 - Blocking: Frame is dropped 01 - Listening: Frame is dropped 10 - Learning: Frame is dropped. Source MAC address is learned. 11 - Forwarding: Frame is forwarded. Source MAC address is learned. ECR2Pn: Port N Control Register I2C Address: 01+2n; Serial Interface Address:h001+2n (n=0to3) Accessed by serial interface (R/W) 7 6 5 3 Security En 2 1 0 DisL Ftf Futf Bit[0]: • • • Filter untagged frame (Default 0) 0: Disable 1: Enable - All untagged frames from this port are discarded or follow security option when security is enable Bit[1]: • • • Filter Tag frame (Default 0) 0: Disable 1: Enable - All tagged frames from this port are discarded or follow security option when security is enable Bit[2]: • • • Learning Disable (Default 0) 0: Learning is enabled on this port 1: Learning is disabled on this port Bit [5:3] • Reserved 32 Zarlink Semiconductor Inc. MVTX2801 Bit[7:6] • • • • • • Security Enable (Default 00). The MVTX2801 checks the incoming data for one of the following conditions: If the source MAC address of the incoming packet is in the MAC table and is defined as secure address but the ingress port is not the same as the port associated with the MAC address in the MAC table. A MAC address is defined as secure when its entry at MAC table has static status and bit 0 is set to 1. MAC address bit 0 (the first bit transmitted) indicates whether the address is unicast or multicast. As source addresses are always unicast bit 0 is not used (always 0). MVTX2801 uses this bit to define secure MAC addresses. If the port is set as learning disable and the source MAC address of the incoming packet is not defined in the MAC address table. If the port is configured to filter untagged frames and an untagged frame arrives or if the port is configured to filter tagged frames and a tagged frame arrives. If one of these three conditions occurs, the packet will be handled according to one of the following specified options: - 10.2.3 Data Sheet 00 - Disable port security 01 - Enable port security. Port will be disabled when security violation is detected 10 - N/A 11 - N/A GGControl 0- Extra GIGA Port Control Serial Interface Address:h012 Accessed by and serial interface (R/W) 7 Bit[0]: • 6 5 4 MII1 Rst1 3 2 Reset GIGA port 0 (Default is 0) - 0: Normal operation - 1: Reset Gigabit port 0. Bit[1]: • GIGA port 0 use MII interface (10/100M) (Default is 0) - 0: Gigabit port operation at 1000M mode - 1: Gigabit port operation at 10/100M mode (MII) Bit[3:2]: • Reserved -Must be '0' (Default 0) Bit[4]: • Reset GIGA port 1 (Default 0) - 0: Normal operation - 1: Reset Gigabit port 1. Bit[5]: • GIGA port 1 use MII interface (10/100M) (Default 0) - 0: Gigabit port operation at 1000M mode - 1: Gigabit port operation at 10/100M mode (MII) Bit[7:6]: 10.2.4 • Reserved - Must be '0' (Default 0) GGControl 1- Extra GIGA Port Control Serial Interface Address:h013 33 Zarlink Semiconductor Inc. 1 0 MII0 Rst0 MVTX2801 Data Sheet Accessed by CPU and serial interface (R/W) 7 Bit[0]: • 6 5 4 MII3 Rst3 3 2 1 0 MII2 Rst2 Reset GIGA port 2 Default is 0 - 0: Normal operation - 1: Reset Gigabit port 2 Bit[1]: • GIGA port 2 use MII interface (10/100M) Default is 0 - 0: Gigabit port operation at 1000M mode - 1: Gigabit port operation at 10/100M mode (MII) Bit[3:2]: • Reserved - Must be '0' (Default '0') Bit[3]: • Reserved - Must be '0' Bit[4]: • Reset GIGA port 3 Default is 0 - 0: Normal operation - 1: Reset Gigabit port 3. Bit[5]: • GIGA port 3 use MII interface (10/100M) Default is 0 - 0: Gigabit port operation at 1000M mode - 1: Gigabit port operation at 10/100M mode (MII) Bit[7:6]: 10.3 • Reserved - Must be '0' (Default '0') Group 1 Address - VLAN Group 10.3.1 AVTCL - VLAN Type Code Register Low I2C Address h12; Serial Interface Address:h100 Accessed by serial interface and I2C (R/W) Bit[7:0]: 10.3.2 • VLANType_LOW: Lower 8 bits of the VLAN type code (Default 00) AVTCH - VLAN Type Code Register High I2C Address h13; Serial Interface Address:h101 Accessed by serial interface and I2C (R/W) Bit [7:0] 10.3.3 • VLANType_HIGH: Upper 8 bits of the VLAN type code (Default is 81) PVMAP00_0 - Port 00 Configuration Register 0 I2C Address h14, Serial Interface Address:h102) Accessed by serial interface and I2C (R/W) Port Based VLAN Mode 34 Zarlink Semiconductor Inc. MVTX2801 Data Sheet This register indicates the legal egress ports. Example: A “1” on bit 3 means that packets arriving on port 0 can be sent to port 3. A “0” on bit 3 means that any packet destined to port 3 will be discarded. Bit[3:0]: • VLAN Mask for ports 3 to 0 (Default F) - 0 - Disable - 1 - Enable Bit[7:4]: 10.3.4 • Reserve (Default F) P PVMAP00_3 - Port 00 Configuration Register 3 I2C Address h17, Serial Interface Address:h105 Accessed by serial interface and I2C (R/W) Port Based Mode 7 6 FP en Drop 5 3 Default TX priority Bit [1:0]: • Reserved (Default 0) Bit [2]: • Force untagout (Default 0) 2 1 FNT 0 Reserved - 0 Disable - 1 Force untag output All packets transmitted from this port are untagged. This register is used when this port is connected to legacy equipment that does not support VLAN tagging. Bit [5:3]: • Fixed Transmit priority. Used when bit[7] = 1 (Default 0) - Bit [6]: • 000 Transmit Priority Level 0 (Lowest) 001 Transmit Priority Level 1 010 Transmit Priority Level 2 011 Transmit Priority Level 3 100 Transmit Priority Level 4 101 Transmit Priority Level 5 110 Transmit Priority Level 6 111 Transmit Priority Level 7 (Highest) Fixed Discard priority (Default 0) - 0 - Discard Priority Level 0 (Lowest) - 1 - Discard Priority Level 7(Highest) Bit [7]: • Enable Fix Priority (Default 0) - 0 Disable fix priority. All frames are analysed. Transmit Priority and Drop Priority are based on VLAN Tag, TOS or Logical Port. - 1 Transmit Priority and Discard Priority are based on values programmed in bit [6:3] Port VLAN Map PVMAP00_0,3 I2C Address h14, 17; Serial Interface Address:h102, 105) See above format PVMAP01_0,3 I2C Address h18, 1B; Serial Interface Address:h106, 109) See above format 35 Zarlink Semiconductor Inc. MVTX2801 PVMAP02_0,3 Data Sheet I2C Address h1C, 1F; Serial Interface Address:h10A, 10D) See above format PVMAP03_0,3 I2C Address h20,23; Serial Interface Address:h10E, 111) See above format 10.3.5 PVMODE I2C Address: h038, Serial Interface Address:h126 Accessed by serial interface (R/W) 7 Bit [3:0]: • 6 5 4 MP BPDU DM 3 0 Reserved Reserved - Must be '0' Bit [4]: • Disable MAC address 0 - 0: MAC address 0 is not leaned. - 1: MAC address 0 is leaned. Bit [5]: • Force BPDU as multicast frame (Default 0) - 1: Enable. BPDU frames (frames with destination MAC address in the range of 01-80-C2 00-00-00 through 01-80-C2-00-00-0F) are forwarded as multicast frames. - 0: Disable. Drop frames in this range. Bit [6]: • MAC/PORT - 0: Single MAC address per system - 1: Single MAC address per port Bit [7]: 10.4 10.4.1 • Reserved Group 2 Address - Port Trunking Group TRUNK0_MODE - Trunk group 0 and 1 mode I2C Address: h039, Serial Interface Address:h207 Accessed by serial interface and I2C (R/W) Port Selection in unmanaged mode. Trunk group 0 and trunk group 1 are enable accordingly to bit [1:0] when input pin P_D[9] = 0 (external pull down). 7 2 1 Port sel 36 Zarlink Semiconductor Inc. 0 MVTX2801 Bit [1:0]: • Port member selection for Trunk 0 and 1 in unmanaged mode (Default 2'b00) - 10.4.2 Data Sheet 00 - Only trunk group 0 is enable. Port 0 and 1 are used for trunk group0 01 - Only trunk group 0 is enable. Port 0,1 and 2 are used for trunk group0 10 - Only trunk group 0 is enable. Port 0,1,2 and 3 are used for trunk group0 11 - Trunk group 0 and 1 are enable. Port 0, 1 used for trunk group0, and port 2 and 3 are used for trunk group1 TX_AGE - Tx Queue Aging timer I2C Address: h03B;Serial Interface Address:h312 Accessed by serial interface and I2C (R/W) 7 6 5 0 Tx Queue Agent Bit[4:0]: • Unit of 100ms (Default 8). Disable transmission queue aging if value is zero. Bit[5]: • Must be set to '0' Bit[7:6]: • Reserved 10.5 10.5.1 Group 4 Address - Search Engine Group AGETIME_LOW - MAC address aging time Low I2C Address h03C; Serial Interface Address:h400 Accessed by serial interface and I2C (R/W) Bit [7:0] Low byte of the MAC address aging timer. (Default 2c) Mac address aging is enable/disable by boot strap T_D[9]. 10.5.2 AGETIME_HIGH -MAC address aging time High I2C Address h03D; Serial Interface Address h401 Accessed by serial interface and I2C (R/W) Bit [7:0]: High byte of the MAC address aging timer. (Default 00) Aging time is based on the following equation: {AGETIME_HIGH,AGETIME_LOW} X (# of MAC entries X100µsec) Note: the number of entries= 66K when T_D[5] is pull down (SRAM memory size = 512K) and 34K when T_D[5] is pull up (SRAM memory size = 256K). 37 Zarlink Semiconductor Inc. MVTX2801 10.5.3 Data Sheet SE_OPMODE - Search Engine Operation Mode Serial Interface Address:h403 Accessed by CPU (R/W) 7 6 SL DMS 5 0 Bit [5:0]: • Reserved Bit [6]: • Disable MCT speed-up aging (Default 0) - 1 - Disable speed-up aging when MCT resource is low. - 0 - Enable speed-up aging when MCT resource is low. Bit [7]: • Slow Learning (Default 0) - 1- Enable slow learning. Learning is temporary disabled when search demand is high - 0 - Learning is performed independent of search demand 10.6 Group 5 Address - Buffer Control/QOS Group 10.6.1 FCBAT - FCB Aging Timer I2C Address h03E; Serial Interface Address:h500 7 0 FCBAT Bit [7:0]: 10.6.2 • • FCB Aging time. Unit of 1ms. (Default FF) FCBAT define the aging time out interval of FCB handle QOSC - QOS Control I2C Address h03F; Serial Interface Address:h501 Accessed by serial interface and I2C (R/W) 7 6 Tos-d Tos-p 5 4 3 VF1c 1 0 fb Bit [0]: • QoS frame lost is OK. Priority will be available for flow control enabled source only when this bit is set (Default 0) Bit [4]: • Per VLAN (Port based) Multicast Flow Control (Default 0) - 0 - Disable - 1 - Enable Bit [5]: • Reserved 38 Zarlink Semiconductor Inc. MVTX2801 Bit [6]: • Data Sheet Select TOS bits for Priority (Default 0) - 0 - Use TOS [4:2] bits to map the transmit priority - 1 - Use TOS [5:3] bits to map the transmit priority Bit [7]: • select TOS bits for Drop (Default 0) - 0 - Use TOS [4:2] bits to map the drop priority - 1 - Use TOS [5:3] bits to map the drop priority 10.6.3 FCR - Flooding Control Register I2C Address h040; Serial Interface Address:h502 Accessed by serial interface and I2C (R/W) 7 6 4 Tos TimeBase 3 0 U2MR Bit [3:0]: • U2MR: Unicast to Multicast Rate. Units in terms of time base defined in bits [6:4]. This is used to limit the amount of flooding traffic. The value in U2MR specifies how many packets are allowed to flood within the time specified by bit [6:4]. To disable this function, program U2MR to 0. (Default = 4'h8) Bit [6:4]: • TimeBase: (Default = 000) - Bit [7]: • 000 = 10us 001 = 20us 010 = 40us 011 = 80us 100 = 160us 101 = 320us 110 = 640us 111 = 10us, same as 000. Select VLAN tag or TOS field (IP packets) to be preferentially picked to map transmit priority and drop priority (Default = 0). - 0 - Select VLAN tag priority field over TOS field - 1 - Select TOS field over VLAN tag priority field 10.6.4 AVPML - VLAN Priority Map I2C Address h041; Serial Interface Address:h503 Accessed by serial interface and I2C (R/W) 7 6 VP2 5 3 VP1 2 0 VP0 Registers AVPML, AVPMM, and AVPMH allow the eight VLAN priorities to map into eight internal level transmit priorities. Under the internal transmit priority, “seven” is the highest priority where as “zero” is the lowest. This feature allows the user the flexibility of redefining the VLAN priority field. For example, programming a value of 7 into bit 2:0 of the AVPML register would map packet VLAN priority) into internal transmit priority 7. The new priority is used only inside the 2801. When the packet goes out it carries the original priority. 39 Zarlink Semiconductor Inc. MVTX2801 Bit [2:0]: • Mapped priority of 0 (Default 000) Bit [5:3]: • Mapped priority of 1 (Default 001) Bit [7:6]: • Mapped priority of 2 (Default 10) 10.6.5 Data Sheet AVPMM - VLAN Priority Map I2C Address h042, Serial Interface Address:h504 Accessed by serial interface and I2C (R/W) 7 6 VP5 4 3 VP4 1 0 VP3 VP2 Map VLAN priority into eight level transmit priorities: Bit [0]: • Mapped priority of 2 (Default 0) Bit [3:1]: • Mapped priority of 3 (Default 011) Bit [6:4]: • Mapped priority of 4 (Default 100) Bit [7]: • Mapped priority of 5 (Default 1) 10.6.6 AVPMH - VLAN Priority Map I2C Address h043, Serial Interface Address:h505 Accessed by serial interface and I2C (R/W) 7 5 4 2 VP7 1 VP6 0 VP5 Map VLAN priority into eight level transmit priorities: Bit [1:0]: • Mapped priority of 5 (Default 10) Bit [4:2]: • Mapped priority of 6 (Default 110) Bit [7:5]: • Mapped priority of 7 (Default 111) 10.6.7 TOSPML - TOS Priority Map I2C Address h044, Serial Interface Address:h506 Accessed by serial interface and I2C (R/W) 7 6 5 3 TP2 TP1 40 Zarlink Semiconductor Inc. 2 0 TP0 MVTX2801 Data Sheet Map TOS field in IP packet into four level transmit priorities Bit [2:0]: • Mapped priority when TOS is 0 (Default 000) Bit [5:3]: • Mapped priority when TOS is 1 (Default 001) Bit [7:6]: • Mapped priority when TOS is 2 (Default 10) 10.6.8 TOSPMM - TOS Priority Map I2C Address h045, Serial Interface Address:h507 Accessed by serial interface and I2C (R/W) 7 6 4 TP5 3 TP4 1 0 TP3 TP2 Map TOS field in IP packet into four level transmit priorities Bit [0]: • Mapped priority when TOS is 2 (Default 0) Bit [3:1]: • Mapped priority when TOS is 3 (Default 011) Bit [6:4]: • Mapped priority when TOS is 4 (Default 100) Bit [7]: • Mapped priority when TOS is 5 (Default 1) 10.6.9 TOSPMH - TOS Priority Map I2C Address h046, Serial Interface Address:h508 Accessed by serial interface and I2C (R/W) 7 5 4 2 TP7 1 TP6 0 TP5 Map TOS field in IP packet into four level transmit priorities: Bit [1:0]: • Mapped priority when TOS is 5 (Default 01) Bit [4:2]: • Mapped priority when TOS is 6 (Default 110) Bit [7:5]: • Mapped priority when TOS is 7 (Default 111) 10.6.10 AVDM - VLAN Discard Map I2C Address h047, Serial Interface Address:h509 Accessed by serial interface and I2C (R/W) 7 6 5 4 3 2 1 0 FDV7 FDV6 FDV5 FDV4 FDV3 FDV2 FDV1 FDV0 41 Zarlink Semiconductor Inc. MVTX2801 Data Sheet Map VLAN priority into frame discard when low priority buffer usage is above threshold. Frames with high discard (drop) priority will be discarded (dropped) before frames with low drop priority. - 0 - Low discard priority - 1 - High discard priority Bit [0]: • Frame discard priority for frames with VLAN transmit priority 0 (Default 0) Bit [1]: • Frame discard priority for frames with VLAN transmit priority 1 (Default 0) Bit [2]: • Frame discard priority for frames with VLAN transmit priority 2 (Default 0) Bit [3]: • Frame discard priority for frames with VLAN transmit priority 3 (Default 0) Bit [4]: • Frame discard priority for frames with VLAN transmit priority 4 (Default 0) Bit [5]: • Frame discard priority for frames with VLAN transmit priority 5 (Default 0) Bit [6]: • Frame discard priority for frames with VLAN transmit priority 6 (Default 0) Bit [7]: • Frame discard priority for frames with VLAN transmit priority 7 (Default 0) 10.6.11 TOSDML - TOS Discard Map I2C Address h048, Serial Interface Address:h50A Accessed by serial interface and I2C (R/W ) 7 6 5 4 3 2 1 0 FDT7 FDT6 FDT5 FDT4 FDT3 FDT2 FDT1 FDT0 Map TOS into frame discard when low priority buffer usage is above threshold Bit [0]: • Frame discard priority for frames with TOS transmit priority 0 (Default 0) Bit [1]: • Frame discard priority for frames with TOS transmit priority 1 (Default 0) Bit [2]: • Frame discard priority for frames with TOS transmit priority 2 (Default 0) Bit [3]: • Frame discard priority for frames with TOS transmit priority 3 (Default 0) Bit [4]: • Frame discard priority for frames with TOS transmit priority 4 (Default 0) Bit [5]: • Frame discard priority for frames with TOS transmit priority 5 (Default 0) Bit [6]: • Frame discard priority for frames with TOS transmit priority 6 (Default 0) Bit [7]: • Frame discard priority for frames with TOS transmit priority 7 (Default 0) 10.6.12 BMRC - Broadcast/Multicast Rate Control I2C Address h049, Serial Interface Address:h50B Accessed by serial interface and I2C (R/W) 7 4 3 Broadcast Rate 0 Multicast Rate 42 Zarlink Semiconductor Inc. MVTX2801 Data Sheet This broadcast and multicast rate defines for each port the number of incoming packet allowed to be forwarded within a specified time. Once the packet rate is reached, packets will be dropped. To turn off the rate limit, program the field to 0. Bit [3:0]: • Multicast Rate Control Number of multicast packets allowed within the time defined in bits 6 to 4 of the Flooding Control Register (FCR). (Default 0). Bit [7:4]: • Broadcast Rate Control Number of broadcast packets allowed within the time defined in bits 6 to 4 of the Flooding Control Register (FCR). (Default 0) 10.6.13 UCC - Unicast Congestion Control I2C Address h04A, Serial Interface Address:h50C Accessed by serial interface and I2C (R/W) 7 0 Unicast congest threshold Bit [7:0]: 10.6.14 • Number of frame count. Used for best effort dropping at B% when destination port's best effort queue reaches UCC threshold and shared pool is all in use. Granularity 16 frame. (Default: h07) MCC - Multicast Congestion Control I2C Address h0B7, Serial Interface Address:h50D Accessed by serial interface and I2C (R/W) 7 5 4 3 FC reaction prd 0 Multicast congest threshold Bit [3:0]: • In multiples of two. Used for triggering MC flow control when destination port's best effort queue reaches MCC threshold. (Default 5'h08) Bit [4]: • Must be 0 Bit [7:5]: • Flow control reaction period. ([7:5] 4)+3 usec (Default 3'h2). 10.6.15 PRG - Port Reservation for Giga ports I2C Address h0B9, Serial Interface Address:h50F Accessed by serial interface and I2C (R/W) 7 4 3 Buffer low thd 0 Per source buffer Reservation 43 Zarlink Semiconductor Inc. MVTX2801 Data Sheet Bit [3:0]: • Per source buffer reservation. Define the space in the FDB reserved for each port. Expressed in multiples of 16 packets. For each packet 1536 bytes are reserved in the memory. Default: 4'hA for 4MB memory 4'h6 for 2MB memory 4'h3 for 1MB memory Bits [7:4]: • Expressed in multiples of 16 packets. Threshold for dropping all best effort frames when destination port best effort queues reach UCC threshold and shared pool is all used and source port reservation is at or below the PRG[7:4] level. Also the threshold for initiating UC flow control. Default: 4'h6 for 4MB memory 4'h2 for 2MB memory 4'h1 for 1MB memory FCB Reservation 10.6.16 SFCB - Share FCB Size I2C Address h04E), Serial Interface Address:h510 Accessed by serial interface and I2C (R/W) 7 0 Shared buffer size Bits [7:0]: • Expressed in multiples of 8. Buffer reservation for shared pool. - 10.6.17 (Default (Default (Default (Default (Default (Default 4G 4G 4G 8G 8G 8G & & & & & & 4M 2M 1M 4M 2M 1M = = = = = = 8'd62) 8'd20) 8'd08) 8'd150) 8'd55) 8'd25) C2RS - Class 2 Reserved Size I2C Address h04F, Serial Interface Address:h511 Accessed by serial interface and I2C (R/W) 7 0 Class 2 FCB Reservation Bits [7:0]: • Buffer reservation for class 2 (third lowest priority). Granularity 2. (Default 8'h00) 44 Zarlink Semiconductor Inc. MVTX2801 10.6.18 Data Sheet C3RS - Class 3 Reserved Size I2C Address h050, Serial Interface Address:h512 Accessed by serial interface and I2C (R/W) 7 0 Class 3 FCB Reservation Bits [7:0]: 10.6.19 • Buffer reservation for class 3. Granularity 2. (Default 8'h00) C4RS - Class 4 Reserved Size I2C Address h051, Serial Interface Address:h513 Accessed by serial interface and I2C (R/W) 7 0 Class 4 FCB Reservation Bits [7:0]: 10.6.20 • Buffer reservation for class 4. Granularity 2. (Default 8'h00) C5RS - Class 5 Reserved Size I2C Address h052; Serial Interface Address:h514 Accessed by serial interface and I2C (R/W) 7 0 Class 5 FCB Reservation Bits [7:0]: 10.6.21 • Buffer reservation for class 5. Granularity 2. (Default 8'h00) C6RS - Class 6 Reserved Size I2C Address h053; Serial Interface Address:h515 Accessed by serial interface and I2C (R/W) 7 0 Class 6 FCB Reservation Bits [7:0]: • Buffer reservation for class 6 (second highest priority). Granularity 2. (Default 8'h00) 45 Zarlink Semiconductor Inc. MVTX2801 10.6.22 Data Sheet C7RS - Class 7 Reserved Size I2C Address h054; Serial Interface Address:h516 Accessed by serial interface and I2C (R/W) ‘ 7 0 Class 7 FCB Reservation Bits [7:0]: • Buffer reservation for class 7 (highest priority). Granularity 2. (Default 8'h00) Classes Byte Gigabit Port 0 10.6.23 QOSC00 - BYTE_C2_G0 I2C Address h055, Serial Interface Address:h517 Bits [7:0]: 10.6.24 • Byte count threshold for C2 queue WRED (Default 8'h28) (1024byte/unit when Delay Bound is used) (1024byte/unit when WFQ is used) QOSC01 - BYTE_C3_G0 I2C Address h056, Serial Interface Address:h518 Bits [7:0]: 10.6.25 • Byte count threshold for C3 queue WRED (Default 8'h28) (512byte/unit when Delay Bound is used) (1024byte/unit when WFQ is used) QOSC02 - BYTE_C4_G0 I2C Address h057, Serial Interface Address:h519 Bits [7:0]: 10.6.26 • Byte count threshold for C4 queue WRED (Default 8'h28) (256byte/unit when Delay Bound is used) (1024byte/unit when WFQ is used) QOSC03 - BYTE_C5_G0 I2C Address h058, Serial Interface Address:h51A Bits [7:0]: • Byte count threshold for C5 queue WRED (Default 8'h28) (128byte/unit when Delay Bound is used) (1024byte/unit when WFQ is used) 46 Zarlink Semiconductor Inc. MVTX2801 10.6.27 Data Sheet QOSC04 - BYTE_C6_G0 I2C Address h059, Serial Interface Address:h51B Bits [7:0]: 10.6.28 • Byte count threshold for C6 queue WRED (Default 8'h50) (64byte/unit when Delay Bound is used) (1024byte/unit when WFQ is used) QOSC05 - BYTE_C7_G0 I2C Address h05A, Serial Interface Address:h51C Bits [7:0]: • Byte count threshold for C6 queue WRED (Default 8'h50) (64byte/unit when Delay Bound is used) (1024byte/unit when WFQ is used) QOSC00 through QOSC05 represent the values F-A in Table 3 for Gigabit port 0. They are per-queue byte thresholds for weighted random early drop (WRED). QOSC05 represents A, and QOSC00 represents F. Classes Byte Gigabit Port 1 10.6.29 QOSC06 - BYTE_C2_G1 I2C Address h05B, Serial Interface Address:h51D Bits [7:0]: 10.6.30 • Byte count threshold for C2 queue WRED (Default 8'h28) (1024byte/unit when Delay Bound is used) (1024byte/unit when WFQ is used) QOSC07 - BYTE_C3_G1 I2C Address h05C, Serial Interface Address:h51E Bits [7:0] 10.6.31 • Byte count threshold for C3 queue WRED (Default 8'h28) (512 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC08 - BYTE_C4_G1 I2C Address h05D, Serial Interface Address:h51F Bits [7:0]: 10.6.32 • Byte count threshold for C4 queue WRED (Default 8'h28) (256 byte/unit when Delay Bound is used) (1024byte/unit when WFQ is used) QOSC09 - BYTE_C5_G1 I2C Address h05E, Serial Interface Address:h520 Bits [7:0]: • Byte count threshold for C5 queue WRED (Default 8'h28) (128 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) 47 Zarlink Semiconductor Inc. MVTX2801 10.6.33 Data Sheet QOSC0A - BYTE_C6_G1 I2C Address h05F, Serial Interface Address:h521 Bits [7:0]: 10.6.34 • Byte count threshold for C6 queue WRED (Default 8'h50) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC0B - BYTE_C7_G1 I2C Address h060, Serial Interface Address:h522 Bits [7:0]: • Byte count threshold for C7 queue WRED (Default 8'h50) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC06 through QOSC0B represent the values F-A in Table 3. They are per-queue byte thresholds for random early drop. QOSC0B represents A, and QOSC06 represents F. Classes Byte Gigabit Port 2 10.6.35 QOSC0C - BYTE_C2_G2 I2C Address h061, Serial Interface Address:h523 Bits [7:0]: 10.6.36 • Byte count threshold for C2 queue WRED (Default 8'h28) (1024 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC0D - BYTE_C3_G2 I2C Address h062, Serial Interface Address:h524 Bits [7:0]: 10.6.37 • Byte count threshold for C3 queue WRED (Default 8'h28) (512 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC0E - BYTE_C4_G2 I2C Address h063, Serial Interface Address:h525 Bits [7:0]: • Byte count threshold for C4 queue WRED (Default 8'h28) (256 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) 48 Zarlink Semiconductor Inc. MVTX2801 10.6.38 Data Sheet QOSC0F - BYTE_C5_G2 I2C Address h064, Serial Interface Address:h526 Bits [7:0]: 10.6.39 • Byte count threshold for C5 queue WRED (Default 8'h28) (128 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC10 - BYTE_C6_G2 I2C Address h065, Serial Interface Address:h527 Bits [7:0]: 10.6.40 • Byte count threshold for C6 queue WRED (Default 8'h50) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC11 - BYTE_C7_G2 I2C Address h066, Serial Interface Address:h528 Bits [7:0]: • Byte count threshold for C7 queue WRED (Default 8'h50) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC0C through QOSC11 represent the values F-A in Table 3 for Gigabit port 2. They are per-queue byte thresholds for random early drop. QOSC11 represents A, and QOSC0C represents F. Classes Byte Gigabit Port 3 10.6.41 QOSC12 - BYTE_C2_G3 I2C Address h067, Serial Interface Address:h529 Bits [7:0]: 10.6.42 • Byte count threshold for C2 queue WRED (Default 8'h28) (1024 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC13 - BYTE_C3_G3 I2C Address h068, Serial Interface Address:h52A Bits [7:0]: 10.6.43 • Byte count threshold for C3 queue WRED (Default 8'h28) (512 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC14 - BYTE_C4_G3 I2C Address h069, Serial Interface Address:h52B Bits [7:0]: • Byte count threshold for C4 queue WRED (Default 8'h28) (256 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) 49 Zarlink Semiconductor Inc. MVTX2801 10.6.44 Data Sheet QOSC15 - BYTE_C5_G3 I2C Address h06A, Serial Interface Address:h52C Bits [7:0]: 10.6.45 • Byte count threshold for C5 queue WRED (Default 8'h28) (128 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC16 - BYTE_C6_G3 I2C Address h06B, Serial Interface Address:h52D Bits [7:0]: 10.6.46 • Byte count threshold for C6 queue WRED (Default 8'h50) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC17 - BYTE_C7_G3 I2C Address h06C, Serial Interface Address:h52E Bits [7:0]: • Byte count threshold for C7 queue WRED (Default 8'h50) (64 byte/unit when Delay Bound is used) (1024 byte/unit when WFQ is used) QOSC12 through QOSC17 represent the values F-A in Table 3 for Gigabit port 3. They are per-queue byte thresholds for random early drop. QOSC17 represents A, and QOSC12 represents F. Classes WFQ Credit Set 0 10.6.47 QOSC33 - CREDIT_C0_G0 Serial Interface Address:h54A Bits [5:0]: • W0 - Credit register for WFQ. (Default 6'h04) Bits [7:6]: Priority type. Define one of the four QoS mode of operation for port 0 (Default 2'00) - 00: Option 1 01: Option 2 10: Option 3 11: Option 4 See table below: Queue P7 P6 P5 P4 P3 P2 P1 Option 1 Bit [7:6] = 2'B00 DELAY BOUND BE Option 2 Bit [7:6] = 2'B01 SP DELAY BOUND BE Option 3 Bit [7:6] = 2'B10 SP WFQ Option 4 Bit [7:6] = 2'B11 WFQ Credit for WFQ - Bit [5:0] W7 W6 W5 W4 50 Zarlink Semiconductor Inc. W3 W2 W1 P0 W0 MVTX2801 10.6.48 Data Sheet QOSC34 - CREDIT_C1_G0 Serial Interface Address:h54B Bits [7]: • Flow control allow during WFQ scheme. (Default 1'b1) 0 = Not support QoS when the Source port Flow control status is on. 1= Always support QoS) Bits [6]: • Flow control BE Queue only. (Default 1'b1) 0= DO NOT send any frames if the XOFF is on. 1= the P7-P2 frames can be sent even the XOFF is ON Bits [5:0] • W1 - Credit register. (Default 4'h04) Fc_allow Fc_be_only Lost_ok Egress- for dest fc_status Ingress- for src fc status 0 0 0 Go to BE Queue if (Src FC or Des FC on) otherwise Normal 0 0 1 Go to BE Queue if (Dest FC on) otherwise Normal 1 0 0 (WFQ only) Go to BE Queue if (Src FC on) otherwise BAD 1 0 1 (WFQ only) Always Normal X 1 0 Go to BE Queue if (Src FC on) X 1 1 Always Normal 10.6.49 QOSC35 - CREDIT_C2_G0 Serial Interface Address:h54C Bits [5:0] • W2 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved 10.6.50 QOSC36 - CREDIT_C3_G0 Serial Interface Address:h54D Bits [5:0] • W3 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved 10.6.51 QOSC37 - CREDIT_C4_G0 Serial Interface Address:h54E Bits [5:0] • W4 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved 51 Zarlink Semiconductor Inc. MVTX2801 10.6.52 Data Sheet QOSC38 - CREDIT_C5_G0 Serial Interface Address:h54F Bits [5:0] • W5 - Credit register. (Default 5'h8) Bits [7:6]: • Reserved 10.6.53 QOSC39- CREDIT_C6_G0 Serial Interface Address:h550 Bits [5:0] • W6 - Credit register. (Default 5'h8) Bits [7:6]: • Reserved 10.6.54 QOSC3A- CREDIT_C7_G0 Serial Interface Address:h551 Bits [5:0] • W7 - Credit register. (Default 5'h10) Bits [7:6]: • Reserved QOSC33 through QOSC3Arepresents the set of WFQ parameters (see section 7.5) for Gigabit port 0. The granularity of the numbers (bits [5:0]) is 1, and their sum must be 64. QOSC33 corresponds to W0, and QOSC3A corresponds to W7. Classes WFQ Credit Port G1 10.6.55 QOSC3B - CREDIT_C0_G1 Serial Interface Address:h552 Bits [5:0]: • W0 - Credit register for WFQ. (Default 6'h04) Bits [7:6]: Priority type. Define one of the four QoS mode of operation for port 1 (Default 2'00) - 00: Option 1 01: Option 2 10: Option 3 11: Option 4 See table below: Queue P7 P6 P5 P4 P3 P2 P1 Option 1 Bit [7:6] = 2'B00 DELAY BOUND BE Option 2 Bit [7:6] = 2'B01 SP DELAY BOUND BE Option 3 Bit [7:6] = 2'B10 SP WFQ Option 4 Bit [7:6] = 2'B11 WFQ Credit for WFQ - Bit [5:0] W7 W6 W5 W4 52 Zarlink Semiconductor Inc. W3 W2 W1 P0 W0 MVTX2801 10.6.56 Data Sheet QOSC3C - CREDIT_C1_G1 Serial Interface Address:h54B Bits [7]: • Flow control allow during WFQ scheme. (Default 1'b1) 0 = Not support QoS when the Source port Flow control status is on. 1= Always support QoS) Bits [6]: • Flow control BE Queue only. (Default 1'b1) 0= DO NOT send any frames if the XOFF is on. 1= the P7-P2 frames can be sent even the XOFF is ON Bits [5:0] • W1 - Credit register. (Default 4'h04) Fc_allow Fc_be_only Egress- for dest fc_status Lost_ok Ingress- for src fc status 0 0 0 Go to BE Queue if (Src FC or Des FC on) otherwise Normal 0 0 1 Go to BE Queue if (Dest FC on) otherwise Normal 1 0 0 (WFQ only) Go to BE Queue if (Src FC on) otherwise BAD 1 0 1 (WFQ only) Always Normal X 1 0 Go to BE Queue if (Src FC on) X 1 1 Always Normal 10.6.57 QOSC3D - CREDIT_C2_G1 Serial Interface Address:h553 Bits [5:0] • W2 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved 10.6.58 QOSC3E - CREDIT_C3_G1 Serial Interface Address:h554 Bits [5:0] • W3 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved 10.6.59 QOSC3F - CREDIT_C4_G1 Serial Interface Address:h555 Bits [5:0] • W4 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved 53 Zarlink Semiconductor Inc. MVTX2801 10.6.60 Data Sheet QOSC40 - CREDIT_C5_G1 Serial Interface Address:h556 Bits [5:0] • W5 - Credit register. (Default 5'h8) Bits [7:6]: • Reserved 10.6.61 QOSC41- CREDIT_C6_G1 Serial Interface Address:h557 Bits [5:0] • W6 - Credit register. (Default 5'h8) Bits [7:6]: • Reserved 10.6.62 QOSC42- CREDIT_C7_G1 Serial Interface Address:h558 Bits [5:0] • W7 - Credit register. (Default 5'h10) Bits [7:6]: • Reserved QOSC3B through QOSC42 represents the set of WFQ parameters (see section 7.5) for Gigabit port 1. The granularity of the numbers (bits [5:0]) is 1, and their sum must be 64. QOSC3B corresponds to W0, and QOSC42 corresponds to W7. Classes WFQ Credit Port G2 10.6.63 QOSC43 - CREDIT_C0_G2 Serial Interface Address:h55A Bits [5:0]: • W0 - Credit register for WFQ. (Default 6'h04) Bits [7:6]: • Priority type. Define one of the four QoS mode of operation for port 2 (Default 2'00) - 00: Option 1 01: Option 2 10: Option 3 11: Option 4 See table below: Queue P7 P6 P5 P4 P3 P2 P1 Option 1 Bit [7:6] = 2'B00 DELAY BOUND BE Option 2 Bit [7:6] = 2'B01 SP DELAY BOUND BE Option 3 Bit [7:6] = 2'B10 SP WFQ Option 4 Bit [7:6] = 2'B11 WFQ Credit for WFQ - Bit [5:0] W7 W6 W5 W4 54 Zarlink Semiconductor Inc. W3 W2 W1 P0 W0 MVTX2801 10.6.64 Data Sheet QOSC44 - CREDIT_C1_G2 Serial Interface Address:h55B Bits [7]: • Flow control allow during WFQ scheme. (Default 1'b1) 0 = Not support QoS when the Source port Flow control status is on. 1= Always support QoS) Bits [6]: • Flow control BE Queue only. (Default 1'b1) 0= DO NOT send any frames if the XOFF is on. 1= the P7-P2 frames can be sent even the XOFF is ON Bits [5:0] • W1 - Credit register. (Default 4'h04) Fc_allow Fc_be_only Egress- for dest fc_status Lost_ok Ingress- for src fc status 0 0 0 Go to BE Queue if (Src FC or Des FC on) otherwise Normal 0 0 1 Go to BE Queue if (Dest FC on) otherwise Normal 1 0 0 (WFQ only) Go to BE Queue if (Src FC on) otherwise BAD x 0 1 (WFQ only) Always Normal X 1 0 Go to BE Queue if (Src FC on) X 1 1 Always Normal 10.6.65 QOSC45 - CREDIT_C2_G2 Serial Interface Address:h55C Bits [5:0] • W2 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved 10.6.66 QOSC46 - CREDIT_C3_G2 Serial Interface Address:h55D Bits [5:0] • W3 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved 10.6.67 QOSC47 - CREDIT_C4_G2 Serial Interface Address:h55E Bits [5:0] • W4 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved 55 Zarlink Semiconductor Inc. MVTX2801 10.6.68 Data Sheet QOSC48 - CREDIT_C5_G2 Serial Interface Address:h55F Bits [5:0] • W5 - Credit register. (Default 5'h8) Bits [7:6]: • Reserved 10.6.69 QOSC49- CREDIT_C6_G2 Serial Interface Address:h560 Bits [5:0] • W6 - Credit register. (Default 5'h8) Bits [7:6]: • Reserved 10.6.70 QOSC4A- CREDIT_C7_G2 Serial Interface Address:h561 Bits [5:0] • W7 - Credit register. (Default 5'h10) Bits [7:6]: • Reserved QOSC43 through QOSC4Arepresents the set of WFQ parameters (see section 7.5) for Gigabit port 2. The granularity of the numbers (bits [5:0]) is 1, and their sum must be 64. QOSC43 corresponds to W0, and QOSC4A corresponds to W7. Classes WFQ Credit Port G3 10.6.71 QOSC4B - CREDIT_C0_G3 Serial Interface Address:h562 Bits [5:0]: • W0 - Credit register for WFQ. (Default 6'h04) Bits [7:6]: • Priority type. Define one of the four QoS mode of operation for port 3 (Default 2'00) - 00: Option 1 01: Option 2 10: Option 3 11: Option 4 See table below Queue P7 P6 P5 P4 P3 P2 P1 Option 1 Bit [7:6] = 2'B00 DELAY BOUND BE Option 2 Bit [7:6] = 2'B01 SP DELAY BOUND BE Option 3 Bit [7:6] = 2'B10 SP WFQ Option 4 Bit [7:6] = 2'B11 WFQ Credit for WFQ - Bit [5:0] W7 W6 W5 56 Zarlink Semiconductor Inc. W4 W3 W2 W1 P0 W0 MVTX2801 10.6.72 Data Sheet QOSC4 - CREDIT_C1_G3 Serial Interface Address:h563 Bits [7]: • Flow control allow during WFQ scheme. (Default 1'b1) 0 = Not support QoS when the Source port Flow control status is on. 1= Always support QoS) Bits [6]: • Flow control BE Queue only. (Default 1'b1) (0= DO NOT send any frames if the XOFF is on. (1= the P7-P2 frames can be sent even the XOFF is ON) Bits [5:0] • W1 - Credit register. (Default 4'h04) Fc_allow Fc_be_only Egress- for dest fc_status Lost_ok Ingress- for src fc status 0 0 0 Go to BE Queue if (Src FC or Des FC on) otherwise Normal 0 0 1 Go to BE Queue if (Dest FC on) otherwise Normal 1 0 0 (WFQ only) Go to BE Queue if (Src FC on) otherwise BAD 1 0 1 (WFQ only) Always Normal X 1 0 Go to BE Queue if (Src FC on) X 10.6.73 1 1 Always Normal QOSC4D - CREDIT_C2_G3 Serial Interface Address:h564 Bits [5:0] • W2 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved 10.6.74 QOSC4E - CREDIT_C3_G3 Serial Interface Address:h565 Bits [5:0] • W3 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved 10.6.75 QOSC4F - CREDIT_C4_G3 Serial Interface Address:h566 Bits [5:0] • W4 - Credit register. (Default 4'h04) Bits [7:6]: • Reserved 57 Zarlink Semiconductor Inc. MVTX2801 10.6.76 Data Sheet QOSC50 - CREDIT_C5_G3 Serial Interface Address:h567 Bits [5:0] • W5 - Credit register. (Default 5'h8) Bits [7:6]: • Reserved 10.6.77 QOSC51- CREDIT_C6_G3 Serial Interface Address:h568 Bits [5:0] • W6 - Credit register. (Default 5'h8) Bits [7:6]: • Reserved 10.6.78 QOSC52- CREDIT_C7_G3 Serial Interface Address:h569 Bits [5:0] • W7 - Credit register. (Default 5'h10) Bits [7:6]: • Reserved QOSC4B through QOSC52 represents the set of WFQ parameters (see section 7.5) for Gigabit port 3. The granularity of the numbers (bits [5:0]) is 1, and their sum must be 64. QOSC4B corresponds to W0, and QOSC52 corresponds to W7. Class 6 Shaper Control Port G0 10.6.79 QOSC73 - TOKEN_RATE_G0 Serial Interface Address:h58A Bits [7:0] 10.6.80 • Bytes allow to transmit every frame time (0.512usec) when regulated by Shaper logic. (Default: 8'h08) QOSC74 - TOKEN_LIMIT_G0 Serial Interface Address:h58B Bits [7:0] • Bytes allow to continue transmit out when regulated by Shaper logic. (16byte/unit) (Default: 8'hC0) QOSC73 and QOSC74 correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC73 is an integer less than 64, with granularity 1. QOSC74 is the programmed maximum value of the counter (maximum burst size). This value is expressed in multiples of 16. QOSC73 and QOSC74 apply to Gigabit port 0. Register QOSC39-CREDIT_C6_G0 programs the peak rate. See QoS application note for more information. Class 6 Shaper Control Port G1 58 Zarlink Semiconductor Inc. MVTX2801 10.6.81 Data Sheet QOSC75 - TOKEN_RATE_G1 Serial Interface Address:h58C Bits [7:0] 10.6.82 • Bytes allow to transmit every frame time (0.512usec) when regulated by Shaper logic. (Default: 8'h08) QOSC76 - TOKEN_LIMIT_G1 Serial Interface Address:h58D Bits [7:0] • Bytes allow to continue transmit out when regulated by Shaper logic. (16byte/unit) (Default: 8'hC0) QOSC75 and QOSC76 correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC75 is an integer less than 64, with granularity 1. QOSC76 is the programmed maximum value of the counter (maximum burst size). This value is expressed in multiples of 16. QOSC75 and QOSC76 apply to Gigabit port 1. Register QOSC41-CREDIT_C6_G1 programs the peak rate. See QoS application note for more information. Class 6 Shaper Control Port G2 10.6.83 QOSC77 - TOKEN_RATE_G2 Serial Interface Address:h58E Bits [7:0] 10.6.84 • Bytes allow to transmit every frame time (0.512usec) when regulated by Shaper logic. (Default: 8'h08) QOSC78 - TOKEN_LIMIT_G2 Serial Interface Address:h58F Bits [7:0] • Bytes allow to continue transmit out when regulated by Shaper logic. (16byte/unit) (Default: 8'hC0) QOSC77 and QOSC78 correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC77 is an integer less than 64, with granularity 1. QOSC78 is the programmed maximum value of the counter (maximum burst size). This value is expressed in multiples of 16. QOSC77 and QOSC78 apply to Gigabit port 2. Register QOSC49-CREDIT_C6_G2 programs the peak rate. See QoS application note for more information. Class 6 Shaper Control Port G3 10.6.85 QOSC79 - TOKEN_RATE_G3 Serial Interface Address:h590 Bits [7:0] • Bytes allow to transmit every frame time (0.512usec) when regulated by Shaper logic. (Default: 8'h08) 59 Zarlink Semiconductor Inc. MVTX2801 10.6.86 Data Sheet QOSC7A - TOKEN_LIMIT_G3 Serial Interface Address:h591 Bits [7:0] • • Bytes allow to to continue transmit out when regulated by Shaper logic. (16byte/unit) (Default: 8’hC0) QOSC79 and QOSC7A correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC79 is an integer less than 64, with granularity 1. QOSC7A is the programmed maximum value of the counter (maximum burst size). This value is expressed in multiples of 16. QOSC79 and QOSC7A apply to Gigabit port 3. Register QOSC51-CREDIT_C6_G3 programs the peak rate. See QoS application note for more information. 10.6.87 RDRC0 - WRED Rate Control 0 I2C Address 085, Serial Interface Address:h59A Accessed by Serial Interface and I2C (R/W) 7 4 3 X Rate 0 Y Rate Bits [7:4]: • Corresponds to the percentage X% in Chapter 7. Used for random early drop. Granularity 6.25%. (Default: 4'h8) Bits[3:0]: • Corresponds to the percentage Y% in Chapter 7. Used for random early drop. Granularity 6.25%.(Default: 4'hE) 10.6.88 RDRC1 - WRED Rate Control 1 I2C Address 086, Serial Interface Address:h59B Accessed by Serial Interface and I2C (R/W) 7 4 3 Z Rate 0 B Rate Bits [7:4]: • Corresponds to the percentage Z% in Chapter 7. Used for random early drop. Granularity 6.25%.%. (Default: 4'h6) Bits[3:0]: • Corresponds to the best effort frame drop percentage B%, when shared pool is all in use and destination port best effort queue reaches UCC. Used for random early drop. Granularity 6.25%.%. (Default: 4'h8) 60 Zarlink Semiconductor Inc. MVTX2801 10.7 Data Sheet Group 6 Address - MISC Group 10.7.1 MII_OP0 - MII Register Option 0 I2C Address h0B1, Serial Interface Address:h600 Accessed by serial interface and I2C (R/W) Bit [7]: • 7 6 5 Hfc 1prst NP 4 0 Vendor Spc. Reg Addr Half duplex flow control no default enable (Do not use half duplex mode) - 0 = Half duplex flow control always enable - 1 = Half duplex flow control by negotiation Bit[6]: • Link partner reset auto-negotiate disable Bit [5] • Next page enable - 1: enable - 0: disable Bit[4:0]: 10.7.2 • Vendor specified link status register address (null value means don't use it) (Default 00) MII_OP1 - MII Register Option 1 I2C Address 0B2, Serial Interface Address:h601 Accessed by serial interface and I2C (R/W) 7 4 3 Speed bit location 0 Duplex bit location Bits[3:0]: • Duplex bit location in vendor specified register Bits [7:4]: • Speed bit location in vendor specified register (Default 00) 10.7.3 FEN - Feature Register I2C Address h0B3, Serial Interface Address:h602 Accessed by serial interface and I2C (R/W) 7 6 DML MII 5 3 2 DS 61 Zarlink Semiconductor Inc. 1 0 MVTX2801 Bits [1:0]: • Reserved Bit [2]: • Support DS EF Code. (Default 0) Data Sheet - 0 - Disable - 1 - Enable (all ports) Bit [5:3]: • When 101110 is detected in DS field (TOS[7:2]), the frame priority is set for 110 and drop is set for 0. • Reserved Bit [6]: - 0: Enable MII Management State Machine (Default 0) - 1: Disable MII Management State Machine Bit [7]: - 0: Enable using MCT Link List structure - 1: Disable using MCT Link List structure 10.7.4 MIIC0 - MII Command Register 0 Serial Interface Address:h603 Accessed by serial interface (R/W) Bit [7:0] MII Data [7:0] Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY, and no VALID; then program MII command. 10.7.5 MIIC1 - MII Command Register 1 Serial Interface Address:h604 Accessed by serial interface (R/W) Bit [7:0] • MII Data [15:8] Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then program MII command. 10.7.6 MIIC2 - MII Command Register 2 Serial Interface Address:h605 Accessed by serial interface (R/W) 7 6 5 4 0 MII OP Register address Bits [4:0]: • REG_AD - Register PHY Address Bit [6:5] • OP - Operation code “10” for read command and “01” for write command Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then program MII command. 62 Zarlink Semiconductor Inc. MVTX2801 10.7.7 Data Sheet MIIC3 - MII Command Register 3 Serial Interface Address:h606 Accessed by serial interface (R/W) 7 6 Rdy Valid 5 4 0 PHY address Bits [4:0]: • PHY_AD - 5 Bit PHY Address Bit [6] • VALID - Data Valid from PHY (Read Only) Bit [7] • RDY - Data is returned from PHY (Ready Only) Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then program MII command. 10.7.8 MIID0 - MII Data Register 0 Serial Interface Address:h607 Accessed by serial interface (RO) Bit [7:0] 10.7.9 • MII Data [7:0] MIID1 - MII Data Register 0 Serial Interface Address:h608 Accessed by serial interface (RO) Bit [7:0] 10.7.10 • MII Data [15:8] LED Mode - LED Control I2C Address:h0B4; Serial Interface Address:h609 Accessed by serial interface and I2C (R/W) 7 6 lpbk Bit[1:0] • 5 4 3 Out Pattern 2 Clock rate Sample hold time (Default 2'b00) 2'b00- 8 msec 2'b01- 16 msec 2'b10- 32 msec 2'b11- 64 msec 63 Zarlink Semiconductor Inc. 1 0 Hold Time MVTX2801 Bit[3:2] • LED clock speed (serial mode) (Default 2'b10) 2'b00- sclk/128 2'b01- sclk/256 2'b10- sclk/1024 2'b11- sclk/2048 LED clock speed (parallel mode) (Default 2'b10) 2'b00- sclk/1024 2'b01- sclk/4096 2'b10- sclk/2048 2'b11- sclk/8192 Bit[5:4] LED indicator out pattern (Default 2'b11) 2'b00- Normal output, LED signals go straight out, no logical combination 2'b01- 4 bi-color LED mode 2'b10- 3 bi-color LED mode 2'b11- programmable mode Normal mode: LED_BYTEOUT_[7]:Collision (COL) LED_BYTEOUT_[6]:Full duplex (FDX) LED_BYTEOUT_[5]:Speed[1] (SP1) LED_BYTEOUT_[4]:Speed[0] (SP0) LED_BYTEOUT_[3]:Link (LNK) LED_BYTEOUT_[2]:Rx (RXD) LED_BYTEOUT_[1]:Tx (TXD) Bit[5:4] cont’d LED_BYTEOUT_[0]:Flow Control (FC) 4 bi-color LED mode LED_BYTEOUT_[7]:COL LED_BYTEOUT_[6]:1000FDX LED_BYTEOUT_[5]:1000HDX LED_BYTEOUT_[4]:100FDX LED_BYTEOUT_[3]:100HDX LED_BYTEOUT_[2]:10FDX LED_BYTEOUT_[1]:10HDX LED_BYTEOUT_[0]:ACT Note: All output qualified by Link signal 3 bi-color LED mode: 64 Zarlink Semiconductor Inc. Data Sheet MVTX2801 Data Sheet LED_BYTEOUT_[7]:COL LED_BYTEOUT_[6]:LNK LED_BYTEOUT_[5]:FC LED_BYTEOUT_[4]:SPD1000 LED_BYTEOUT_[3]:SPD100 LED_BYTEOUT_[2]:FDX LED_BYTEOUT_[1]:HDX LED_BYTEOUT_[0]:ACT Note: All output qualified by Link signal Programmable mode: LED_BYTEOUT_[7]:Link LED_BYTEOUT_[6:0]:Defined by the LEDSIG6 ~ LEDSIG0 programmable registers. Note: All output qualified by Link signal Bit[6]: • Reserved. Must be '0' Bit[7]: • Enable internal loop back. When this bit is set to '1' all ports work in internal loop back mode. For normal operation must be '0'. 10.7.11 CHECKSUM - EEPROM Checksum I2C Address h0C5, Serial Interface Address:h60B Accessed by serial interface and I2C (R/W) Bit [7:0]: • • (Default 00) Before requesting that the MVTX2801 updates the EEPROM device, the correct checksum needs to be calculated and written into this checksum register. The checksum formula is: FF Σ i2C register = 0 i=0 After booting cycle the MVTX2801 calculates the checksum. If the checksum is not zeroed the MVTX2801 does not start. 10.7.12 LED User 10.7.13 LEDUSER0 I2C Address h0BB, Serial Interface Address:h60C Accessed by serial interface and I2C (R/W) 7 0 LED USER0 65 Zarlink Semiconductor Inc. MVTX2801 Bit [7:0]: 10.7.14 • Data Sheet (Default 00) Content will send out by LED serial logic LEDUSER1 I2C Address h0BC, Serial Interface Address:h60D Accessed by serial interface and I2C (R/W) 7 0 LED USER1 Bit [7:0]: 10.7.15 • (Default 00) Content will send out by LED serial logic LEDUSER2/LEDSIG2 I2C Address h0BD, Serial Interface Address:h60E Accessed by serial interface and I2C (R/W) In serial mode: 7 0 LED USER2 Bit [7:0]: • (Default 00) Content will be sent out by LED serial shift logic In parallel mode: this register is used for programming the LED pin - led_byteout_[2] 7 COL FDX SP1 4 3 SP0 COL Bit [3:0]: (Default 4'H0) Signal polarity: 0: not invert polarity (high true) 1: invert polarity Bit [7:4] (Default 4'H8) Signal Select: 0: not select 1: select the corresponding bit 0 FDX SP1 When bits get selected, the led_byteout_[2] = AND (all selected bits) 66 Zarlink Semiconductor Inc. SP0 MVTX2801 10.7.16 Data Sheet LEDUSER3/LEDSIG3 I2C Address:h0BE, Serial Interface Address:h60F Access by CPU, serial interface (R/W) In serial mode: 7 0 LED USER3 Bit [7:0]: • (Default 8'H33) Content will be sent out by LED serial shift logic. In parallel mode: this register is used for programming the LED pin - led_byteout_[3] 7 COL FDX SP1 4 3 SP0 COL Bit [3:0]: (Default 4'H3) Signal polarity: 0: not invert polarity (high true) 1: invert polarity Bit [7:4] (Default 4'H3) Signal Select: 0: not select 1: select the corresponding bit 0 FDX SP1 SP0 When bits get selected, the led_byteout_[3] = AND (all selected bits) 10.7.17 LEDUSER4/LEDSIG4 I2C Address:h0BF, Serial Interface Address:h610 Access by CPU, serial interface (R/W) 7 0 LED USER4 Bit [7:0] (Default 8'H32) Content will be sent out by LED serial shift logic. In parallel mode: this register is used for programming the LED pin - led_byteout_[4] 7 COL FDX SP1 4 3 SP0 COL 67 Zarlink Semiconductor Inc. 0 FDX SP1 SP0 MVTX2801 Bit [3:0] (Default 4'H2) Signal polarity: 0: not invert polarity (high true) 1: invert polarity Bit [7:4] (Default 4'H3) Signal Select 0: not select 1: select the corresponding bit Data Sheet When bits get selected, the led_byteout_[4] = AND (all selected bits) 10.7.18 LEDUSER5/LEDSIG5 I2C Address:h0C0, Serial Interface Address:h611 Access by CPU, serial interface (R/W) 7 0 LED USER5 Bit [7:0] (Default 8'H20) Content will be sent out by LED serial shift logic. In parallel mode: this register is used for programming the LED pin - led_byteout_[5] 7 COL FDX SP1 4 3 SP0 COL Bit [3:0] (Default 4'H0) Signal polarity: 0: not invert polarity (high true) 1: invert polarity Bit [7:4] (Default 4'H2) Signal Select: 0: not select 1: select the corresponding bit 0 FDX SP1 SP0 When bits get selected, the led_byteout_[5] = AND (all selected bits) 10.7.19 LEDUSER6/LEDSIG6 I2C Address:h0C1, Serial Interface Address:h612 Access by CPU, serial interface (R/W) 7 0 LED USER6 68 Zarlink Semiconductor Inc. MVTX2801 Bit [7:0] Data Sheet (Default 8'H40) Content will be sent out by LED serial shift logic. In parallel mode: this register is used for programming the LED pin - led_byteout_[6] 7 COL FDX SP1 4 3 SP0 COL 0 FDX SP1 SP0 Bit [3:0] (Default 4'B0000) Signal polarity: 0: not invert polarity (high true) 1: invert polarity Bit [7:4] (Default 4'b0100) Signal Select: 0: not select 1: select the corresponding bit When bits get selected, the led_byteout_[6] = AND (all selected bits), or the polarity of led_byteout_[6] is controlled by LEDSIG1_0[3] 10.7.20 LEDUSER7/LEDSIG1_0 I2C Address:h0C2, Serial Interface Address:h613 Access by CPU, serial interface (R/W) 7 0 LED USER7 Bit [7:0] (Default 8'H61) Content will be sent out by LED serial shift logic. In parallel mode: this register is used for programming the LED pin - led_byteout_[2] 7 GP RX TX 4 3 FC P6 0 RX TX FC Bit [7] (Default 1'B0) Global output polarity: this bit controls the output polarity of all led_byteout_ and led_port_sel pins. 0: no invert polarity - (led_byteout_[7:0] are high activated, led_port_sel[9:0] are low activated) 1: invert polarity - (led_byteout_[7:0] are low activated, led_port_sel[9:0] are high activated) Bit [6:4] (Default 3'B110) Signal Select 0: not select 1: select the corresponding bit When bits get selected, the led_byteout_[6] = OR (all selected bits) 69 Zarlink Semiconductor Inc. MVTX2801 Bit[3] (Default 1'B0) Polarity control of led_byteout_[6] 0: not invert 1: invert Bit [2:0] (Default 3'b001) Signal Select: 0: not select 1: select the corresponding bit Data Sheet When bits get selected, the led_byteout_[0] = OR (all selected bits) 10.7.21 MIINP0 - MII Next Page Data Register 0 I2C Address:h0C3, Serial Interface Address:h614 Access by CPU and serial interface only (R/W) Bit [7:0] 10.7.22 MII next page Data [7:0] MIINP1 - MII Next Page Data Register 1 I2C Address:h0C4, Serial Interface Address:h615 Access by CPU and serial interface only (R/W) Bit [7:0] 10.8 MII next page Data [15:8] Group F Address - CPU Access Group 10.8.1 GCR-Global Control Register Serial Interface Address: hF00 Accessed by serial interface. (R/W) 7 4 3 2 1 0 Reset Bist SR SC Bit [0]: • • Store configuration (Default = 0) Write '1' followed by '0' to store configuration into external EEPROM Bit[1]: • • Store configuration and reset (Default = 0) Write '1' to store configuration into external EEPROM and reset chip Bit[2]: • • Start BIST (Default = 0) Write '1' followed by '0' to start the device's built-in self-test. The result is found in the DCR register. Bit[3]: • • Soft Reset (Default = 0) Write '1' to reset the chip Bit[7:4]: • Reserved 70 Zarlink Semiconductor Inc. MVTX2801 10.8.2 Data Sheet DCR-Device Status and Signature Register Serial Interface Address: hF01 Accessed by serial interface. (RO) 7 6 5 Revision 4 Signature 3 2 1 0 RE BinP BR BW Bit [0]: 1 - Busy writing configuration to I2C 0 - Not Busy writing configuration to I2C Bit[1]: 1 - Busy reading configuration from I2C 0 - Not Busy reading configuration from I2C Bit[2]: 1 - BIST in progress 0 - BIST not running Bit[3]: 1 - RAM Error 0 - RAM OK Bit[5:4]: Device Signature 00 - 4 Ports Device, non-management mode 01 - 8 Ports Device, non-management mode 10 - 4 Ports Device, management mode possible (need to install CPU) 11 - 8 Ports Device, management mode possible (need to install CPU) Bit [7:6]: Revision 10.8.3 DCR01-Giga port status Serial Interface Address: hF02 Accessed by serial interface. (RO) 7 6 4 3 CIC 2 GIGA1 1 0 GIGA0 Bit [1:0]: Giga port 0 strap option 00 - 100Mb MII mode 01 - Invalid 10 - GMII 11 - PCS Bit[3:2] Giga port 1 strap option 00 - 100Mb MII mode 01 - Invalid 10 - GMII 11 - PCS Bit [7] Chip initialization completed Note: DCR01[7], DCR23[7], DCR45[7] and DCR67[7] have the same function. 71 Zarlink Semiconductor Inc. MVTX2801 10.8.4 Data Sheet DCR23-Giga port status Serial Interface Address: hF03 Accessed by CPU and serial interface. (RO) 7 6 4 3 CIC 1 GIGA3 Bit [1:0]: Giga port 2 strap option 00 - 100Mb MII mode 01 - Invalid 10 - GMII 11 - PCS Bit[3:2] Giga port 3 strap option 00 - 100Mb MII mode 01 - Invalid 10 - GMII 11 - PCS Bit [7] Chip initialization completed 10.8.5 2 0 GIGA2 DPST - Device Port Status Register Serial Interface Address:hF06 Accessed by CPU and serial interface (R/W) Bit[2:0]: 10.8.6 Read back index register. This is used for selecting what to read back from DTST. (Default 00) 3'B000 - Port 0 Operating mode and Negotiation status 3'B001 - Port 1 Operating mode and Negotiation status 3'B010 - Port 2 Operating mode and Negotiation status 3'B011 - Port 3 Operating mode and Negotiation status 3'B1XX - Reserved DTST - Data Read Back Register Serial Interface Address: hF07 Accessed by CPU and serial interface (RO) 7 6 5 4 3 2 1 0 MD InfoDet SigDet Giga Inkdn FE Fdpx Fc_en This register provides various internal information as selected in DPST bit[2:0] Bit[0]: Flow control enabled Bit[1]: Full duplex port 72 Zarlink Semiconductor Inc. MVTX2801 Bit[2]: Fast ethernet port (if not giga) Bit[3]: Link is down Bit[4]: GIGA port Bit[5]: Signal detect (when PCS interface mode) Bit[6]: Pipe signal detected (pipe mode only) Bit[7]: Module detected (for hot swap purpose) 73 Zarlink Semiconductor Inc. Data Sheet MVTX2801 11.0 Data Sheet BGA and Ball Signal Description 11.1 BGA Views (Top View) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 A AVDD NC9 SCAN_EN NC NC NC NC NC NC NC NC NC NC NC NC S_CLK NC NC NC NC NC B_A[16] B_A[12] B_A[7] B_A[2] B_OE# B_D[27] B_D[26] NC4 NC3 B DEV_CF[ 0] LA_D[0] NC7 NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC B_A[17] B_A[13] B_A[8] B_A[3] B_WE# B_D[30] DEV_CFG [1] NC5 B_D[25] C LA_D[1] LA_CLK LA_D[3] NC6 NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC B_A[18] B_A[14] B_A[11] B_A[5] B_A[4] B_D[28] AVDD B_CLK B_D[22] D LA_D[2] LA_D[5] LA_D[9] NC8 NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC B_A[9] B_A[10] B_ADSC# NC2 B_D[29] B_D[24] B_D[18] B_D[21] E LA_D[8] LA_D[7] LA_D[6] LA_D[4] AGND NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC LB_A[20] B_A[15] B_A[6] B_D[31] AGND B_D[17] B_D[23] B_D[19] B_D[16] B_D[14] F LA_D[10] LA_D[11] LA_D[12] LA_D[13] LA_D[14] VSS VSS VDD VDD VCC VCC VCC VSS VSS VCC VCC VCC VDD VDD VSS VSS NC1 B_D[9] B_D[10] B_D[11] B_D[12] G LA_D[15] LA_D[16] LA_D[19] LA_D[18] LA_D[17] VDD VDD B_D[20] B_D[4] B_D[3] B_D[6] B_D[7] H LA_D[20] LA_D[21] LA_D[22] LA_D[29] LA_D[24] B_D[15] B_D[8] P_INT# B_D[1] B_D[2] J LA_D[23] LA_D[25] LA_D[26] LA_D[27] LA_D[31] VDD VDD B_D[13] P_A[1] P_A[2] P_WE# P_RD# K LA_D[28] LA_D[30] LA_CS0# LA_D[37] LA_D[33] VDD VDD B_D[5] P_D[15] P_D[11] P_D[12] P_D[13] L LA_CS1# LA_RW# LA_D[32] LA_D[46] LA_D[41] P_CS# P_D[14] P_D[7] P_D[8] P_D[10] M LA_D[34] LA_D[35] LA_D[36] LA_D[53] LA_D[48] VCC VCC P_A[0] B_D[0] P_D[3] P_D[4] P_D[5] N LA_D[38] LA_D[40] LA_D[42] LA_D[61] LA_D[56] VCC VSS VSS VSS VSS VSS VSS VCC P_D[6] P_D[9] P_D[0] P_D[1] P_D[2] P LA_D[43] LA_D[44] LA_D[45] LA_D[39] VCC VSS VSS VSS VSS VSS VSS VCC T_D[15] T_D[11] T_D[12] T_D[13] T_D[14] R LA_D[49] LA_D[50] LA_D[51] LA_D[52] LA_D[47] VSS VSS VSS VSS VSS VSS VSS VSS T_D[10] T_D[5] T_D[7] T_D[8] T_D[9] T LA_D[58] LA_D[57] LA_D[55] LA_D[54] LA_A[7] VSS VSS VSS VSS VSS VSS VSS VSS T_D[6] T_D[4] T_D[2] T_D[1] T_D[0] U LA_D[63] LA_D[62] LA_D[60] LA_D[59] LA_A[11] VCC VSS VSS VSS VSS VSS VSS VCC S_RST# T_D[3] VSS VSS VSS VSS VSS VSS VCC NC[7] VCC NC[3] LA_A[4] V LA_A[6] LA_A[5] LA_A[3] LA_A[14] LA_A[18] VCC W LA_A[10] LA_A[9] LA_A[8] LA_A[20] G0_TXD[ 1] VCC Y LA_A[15] LA_A[13] LA_A[12] G0_CRS/ G0_TXD[4 L ] TMODE[1] TMODE[0] RESOUT# G7_RX_E LESYNO# LE_CLK0 R LE_DO NC[1] G7_RX_D V NC[6] NC[5] NC[6] G7_TX_E N NC[4] NC[2] NC[0] AA LA_A[19] LA_A[17] LA_A[16] GREFC[0] G0_TXD[ 7] VDD VDD NC[0] NC[3] G7_COL AB MIITXCK[ G0_TXD[2 G0_TXD[0 G0_TXCL G0_TX_E 0] ] ] K R VDD VDD NC[7] G7_TX_E R NC[7] NC[5] NC[4] AC G0_RXCL G0_TXD[5 G0_TXD[3 G0_RXD[ G0_RXD[ K ] ] 2] 6] NC[2] NC[4] NC[2] NC[1] G7_CRS/ L AD G0_RXD[ G0_TX_E G0_TXD[6 G0_RX_D G0_COL 0] N ] V VSS VDD NC[0] NC G7_TXCL K NC NC AE G0_RXD[ G0_RXD[ G0_RXD[ G0_RXD[ G1_TXD[ 5] 4] 3] 1] 0] VSS VSS VSS NC[7] NC[6] NC[5] NC[3] NC[1] AF G0_RXD[ G0_RX_E G1_RXD[ G1_RXD[ G1_RXD[ G2_TXD[0 G2_TXD[7 G2_RXD[ G2_RXD[ G2_RXD[ G3_TXD[1 G3_TXD[6 G3_RXD[ G3_RXD[ G3_RXD[ G3_RX_E GREFC[1] G3_COL IND_CM 7] R 2] 5] 7] ] ] 2] 4] 5] ] ] 3] 6] 4] R AG G1_TXD[1 G1_TXCL G1_TXD[7 G2_TXCL G1_RXD[ G2_TXD[4 G2_TXD[3 G2_RXD[ G2_RXCL G2_RXD[ G2_RX_E G3_TX_E G3_RXD[ G3_RXD[ G3_RXD[ G1CRS/L ] K ] K 4] ] ] 3] K 7] R N 0] 5] 7] NC M_MDIO AH G1_TXD[2 G1_TXD[3 MIITXCK[ G1_RXD[ G1_RXCL MIITXCK[ G2_TX_E G2_RXD[ G2_RX_D G3_TXCL G3_TXD[3 G3_TXD[5 G3_RXCL G3_RXD[ G3_RX_D G2CRS/L ] ] 1] 0] K 2] N 1] V K ] ] K 2] V NC AJ G1_TXD[5 G1_TXD[4 G1_TX_E G1_RXD[ G2_TXD[2 G2_TXD[6 G2_RXD[ G2_RXD[ G3_TXD[2 MIITXCK[ G3_TX_E G3_RXD[ G1_COL GREFC[2] GREFC[3] M_MDC ] ] R 6] ] ] 0] 6] ] 3] R 1] AK G1_TXD[6 G1_TX_E G1_RXD[ G1_RXD[ G1_RX_D G1_RX_E G2_TXD[1 G2_TXD[5 G2_TX_E G3_CRS/ G3_TXD[0 G3_TXD[4 G3_TXD[7 G2_COL CM_CLK G4CRS/L ] N 1] 3] V R ] ] R L ] ] ] 1 2 3 4 5 6 VDD 7 VDD 8 9 VDD 10 VCC 11 12 VCC 13 VCC VSS 14 15 VSS 16 VCC VCC VCC G7_RXCL MIITXCK[ K 7] VDD VDD NC[3] NC[1] NC[4] NC[2] NC[4] NC NC[5] NC NC[6] NC NC NC[1] NC[5] NC[6] NC[7] NC NC[5] MIITXCK[ 5] NC[1] NC[3] NC[4] NC NC[5] NC[4] NC[6] NC NC NC NC NC[3] NC NC[3] NC[6] NC[1] NC[2] NC NC[0] NC[5] NC[7] NC[0] NC NC NC[0] NC[6] NC[0] NC NC[4] NC NC NC[0] NC[2] MIITXCK[ 4] NC NC[2] NC[3] NC NC[1] NC[7] NC[2] NC NC[7] NC MIITXCK[ 6] NC 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Figure 5 - BGA Diagram 74 Zarlink Semiconductor Inc. MVTX2801 11.2 Data Sheet Ball- Signal Descriptions All pins are CMOS type; all Input pins are 5 Volt tolerance, and all Output pins are 3.3 CMOS drive. Ball No(s) Symbol I/O Description L30 TRUNK0_EN I/O - TS with pull up Trunk enable External pull up or unconnecteddisable trunk group 0 and 1 External pull down - enable trunk group 0 and 1 See register TRUNK0_MODE for port selection and trunk enable. N27 TRUNK1_EN I/O - TS with pull up Trunk enable External pull up or unconnected disable trunk group 2 and 3 External pull down - enable trunk group 2 and 3 See register TRUNK1_MODE for port selection and trunk enable. L29, L28, N26, M30, M29, M28, N30, N29, N28 P_D[8:0] I/O - TS with pull up Bootstrap function - See bootstrap section K27, L27, K30, K29, K28, J28, H28 RESERVED Not used - leave unconnected I2C Interface (0) Note: In unmanaged mode, Use I2C and Serial control interface to configure the system J27 SCL Output I2C Data Clock M26 SDA I/O-TS with pull up I2C Data I/O J29 PS_STROBE Input with weak internal pull up Serial Strobe Pin J30 PS_DI Input with weak internal pull up Serial Data Input L26 PS_DO (AUTOFD) Output with pull up Serial Data Output (AutoFD) LA_D[63:0] I/O-TS with pull up Frame Bank A- Data Bit [63:0] Serial Control Interface Frame Buffer Interface U1, U2, N4, U3, U4, T1, T2, N5, T3, T4, M4, R4, R3, R2, R1, M5, R5, L4, P3, P2, P1, N3, L5, N2, P5, N1, K4, M3, M2, M1, K5, L3, J5, K2, H4, K1, J4, J3, J2, H5, J1, H3, H2, H1, G3, G4, G5, G2, G1, F5, F4, F3, F2, F1, D3, E1, E2, E3, D2., E4, C3, D1, C1, B2 Table 8 - Ball- Signal Descriptions 75 Zarlink Semiconductor Inc. MVTX2801 Ball No(s) Symbol Data Sheet I/O Description AA1, V5, AA2, AA3, Y1, V4, Y2, Y3, U5, W1, W2, W3, T5, V1, V2, P4, V3 LA_A[19:3] Output Frame Bank A - Address Bit [19:3] W4 LA_A[20] Output with pull up Frame Bank A - Address Bit [20] C2 LA_CLK Output Frame Bank A Clock Input K3 LA_CS0# Output with pull up Frame Bank A Low Portion Chip Selection L1 LA_CS1# Output with pull up Frame Bank A High Portion Chip Selection L2 LA_RW# Output with pull up Frame Bank A Read/Write D18, B18, C18, A17, E17, B17, C17, E16, D17, B16, E15, C16, D16, D15, E14, C15, B15, E13, A15, D14, C14, D13, B14, A14, C13, E12, B13, A13, D12, C12, B12, A12, A11, E10, C10, B10, E9, A10, D11, D10, D8, D9, C9, B9, A9, C8, B8, A8, C7, E7, D7, B7, E8, A7, D6, C6, E6, B6, A6, A5, B5, C5, B4,A4 NC I/O-TS with pull up. No Connect D22, D20, E20, D21, A21, D19, B21, C21, A20, B20, E19, C20, A19, B19, E18, C19, A18 NC Output F LB_A[20] Output with pull up D5 NC Output B11 NC Output with pull up E11 NC Output with pull up C11 NC Output with pull up Bootstrap Pin Switch Database Interface E24,B27, D27, C27, A27, A28, B30, D28, E27, C30, D30, G26, E28, D29, E26, E29, H26, E30, J26, F30, F29, F28, F27, H27, G30, G29, K26, G27, G28, H30, H29, M27 B_D[31:0] I/O-TS with pull up Switch Database Domain - Data Bit [31:0] Table 8 - Ball- Signal Descriptions (continued) 76 Zarlink Semiconductor Inc. MVTX2801 Ball No(s) Symbol Data Sheet I/O Description C22, B22, A22, E22, C23, B23, A23, C24, D24, D23, B24, A24, E23, C25, C26, B25, A25 B_A[18:2] Output Switch Database Address (512K) - Address Bit [18:2] C29 B_CLK Output Switch Database Clock Input D25 B_ADSC# Output with pull up Switch Database Address Status Control B26 B_WE# Output with pull up Switch Database Write Chip Select A26 B_OE# Output with pull up Switch Database Read Chip Select MII Management Interface AJ16 M_MDC Output MII Management Data Clock (common for all MII Ports [3:0]) AG18 M_MDIO I/O-TS with pull up MII Management Data I/O (common for all MII Ports -[3:0])) 2.5Mhz GMII / MII Interface (193) Gigabit Ethernet Access Port AJ11, AJ6, AF3,AA4 GREF_CLK [3:0] Input w/ pull up Gigabit Reference Clock AD29, AK30, AJ22, AG17 NC AK15 CM_CLK Input w/ pull up Common Clock shared by port G[3:0] AF17 IND/CM Input w/ pull up 1: select GREF_CLK[3:0] as clock 0: select CM_CLK as clock for all ports AJ13, AH7, AH3, AB1 MII TX CLK[3:0] AA30, AK29, AG25, AK18, NC AG16, AF16, AG15, AF18, AF15, AH15, AJ15, AG14 G3_RXD[7:0] Input w/ pull up Input w/ pull up G[3:0] port - Receive Data Bit [7:0] G2_RXD[7:0] AG11, AJ10, AF11, AF10, AG9, AF9, AH9, AJ9 G1_RXD[7:0] AF6, AJ5, AF5, AG6, AK4, AF4, AK3, AH4 G0_RXD[7:0] AF1, AC5, AE1, AE2, AE3, AC4, AE4, AD1 Table 8 - Ball- Signal Descriptions (continued) 77 Zarlink Semiconductor Inc. MVTX2801 Ball No(s) Symbol Data Sheet I/O Description V26, W29, W30, Y28, W26, Y29, W27, Y30 AB26, AE27, AE28, AC27, AE29, AC26, AE30, AD26 AK27, AH27, AF26, AJ27, AH26, AK25, AG26, AJ25 AG22, AG21, AG20, AF22, AK21, AK20, AF21, AJ20 NC AH16, AH10, AK5, AD5 G[3:0]_RX_DV Input w/ pull down G[3:0]port - Receive Data Valid AF19, AG12, AK6, AF2 G[3:0]_RX_ER Input w/ pull up G[3:0]port - Receive Error V27, AD27, AJ28, AH23, NC AK11, AH6, AG3, Y4 G[3:0]_CRS/LINK Input w/ pull down G[3:0]port - Carrier Sense AC30, AJ29, AG23, AK16, NC AF14, AK10, AJ4, AD3 G[3:0]_COL Input w/ pull up G[3:0]port - Collision Detected AA28, AF29, AJ26, AJ21, NC AH14, AG10, AH5, AC1 G[3:0]_RXCLK Input w/ pull up G[3:0]port - Receive Clock AA29, AF27, AK26, AH21, NC AK14, AF13, AH13, AK13, AH12, AJ12, AF12, AK12 AF8, AJ8, AK8, AG7, AG8, AJ7, AK7, AF7 AG4, AK1, AJ1, AJ2, AH2, AH1, AG1, AE5 AA5, AD4, AC2, Y5, AC3, AB2, W5, AB3 G3_TXD[7:0] Output G[3:0]port - Transmit Data Bit [7:0] W28, AD30, AK28, AH22, G2_TXD[7:0] G1_TXD[7:0] G0_TXD[7:0] Table 8 - Ball- Signal Descriptions (continued) 78 Zarlink Semiconductor Inc. MVTX2801 Ball No(s) Symbol AB28, Y26, AB29, AB30, AA27, AC28, AC29, AA26 AE26, AF28, AG30, AG28, AG27, AH29, AH28, AJ30 AK24, AJ24, AG24, AF24, AH24, AF23, AK23, AJ23 AJ19, AH19, AJ18, AH18, AF20, AK17, AG19, AJ17 NC AG13, AH8, AK2, AD2 G[3:0]_TX_EN Y27, AG29, AH25, AK19, NC AJ14, AK9, AJ3, AB5 G[3:0]_TX_ER AB27, AF30, AF25, AH20, NC AH11, AG5, AG2, AB4 G[3:0]_ TXCLK AD28, AH30, AK22, AH17, NC Data Sheet I/O Description Output w/ pull up G[3:0]port - Transmit Data Enable Output w/ pull up G[3:0]port - Transmit Error Output G[3:0]port - Gigabit Transmit Clock PMA Interface (193) Gigabit Ethernet Access Port (PCS) AJ11, AJ6, AF3,AA4 GREF_CLK [3:0] Input w/ pull up Gigabit Reference Clock AD29, AK30, AJ22, AG17, NC AK15 CM_CLK Input w/ pull up Common Clock shared by port G[3:0] AF17 IND/CM Input w/ pull up 1: select GREF_CLK[3:0] as clock 0: select CM_CLK as clock for all port AG16, AF16, AG15, AF18, AF15, AH15, AJ15, AG14 AG11, AJ10, AF11, AF10, AG9, AF9, AH9, AJ9 AF6, AJ5, AF5, AG6, AK4, AF4, AK3, AH4 AF1, AC5, AE1, AE2, AE3, AC4, AE4, AD1 G3_RXD[7:0] Input w/ pull up G[3:0]port - PMA Receive Data Bit [7:0] G2_RXD[7:0] G1_RXD[7:0] G0_RXD[7:0] Table 8 - Ball- Signal Descriptions (continued) 79 Zarlink Semiconductor Inc. MVTX2801 Ball No(s) Symbol V26, W29, W30, Y28, W26, Y29, W27, Y30 AB26, AE27, AE28, AC27, AE29, AC26, AE30, AD26 AK27, AH27, AF26, AJ27, AH26, AK25, AG26, AJ25 AG22, AG21, AG20, AF22, AK21, AK20, AF21, AJ20 NC AH16, AH10, AK5, AD5 G[3:0]_RX_D[8] W28, AD30, AK28, AH22, NC AF19, AG12, AK6, AF2 G[3:0]_RX_D[9] V27, AD27, AJ28, AH23, NC AF14, AK10, AJ4, AD3 G[3:0]_RXCLK1 AA28, AF29, AJ26, AJ21, NC AH14, AG10, AH5, AC1 G[3:0]_RXCLK0 AA29, AF27, AK26, AH21, NC AK14, AF13, AH13, AK13, AH12, AJ12, AF12, AK12 AF8, AJ8, AK8, AG7, AG8, AJ7, AK7, AF7 AG4, AK1, AJ1, AJ2, AH2, AH1, AG1, AE5 AA5, AD4, AC2, Y5, AC3, AB2, W5, AB3 G3_TXD[7:0] Data Sheet I/O Description Input w/ pull down G[3:0]port - PMA Receive Data Bit [8] Input w/ pull up G[3:0]port - PMA Receive Data Bit [9] Input w/ pull up G[3:0]port - PMA Receive Clock 1 Input w/ pull up G[3:0]port - PMA Receive Clock 0 Output G[3:0]port - PMA Transmit Data Bit [7:0] G2_TXD[7:0] G1_TXD[7:0] G0_TXD[7:0] Table 8 - Ball- Signal Descriptions (continued) 80 Zarlink Semiconductor Inc. MVTX2801 Ball No(s) Symbol AB28, Y26, AB29, AB30, AA27, AC28, AC29, AA26 AE26, AF28, AG30, AG28, AG27, AH29, AH28, AJ30 AK24, AJ24, AG24, AF24, AH24, AF23, AK23, AJ23 AJ19, AH19, AJ18, AH18, AF20, AK17, AG19, AJ17 NC AG13, AH8, AK2, AD2 G[3:0]_TXD[8] Y27, AG29, AH25, AK19, NC AJ14, AK9, AJ3, AB5 G[3:0]_TX_D[9] AB27, AF30, AF25, AH20, NC AH11, AG5, AG2, AB4 G[3:0]_ TXCLK AD28, AH30, AK22, AH17, NC Data Sheet I/O Description Output w/ pull up G[3:0]port - PMA Transmit Data Bit [8] Output w/ pull up G[3:0]port - PMA Transmit Data Bit [9] Output G[3:0]port - PMA Gigabit Transmit Clock I/O-TS with pull up Test - Set upon Reset, and provides NAND Tree test output during test mode Test Facility (3) U29 T_MODE0 Use external Pull up for normal operation U28 T_MODE1 I/O-TS with pull up Test - Set upon Reset, and provides NAND Tree test output during test mode. Use external Pull up for normal operation A3 SCAN_EN Input with pull down Enable test mode For normal operation leave it unconnected LED Interface (serial and parallel) R28, T26, R27, T27, U27, T28, T29, T30 T_D[7:0]/ LED_PD[7:0] Output While resetting, T_D[7,0] are in input mode and are used as strapping pins. Internal pull up LED_PD - Parallel Led data [7:0] Table 8 - Ball- Signal Descriptions (continued) 81 Zarlink Semiconductor Inc. MVTX2801 Ball No(s) P27, R26, R30, R29 Symbol T_D[11:8]/ LED_PT[3:0] Data Sheet I/O Output Description While resetting, T_D[11:8] are in input mode and are used as strapping pins. Internal pull up LED_PR[3:0] - Parallel Led port selection [3:0] P26, P30, P29, P28, T_D[15:12]/ LED_PT[7:4] Output While resetting, T_D[15:12] are in input mode and are used as strapping pins. Internal pull up LED_PR[7:4] - No Meaning V29 LED_CLK0/ LED_PT[8] Output LED_CLK0 - LED Serial Interface Output Clock LED_PT[8] - Parallel Led port sel [8] V30 LED_BLINK/ LED_DO/ LED_PT[9] Output While resetting, LED-BLINK is in input mode and is used as strapping pin. 1: No Blink, 0: Blink. Internal pull up. LED_DO - LED Serial Data Output Stream LED_PT[9] - Parallel Led port sel [9] V28 LED_PM/ LED_SYNCO# Output with pull up While resetting, LED_PM is in input mode and is used as strapping pin. Internal pull up. 1: Enable parallel interface, 0: enable serial interface. LED_SYNCO# - LED Output Data Stream Envelop System Clock, Power, and Ground Pins A16 S_CLK Input System Clock at 133 MHz U26 S_RST# Input - ST Reset Input U30 RESOUT# Output Reset PHY B1 DEV_CFG[0] Input w/ pull down Not used B28 DEV_CFG[1] Input w/ pull down Not used AE7, AE9, F10, F21, F22, F9, G25, G6, J25, J6, K25, K6, AA25, AA6, AB25, AB6, AD25, AE10, AE21, AE22 VDD Power core +2.5 Volt DC Supply Table 8 - Ball- Signal Descriptions (continued) 82 Zarlink Semiconductor Inc. MVTX2801 Ball No(s) Symbol Data Sheet I/O Description V14, V15, V16, V17, V18, F16, F24, F25, F6, F7, N13, N14, N15, N16, N17, N18, P13, P14, P15, P16, P17, P18, R13, R14, R15, R16, R17, R18, R25, R6, T13, T14, T15, T16, T17, T18, T25, T6, U13, U14, U15, U16, U17, U18, V13, AD6, AE15, AE16, AE24, AE25, AE6, F15 VSS Ground Ground A1, C28 AVDD Power Analog +2.5 Volt DC Supply E5, E25 AVSS Ground Analog Ground AE12, AE13, AE14, AE17, AE18, AE19, F12, F13, F14, F17, F18, F19, M25, M6, N25, N6, P25, P6, U25, U6, V25, V6, W25, W6 VDD Power I/O +3.3 Volt DC Supply Bootstrap Pins (Default= pull up, 1= pull up 0= pull down) AD2, AB5 G0_TX_EN, G0_TX_ER Default: PCS Giga0 Mode: G0_TXEN G0_TXER 0 0 MII 0 1 Invalid 1 0 GMII 1 1 PCS AK2, AJ3 G1_TX_EN, G1_TXER Default: PCS Giga1 Mode: G1_TXEN G1_TXER 0 0 MII 0 1 Invalid 1 0 GMII 1 1 PCS AH8, AK9 G2_TX_EN, G2_TX_ER Default: PCS Giga2 Mode: G0_TXEN G0_TXER 0 0 MII 0 1 Invalid 1 0 GMII 1 1 PCS AG13.AJ14 G3_TX_EN, G3_TX_ER Default: PCS Giga3 Mode: G0_TXEN G0_TXER 0 0 MII 0 1 Invalid 1 0 GMII 1 1 PCS After reset T_D[15:0] are used by the LED interface Table 8 - Ball- Signal Descriptions (continued) 83 Zarlink Semiconductor Inc. MVTX2801 Ball No(s) Symbol Data Sheet I/O Description T30 T_D[0] 1 Giga link active status 0 - active low 1 active high T29 T_D[1] 1 Power saving 0 - No power saving 1 - Power saving Stop MAC clock if no MAC activity. T28 T_D[2] Must be pulled-down Reserved - Must be pulled-down U27 T_D[3] 1 Hot plug port module detection enable 0 - module detection enable 1 - module detection disable T27 T_D[4] Must be pulled-down Reserved - Must be pulled-down R27 T_D[5] 1 SRAM memory size 0 - 512K SRAM 1 - 256K SRAM T26 T_D[6] R28 T_D[7] 1 FDB memory depth 1- one memory layer 0 - two memory layers W4, E21 LA_A[20], LB_A[20] 11 FDB memory size 11 - 2M per bank = 4M total 10 - 1M per bank = 2M total 0x - 512K per bank = 1M total R29 T_D[8] 1 EEPROM installed 0 - EEPROM is installed 1 - EEPROM is not installed R30 T_D[9] 1 MCT Aging enable 0 - MCT aging disable 1 - MCT aging enable R26 T_D[10] 1 FCB handle aging enable 0 - FCB handle aging disable 1 - FCB handle aging enable P27 T_D[11] 1 Timeout reset enable 0 - timeout reset disable 1 - timeout reset enable Issue reset if any state machine did not go back to idle for 5sec. P28, 29, 30 T_D[14:12] P26 T_D[15] Reserved Reserved 1 External RAM test 0 - Perform the infinite loop of ZBT RAM BIST. Debug test only 1 - Regular operation. Table 8 - Ball- Signal Descriptions (continued) 84 Zarlink Semiconductor Inc. MVTX2801 Ball No(s) Symbol Data Sheet I/O Description N30, N29, N28 P_D[2:0] 111 ZBT RAM la_clk turning 3'b000 - control by reg. LCLKCR[2:0] 3'b001 - delay by method # 0 3'b010 - delay by method # 1 3'b011 - delay by method # 2 3'b100 - delay by method # 3 3'b101 - delay by method # 4 3'b110 - delay by method # 5 3'b111 - delay by method # 6 - USE THIS METHOD M30, M29, M28 P_D[5:3] 111 No Use L29, L28, N26 P_D[8:6] 111 SBRAM b_clk turning3'b000 - control by BCLKCR[2:0] 3'b001 - delay by method # 0 3'b010 - delay by method # 1 3'b011 - delay by method # 2 3'b100 - delay by method # 3 3'b101 - delay by method # 4 3'b110 - delay by method # 5 3'b111 - delay by method # 6 - USE THIS METHOD Table 8 - Ball- Signal Descriptions (continued) Notes: #= Active low signal Input = Input signal In-ST = Input signal with Schmitt-Trigger Output = Output signal (Tri-State driver) Out-OD= Output signal with Open-Drain driver I/O-TS = Input & Output signal with Tri-State driver I/O-OD = Input & Output signal with Open-Drain driver 85 Zarlink Semiconductor Inc. MVTX2801 11.3 Data Sheet Ball Signal Name Ball No. Signal Name Ball No. Signal Name Ball No. Signal Name A1 AVDD M1 LA_D[34] Y2 LA_A[13] B1 DEV_CFG[0] M2 LA_D[35] V4 LA_A[14] B2 LA_D[0] M3 LA_D[36] Y1 LA_A[15] C2 LA_CLK K4 LA_D[37] AA3 LA_A[16] C1 LA_D[1] N1 LA_D[38] AA2 LA_A[17] D1 LA_D[2] P5 LA_D[39] V5 LA_A[18] C3 LA_D[3] N2 LA_D[40] AA1 LA_A[19] E4 LA_D[4] L5 LA_D[41] W4 LA_A[20] D2 LA_D[5] N3 LA_D[42] Y4 G0_CRS/LINK E3 LA_D[6] P1 LA_D[43] AA4 GREF_CLK[0] E2 LA_D[7] P2 LA_D[44] AB4 G0_TXCLK E1 LA_D[8] P3 LA_D[45] AB3 G0_TXD[0] D3 LA_D[9] L4 LA_D[46] W5 G0_TXD[1] F1 LA_D[10] R5 LA_D[47] AB2 G0_TXD[2] F2 LA_D[11] M5 LA_D[48] AB1 MII_TX_CLK[0] F3 LA_D[12] R1 LA_D[49] AC3 G0_TXD[3] F4 LA_D[13] R2 LA_D[50] Y5 G0_TXD[4] F5 LA_D[14] R3 LA_D[51] AC2 G0_TXD[5] G1 LA_D[15] R4 LA_D[52] AC1 G0_RXCLK G2 LA_D[16] M4 LA_D[53] AD3 G0_COL G5 LA_D[17] T4 LA_D[54] AD4 G0_TXD[6] G4 LA_D[18] T3 LA_D[55] AA5 G0_TXD[7] G3 LA_D[19] N5 LA_D[56] AD2 G0_TX_EN H1 LA_D[20] T2 LA_D[57] AB5 G0_TX_ER H2 LA_D[21] T1 LA_D[58] AD1 G0_RXD[0] H3 LA_D[22] U4 LA_D[59] AE4 G0_RXD[1] J1 LA_D[23] U3 LA_D[60] AC4 G0_RXD[2] H5 LA_D[24] N4 LA_D[61] AE3 G0_RXD[3] J2 LA_D[25] U2 LA_D[62] AE2 G0_RXD[4] Table 9 - Ball Signal Name 86 Zarlink Semiconductor Inc. MVTX2801 Ball No. Signal Name Ball No. Signal Name Data Sheet Ball No. Signal Name J3 LA_D[26] U1 LA_D[63] AE1 G0_RXD[5] J4 LA_D[27] V3 LA_A[3] AC5 G0_RXD[6] K1 LA_D[28] P4 LA_A[4] AF1 G0_RXD[7] H4 LA_D[29] V2 LA_A[5] AD5 G0_RX_DV K2 LA_D[30] V1 LA_A[6] AF2 G0_RX_ER J5 LA_D[31] T5 LA_A[7] AF3 GREF_CLK[1] K3 LA_CS0# W3 LA_A[8] AG2 G1_TXCLK L1 LA_CS1# W2 LA_A[9] AG3 G1_CRS/LINK L2 LA_RW# W1 LA_A[10] AE5 G1_TXD[0] L3 LA_D[32] U5 LA_A[11] AG1 G1_TXD[1] K5 LA_D[33] Y3 LA_A[12] AH1 G1_TXD[2] AH2 G1_TXD[3] AG10 G2_RXCLK AG19 NC AJ2 G1_TXD[4] AK10 G2_COL AK17 NC AJ1 G1_TXD[5] AJ10 G2_RXD[6] AF20 NC AK1 G1_TXD[6] AG11 G2_RXD[7] AH18 NC AG4 G1_TXD[7] AH10 G2_RX_DV AJ18 NC AK2 G1_TX_EN AG12 G2_RX_ER AK18 NC AH3 MII_TX_CLK[1] AK11 G3_CRS/LINK AH19 NC AJ3 G1_TX_ER AJ11 GREF_CLK[3] AJ19 NC AH4 G1_RXD[0] AH11 G3_TXCLK AK19 NC AK3 G1_RXD[1] AK12 G3_TXD[0] AH20 NC AF4 G1_RXD[2] AF12 G3_TXD[1] AJ20 NC AK4 G1_RXD[3] AJ12 G3_TXD[2] AF21 NC AH5 G1_RXCLK AH12 G3_TXD[3] AK20 NC AJ4 G1_COL AK13 G3_TXD[4] AH21 NC AG6 G1_RXD[4] AJ13 MII_TX_CLK[3] AJ21 NC AF5 G1_RXD[5] AH13 G3_TXD[5] AK21 NC AJ5 G1_RXD[6] AF13 G3_TXD[6] AF22 NC AF6 G1_RXD[7] AK14 G3_TXD[7] AG20 NC AK5 G1_RX_DV AG13 G3_TX_EN AG21 NC Table 9 - Ball Signal Name (continued) 87 Zarlink Semiconductor Inc. MVTX2801 Ball No. Signal Name Ball No. Signal Name Data Sheet Ball No. Signal Name AK6 G1_RX_ER AJ14 G3_TX_ER AG22 NC AJ6 GREF_CLK[2] AH14 G3_RXCLK AH22 NC AG5 G2_TXCLK AF14 G3_COL AJ22 NC AH6 G2_CRS/LINK AG14 G3_RXD[0] AK22 NC AF7 G2_TXD[0] AK15 CM_CLK AH23 NC AK7 G2_TXD[1] AF17 IND_CM AG23 NC AJ7 G2_TXD[2] AJ15 G3_RXD[1] AJ23 NC AG8 G2_TXD[3] AH15 G3_RXD[2] AK23 NC AG7 G2_TXD[4] AF15 G3_RXD[3] AF23 NC AH7 MII_TX_CLK[2] AF18 G3_RXD[4] AH24 NC AK8 G2_TXD[5] AG15 G3_RXD[5] AF24 NC AJ8 G2_TXD[6] AF16 G3_RXD[6] AG24 NC AF8 G2_TXD[7] AG16 G3_RXD[7] AJ24 NC AH8 G2_TX_EN AH16 G3_RX_DV AK24 NC AK9 G2_TX_ER AF19 G3_RX_ER AG25 NC AJ9 G2_RXD[0] AJ16 M_MDC AH25 NC AH9 G2_RXD[1] AG18 M_MDIO AF25 NC AF9 G2_RXD[2] AK16 NC AJ25 NC AG9 G2_RXD[3] AG17 NC AG26 NC AF10 G2_RXD[4] AH17 NC AK25 NC AF11 G2_RXD[5] AJ17 NC AK26 NC AJ26 NC AA27 NC P29 T_D[13] AH26 NC AB30 NC P30 T_D[14] AJ27 NC AB29 NC P26 T_D[15] AF26 NC Y26 NC N28 P_D[0] AH27 NC AB28 NC N29 P_D[1] AK27 NC Y27 NC N30 P_D[2] AK28 NC AB27 NC M28 P_D[3] AJ28 NC AA30 NC M29 P_D[4] AJ29 NC AA29 NC M30 P_D[5] Table 9 - Ball Signal Name (continued) 88 Zarlink Semiconductor Inc. MVTX2801 Ball No. Signal Name Ball No. Signal Name Data Sheet Ball No. Signal Name AK29 NC AA28 NC N26 P_D[6] AK30 NC Y30 NC L28 P_D[7] AJ30 NC W27 NC L29 P_D[8] AH28 NC Y29 NC N27 TRUNK1_EN AH29 NC W26 NC L30 TRUNK0_EN AG27 NC Y28 NC K28 NC AG28 NC W30 NC K29 NC AH30 NC W29 NC K30 NC AG30 NC V26 NC L27 NC AF28 NC W28 NC K27 NC AE26 NC V27 NC M26 SDA AG29 NC V30 LED_DO J27 SCL AF27 NC V29 LED_CLK0 J28 NC AF29 NC V28 LED_SYNCO# J29 PS_STROBE AF30 NC U26 S_RST# J30 PS_DI AD26 NC U30 RESOUT# L26 PS_DO AE30 NC U29 T_MODE[0] H28 NC AC26 NC U28 T_MODE[1] M27 B_D[0] AE29 NC T30 T_D[0] H29 B_D[1] AC27 NC T29 T_D[1] H30 B_D[2] AE28 NC T28 T_D[2] G28 B_D[3] AE27 NC U27 T_D[3] G27 B_D[4] AB26 NC T27 T_D[4] K26 B_D[5] AD30 NC R27 T_D[5] G29 B_D[6] AD29 NC T26 T_D[6] G30 B_D[7] AD27 NC R28 T_D[7] H27 B_D[8] AD28 NC R29 T_D[8] F27 B_D[9] AC30 NC R30 T_D[9] F28 B_D[10] AA26 NC R26 T_D[10] F29 B_D[11] AC29 NC P27 T_D[11] F30 B_D[12] Table 9 - Ball Signal Name (continued) 89 Zarlink Semiconductor Inc. MVTX2801 Ball No. Signal Name Ball No. Signal Name Data Sheet Ball No. Signal Name AC28 NC P28 T_D[12] J26 B_D[13] E30 B_D[14] A23 B_A[12] E14 NC H26 B_D[15] B23 B_A[13] C15 NC E29 B_D[16] C23 B_A[14] B15 NC E26 B_D[17] E22 B_A[15] E13 NC D29 B_D[18] A22 B_A[16] A15 NC E28 B_D[19] B22 B_A[17] D14 NC G26 B_D[20] C22 B_A[18] C14 NC D30 B_D[21] E21 LB_A[20] D13 NC C30 B_D[22] D22 NC B14 NC E27 B_D[23] D20 NC A14 NC C29 B_CLK E20 NC C13 NC D28 B_D[24] D21 NC E12 NC B30 B_D[25] A21 NC B13 NC F26 NC1 D19 NC A13 NC D26 NC2 B21 NC D12 NC A30 NC3 C21 NC C12 NC A29 NC4 A20 NC B12 NC B29 NC5 B20 NC A12 NC E25 AGND E19 NC C11 NC B28 DEV_CFG[1] C20 NC E11 NC C28 AVDD A19 NC B11 NC A28 B_D[26] B19 NC A11 NC A27 B_D[27] E18 NC E10 NC C27 B_D[28] C19 NC C10 NC D27 B_D[29] A18 NC B10 NC B27 B_D[30] D18 NC E9 NC E24 B_D[31] B18 NC A10 NC D25 B_ADSC# C18 NC D11 NC B26 B_WE# A17 NC D10 NC Table 9 - Ball Signal Name (continued) 90 Zarlink Semiconductor Inc. MVTX2801 Ball No. Signal Name Ball No. Signal Name Data Sheet Ball No. Signal Name A26 B_OE# E17 NC D8 NC A25 B_A[2] B17 NC D9 NC B25 B_A[3] C17 NC C9 NC C26 B_A[4] E16 NC B9 NC C25 B_A[5] D17 NC A9 NC E23 B_A[6] A16 S_CLK C8 NC A24 B_A[7] B16 NC B8 NC B24 B_A[8] E15 NC A8 NC D23 B_A[9] C16 NC C7 NC D24 B_A[10] D16 NC E7 NC C24 B_A[11] D15 NC D7 NC B7 NC P15 VSS AE7 VDD E8 NC P16 VSS AE9 VDD A7 NC P17 VSS F10 VDD D6 NC P18 VSS F21 VDD C6 NC R13 VSS F22 VDD E6 NC R14 VSS F9 VDD B6 NC R15 VSS G25 VDD A6 NC R16 VSS G6 VDD A5 NC R17 VSS J25 VDD B5 NC R18 VSS J6 VDD C5 NC R25 VSS K25 VDD B4 NC R6 VSS K6 VDD D5 NC T13 VSS AE12 VCC A4 NC T14 VSS AE13 VCC A3 SCAN_EN T15 VSS AE14 VCC E5 AGND T16 VSS AE17 VCC C4 NC6 T17 VSS AE18 VCC B3 NC7 T18 VSS AE19 VCC D4 NC8 T25 VSS F12 VCC Table 9 - Ball Signal Name (continued) 91 Zarlink Semiconductor Inc. MVTX2801 Ball No. Signal Name Ball No. Signal Name Data Sheet Ball No. Signal Name A2 NC9 T6 VSS F13 VCC AD6 VSS U13 VSS F14 VCC AE15 VSS U14 VSS F17 VCC AE16 VSS U15 VSS F18 VCC AE24 VSS U16 VSS F19 VCC AE25 VSS U17 VSS M25 VCC AE6 VSS U18 VSS M6 VCC F15 VSS V13 VSS N25 VCC F16 VSS V14 VSS N6 VCC F24 VSS V15 VSS P25 VCC F25 VSS V16 VSS P6 VCC F6 VSS V17 VSS U25 VCC F7 VSS V18 VSS U6 VCC N13 VSS AA25 VDD V25 VCC N14 VSS AA6 VDD V6 VCC N15 VSS AB25 VDD W25 VCC N16 VSS AB6 VDD W6 VCC N17 VSS AD25 VDD N18 VSS AE10 VDD P13 VSS AE21 VDD P14 VSS AE22 VDD Table 9 - Ball Signal Name (continued) 92 Zarlink Semiconductor Inc. MVTX2801 11.4 11.4.1 Data Sheet Characteristics and Timing Absolute Maximum Ratings Storage Temperature -65oC to +150oC Operating Temperature -40oC to +85oC Maximum Junction Temperature +125oC Supply Voltage VDD with Respect to VSS +3.0 V to +3.6 V Supply Voltage VDD with Respect to VSS +2.38 V to +2.75 V Voltage on Input Pins -0.5 V to (VDD + 3.3 V) Caution: Stress above those listed may damage the device. Exposure to the Absolute Maximum Ratings for extended periods may affect device reliability. Functionality at or above these limits is not implied. 11.4.2 DC Electrical Characteristics TAMBIENT = -40oC to +85oC VDD = 3.0 V to 3.6 V (3.3v +/- 10%) VDD = 2.5V +10% - 5% 93 Zarlink Semiconductor Inc. MVTX2801 11.4.3 Data Sheet Recommended Operating Conditions Symbol Parameter Description Min Type Max 133 Unit fosc Frequency of Operation MHz ICC Supply Current - @ 133 MHz (VDD = 3.3V) 680 850 mA IDD Supply Current - @ 133 MHz (VDD = 2.5V) 1300 1500 mA VOH Output High Voltage (CMOS) 2.4 VOL Output Low Voltage (CMOS) VIH-TTL Input High Voltage (TTL 5V tolerant) VIL-TTL V 0.4 V VDD + 2.0 V Input Low Voltage (TTL 5V tolerant) 0.8 V IIL Input Leakage Current (0.1 V < VIN < VCC) 10 µA IOL Output Leakage Current (0.1 V < VOUT < VCC) 10 µA CIN Input Capacitance 5 pF COUT Output Capacitance 5 pF CI/O I/O Capacitance 7 pF θja Thermal resistance with 0 air flow 11.2 C/W θja Thermal resistance with 1 m/s air flow 9.9 C/W θja Thermal resistance with 2 m/s air flow 8.7 C/W θjc Thermal resistance between junction and case 3.3 C/W 2.0 Table 10 - Recommended Operating Conditions 94 Zarlink Semiconductor Inc. MVTX2801 11.5 11.5.1 Data Sheet AC Characteristics and Timing Typical Reset & Bootstrap Timing Diagram S_RST# RESOUT# Tri-Stated R1 R3 Bootstrap Pins Outputs Inputs Outputs R2 Figure 6 - Typical Reset & Bootstrap Timing Diagram Symbol Parameter Min R1 Delay until RESOUT# is tri-stated R2 Bootstrap stabilization R3 RESOUT# assertion 1µs Typ Note: 10ns RESOUT# state is then determined by the external pull-up/down resistor 10µs Bootstrap pins sampled on rising edge of S_RST#1 2ms Table 11 - Reset & Bootstrap Timing 1. The T_D[15:0] pins will switch over to the LED interface functionality in 3 SCLK cycles after S_RST# goes high 95 Zarlink Semiconductor Inc. MVTX2801 11.5.2 Data Sheet Local Frame Buffer ZBT SRAM Memory Interface 11.5.2.1 Local ZBT SRAM Memory Interface A LA_CLK L1 L2 LA_D[63:0] Figure 7 - Local Memory Interface - Input setup and hold timing LA_CLK L3-max L3-min LA_D[63:0] L4-max L4-min LA_A[20:3] L6-max L6-min LA_CS[1,0]# L9-max L9-min LA_RW# Figure 8 - Local Memory Interface - Output valid delay timing (SCLK= 133MHz) Symbol Parameter Min (ns) Max (ns) Note: L1 LA_D[63:0] input set-up time 2.5 L2 LA_D[63:0] input hold time 1 L3 LA_D[63:0] output valid delay 3 5 CL = 25pf L4 LA_A[20:3] output valid delay 3 5 CL = 30pf L6 LA_CS[1:0]# output valid delay 3 5 CL = 30pf L9 LA_WE# output valid delay 3 5 CL = 25pf Table 12 - AC Characteristics - Local frame buffer ZBT-SRAM Memory Interface A 96 Zarlink Semiconductor Inc. MVTX2801 11.5.3 Data Sheet Local Switch Database SBRAM Memory Interface 11.5.3.1 Local SBRAM Memory Interface B_CLK L1 L2 B_D[31:0] Figure 9 - Local Memory Interface - Input setup and hold timing B_CLK L3-max L3-min B_D[31:0] L4-max L4-min B_A[18:2] L6-max L6-min B_ADSC# L10-max L10-min B_WE# L11-max L11-min B_OE# Figure 10 - Local Memory Interface - Output valid delay timing (SCLK= 133MHz) Symbol Parameter Min (ns) Max (ns) Note: L1 B_D[31:0] input set-up time 2.5 L2 B_D[31:0] input hold time 1 L3 B_D[31:0] output valid delay 3 5 CL = 25pf L4 B_A[18:2] output valid delay 3 5 CL = 30pf L6 B_ADSC# output valid delay 3 5 CL = 30pf L10 B_WE# output valid delay 3 5 CL = 25pf L11 B_OE# output valid delay 3 4 CL = 25pf Table 13 - AC Characteristics - Local Switch Database SBRAM Memory Interface 97 Zarlink Semiconductor Inc. MVTX2801 11.5.4 Data Sheet Media Independent Interface MII_TXCLK[3:0] M6-max M6-min G[3:0]_TXEN M7-max M7-min G[3:0] _TXD[3:0] Figure 11 - AC Characteristics - Media Independent Interface G[3:0]_RXCLK M2 G[3:0]_RXD[3:0] M3 M4 G[3:0]_CRS_DV M5 Figure 12 - AC Characteristics - Media Independent Interface (MII_TXCLK & G_RXCLK = 25MHz) Symbol Parameter Min (ns) Max (ns) Note: M2 G[3:0]_RXD[3:0] Input Setup Time 4 M3 G[3:0]_RXD[3:0] Input Hold Time 1 M4 G[3:0]_CRS_DV Input Setup Time 4 M5 G[3:0]_CRS_DV Input Hold Time 1 M6 G[3:0]_TXEN Output Delay Time 3 11 CL = 20 pF M7 G[3:0]_TXD[3:0] Output Delay Time 3 11 CL = 20 pF Table 14 - AC Characteristics - Media Independent Interface 98 Zarlink Semiconductor Inc. MVTX2801 11.5.5 Data Sheet Gigabit Media Independent Interface G[3:0]_TXCLK G12-max G12-min G[3:0]_TXD[7:0] G13-max G13-min G[3:0]_TX_EN G14-max G14-min G[3:0]_TX_ER Figure 13 - AC Characteristics- GMII G[3:0]_RXCLK G1 G2 G[3:0]_RXD[7:0] G3 G4 G[3:0]_RX_DV G5 G6 G[3:0]_RX_ER G7 G8 G[3:0]_RX_CRS Figure 14 - AC Characteristics - Gigabit Media Independent Interface (G_RCLK & G_REFCLK = 125MHz) Symbol Parameter Min (ns) G1 G[3:0]_RXD[7:0] Input Setup Times 2 G2 G[3:0]_RXD[7:0] Input Hold Times 1 G3 G[3:0]_RX_DV Input Setup Times 2 G4 G[3:0]_RX_DV Input Hold Times 1 G5 G[3:0]_RX_ER Input Setup Times 2 G6 G[3:0]_RX_ER Input Hold Times 1 G7 G[3:0]_CRS Input Setup Times 2 Max (ns) Table 15 - AC Characteristics - Gigabit Media Independent Interface 99 Zarlink Semiconductor Inc. Note: MVTX2801 Data Sheet (G_RCLK & G_REFCLK = 125MHz) G8 G[3:0]_CRS Input Hold Times 1 G12 G[3:0]_TXD[7:0] Output Delay Times 1 5 CL = 20pf G13 G[3:0]_TX_EN Output Delay Times 1 5 CL = 20pf G14 G[3:0]_TX_ER Output Delay Times 1 5 CL = 20pf Table 15 - AC Characteristics - Gigabit Media Independent Interface (continued) 11.5.6 PCS Interface G[3:0]_TXCLK G30-max G30-min G[3:0]_TXD[9:0] Figure 15 - AC Characteristics - PCS Interface G[3:0]_RXCLK1 G[3:0]_RXCLK G[3:0]_RXD[9:0] G[3:0]_RX_CRS Figure 16 - AC Characteristics - PCS Interface (G_RCLK & G_REFCLK = 125MHz) Symbol Parameter Min (ns) G21 G[3:0]_RXD[9:0] Input Setup Times ref to G_RXCLK 2 G22 G[3:0]_RXD[9:0] Input Hold Times ref to G_RXCLK 1 G23 G[3:0]_RXD[9:0] Input Setup Times ref to G_RXCLK1 2 Table 16 - AC Characteristics - PCS Interface 100 Zarlink Semiconductor Inc. Max (ns) Note: MVTX2801 Data Sheet (G_RCLK & G_REFCLK = 125MHz) G24 G[3:0]_RXD[9:0] Input Hold Times ref to G_RXCLK1 1 G25 G[3:0]_CRS Input Setup Times 2 G26 G[3:0]_CRS Input Hold Times 1 G30 G[3:0]_TXD[9:0] Output Delay Times 1 5 CL = 20pf Table 16 - AC Characteristics - PCS Interface 11.5.7 LED Interface LED_CLK LE5-max LE5-min LED_SYN LE6-max LE6-min LED_BIT Figure 17 - AC Characteristics - LED Interface Variable FREQ. Symbol Parameter Min (ns) Max (ns) LE5 LE6 LED_SYN Output Valid Delay 1 7 CL = 30pf LED_BIT Output Valid Delay 1 7 CL = 30pf Table 17 - AC Characteristics - LED Interface 101 Zarlink Semiconductor Inc. Note: MVTX2801 11.5.8 Data Sheet MDIO Input Setup and Hold Timing MDC D1 D2 MDIO Figure 18 - MDIO Input Setup and Hold Timing MDC D3-max D3-min MDIO Figure 19 - MDIO Output Delay Timing 1MHz Symbol Parameter Min (ns) D1 MDIO input setup time 10 D2 MDIO input hold time 2 D3 MDIO output delay time 1 Table 18 - MDIO Timing 102 Zarlink Semiconductor Inc. Max (ns) Note: 20 CL = 50pf MVTX2801 11.5.9 Data Sheet I2C Input Setup Timing SCL S1 S2 SDA Figure 20 - I 2C Input Setup Timing SCL S3-max S3-min SDA Figure 21 - I2C Output Delay Timing 500KHz Symbol Parameter Min (ns) S1 SDA input setup time 20 S2 SDA input hold time 1 S3 SDA output delay time 1 Max (ns) 20 Open Drain Output. Low to High transistor is controlled by external pullup resistor. Table 19 - I2C Timing 11.5.10 Serial Interface Setup Timing STROBE D4 D1 D5 D1 D2 PS_DI D2 Figure 22 - Serial Interface Setup Timing STROBE PS_DO D3-max D3-min Figure 23 - Serial Interface Output Delay Timing 103 Zarlink Semiconductor Inc. Note: CL = 30pf MVTX2801 Data Sheet (SCLK =133 MHz) Symbol Parameter Min (ns) D1 PS_DI setup time 20 D2 PS_DI hold time 10 D3 PS_DO output delay time 1 D4 Strobe low time 5µs D5 Strobe high time 5µs Table 20 - Serial Interface Timing 104 Zarlink Semiconductor Inc. Max (ns) Note: 50 CL = 100pf E1 MIN MAX A 2.20 2.46 A1 0.50 0.70 A2 1.17 REF 40.20 D 39.80 D1 34.50 REF E 40.20 39.80 E1 34.50 REF b 0.60 0.90 e 1.27 596 Conforms to JEDEC MS - 034 E e D D1 A2 NOTE: b A1 A 1. CONTROLLING DIMENSIONS ARE IN MM 2. DIMENSION "b" IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER 3. SEATING PLANE IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS. 4. N IS THE NUMBER OF SOLDER BALLS 5. NOT TO SCALE. 6. SUBSTRATE THICKNESS IS 0.56 MM Package Code ISSUE ACN DATE APPRD. Previous package codes: For more information about all Zarlink products visit our Web Site at www.zarlink.com Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink. This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request. Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system conforms to the I2C Standard Specification as defined by Philips. Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright Zarlink Semiconductor Inc. All Rights Reserved. TECHNICAL DOCUMENTATION - NOT FOR RESALE