HD155121F RF Transceiver IC for GSM and PCN Dual band cellular systems ADE-207-265A (Z) 2nd Edition May 1999 Description The HD155121F is a RF transceiver IC for GSM and PCN dual band cellular systems, and integrates most of the low power silicon functions of a transceiver. The HD155121F incorporates two bias circuits for RF LNAs, two first mixers, a second mixer, a programmable gain amplifier, and an IQ demodulator for the receiver, and an IQ modulator and offset PLL for the transmitter. Also, on chip are dividers for the phase splitter. Moreover the HD155121F includes control circuits to implement power saving modes. These functions can operate down to 2.7 V and are housed in a 48-pin LQFP SMD package. Hence the HD155121F can form a small size transceiver handset for dual band by adding a dual PLL frequency synthesizer IC, power amplifiers and some external components. The HD155121F is fabricated using a 0.6 µm double-polysilicon Bi-CMOS process. Functions Receiver(Rx) • • • • • Low Noise Amplifier (LNA) bias circuit First mixer IF amplifier and second mixer Programmable Gain Amplifier (PGA) IQ demodulator with 90 degree phase splitter Transmitter(Tx) • IQ modulator with 90 degree phase splitter • Offset PLL Down converter Phase comparator TXVCO driver Others • IF dividers • Power saving control circuit • IFVCO HD155121F Features • Highly integrated RF processing for hand-portables • Operating supply voltage VCC : 2.7 to 3.6 V Phase comparator and TXVCO driver circuit : 2.7 to 5.25 V • Current consumption Rx mode (GSM) : 53 mA + LNA current Rx mode (PCN) : 52 mA + LNA current Tx mode (GSM) : 36 mA Tx mode (PCN) : 37 mA Idle mode :1 µA • Operating temperature : –20 to +75 degree • LQFP 48pin SMD (Low Profile Quad Flat Package) • Wide operating frequencies Rx RF GSM : 925 - 960 MHz PCN : 1805 - 1880 MHz 1st IF : 225 MHz 2nd IF : 45 MHz Tx RF GSM : 880 - 915 MHz PCN : 1710 - 1785 MHz IF GSM : 270 MHz PCN : 135 MHz • Offset PLL architecture for Transmitter • High dynamic range Programmable Gain Amplifier (PGA) 2 HD155121F MIX1IN2 MIX1INB2 POONTX POONRX2 POONRX1 MIX1OUTB MIX1OUT VCCMIX1 GNDMIX1 RFLOIN VCCDIV GNDDIV Pin Arrangement 48 47 46 45 44 43 42 41 40 39 38 37 36 4 33 IFVCOI RFIN2 5 32 VCCIF VCCPLL 6 31 GNDIF GNDPLL 7 30 IFIN VCOIN2 8 29 IFINB VCOIN1 9 28 LE VCCCOMP 10 27 SDATA PLLOUT 11 26 CLK ICURAD 12 13 15 16 17 18 19 20 21 22 23 25 24 IFLO MIX2O MIX2OB 14 IOUT RFIN1 IOUTB IFVCOO QOUT 34 QOUTB 3 GNDIQ RFOUT VCCIQ BAND MODLB 35 IIN 2 IINB MIX1IN1 QIN 1 QINB MIX1INB1 (Top View) 3 HD155121F Pin Description Pin No. Pin Name Description 1 MIX1INB1 Negative input for Mixer1 (GSM) 2 MIX1IN1 Positive input for Mixer1 (GSM) 3 RFOUT Bias for the collector of LNA transistor 4 RFIN1 Bias for the base of LNA transistor (GSM) 5 RFIN2 Bias for the base of LNA transistor (PCN) 6 VCCPLL VCC for OPLL 7 GNDPLL GND for OPLL 8 VCOIN2 TxVCO signal input (PCN) 9 VCOIN1 TxVCO signal input (GSM) 10 VCCCOMP VCC for phase comparator 11 PLLOUT Current output to control and modulate the TxVCO 12 ICURAD Phase comparator output current setting 13 QINB Negative input of Q signal for modulator 14 QIN Positive input of Q signal for modulator 15 IINB Negative input of I signal for modulator 16 IIN Positive input of I signal for modulator 17 MODLB VCC for modulator load bias 18 VCCIQ VCC for IQ modulator and demodulator 19 GNDIQ GND for IQ modulator and demodulator 20 QOUTB Negative output of Q signal for modulator 21 QOUT Positive output of Q signal for modulator 22 IOUTB Negative output of I signal for modulator 23 IOUT Positive output of I signal for modulator 24 MIX2OB Negative output for Mixer2 25 MIX2O Positive output for Mixer2 26 CLK Clock for serial data 27 SDATA Serial data for Gain control 28 LE Load enable for serial data 29 IFINB Negative input for Mixer2 30 IFIN Positive input for Mixer2 31 GNDIF GND for Mixer2 and PGA 32 VCCIF VCC for Mixer2 and PGA 33 IFVCOI Base of IFVCO transistor 34 IFVCOO Emitter of IFVCO transistor 4 HD155121F Pin Description (cont) Pin No. Pin Name Description 35 BAND Band control (Low: GSM, High: PCN) 36 IFLO Output of IFVCO or Input of IF Local 37 GNDDIV GND for Divider and IFVCO 38 VCCDIV VCC for Divider and IFVCO 39 RFLOIN Input for RF Local 40 GNDMIX1 GND for Mixer1 41 VCCMIX1 VCC for Mixer1 42 MIX1OUT Positive output for Mixer1 (GSM/PCN) 43 MIX1OUTB Negative output for Mixer1 (GSM/PCN) 44 POONRX1 Power save control for LNA and Mixer1 45 POONRX2 Power save control for Mixer2, PGA and demodulator 46 POONTX Power save control for modulator and OPLL 47 MIX1INB2 Negative input for Mixer1 (PCN) 48 MIX1IN2 Positive input for Mixer1 (PCN) 5 6 from Antenna ICURAD PLLOUT VCCCOMP VCOIN1 RICURAD Tx.VCO2 Tx.VCO1 902MHz VCOIN2 12 11 10 9 8 7 6 5 13 Current mode driver 270MHz (135MHz) Vref (PLL) 14 15 1172MHz (1580/ 1575MHz) Vref (LNA) 16 17 Vref (Mod) GSM: 270MHz PCN: 135MHz 270MHz (135MHz) 18 19 Vref (Demod) 45MHz (45MHz) 20 39 21 Vref (PGA) 22 1/2 (90deg) from Band SW Vref (Div.Rx) (Div.Tx) 40 Vref (IF) 45MHz (45MHz) 41 QOUT IINB QIN QINB 1/2 to Base band IOUTB from Base band 42 (1580/1575MHz) 1172MHz Vref (Mix1) 43 540 MHz 37 23 24 Serial interface 1/2 (90deg) 1/6 Vref (IFVCO) 38 25 26 27 28 29 30 31 32 33 34 35 36 45MHz MIX2O CLK SDATA LE IFINB IFIN GNDIF VCCIF IFVCOI IFVCOO BAND IFLO 225MHz (225MHz) from System controller (1710MHz) GNDPLL VCCPLL RFIN2 4 MIX1IN2 RFIN1 MIX1INB2 LNA Bias circuit POONTX 3 POONRX2 RFOUT POONRX1 44 MIX1OUTB 45 MIX1OUT 46 VCCMIX1 47 GNDMIX1 48 RFLOIN 2 1 VCCDIV 1172MHz (Rx: 1580MHz, Tx: 1575MHz) MIX1IN1 MIX1INB1 from VCO 225MHz (225MHz) GNDDIV (1805MHz) 947MHz 947MHz (1805MHz) from System controller Tune HD155121F Block Diagram from System controller MIX2OB IOUT QOUTB GNDIQ VCCIQ MODB IIN RF filter PLL2 880 to 915 MHz PA Module HD155017T 1710 to 1785 MHz LPF LPF RF SAW filter RF SAW filter RF VCO PLL1 bias circuit LNA bias circuit LNA Dual synth. 1805 to 1880 MHz S/W RF filter 925 to 960 MHz 1710 to 1785 MHz Loop filter GSM: 540 MHz PCN: 540 MHz IFVCO ÷6 GSM: 540 MHz PCN: 270 MHz Phase Detector I&Q Demo. I&Q Mod GSM: 270 MHz PCN: 135 MHz 90 deg Shift ÷2 90 deg Shift ÷2 45 MHz Serial data interface PGA HD155121F 45 MHz LC GSM: 270 MHz PCN: 135 MHz ÷2 270 MHz Mixer2 GSM: 1150 to 1185 MHz PCN : Rx. 1580 to 1655 MHz /Tx. 1575 to 1650 MHz IF SAW filter 225 MHz 880 to 915 MHz Mixer1 Mixer1 I I Q B.B. Block Q HD155121F Configuration 7 HD155121F Functional Operation The HD155121F has been designed from system stand point and incorporated a large number of the circuit blocks necessary in the design of a digital cellular handset. Receiver Operation The HD155121F incorporates two LNA bias circuits for external RF transistors, whose NF and power gain can be better selected. This circuit amplifies the RF signal after selection by the antenna filter before the signal enters the first mixer section. The RF signal is combined with a local oscillator (LO) signal to generate a wanted first IF signal in the 130 - 300 MHz range. The first mixer circuit uses a double-balanced Gilbert cell architecture, which has open collector differential outputs. If, at 225 MHz, a 800 Ω LC load is connected to the mixer’s outputs then a SSB NF of 9.0 dB (GSM), 9.1 dB (PCN) with a gain of 9.5 dB (GSM), 8.5 dB (PCN) is realizable. The corresponding input compression point is –10.5 dBm (GSM), –12.5 dBm (PCN), which allows the device to be used within a GSM and EGSM and PCN system. A filter is used after the first mixer to provide image rejection and the conditioned signal is then passed through an intermediate amplifier, before being down converted to a second IF in the range of 26 - 60 MHz. The second mixer can generate a 45 MHz second IF, if a 270 MHz second local signal is used. The second mixer also uses the Gilbert cell architecture, but with internal resistive differential outputs of 300 Ω. If amplifier and second mixer has a SSB NF of 6.0 dB, a power gain of 13 dB and a input compression point of –22 dBm. In order to improve the blocking characteristics of the device an external LC resonator across the differential outputs of the second mixer is recommended. First mixer and second mixer can switch the power gain. Switching gain step of first mixer is 12 dB, and such step of second mixer is 16 dB. The signal is then passed to the PGA circuit, which has a dynamic range of more than 80 dB (–42 dB - +56 dB typ.) and is controlled by digital serial data, which is generated by the microprocessor. This gain step is 2 dB. The signal is then down converted by a demodulator to I and Q. Internal divider circuits convert the IFLO signal to the same frequency as the second IF before passing this local signal through a phase splitter / shifter in order to generate the in phase and quadrature phase IQ components. The phase accuracy of the IQ demodulator is less than +/–1 degree and the amplitude mismatch is less than +/–0.5 dB. In order to accommodate different baseband interfaces the HD155121F IQ differential outputs have a voltage swing of 1.6 Vpp and DC offset of less than +/–60 mV. Within each output stage a second order Butterworth filter (fc = 210 kHz) is used to improve the blocking performance of the device. In order to allow flexibility in circuit implementation the HD155121F can configured to use either a singleended or balanced external circuitry and components. 8 HD155121F Transmitter Operation The transmitter chain converts differential IQ baseband signals to a suitable format for transmission by a power amplifier. The common mode voltage range of the modulator inputs is 0.8 V to 1.2 V and they have 2.0 Vpp differential swing. The modulator circuit uses double-balanced mixers for the I and Q paths. The Local signals are generated by dividing the IFLO signals by 2, and then passed to the modulator through a phase splitter / shifter. The IF signals generated are then summed to produce a single modulated IF signal which is amplified and fed into the offset PLL block. Carrier suppression due to the mixer circuit is better than 31 dBc. If the common mode DC voltage of the I and Q inputs is adjusted, carrier suppression is better than 40 dBc easily. Side band suppression is better than 35 dBc without adjustment. Within the offset PLL block there are a down converter, a phase comparator and a VCO driver. The down converter mixes the first local signal and the TXVCO signal to create a reference local signal for use in the offset PLL circuit. The phase comparator and the VCO driver generate an error current, which is proportional to the phase differential between the reference IF and the modulated IF signals. This current is used in a second order loop filter to generate a voltage, which in turn modulates the TXVCO. In order to optimize the PLL loop gain, the error current value can be modified by changing the value of an external resistor - ICURAD. In order to accommodate various control range of TXVCOs, the offset PLL circuit has been designed to operate with a supply voltage up to 5.25 V. 9 HD155121F Operation Modes The HD155121F has necessary control circuitry to implement the necessary states within the dual band system. Also provided is a power saving mode which reduces the current consumption of the device by powering down unnecessary function blocks. Three pins are assigned for power saving mode control, POONRX1, POONRX2 and POONTX. Also one pin is assigned for switching operational band, BAND. Table 1 shows the relationship between the pins and the required operating mode. These pins are controlled by the system controller. As per GSM requirements the Tx and Rx sections do not operate simultaneously. For the receiver there is a calibration mode in which the LNA bias circuit and first mixer are switched off. During this period the gain of the PGA can be adjusted. Also the DC offsets of the IQ demodulator are measured and subsequently canceled. In order to change between the Rx and Tx modes a state called “warm-up” is used to ensure that the local signals are not unduly affected. This method of switching between Tx and Rx ensures that lock is achieved first time. Power saving is implemented through use of the idle mode. All function blocks of the HD155121F are switched off until such time as the system controller commands the device to power up again. Table 1 Operating Modes with Power Saving Mode Receive Calibrate Warm-up Transmit Band GSM PCN — — GSM PCN — POONRX1 (44) H H L L L L H POONRX2 (45) H H H L L L L POONTX (46) L L L L H H Don’t care BAND (35) L H Don’t care Don’t care L H Don’t care LNA bias (GSM) ON OFF OFF OFF OFF OFF OFF LNA bias (PCN) OFF ON OFF OFF OFF OFF OFF 1st Mixer (GSM) ON OFF OFF OFF OFF OFF OFF 1st Mixer (PCN) OFF ON OFF OFF OFF OFF OFF 2nd Mixer ON ON ON OFF OFF OFF OFF PGA ON ON ON OFF OFF OFF OFF I/Q demodulator ON ON ON OFF OFF OFF OFF Offset PLL OFF OFF OFF OFF ON ON OFF Rx block Tx block Idle I/Q modulator OFF OFF OFF OFF ON ON OFF Oscillator IF VCO ON ON ON ON ON ON OFF block Divider (Rx) ON ON ON OFF OFF OFF OFF Divider (Tx) OFF OFF OFF OFF ON ON OFF 1st local buffer ON ON ON ON ON ON OFF IF local buffer ON ON ON ON ON ON OFF 53 mA 52 mA 34 mA 9.0 mA 36 mA 37 mA 1 µA Total current 10 HD155121F Absolute Maximum Ratings Any stress in excess of the absolute maximum ratings can cause permanent damage to the HD155121F. Item Symbol Rating Unit Power supply voltage (VCC) VCC –0.3 to +4.0 V Power supply voltage (VCCCOMP) VCCCOMP –0.3 to +5.5 V Pin voltage VT –0.3 to VCC+0.3 (4.0 Max) V Maximum power dissipation PT 400 mW Operating temperature Topr –20 to +75 °C Storage temperature Tstg –55 to +125 °C 11 HD155121F Electrical Characteristics DC Specifications (VCC = 3 V, Ta = 25°C unless otherwise specified.) Item Mode Min Typ Max Unit Test Condition Note Power supply voltage (VCC) 2.7 3.0 3.6 V Power supply voltage (VCCCOMP) 2.7 3.0 5.25 V GSM — 53.0 74.0 mA VCC = 3.0V, VCCCOMP = 3.0V, 2 PCN — 52.0 73.0 mA Mixer1, 2 = Gain1, PGA = bitNo26 GSM — 36.0 50.0 mA VCC = 3.0V, VCCCOMP = 3.0V 2 PCN — 37.0 52.0 mA Power supply current (Warm-up) — 9.0 12.5 mA VCC = 3.0V, VCCCOMP = 3.0V 2 Power saving mode supply current — 1.0 10.0 µA VCC = 3.0V, VCCCOMP = 3.0V High level = VCC, Low level = 0V at mode control pin and serial data pin (POONRX1, RX2, TX, BAND, CLK (no clock signal), SDATA, LE) 2 Power up time (Rx.) — 1.5 5.0 µsec from PS mode 1 Power up time (Tx.) — 0.2 0.5 µsec from PS mode 1 Power on control voltage range (POONRX1, POONRX2, POONTX) 2.3 — — V Power off control voltage range (POONRX1, POONRX2, POONTX) — — 0.8 V I/Q common-mode output voltage 1.15 1.35 1.55 V I/Q maximum output swing (Single ended) 0.8 1.06 — Vp-p VIOUT, VIOUTB, VQOUT, VQOUTB I/Q output DC offset voltage –60 0 60 mV VIOUTDC – VIOUTBDC, VQOUTDC, VQOUTBDC I/Q common-mode input voltage 0.8 1.0 1.2 V I/Q input swing (Single ended) 0.8 1.0 1.2 Vp-p Serial data VH (CLK, SDATA, LE) 2.3 — — V Serial data VL (CLK, SDATA, LE) — — 0.8 V Band control VH (BAND) 2.3 — — V Band control VL (BAND) — — 0.8 V Input current (POONRX1, POONRX2, POONTX, BAND, CLK, SDATA, LE) –10 0 10 µA Power supply current (Rx.) Power supply current (Tx.) Note: 12 1 VIIN, VIINB, VQIN, VQINB 1. These values are not tested in mass production. 2. Power supply current does not include the LNA bias current. 1 HD155121F AC Specifications (VCC = 3 V, Ta = 25°C unless otherwise specified.) • LNA Bias circuit specifications Item Mode Min Typ Max Unit LNA transistor bias current GSM 4.7 5.6 — mA PCN 4.7 5.6 — mA GSM 925 — 960 MHz PCN 1805 1880 MHz GSM — 19.4 — dB RF = 940 MHz PCN — 13.4 — dB RF = 1842 MHz GSM — 1.6 — dB RF = 940 MHz PCN — 1.6 — dB RF = 1842 MHz GSM — –6.0 — dBm PCN — –2.0 — dBm GSM — 13 — dBm PCN — 11 — dBm GSM — –14.5 — dBm PCN — –9.5 — dBm GSM — 3.9 — dBm PCN — 2.9 — dBm GSM — 50 — Ω Output (GSM RF) PCN — 50 — Ω Output (PCN RF) GSM — 50 — Ω Input (GSM RF) PCN — 50 — Ω Input (PCN RF) Frequency Power gain Noise figure 3rd order input intercept point 3rd order output intercept point 1dB input compression point 1dB output compression point Output (RF) Z Input (RF) Z Note: Test Condition Note 1 1 1 1 1 1 1 1 1 1. These AC characteristics are shown for reference only and do not form part of the HD155121F component specification. 13 HD155121F • Mixer1 specifications (Differential output load between pin42 and pin43 = 800 Ω) Item Mode Min Typ Max Unit Frequency (RF) GSM 925 — 960 MHz PCN 1805 — 1880 MHz GSM 1125 — 1260 MHz PCN 1505 — 1680 MHz Frequency (IF) — 200 225 300 MHz RFLO input level — –8.0 — — dBm Frequency (LO) Conversion gain 1 Conversion gain 2 Test Condition 1 1 1 GSM 6.5 9.5 12.5 dB RF = 940MHz, LO = 1165MHz, IF = 225MHz PCN 5.5 8.5 11.5 dB RF = 1842MHz, LO = 1617MHz, IF = 225MHz GSM –5.5 –2.5 0.5 dB RF = 940MHz, LO = 1165MHz, IF = 225MHz PCN –6.5 –3.5 –0.5 dB RF = 1842MHz, LO = 1617MHz, IF = 225MHz GSM — 9.0 10.5 dB RF = 940MHz, LO = 1165MHz, IF = 225MHz PCN — 9.1 10.6 dB RF = 1842MHz, LO = 1617MHz, IF = 225MHz GSM — 15.0 16.5 dB RF = 940MHz, LO = 1165MHz, IF = 225MHz PCN — 16.0 17.5 dB RF = 1842MHz, LO = 1617MHz, IF = 225MHz GSM –3.0 –1.0 — dBm RF1 = 940.8MHz, RF2 = 941.6MHz, LO = 1165MHz, IF = 225MHz PCN –6.0 –4.0 — dBm RF1 = 1842.8MHz, RF2 = 1843.6MHz, LO = 1617MHz, IF = 225MHz GSM 1.0 3.0 — dBm RF1 = 940.8MHz, RF2 = 941.6MHz, LO = 1165MHz, IF = 225MHz PCN –3.0 –1.0 — dBm RF1 = 1842.8MHz, RF2 = 1843.6MHz, LO = 1617MHz, IF = 225MHz GSM 6.5 8.5 — dBm RF1 = 940.8MHz, RF2 = 941.6MHz, LO = 1165MHz, IF = 225MHz PCN 2.5 4.5 — dBm RF1 = 1842.8MHz, RF2 = 1843.6MHz, LO = 1617MHz, IF = 225MHz GSM –1.5 0.5 — dBm RF1 = 940.8MHz, RF2 = 941.6MHz, LO = 1165MHz, IF = 225MHz PCN –6.5 –4.5 — dBm RF1 = 1842.8MHz, RF2 = 1843.6MHz, LO = 1617MHz, IF = 225MHz 1dB input GSM –12.5 –10.5 — dBm RF = 940MHz, LO = 1165MHz, IF = 225MHz compression point 1 PCN –14.5 –12.5 — dBm RF = 1842MHz, LO = 1617MHz, IF = 225MHz 1dB input GSM –8.5 –6.5 — dBm RF = 940MHz, LO = 1165MHz, IF = 225MHz compression point 2 PCN –10.5 –8.5 — dBm RF = 1842MHz, LO = 1617MHz, IF = 225MHz 1dB output GSM –4.0 –2.0 — dBm RF = 940MHz, LO = 1165MHz, IF = 225MHz compression point 1 PCN –7.0 –5.0 — dBm RF = 1842MHz, LO = 1617MHz, IF = 225MHz 1dB output GSM –12.0 –10.0 — dBm RF = 940MHz, LO = 1165MHz, IF = 225MHz compression point 2 PCN –15.0 –13.0 — dBm RF = 1842MHz, LO = 1617MHz, IF = 225MHz Noise figure 1 Noise figure 2 3rd order input intercept point 1 3rd order input intercept point 2 3rd order output intercept point 1 3rd order output intercept point 2 Note: 14 Note 1. These values are not tested in mass production. 2. The loss (2.2 dB) of test circuit at Mixer1 output is calculated. 2 2 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 2 2 1, 2 1, 2 HD155121F • Mixer2 specifications Item Min Typ Max Unit Frequency (IF1) 200 225 300 MHz Frequency (LO2) 240 270 360 MHz Frequency (IF2) 40 45 60 MHz IFLO input level –10 — — dBm Conversion gain 1 10.5 13.0 15.5 dB IF1 = 225MHz, IFLO = 540MHz, IF2 = 45MHz 2 Conversion gain 2 –5.5 –3.0 –0.5 dB IF1 = 225MHz, IFLO = 540MHz, IF2 = 45MHz 2 Noise figure 1 — 6.0 7.5 dB IF1 = 225MHz, IFLO = 540MHz, IF2 = 45MHz 1, 2 Noise figure 2 — 12.0 13.5 dB IF1 = 225MHz, IFLO = 540MHz, IF2 = 45MHz 1, 2 3rd order input intercept point 1 –15.0 –13.0 — dBm IF1 = 225.8MHz, IF2 = 226.6MHz, LO = 540MHz, 2ndIF = 45MHz 1, 2 3rd order input intercept point 2 –11.0 –9.0 — dBm IF1 = 225.8MHz, IF2 = 226.6MHz, LO = 540MHz, 2ndIF = 45MHz 1, 2 3rd order output intercept point 1 –2.0 0.0 — dBm IF1 = 225.8MHz, IF2 = 226.6MHz, LO = 540MHz, 2ndIF = 45MHz 1, 2 3rd order output intercept point 2 –14.0 –12.0 — dBm IF1 = 225.8MHz, IF2 = 226.6MHz, LO = 540MHz, 2ndIF = 45MHz 1, 2 1dB input compression point 1 –24.0 –22.0 — dBm IF1 = 225MHz, IFLO = 540MHz, IF2 = 45MHz 2 1dB input compression point 2 –21.0 –19.0 — dBm IF1 = 225MHz, IFLO = 540MHz, IF2 = 45MHz 2 1dB output compression point 1 –12.0 –10.0 — dBm IF1 = 225MHz, IFLO = 540MHz, IF2 = 45MHz 1, 2 1dB output compression point 2 –24.0 –22.0 — dBm IF1 = 225MHz, IFLO = 540MHz, IF2 = 45MHz 1, 2 Isolation 50 — — dB between Mixer1 output and Mixer2 input 1, 2 Note: Mode Test Condition Note LO2 = IFLO/2 1 1 1 1. These values are not tested in mass production. 2. The loss (3.6 dB) of test circuit at Mixer2 output is calculated. 15 HD155121F • PGA and IQ Demodulator specifications (terminated by 10 kΩ at IQ demodulator output) Item Min Typ Max Unit Input frequency 40 45 60 MHz 1 Gain range — 98 — dB 1 Gain linearity –0.8 — 0.8 dB Gain step — 2 — dB Noise figure 1 — 10.9 14 dB IF2 = 45MHz, bitNo46 1, 2 Noise figure 2 — 21.2 24 dB IF2 = 45MHz, bitNo26 1, 2 Noise figure 3 — 53.4 60 dB IF2 = 45MHz, bitNo6 1, 2 Gain 1 47.0 51.5 56.0 dB IF2 = 45MHz, bitNo46 2 Gain 2 7.0 11.5 16.0 dB IF2 = 45MHz, bitNo26 2 Gain 3 –33.0 –28.5 –24.0 dB IF2 = 45MHz, bitNo6 2 i/p CP 1 –70.5 –66 — dBm IF2 = 45MHz, bitNo46 2 i/p CP 2 –37 –34 — dBm IF2 = 45MHz, bitNo26 2 i/p CP 3 –14 –11 — dBm IF2 = 45MHz, bitNo6 2 IQ phase accuracy — 0.2 1.0 deg. Baseband = 67.7kHz IQ amplitude mismatch — 0.1 0.5 dB Baseband = 67.7kHz Output DC offset voltage 0 — | 60 | mV | IOUT–IOUTB | and | QOUT–QOUTB | Load out = 10kΩ IQ maximum output swing (Single ended) 0.8 1.06 — Vp-p Baseband = 67.7kHz IOUT, IOUTB, QOUT, QOUTB Load out = 10kΩ I/Q common mode output voltage 1.15 1.35 1.55 V Note: 16 Mode 1. These values are not tested in mass production. 2. The loss (3.6 dB) of test circuit at PGA input is calculated. Test Condition (in any 20dB window) Note 1 1 2 HD155121F • IQ Modulator and Offset PLL specifications (IFLO is supplied by signal generator equipment) Item Mode Min Typ Max Unit Frequency (RF) GSM 880 — 915 MHz PCN 1710 — 1785 MHz GSM 1150 — 1185 MHz PCN 1530 — 1665 MHz GSM — 270 — MHz PCN — 135 — MHz RFLO input level –8 — — dBm IFLO input level –20 –10 — dBm VCOIN1 & VCOIN2 input level –25 –15 –10 dBm Carrier suppression ratio 31 40 — dBc All ‘1’ GMSK (Differential encode: off) (Baseband = 67.7kHz) Side-band suppression ratio 35 40 — dBc I/Q input swing = 1.0Vp-p, I/Q common mode input voltage = 1.0Vdc GSM — 1.0 2.5 RMS 200kHz BW GSM — 3.0 7.5 peak 200kHz BW PCN — 1.0 2.4 RMS 200kHz BW PCN — 3.0 7.0 peak 200kHz BW GSM — –34.0 — dB 200kHz offset PCN — –34.5 — dB 30kHz bandwidth Frequency (LO) Frequency (IF) Phase accuracy Modulation spectrum Test Condition 1 1 1 Spectrum analyzer condition GSM — –68.0 — dB 400kHz offset Detector mode: positive peak PCN — –67.0 — dB 30kHz bandwidth GSM — –71.0 — dB 600kHz to 1.8MHz offset PCN — –70.0 — dB 30kHz bandwidth GSM — –71.5 — dB 1.8MHz to 3MHz offset PCN — –72.0 — dB 100kHz bandwidth GSM — –74.0 — dB 3MHz to 6MHz offset PCN — –74.0 — dB 100kHz bandwidth GSM — –76.0 — dB 6MHz upward offset PCN — –76.0 — dB 100kHz bandwidth — 43 — dB Isolation of the 1st local input to TxVCO input Note 1 1 1 1 1 1 1 1 IQ input swing (Single ended) 0.8 1.0 1.2 Vp-p IIN, IINB, QIN, QINB 1 I/Q common mode input voltage 0.8 1.0 1.2 V IIN, IINB, QIN, QINB 1 PLLOUT output current ratio — 1:0.5 — IPLLOUT GSM : IPLLOUT PCN 1 Phase detector offset current ratio 0.30 0.35 0.45 offset current / output current IIN = 1.5V (DC), IINB = 0.5V (DC) QIN = 1.5V (DC), QINB = 0.5V (DC) 1 Note: 1. These values are not tested in mass production. 17 HD155121F • IQ Modulator and Offset PLL specifications (IFLO is supplied by signal generator equipment) (cont) Item Mode Min Typ Max Unit Test Condition Note Tx noise in Rx band GSM — –155.1 — dBc/Hz 925MHz to 935MHz - 10MHz up from Txband 1 GSM — –164.1 — dBc/Hz 935MHz to 960MHz - 20MHz up from Txband PCN — –156 — dBc/Hz 1805MHz - 20MHz up from Txband PCN — –162 — dBc/Hz 1850MHz - 65MHz up from Txband GSM — 35 80 µsec PCN — 65 80 µsec Lock up time Note: 1 1. These values are not tested in mass production. • IFVCO specifications Item Bias current 18 Mode Min Typ Max Unit 0.9 2.0 2.5 mA Test Condition HD155121F Rx Gain Control Stage The PGA amplifier of the HD155121F is the main Rx gain control stage. However, Mixer1 and Mixer2 gain level can switched as an optional function in order to optimize system performance. Mixer1 LNA Mixer2 bias circuit I&Q Demo. PGA Mixer1 I Q LNA bias circuit Decoder CLK (26) SDATA (27) LE (28) X7 X6 X5 X4 X3 X2 X1 X0 Serial data X7 : for Mixer1 gain X6 : for Mixer2 gain X5 : Bit allocation X4 : X3 : for PGA gain X2 : X1 : X0 : Figure 1 Table 2 First Mixer Gain Control Table (as optional function) Item Band Gain (typ) X7 Gain 1 (normal gain) GSM 9.5 dB 0 PCN 8.5 dB 0 GSM –2.5 dB 1 PCN –3.5 dB 1 Gain 2 (low gain) Table 3 Second Mixer Gain Control Table (as optional function) Item Gain (Typ) X6 Gain 1 (normal gain) 13.0 dB 0 Gain 2 (low gain) –3.0 dB 1 19 HD155121F Table 4 bitNo 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 20 PGA and IQ Demodulator Block Gain Control Gain (dB) (Typ) 57.5 55.5 53.5 51.5 49.5 47.5 45.5 43.5 41.5 39.5 37.5 35.5 33.5 31.5 29.5 27.5 25.5 23.5 21.5 19.5 17.5 15.5 13.5 11.5 9.5 7.5 5.5 3.5 1.5 −0.5 −2.5 −4.5 −6.5 −8.5 −10.5 −12.5 −14.5 −16.5 −18.5 −20.5 −22.5 −24.5 −26.5 −28.5 −30.5 −32.5 −34.5 −36.5 −38.5 −40.5 X5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit Allocation X3 X2 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 X1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 X0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 HD155121F Serial Data Interface tcyc tsule CLK MSB SDATA tstup thld X7 LSB X6 X5 X4 X3 X2 X1 X0 LE twle Figure 2 Three-Wire Bus Timing Diagram Serial Data Interface Specifications (VCC = 3 V, Ta = 25°C unless otherwise specified) Item Symbol Min Typ Max Unit Cycle time tcyc 50 — — nsec 1 Setup time tstup 10 — — nsec 1 Hold time thld 10 — — nsec 1 LE setup time tsule 25 — — nsec 1 LE width twle 25 — — nsec 1 Note: Test Condition Note 1. These values are not tested in mass production. 2. User can program the data for the PGA, while in any state. 21 22 390 33 6800p QIN TX VCO1 560p QINB 1000p MIX1INB2 MURATA MQE9P7-897 Kv=30MHz/V 4 3 OUT VCC 5 2 GND GND 6 MOD CON 1 IIN 10 IINB VCCVCO1 POONTX 100 VCCIQ 68 POONRX2 QIN IIN QINB IINB 0 0 0 0 VCC 0 0 0 0 QOUT IOUT QOUTB IOUTB 1000p 36 35 34 33 32 31 30 29 28 27 26 25 1000p 47 1000p 10k 10k 10k 10k 1000p 1000p UHF LO VCC INPUT(J10) MIX2 OUTPUT /PGA INPUT(J1) 1000p MIX2O CLK SDATA LE IFINB IFIN GNDIF VCCIF IFVCOI IFVCOO BAND IFLO 1000p VCC TOKO 617DB-1018 4 3 2 1 5 100 GNDIQ TX_VCO1 OUTPUT (J12) MODLB 33p IOUTB TX VCO2 QOUTB 1p QOUT VCCMIX1 33p GNDMIX1 24 23 22 21 20 19 18 17 16 15 14 13 390 1000p IOUT MURATA MQE9P7-1747 Kv=47MHz/V 4 3 OUT VCC 5 2 GND GND 6 MOD CON 1 22k HD155121F 100 ICURAD MIX2OB VCCDIV 10 68 33p RFLOIN 100 1p PLLOUT VCCCOMP VCOIN1 VCOIN2 GNDPLL VCCPLL RFIN2 RFIN1 0.5p 220n (Q>40) GNDDIV VCCVCO2 33p 1000p no fit 10p RFOUT MIX1IN1 MIX1INB1 POONRX1 TX_VCO2 OUTPUT (J14) VCCCOMP 1000p no fit 1 2 3 4 5 6 7 8 9 10 11 12 1000p MIX1OUTB 1p 2.7n 47p 10p 4.7n 2p 0.1µ MIX1OUT VCC 0 10p 10k 3.3n no fit 10k 47p 6p MIX1IN2 DCS LNA RFIN(J9) 1p 2p 6.8n Siemens: BFP420 0 22p 12n MIX1 IF OUTPUT(J6) 37 38 39 40 41 42 43 44 45 46 47 48 DCS LNA RFOUT(J8) GSM LNA RFIN(J4) 10n 820 Siemens: BFP420 2p 2p POONRX2 POONTX POONRX1 TOKO 617PT-1206 5 3 2 4 1 GSM LNA RFOUT(J2) GSM MIX1 RFIN(J3) 3p DCS MIX1 RFIN(J7) 8p 100n 8p no fit 15n no fit no fit no fit 0 0 0 1000p no fit no fit no fit no fit 4p 1000p IOUT IOUTB QOUT MIX2 IF INPUT(J5) BAND VCC VTUNE VHS LO IN/OUT(J11) HD155121F Test Circuit HD155121F Typical Performance Power Supply Current Typical Performance ICC [mA] A VCC = 3.0V 6 10 17 18 32 38 41 42 43 LNA bias current [mA] = (Vb − Va) / 10Ω no fit 10p b 3 10 a + − Rx Tx POONRX1 44 High Low POONRX2 45 High Low POONTX 46 Low High 4 4.7k for GSM no fit b Active bias circuit 10p + − SDATA 27 a Bit number 26 CLK 26 5 4.7k TRS: Siemens BFP420 High for PCN Low for GSM LE 28 10 for PCN BAND 35 7 19 31 37 40 10p Unit: R : Ω C:F Figure 3 Power supply current does not include the LNA bias current calculated by below formula. Power supply current [mA] = ICC [mA] – LNA Bias current [mA] 23 HD155121F Power Supply Current Typical Performance (cont) Receive mode Power supply current vs. VCC and Temperature GSM mode, Gain1 (Normal gain), Bit No.26 Receive mode Power supply current vs. VCC and Temperature PCN mode, Gain1 (Normal gain), Bit No.26 70 70 65 Ta=−40°C Ta=−25°C Ta=27°C Ta=85°C Ta=100°C Operating voltage range Power supply current (mA) Power supply current (mA) Operating voltage range 60 55 50 45 40 2 2.5 3 3.5 4 VCC (V) 4.5 65 60 55 50 45 40 2 5 Transmit mode Power supply current vs. VCC and Temperature GSM mode 50 Ta=−40°C Ta=−25°C Ta=27°C Ta=85°C Ta=100°C 3.5 4 VCC (V) Operating voltage range Power supply current (mA) Power supply current (mA) 3 4.5 5 55 Operating voltage range 24 2.5 Transmit mode Power supply current vs. VCC and Temperature PCN mode 55 45 40 35 30 25 2 Ta=−40°C Ta=−25°C Ta=27°C Ta=85°C Ta=100°C 2.5 3 3.5 4 VCC (V) 4.5 5 50 Ta=−40°C Ta=−25°C Ta=27°C Ta=85°C Ta=100°C 45 40 35 30 25 2 2.5 3 3.5 4 VCC (V) 4.5 5 HD155121F LNA Bias Circuit Typical Performance VCC = 3.0V 6 17 18 32 38 41 42 43 Bias current [mA] = (Vb − Va) / 10Ω no fit 10p b 3 + − 10 a POONRX1 44 High POONRX2 45 High POONTX 46 Low 4 4.7k for GSM no fit b Active bias circuit 10p + − High for PCN Low for GSM LE 28 10 SDATA 27 a 4.7k all bit = 0 (no care) CLK 26 5 7 19 31 37 40 TRS: Siemens BFP420 10p Unit: R : Ω C:F Figure 4 Bias current vs. VCC and Temperature 6.4 Operating voltage range Bias current (mA) @Ext. TRS for PCN BAND 35 6.2 6.0 Ta=−40°C Ta=−25°C Ta=27°C Ta=85°C Ta=100°C 5.8 5.6 5.4 5.2 5.0 2 2.5 3.5 3 VCC (V) 4 4.5 25 HD155121F Mixer1 Typical Performance TOKO 617PT-1206, insertion loss ≅ 2.2dB 800Ω : 50Ω VCC = 3.0V VCC = 3.0V 1000p Input (GSM_RF) 940MHz: −30dBm (50Ω) 2p 42 1 43 6p 1000p Mixer1 220n (Q>40) Output (IF) 225MHz (50Ω) 1000p 48 4.7n 1.5p Input (Lo) GSM: 1165MHz, −8dBm PCN: 1617MHz, −8dBm 2 1000p *2 0.5p 12n 2.5p Input (PCN_RF) 1842MHz: −30dBm (50Ω) 6 10 17 18 32 38 41 44 45 Mixer1 *1 BAND 35 47 GSM: "Low" PCN: "High" CLK 26 1000p 1000p 39 47 SDATA 27 LE 28 Gain1: X7 = 0 for High gain Gain2: X7 = 1 for Low gain other bit is no care 7 46 31 37 40 Unit: R : Ω C:F Note: 1. Mixer1 is open collector type. 2. Please tune this LC resonant circuit to get the maximum conversion gain at 225MHz. Figure 5 Item Mode Min Typ Max Unit Test Condition Note Input (RF) Z GSM — 50 — Ω RF = 940MHz 1 PCN — 50 — Ω RF = 1842MHz Differential output load between pin42 and pin43 — — 800 — Ω IF = 225MHz 1 Output (IF) Z — — 50 — Ω IF = 225MHz 1 Input (LO) Z — — 50 — Ω LO = 1165, 1617MHz 1 Input (RF) VSWR GSM — — 2 RF = 940MHz 1 PCN — — 2 RF = 1842MHz GSM — — 2 LO = 1150 to 1185MHz PCN — — 4 LO = 1580 to 1655MHz Input (LO) VSWR Note: 26 1. These values are not tested in mass production. 1 HD155121F Mixer1 Typical Performance (cont) • Mixer1 S parameters Frequency (MHz) 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 Port2: pin1 (MIX1INB1) S11 S21 S12 S22 Mag.(mU) Ang.(degree) Mag.(mU) Ang.(degree) Mag.(mU) Ang.(degree) Mag.(mU) Ang.(degree) 754.62 −82.557 109.41 91.89 107.94 90.73 739.46 −79.502 752.44 −82.957 111.75 91.71 110.03 90.71 737.07 −79.884 752.00 −83.314 114.04 91.39 112.02 90.57 735.32 −80.164 750.32 −83.658 116.14 90.76 113.69 90.19 733.45 −80.543 749.06 −84.053 117.73 90.14 115.37 89.68 732.38 −80.877 748.42 −84.440 119.37 89.31 116.73 89.03 731.16 −81.223 748.51 −84.849 120.64 88.41 118.02 88.48 730.91 −81.544 747.39 −85.213 121.21 87.64 118.93 87.72 729.92 −81.910 747.02 −85.626 121.81 86.90 119.54 87.08 729.54 −82.283 747.44 −86.053 121.93 85.90 119.78 86.27 729.38 −82.668 747.37 −86.488 121.22 85.11 119.74 85.56 730.05 −83.100 747.45 −87.054 119.98 84.55 119.01 85.13 730.63 −83.532 747.73 −87.535 118.34 84.32 117.70 84.95 730.78 −84.137 746.74 −88.119 116.90 84.63 116.32 85.38 730.02 −84.752 745.30 −88.735 116.23 85.41 116.29 86.13 728.56 −85.411 743.28 −89.301 116.77 86.34 116.94 87.04 724.68 −86.052 740.18 −89.825 118.14 87.31 119.06 87.75 721.14 −86.574 737.01 −90.247 120.72 87.54 121.81 87.96 717.34 −86.974 734.02 −90.646 123.00 87.15 124.35 87.64 713.39 −87.278 732.70 −90.928 124.32 86.51 125.87 86.67 711.49 −87.564 • Mixer1 S parameters Frequency (MHz) 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 Port1: pin2 (MIX1IN1) Port1: pin48 (MIX1IN2) Port2: pin47 (MIX1INB2) S11 S21 S12 S22 Mag.(mU) Ang.(degree) Mag.(mU) Ang.(degree) Mag.(mU) Ang.(degree) Mag.(mU) Ang.(degree) 522.87 −137.31 173.99 54.38 179.98 56.40 601.94 −158.40 523.98 −137.67 174.59 54.42 178.85 56.36 601.55 −158.76 525.39 −138.01 174.84 54.36 178.30 56.29 600.91 −159.11 526.77 −138.39 175.19 54.40 177.57 56.30 600.89 −159.53 527.49 −138.68 175.11 54.23 176.49 56.34 599.30 −159.93 528.26 −139.03 175.97 54.08 176.09 56.40 599.71 −160.34 529.92 −139.36 175.84 53.85 175.23 56.38 598.92 −160.88 531.15 −139.75 175.93 53.54 174.88 56.61 598.29 −161.22 532.28 −140.13 176.03 53.25 174.18 56.57 597.93 −161.63 533.43 −140.54 175.87 52.85 173.91 56.55 597.23 −162.11 534.27 −140.93 175.65 52.50 172.74 56.68 596.37 −162.53 535.62 −141.23 175.01 52.14 172.61 56.61 596.30 −163.01 536.47 −141.66 174.36 51.65 171.73 56.67 594.72 −163.49 537.71 −142.01 173.43 51.37 171.48 56.79 594.24 −163.88 538.84 −142.45 172.32 51.08 170.72 56.84 592.85 −164.40 539.18 −142.85 170.91 50.76 170.10 56.93 592.38 −164.88 540.41 −143.27 169.63 50.55 169.55 56.99 591.02 −165.30 541.22 −143.76 167.87 50.28 168.56 56.99 590.16 −165.77 541.78 −144.18 166.42 50.26 168.32 57.05 589.17 −166.18 542.05 −144.59 164.56 50.29 167.81 57.13 588.64 −166.65 27 HD155121F Mixer1 Typical Performance (cont) • Mixer1 S parameters Frequency (MHz) 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 28 Port2: pin43 (MIX1OUTB) S11 S21 S12 S22 Mag.(mU) Ang.(degree) Mag.(mU) Ang.(degree) Mag.(mU) Ang.(degree) Mag.(mU) Ang.(degree) 979.93 −21.27 39.05 71.100 39.14 71.494 979.20 −21.64 979.30 −21.81 39.96 70.994 40.15 71.345 978.83 −22.17 978.24 −22.34 40.89 70.756 41.05 71.132 977.99 −22.73 977.43 −22.87 41.69 70.563 41.89 70.953 977.11 −23.29 976.58 −23.40 42.67 70.378 42.91 70.816 977.38 −23.85 976.18 −23.92 43.57 70.299 43.78 70.541 975.97 −24.42 975.31 −24.52 44.53 70.052 44.63 70.304 974.84 −25.00 975.16 −25.09 45.42 69.956 45.54 70.236 974.52 −25.58 974.11 −25.63 46.28 69.759 46.48 69.980 974.24 −26.15 973.55 −26.17 47.20 69.519 47.37 69.706 972.84 −26.77 972.26 −26.73 48.11 69.336 48.19 69.524 972.50 −27.34 972.06 −27.26 49.00 69.190 49.14 69.408 971.62 −27.92 970.73 −27.84 49.94 68.994 50.02 69.103 971.00 −28.50 970.76 −28.39 50.80 68.729 50.89 68.995 970.58 −29.05 970.42 −28.96 51.86 68.590 51.76 68.833 969.11 −29.65 969.30 −29.53 52.79 68.259 52.69 68.558 968.29 −30.23 968.44 −30.07 53.69 68.041 53.58 68.427 967.22 −30.82 967.83 −30.62 54.68 67.840 54.51 68.220 966.67 −31.40 967.14 −31.22 55.62 67.524 55.43 67.966 965.98 −32.00 966.09 −31.81 56.58 67.183 56.32 67.699 965.50 −32.63 • Mixer1 S parameters Frequency (MHz) 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 Port1: pin42 (MIX1OUT) Port1: pin39 (RFLOIN) S11 Frequency Mag.(mU) Ang.(degree) (MHz) 831.05 −71.478 1570 829.47 −71.805 1575 827.93 −72.134 1580 827.36 −72.485 1585 825.87 −72.816 1590 825.65 −73.101 1595 823.25 −73.414 1600 823.08 −73.701 1605 821.69 −74.035 1610 820.33 −74.371 1615 820.23 −74.659 1620 818.66 −75.064 1625 817.64 −75.335 1630 816.39 −75.674 1635 815.89 −76.100 1640 813.73 −76.425 1645 813.55 −76.784 1650 812.42 −77.127 1655 811.32 −77.471 1660 810.04 −77.885 1665 S11 Mag.(mU) Ang.(degree) 690.53 −101.924 689.12 −102.299 686.98 −102.703 685.49 −103.040 683.72 −103.392 682.04 −103.758 679.93 −104.098 677.68 −104.415 675.71 −104.781 674.24 −105.128 671.69 −105.454 669.77 −105.790 667.97 −106.114 664.89 −106.415 663.02 −106.713 661.31 −107.018 658.60 −107.243 656.49 −107.590 653.78 −107.769 651.73 −108.016 HD155121F Mixer1 Typical Performance (cont) 14 Operating voltage range 12 11 10 9 8 0 −2 −3 −4 −6 15 4 −7 2 4.5 Conversion gain vs. VCC and Temperature PCN mode. Gain1 (Normal gain) 14 Operating voltage range 13 12 Ta=−40°C Ta=−25°C Ta=27°C Ta=85°C Ta=100°C 11 10 9 8 3 4.5 4 4.5 Ta=−40°C Ta=−25°C Ta=27°C Ta=85°C Ta=100°C −1 −2 −3 −4 −6 4 Operating voltage range 0 6 3 3.5 VCC (V) 3.5 3 VCC (V) 1 −5 2.5 2.5 Conversion gain vs. VCC and Temperature PCN mode. Gain2 (Low gain) 2 7 5 2 Ta=−40°C Ta=−25°C Ta=27°C Ta=85°C Ta=100°C −1 6 3.5 3 VCC (V) Operating voltage range 1 −5 2.5 Conversion gain vs. VCC and Temperature GSM mode. Gain2 (Low gain) 2 7 5 2 Conversion gain (dB) 3 Conversion gain (dB) Conversion gain (dB) 13 Ta=−40°C Ta=−25°C Ta=27°C Ta=85°C Ta=100°C Conversion gain (dB) 15 Conversion gain vs. VCC and Temperature GSM mode. Gain1 (Normal gain) −7 2 2.5 3.5 3 VCC (V) 4 4.5 29 HD155121F Mixer1 Typical Performance (cont) 15 Noise figure(SSB) vs. VCC and Temperature GSM mode. Gain1 (Normal gain) 14 Operating voltage range 13 11 10 9 15 14 12 6 11 3.5 3 VCC (V) 4 10 2 4.5 Noise figure(SSB) vs. VCC and Temperature PCN mode. Gain1 (Normal gain) 14 Operating voltage range 13 11 10 9 Ta=−40°C Ta=−25°C Ta=27°C Ta=85°C Ta=100°C 14 6 11 4.5 4.5 15 12 4 4 16 7 3 3.5 VCC (V) Operating voltage range 17 13 2.5 3.5 3 VCC (V) 18 8 5 2 2.5 Noise figure(SSB) vs. VCC and Temperature PCN mode. Gain2 (Low gain) 19 NF SSB (dB) 12 20 Ta=−40°C Ta=−25°C Ta=27°C Ta=85°C Ta=100°C Ta=−40°C Ta=−25°C Ta=27°C Ta=85°C Ta=100°C 16 7 15 NF SSB (dB) 17 13 2.5 Operating voltage range 18 8 5 2 30 19 NF SSB (dB) NF SSB (dB) 12 20 Ta=−40°C Ta=−25°C Ta=27°C Ta=85°C Ta=100°C Noise figure(SSB) vs. VCC and Temperature GSM mode. Gain2 (Low gain) 10 2 2.5 3.5 3 VCC (V) 4 4.5 HD155121F Mixer1 Typical Performance (cont) Operating voltage range −7 −8 −9 −10 −11 −12 −13 −14 −15 2 −10 1dB Input compression point (dBm) Ta=−40°C Ta=−25°C Ta=27°C Ta=85°C Ta=100°C 2.5 3.5 3 VCC (V) 4 1dB Input compression point (dBm) −6 0 1dB Input compression point vs. VCC and Temperature PCN mode. Gain1 (Normal gain) −11 −12 −13 −14 −15 −16 −17 Ta=−40°C Ta=−25°C Ta=27°C Ta=85°C Ta=100°C −18 −19 −20 2 2.5 3 3.5 VCC (V) 4 −1 4.5 Operating voltage range −2 −3 −4 −5 −6 −7 Ta=−40°C Ta=−25°C Ta=27°C Ta=85°C Ta=100°C −8 −9 −5 Operating voltage range 1dB Input compression point vs. VCC and Temperature GSM mode. Gain2 (Low gain) −10 2 4.5 1dB Input compression point (dBm) 1dB Input compression point (dBm) −5 1dB Input compression point vs. VCC and Temperature GSM mode. Gain1 (Normal gain) 2.5 3.5 3 VCC (V) 4 4.5 1dB Input compression point vs. VCC and Temperature PCN mode. Gain2 (Low gain) −6 Operating voltage range −7 −8 −9 −10 −11 −12 Ta=−40°C Ta=−25°C Ta=27°C Ta=85°C Ta=100°C −13 −14 −15 2 2.5 3.5 3 VCC (V) 4 4.5 31 HD155121F Mixer1 Typical Performance (cont) 14 13 12 11 10 9 8 32 Ta=−40°C Ta=−25°C Ta=27°C Ta=85°C Ta=100°C 7 6 5 2 15 Operating voltage range 2.5 3.5 3 VCC (V) 4 4.5 Delta (Gain1−Gain2) gain (dB) Delta (Gain1−Gain2) gain (dB) 15 Delta (Gain1−Gain2) vs. VCC and Temperature GSM mode. Delta (Gain1−Gain2) vs. VCC and Temperature PCN mode. 14 Operating voltage range 13 12 11 10 9 8 Ta=−40°C Ta=−25°C Ta=27°C Ta=85°C Ta=100°C 7 6 5 2 2.5 3.5 3 VCC (V) 4 4.5 HD155121F Mixer2 Typical Performance VCC = 3.0V 6 17 18 32 38 41 42 43 High 44 POONRX1 High 45 POONRX2 Low 50Ω 8p Input (IF1) 225MHz −50dBm 100n 8p Input2 (IFLO) 50Ω 4p 540MHz −10dBm 15n 46 POONTX TOKO 617DB1018 (200Ω: 50Ω) Test circuit insertion loss = 3.6dB 1000p 50ΩOutput (IF2) 25 45MHz NC 24 1000p 300 IF Amp MIX2 30 300 29 BAND 35 PGA ÷2 36 LE 28 DEM SDATA 27 DIV 1000p CLK 26 Low X6 = 0 for High gain X6 = 1 for Low gain other bit is no care 7 19 31 37 40 Unit: R : Ω C:F Figure 6 Item Min Typ Max Unit Test Condition Note Input (IF) Z — 50 — Ω IF1 = 225MHz 1 LO Z — 50 — Ω IFLO = 540MHz 1 i/p VSWR — — 2 IF1 = 225MHz 1 LO VSWR — — 2 IFLO = 540MHz 1 Note: Mode 1. These values are not tested in mass production. 33 HD155121F Mixer2 Typical Performance (cont) • Mixer2 S parameters Frequency (MHz) 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 34 Port1: pin30 (IFIN) Port2: pin29 (IFINB) S11 S21 S12 S22 Mag.(mU) Ang.(degree) Mag.(mU) Ang.(degree) Mag.(mU) Ang.(degree) Mag.(mU) Ang.(degree) 941.92 −20.936 47.84 12.570 47.77 12.517 941.65 −20.558 940.46 −21.513 47.91 12.808 47.89 12.829 941.18 −21.073 940.85 −22.040 47.97 13.024 47.92 13.065 939.92 −21.628 940.32 −22.592 47.99 13.297 47.92 13.257 939.52 −22.145 938.32 −23.094 48.03 13.499 47.89 13.489 938.70 −22.689 938.11 −23.735 48.05 13.659 47.91 13.702 937.66 −23.198 936.93 −24.288 48.02 14.001 48.00 13.969 937.61 −23.777 936.23 −24.863 48.10 14.233 47.98 14.257 936.56 −24.355 935.61 −25.424 48.15 14.539 48.09 14.500 936.05 −24.928 934.29 −26.032 48.20 14.795 48.04 14.759 934.73 −25.481 933.31 −26.599 48.26 15.017 48.12 15.039 934.55 −26.039 933.20 −27.186 48.29 15.299 48.21 15.309 933.47 −26.606 932.03 −27.743 48.38 15.529 48.26 15.529 933.28 −27.110 931.63 −28.351 48.56 15.749 48.30 15.751 931.86 −27.702 930.97 −28.923 48.57 15.992 48.40 16.056 931.63 −28.224 929.68 −29.513 48.66 16.216 48.50 16.351 930.13 −28.763 928.75 −30.038 48.77 16.482 48.58 16.598 929.21 −29.315 927.72 −30.634 48.92 16.685 48.71 16.773 928.79 −29.899 927.06 −31.230 49.03 16.858 48.84 17.000 927.41 −30.498 925.35 −31.837 49.12 17.022 48.94 17.193 926.34 −31.043 HD155121F Mixer2 Typical Performance (cont) 17 Conversion gain vs. VCC and Temperature Gain1 (Normal gain) 1 Conversion gain vs. VCC and Temperature Gain2 (Low gain) Operating voltage range 16 0 15 −1 14 13 12 Ta=−40°C Ta=−25°C Ta=27°C Ta=85°C Ta=100°C 11 10 9 2 10 2.5 3.5 3 VCC (V) 4 Conversion gain (dB) Conversion gain (dB) Operating voltage range −2 −3 −4 −5 −6 −7 2 4.5 Noise figure vs. VCC and Temperature Gain1 (Normal gain) 16 8 14 Noise figure (dB) Noise figure (dB) 15 7 6 5 2 2 Ta=−40°C Ta=−25°C Ta=27°C Ta=85°C Ta=100°C 2.5 3 3.5 VCC (V) 3.5 3 VCC (V) 4 4.5 Operating voltage range 9 3 2.5 Noise figure vs. VCC and Temperature Gain2 (Low gain) Operating voltage range 4 Ta=−40°C Ta=−25°C Ta=27°C Ta=85°C Ta=100°C 4 4.5 13 12 11 Ta=−40°C Ta=−25°C Ta=27°C Ta=85°C Ta=100°C 10 9 8 2 2.5 3.5 3 VCC (V) 4 4.5 35 HD155121F Mixer2 Typical Performance (cont) −5 Operating voltage range −15 −20 −25 −30 2 18.0 Ta=−40°C Ta=−25°C Ta=27°C Ta=85°C Ta=100°C 2.5 3.5 3 VCC (V) 4 4.5 Delta(Gain1−Gain2) vs. VCC and Temperature Delta(Gain1−Gain2) gain (dB) Operating voltage range 17.5 17.0 16.5 16.0 15.5 14.5 14.0 2 36 Ta=−40°C Ta=−25°C Ta=27°C Ta=85°C Ta=100°C 15.0 2.5 3.5 3 VCC (V) 4 4.5 1dB Input compression point (dBm) 1dB Input compression point (dBm) −10 1dB Input compression point vs. VCC and Temperature Gain1 (Normal gain) 1dB Input compression point vs. VCC and Temperature Gain2 (Low gain) Operating voltage range Ta=−40°C Ta=−25°C Ta=27°C Ta=85°C Ta=100°C −10 −15 −20 −25 2 2.5 3 3.5 VCC (V) 4 4.5 HD155121F PGA and Demodulator Typical Performance Serial data VCC = 3.0V 36 IFLO MIX2 IF DIV POONRX1 44 POONRX2 45 23 300Ω MIX2OB 300Ω IOUTB IQ Demo. 22 10k QOUT Measurement equipment 21 10k QOUTB BAND TOKO 617DB-1018 Insertion loss = 3.6dB PGA IF 24 MIX2O DIV 1000p 10k IQ 25 RX mode POONTX 46 IOUT GMSK modulated wave Carrier: 45MHz 1000p 0,90,180,270 degree (45MHz) IQ OPLL LE DIV 4p MODLB 15n 6 17 18 38 32 OPLL fin: 540MHz −10dBm SDATA CLK 26 27 28 20 10k 7 19 37 31 35 Unit: R : Ω C:F Figure 7 37 HD155121F PGA and Demodulator Typical Performance (cont) 60 Power gain vs. VCC and Temperature Power gain vs. Bit number with Temperature VCC = 3V 60 0 −20 Ta=−40°C Ta=−25°C Ta=27°C Ta=85°C Ta=100°C −40 −60 0 40 −20 −30 −40 −50 −60 10 20 30 Bit number 40 50 −20 Bit number 6 −40 Operating voltage range 50 −10 Bit number 26 0 −80 2 0 1dB Input compression point (dBm) 1dB Input compression point (dBm) 20 30 Bit number 20 −60 1dB Input compression point vs. Bit number VCC = 3V, Ta = 25°C −70 0 38 10 Power gain (dB) Power gain (dB) 20 0 Bit number 46 40 40 2.5 Ta=−40°C Ta=−25°C Ta=27°C Ta=85°C Ta=100°C 3.5 3 VCC (V) 4 4.5 1dB Input compression point vs. VCC and Temperature Operating voltage range −10 −20 −30 −40 Ta=−40°C Ta=−25°C Ta=27°C Ta=85°C Ta=100°C −50 −60 −70 2 2.5 3.5 3 VCC (V) 4 4.5 HD155121F PGA and Demodulator Typical Performance (cont) Frequency response of LPF in Demodulator 20 sim.(typical) sim.(worst) Frequency (kHz) sim.(typ) sim.(worst) Rejection (dB) 0 −20 −40 −60 −80 10 60 100 1000 10000 Frequency (kHz) 10 0.0 0.0 120 −1.2 −0.5 200 −4.0 −1.6 400 −14.0 −7.9 600 −22.3 −14.7 800 −29.2 −20.3 1600 −49.8 −37.6 3000 −47.3 −46.3 20000 −62.3 −58.7 100000 IQ offset voltage vs. VCC and Temperature GSM mode 60 IQ offset voltage vs. VCC and Temperature PCN mode Operating voltage range Operating voltage range 40 20 0 −20 I Ta=−40°C I Ta=−25°C I Ta=27°C I Ta=85°C I Ta=100°C −40 −60 2 2.5 3 3.5 VCC (V) Q Ta=−40°C Q Ta=−25°C Q Ta=27°C Q Ta=85°C Q Ta=100°C 4 4.5 IQ offset voltage (mV) IQ offset voltage (mV) 40 20 0 −20 I Ta=−40°C I Ta=−25°C I Ta=27°C I Ta=85°C I Ta=100°C −40 −60 2 2.5 3.5 3 VCC (V) Q Ta=−40°C Q Ta=−25°C Q Ta=27°C Q Ta=85°C Q Ta=100°C 4 4.5 39 HD155121F IQ Modulator and OffsetPLL Typical Performance 3V 36 16 IF POONRX1 44 TX mode POONRX2 45 0,90,180,270 POONTX 46 degree (270MHz) 560p PLLOUT 11 DIV 4p I IQ OPLL IFLO DIV 6 17 18 38 32 MODLB 15n 10 COMP fin: 540MHz −10dBm VCC = 3.0V IIN 33 390 6800p I Ibar IINB 15 Digital I, Ibar, modulation Q, Qbar signal Q generator Q QIN 14 generator IQ Mod. Offset PLL 33p 68 VCOIN1 1p TxVCO MURATA MQE9P7-897 33p 9 100 100 390 7 19 37 31 39 100 12 Spectrum analyzer 1p 8 100 TxVCO MURATA MQE9P7-1747 33p BAND IF DIV IQ OPLL Differential encode: off 35 GSM "Low" PCN "High" 22k fin: 1167MHz −8dBm 33p 68 VCOIN2 ICURAD 13 QINB RFLOIN Qbar 1000p 1000p Detector mode: positive peak Unit: R : Ω C:F 47 Figure 8 • Phase detector offset current ratio evaluation circuit 1000p 1000p Signal generator 47 39 RFLOIN GSM: VCOIN1 = 901MHz, −20dBm PCN: VCOIN2 = 1746MHz, −20dBm Signal generator 8 VCOIN2 GSM: 1172MHz, −8dBm PCN: 1612MHz, −8dBm IFLO: 540MHz, −10dBm 1000p IFLO 36 1000p Signal generator 47 9 VCOIN1 1000p Oscillo scope IIN 16 11 PLLOUT 47 2.5V QIN 14 12 ICURAD 22k Figure 9 40 IINB 15 QINB 13 1.5V 0.5V 1.5V 0.5V Unit: R : Ω C:F HD155121F IQ Modulator and OffsetPLL Typical Performance (cont) 100 Tx spectrum vs. Temperature PCN mode (1747MHz) Carrier suppression ratio Carrier suppression ratio Side-band suppression ratio Side-band suppression ratio 80 Suppression ratio (dBc) Suppression ratio (dBc) 100 Tx spectrum vs. Temperature GSM mode (902MHz) 60 40 20 80 60 40 20 Operating voltage range Operating voltage range 0 −60 −40 −20 0 20 40 60 80 100 120 Temperature (°C) 0 −60 −40 −20 0 20 40 60 80 100 120 Temperature (°C) 100 Tx spectrum vs. VCC PCN mode (1747MHz) Carrier suppression ratio Carrier suppression ratio Side-band suppression ratio Side-band suppression ratio 80 Suppression ratio (dBc) Suppression ratio (dBc) 100 Tx spectrum vs. VCC GSM mode (902MHz) 60 40 20 80 60 40 20 Operating voltage range 0 2 2.5 3.5 3 VCC (V) Operating voltage range 4 4.5 0 2 2.5 3.5 3 VCC (V) 4 4.5 41 HD155121F IQ Modulator and OffsetPLL Typical Performance (cont) 10 Phase error vs. Temperature GSM mode (902MHz) 10 Phase error vs. Temperature PCN mode (1747MHz) RMS 9 8 peak 8 Operating voltage range Phase error (degree) Phase error (degree) RMS 9 peak 7 6 5 4 3 Operating voltage range 7 6 5 4 3 2 2 1 1 0 −60 −40 −20 0 20 40 60 80 100 120 Temperature (°C) 0 −60 −40 −20 0 20 40 60 80 100 120 Temperature (°C) 10 Phase error vs. VCC GSM mode (902MHz) 10 Phase error vs. VCC PCN mode (1747MHz) RMS 9 7 6 5 4 3 5 4 3 1 1 3.5 3 VCC (V) 4 4.5 Operating voltage range 6 2 2.5 peak 7 2 0 2 42 8 Operating voltage range Phase error (degree) Phase error (degree) 8 RMS 9 peak 0 2 2.5 3.5 3 VCC (V) 4 4.5 HD155121F IQ Modulator and OffsetPLL Typical Performance (cont) 200kHz offset 400kHz offset 600kHz to 1800kHz 1.8MHz to 3MHz 3MHz to 6MHz 6MHz upward offset −20 −40 −60 −80 0 Suppression ratio (dB) Suppression ratio (dB) 0 Modulation spectrum vs. Temperature GSM mode (902MHz) Modulation spectrum vs. Temperature PCN mode (1747MHz) 200kHz offset 400kHz offset 600kHz to 1800kHz 1.8MHz to 3MHz 3MHz to 6MHz 6MHz upward offset −20 −40 −60 −80 Operating voltage range Operating voltage range −100 −60 −40 −20 0 20 40 60 80 100 120 Temperature (°C) Modulation spectrum vs. VCC GSM mode (902MHz) 200kHz offset 400kHz offset 600kHz to 1800kHz 1.8MHz to 3MHz 3MHz to 6MHz 6MHz upward offset −20 −40 −60 −80 0 Suppression ratio (dB) Suppression ratio (dB) 0 −100 −60 −40 −20 0 20 40 60 80 100 120 Temperature (°C) Modulation spectrum vs. VCC PCN mode (1747MHz) −20 −40 −60 −80 Operating voltage range −100 2 2.5 3.5 3 VCC (V) 200kHz offset 400kHz offset 600kHz to 1800kHz 1.8MHz to 3MHz 3MHz to 6MHz 6MHz upward offset Operating voltage range 4 4.5 −100 2 2.5 3.5 3 VCC (V) 4 4.5 43 HD155121F IQ Modulator and OffsetPLL Typical Performance (cont) 100 Lock up time vs. Temperature GSM mode (902MHz) 100 80 Lock up time (µsec) 80 Lock up time (µsec) Lock up time vs. Temperature PCN mode (1747MHz) 60 40 60 40 20 20 Operating voltage range Operating voltage range 0 −60 −40 −20 0 20 40 60 80 100 120 Temperature (°C) 0 −60 −40 −20 0 20 40 60 80 100 120 Temperature (°C) 100 Lock up time vs. VCC GSM mode (902MHz) 100 80 Lock up time (µsec) Lock up time (µsec) 80 Lock up time vs. VCC PCN mode (1747MHz) 60 40 20 60 40 20 Operating voltage range 0 2 44 2.5 3.5 3 VCC (V) Operating voltage range 4 4.5 0 2 2.5 3.5 3 VCC (V) 4 4.5 HD155121F IQ Modulator and OffsetPLL Typical Performance (cont) • Modulation spectrum wave form vs. Temperature GSM mode (880 MHz) ATTEN 20dB VAVG 100 10dB/ RL 10.3dBm ATTEN 20dB VAVG 100 10dB/ RL 10.7dBm MKR 9.77dBm 880.000MHz ATTEN 20dB VAVG 100 RL 10.2dBm 10dB/ MKR 10.20dBm 880.000MHz Specification Specification Specification D D D R R R CENTER 880.000MHz *RBW 30kHz VBW 30kHz SPAN 1.000MHz SWP 50.0ms CENTER 880.000MHz *RBW 30kHz VBW 30kHz Ta = −40°C ATTEN 20dB VAVG 100 10dB/ RL 12.4dBm SPAN 1.000MHz SWP 50.0ms ATTEN 20dB VAVG 100 RL 12.7dBm 10dB/ Specification CENTER 880.00MHz SPAN 20.00MHz *RBW 100kHz VBW 100kHz SWP 50.0ms SPAN 1.000MHz SWP 50.0ms Ta = 100°C ATTEN 20dB VAVG 100 RL 12.2dBm 10dB/ MKR 12.53dBm 880.00MHz MKR 12.03dBm 880.00MHz D D R CENTER 880.000MHz *RBW 30kHz VBW 30kHz Ta = 27°C MKR 12.27dBm 880.00MHz D MKR 10.03dBm 880.000MHz Specification R CENTER 880.00MHz SPAN 20.00MHz *RBW 100kHz VBW 100kHz SWP 50.0ms Specification R CENTER 880.00MHz SPAN 20.00MHz *RBW 100kHz VBW 100kHz SWP 50.0ms • Modulation spectrum wave form vs. Temperature GSM mode (902 MHz) ATTEN 20dB VAVG 100 10dB/ RL 10.0dBm MKR 9.62dBm 902.000MHz ATTEN 20dB VAVG 100 10dB/ RL 10.2dBm MKR 10.50dBm 902.000MHz Specification ATTEN 20dB VAVG 100 RL 9.7dBm 10dB/ Specification Specification D D D R R R CENTER 902.000MHz *RBW 30kHz VBW 30kHz SPAN 1.000MHz SWP 50.0ms CENTER 902.000MHz *RBW 30kHz VBW 30kHz Ta = −40°C ATTEN 20dB VAVG 100 RL 12.3dBm 10dB/ R SPAN 1.000MHz SWP 50.0ms ATTEN 20dB VAVG 100 RL 12.7dBm 10dB/ CENTER 902.00MHz SPAN 20.00MHz *RBW 100kHz VBW 100kHz SWP 50.0ms R SPAN 1.000MHz SWP 50.0ms Ta = 100°C MKR 12.50dBm 902.00MHz D Specification CENTER 902.000MHz *RBW 30kHz VBW 30kHz Ta = 27°C MKR 12.12dBm 902.00MHz D MKR 9.37dBm 902.000MHz ATTEN 20dB VAVG 100 RL 11.8dBm 10dB/ MKR 12.00dBm 902.00MHz D Specification CENTER 902.00MHz SPAN 20.00MHz *RBW 100kHz VBW 100kHz SWP 50.0ms R Specification CENTER 902.00MHz SPAN 20.00MHz *RBW 100kHz VBW 100kHz SWP 50.0ms 45 HD155121F IQ Modulator and OffsetPLL Typical Performance (cont) • Modulation spectrum wave form vs. Temperature GSM mode (915 MHz) ATTEN 20dB VAVG 100 RL 9.9dBm 10dB/ MKR 9.61dBm 915.000MHz ATTEN 20dB VAVG 100 RL 10.4dBm 10dB/ MKR 9.73dBm 915.000MHz Specification ATTEN 20dB VAVG 100 RL 9.5dBm 10dB/ Specification Specification D D D R R R CENTER 915.000MHz *RBW 30kHz VBW 30kHz SPAN 1.000MHz SWP 50.0ms CENTER 915.000MHz *RBW 30kHz VBW 30kHz Ta = −40°C ATTEN 20dB VAVG 100 10dB/ RL 12.1dBm R ATTEN 20dB VAVG 100 10dB/ RL 12.4dBm Specification CENTER 915.000MHz *RBW 30kHz VBW 30kHz R SPAN 1.000MHz SWP 50.0ms Ta = 100°C MKR 12.40dBm 915.00MHz D CENTER 915.00MHz SPAN 20.00MHz *RBW 100kHz VBW 100kHz SWP 50.0ms 46 SPAN 1.000MHz SWP 50.0ms Ta = 27°C MKR 12.28dBm 915.00MHz D MKR 9.67dBm 915.000MHz ATTEN 20dB VAVG 100 10dB/ RL 11.8dBm MKR 11.83dBm 915.00MHz D Specification CENTER 915.00MHz SPAN 20.00MHz *RBW 100kHz VBW 100kHz SWP 50.0ms R Specification CENTER 915.00MHz SPAN 20.00MHz *RBW 100kHz VBW 100kHz SWP 50.0ms HD155121F IQ Modulator and OffsetPLL Typical Performance (cont) • Modulation spectrum wave form vs. Temperature PCN mode (1710 MHz) ATTEN 20dB VAVG 100 10dB/ RL 8.5dBm MKR 8.36dBm 1.710000GHz ATTEN 20dB VAVG 100 RL 9.2dBm 10dB/ MKR 8.90dBm 1.710000GHz Specification ATTEN 20dB VAVG 100 RL 9.4dBm 10dB/ Specification Specification D D D R R R CENTER 1.710000GHz *RBW 30kHz VBW 30kHz SPAN 1.000MHz SWP 50.0ms CENTER 1.710000GHz *RBW 30kHz VBW 30kHz Ta = −40°C ATTEN 20dB VAVG 100 RL 10.9dBm 10dB/ SPAN 1.000MHz SWP 50.0ms ATTEN 20dB VAVG 100 RL 11.2dBm 10dB/ Specification CENTER 1.71000GHz SPAN 20.00MHz *RBW 100kHz VBW 100kHz SWP 50.0ms SPAN 1.000MHz SWP 50.0ms Ta = 100°C MKR 11.23dBm 1.71000GHz ATTEN 20dB VAVG 100 RL 11.5dBm 10dB/ MKR 11.20dBm 1.71000GHz D D R CENTER 1.710000GHz *RBW 30kHz VBW 30kHz Ta = 27°C MKR 11.03dBm 1.71000GHz D MKR 9.23dBm 1.710000GHz Specification R CENTER 1.71000GHz SPAN 20.00MHz *RBW 100kHz VBW 100kHz SWP 50.0ms Specification R CENTER 1.71000GHz SPAN 20.00MHz *RBW 100kHz VBW 100kHz SWP 50.0ms • Modulation spectrum wave form vs. Temperature PCN mode (1747 MHz) ATTEN 20dB VAVG 100 10dB/ RL 9.4dBm ATTEN 20dB VAVG 100 RL 9.4dBm 10dB/ MKR 8.76dBm 1.747000GHz ATTEN 20dB VAVG 100 RL 9.5dBm 10dB/ MKR 9.58dBm 1.747000GHz Specification Specification Specification D D D R R R CENTER 1.747000GHz *RBW 30kHz VBW 30kHz SPAN 1.000MHz SWP 50.0ms CENTER 1.747000GHz *RBW 30kHz VBW 30kHz Ta = −40°C ATTEN 20dB VAVG 100 10dB/ RL 11.3dBm R SPAN 1.000MHz SWP 50.0ms ATTEN 20dB VAVG 100 10dB/ RL 11.6dBm CENTER 1.74700GHz SPAN 20.00MHz *RBW 100kHz VBW 100kHz SWP 50.0ms R SPAN 1.000MHz SWP 50.0ms Ta = 100°C ATTEN 20dB VAVG 100 10dB/ RL 11.9dBm MKR 11.58dBm 1.74700GHz MKR 11.87dBm 1.74700GHz D D Specification CENTER 1.747000GHz *RBW 30kHz VBW 30kHz Ta = 27°C MKR 11.44dBm 1.74700GHz D MKR 9.17dBm 1.747000GHz Specification CENTER 1.74700GHz SPAN 20.00MHz *RBW 100kHz VBW 100kHz SWP 50.0ms R Specification CENTER 1.74700GHz SPAN 20.00MHz *RBW 100kHz VBW 100kHz SWP 50.0ms 47 HD155121F IQ Modulator and OffsetPLL Typical Performance (cont) • Modulation spectrum wave form vs. Temperature PCN mode (1785 MHz) ATTEN 20dB VAVG 100 RL 8.8dBm 10dB/ MKR 8.44dBm 1.785000GHz ATTEN 20dB VAVG 100 RL 8.7dBm 10dB/ MKR 8.91dBm 1.785000GHz Specification ATTEN 20dB VAVG 100 RL 9.4dBm 10dB/ Specification Specification D D D R R R CENTER 1.785000GHz *RBW 30kHz VBW 30kHz SPAN 1.000MHz SWP 50.0ms CENTER 1.785000GHz *RBW 30kHz VBW 30kHz Ta = −40°C ATTEN 20dB VAVG 100 RL 11.3dBm 10dB/ R ATTEN 20dB VAVG 100 10dB/ RL 11.4dBm Specification CENTER 1.785000GHz *RBW 30kHz VBW 30kHz R SPAN 1.000MHz SWP 50.0ms Ta = 100°C MKR 11.41dBm 1.78500GHz D CENTER 1.78500GHz SPAN 20.00MHz *RBW 100kHz VBW 100kHz SWP 50.0ms 48 SPAN 1.000MHz SWP 50.0ms Ta = 27°C MKR 10.94dBm 1.78500GHz D MKR 9.57dBm 1.785000GHz ATTEN 20dB VAVG 100 10dB/ RL 11.8dBm MKR 11.66dBm 1.78500GHz D Specification CENTER 1.78500GHz SPAN 20.00MHz *RBW 100kHz VBW 100kHz SWP 50.0ms R Specification CENTER 1.78500GHz SPAN 20.00MHz *RBW 100kHz VBW 100kHz SWP 50.0ms HD155121F IQ Modulator and OffsetPLL Typical Performance (cont) 0 Tx spectrum vs. Common mode voltage GSM mode (902MHz) −30 −40 −50 −60 −70 −80 −90 −40 −50 −60 −70 −80 −90 0.50 0.75 1.00 1.25 1.50 Common mode voltage (V) 1.75 0 Carrier suppression ratio −30 −40 −50 −60 −70 −80 −90 −100 0.40 0.60 0.80 1.00 1.20 1.40 Input swing level (Vpp) (single) 1.60 1.75 Carrier suppression ratio Side-band suppression ratio −20 −30 −40 −50 −60 −70 −80 −90 Operating range 0.50 0.75 1.00 1.25 1.50 Common mode voltage (V) Tx spectrum vs. Input swing level PCN mode (1747MHz) −10 Side-band suppression ratio −20 Operating range −100 0.25 Tx spectrum vs. Input swing level GSM mode (902MHz) −10 Suppression level (dBc) −30 Operating range −100 0.25 Side-band suppression ratio −20 Suppression level (dBc) −20 Carrier suppression ratio −10 Side-band suppression ratio Suppression level (dBc) Suppression level (dBc) −10 0 0 Carrier suppression ratio Tx spectrum vs. Common mode voltage PCN mode (1747MHz) −100 0.40 Operating range 0.60 0.80 1.00 1.20 1.40 Input swing level (Vpp) (single) 1.60 49 HD155121F IQ Modulator and OffsetPLL Typical Performance (cont) Phase comparator output current (I1, I3) vs. VCC and Temperature 0.45 1.5 RICURAD = 22kΩ at pin12 I1 I1,I3 Ta=−40°C I1,I3 Ta=−25°C 0.4 1.2 I3/I1 0.35 0.9 I3/I1 (mA) I1 or I3 (mA) I1,I3 Ta=27°C I1,I3 Ta=85°C I1,I3 Ta=100°C I3/I1 Ta=−40°C I3/I1 Ta=−25°C I3/I1 Ta=27°C 0.3 0.6 I3/I1 Ta=85°C I3/I1 Ta=100°C I3 Operating voltage range 0.3 2 2.5 3 3.5 4 VCC (V) 0.25 5 4.5 OPLL phase detector output current value is controlled by RICURAD(pin12). Following figure is for determining phase detector output current. 6 IPLLOUT (GSM) IPLLOUT (PCN) IPLLOUT(Pin11) (mA) 5 4 3 2 1 0 1 50 10 RICURAD(Pin12) (kΩ) 100 HD155121F Package Dimensions Preliminary Unit: mm 24 48 13 12 0.75 0.10 *Dimension including the plating thickness Base material dimension M 1.40 1.70 Max 0.08 *0.17 ± 0.05 0.15 ± 0.04 1 *0.21 ± 0.05 0.19 ± 0.04 0.5 37 0.13 +0.09 −0.05 9.0 ± 0.2 9.0 ± 0.2 7.0 36 25 1.00 0.75 0° − 8° 0.50 ± 0.10 Hitachi Code JEDEC EIAJ Weight (reference value) FP-48C Conforms 0.2 g 51 HD155121F Appendix A Transmitter Architecture (offset PLL architecture) The HD155121F generates a modulated signal at IF with a quadrature modulator and converts it to a final frequency with an Offset Phase Locked Loop (OPLL). The Offset Phase Locked Loop is simply a PLL with a down conversion mixer in the feedback path. Using a down converter in the feed back path acts as an up converter in the forward path, which allows the output frequency to be different from the comparison frequency without affecting the normal operation of the loop. Phase / frequency changes in the reference signal are not scaled, as they would be if a divider were used in the feed back path, and hence the modulation is faithfully reproduced at the final frequency. The main advantage of the OPLL in this application is that it forms a tracking band pass filter around the modulated signal. This is because the loop cannot respond to phase variations at the reference that are outside its closed loop bandwidth. Thus the broad band phase noise from the quadrature modulator is shaped by the frequency response of the closed loop allowing the TX noise specifications to be met without further filtering. A secondary advantage of the OPLL is that the output signal, coming from a VCO, is truly constant envelope. This removes the problem of spectral spreading caused by AM to AM and AM to PM conversion in the power amplifier. The OPLL is formed from an on-chip Gilbert cell down converter, limitters and phase detector with an offchip passive loop filter and VCO. The phase detector is implemented as a Gilbert cell with a current source output stage, which allows an integrator to be included in the passive loop filter. This is similar to the technique commonly used in PLL synthesizers. As is well known, when out of lock, a mixer type phase detector does not provide any frequency discrimination. This means that the under normal circumstances, a loop of this type is not guaranteed to lock. However in the HD155121F, a well defined offset current is added to the phase detector output, so that when the loop is out of lock, this offset current linearly charges the capacitors in the loop filter. This has the effect of sweeping the VCO across the band. When the down converted signal from the VCO approaches the reference frequency, the Gilbert cell begins to operate as a phase detector and the loop acquires in the normal way. The presence of the offset current in lock is unimportant, as it only results in a static phase offset between the final signal and the reference signal. At the end of the transmit burst, when the transmitter is disabled, a switch closes to discharge the loop filter capacitors. This resets the acquisition process in preparation for the start of the next burst. The closed loop bandwidth of the OPLL should be designed to be around 1.2 to 1.5 MHz, which should be large enough to allow rapid locking and accurate tracking of the modulation. If the bandwidth is too large, the OPLL will not reject the noise from the modulator sufficiently. The ideal bandwidth will be a compromise dependant on the noise performance of the VCO and amplifier chain. 52 HD155121F R3 Phase detector VCO C2 C3 C1 R2 Figure A-1 Loop Filter Circuit of OPLL The following equations provide a good starting point for the design of the OPLL. Let: f0 = Closed loop unity gain frequency (Hz) (Closed loop bandwidth) fn = f0 / 2 = Closed loop resonant frequency (Hz) ω n = 2π ⋅ fn k v = VCO gain (Hz / V) k vr = 2 ⋅ π ⋅ k v (rad / V sec) k d = Peak phase dotector current = 1.2 (mA) in GSM mod e (at RICURAD = 22 kΩ) k dr = Phase det ector gain = ( 2 ⋅ k d ) / π = 1.7 / π (mA / rad) (at RICURAD = 22 kΩ) ξ = DampingFactor ≅ 0.9 Then: C2 = k vr ⋅ k dr / ω n 2 R 2 = 2 ⋅ ξ ⋅ 1 /( k v ⋅ k d ⋅ C2) = (2 ⋅ ξ) /(ω n ⋅ C2) C1 = C2 / 15 R3 ⋅ C3 ≅ 1 /(10 ⋅ ω n ) Note that many VCO modules have up to 100 pF capacitance on the control line. This can be very significant when designing high bandwidth loops. The phase detector peak output current is centered around 1.2 mA which is set by an 22 kΩ resistor RICURAD on pin 12. For example, the f0 = 1.2 MHz loop filter using the VCO of k v = 30 MHz / V (GSM) should be designed in the following method. Let: f0 = 1.2 (MHz) = 1.2 × 10 6 (Hz) fn = f0 / 2 = 600 ( kHz) = 6 × 10 5 ω n = 2 π ⋅ fn = 2 π ⋅ 6 × 10 5 (Hz) ( rad / sec) k v = 30 (MHz / V) = 30 × 10 6 (Hz / V) k vr = 2 π ⋅ k v = 2 π × 30 × 10 ( rad / V sec) k d = 1.2 ( mA) (at RICURAD = 22 kΩ)) 6 k dr = 1.7 / π ( mA / rad ) = 1.7 × 10 −3 ) / π ( A / rad ) (at RICURAD = 22 kΩ) ξ = Damping Factor ≅ 0.9 53 HD155121F Then: 2 × 30 × 10 6 × 1.7 × 10 −3 = 7.2 × 10 −9 = 7.2 nF (2π × 6 × 10 5 )2 2 × 0.9 R2 = (2 ⋅ ξ) / (ω n ⋅ C2) = = 66 Ω 2π × 6 × 10 5 × 7.2 × 10 −9 C1 = C2 / 15 = (7.2 × 10 −9 ) / 15 = 480 pF 1 R3 ⋅ C3 ≅ 1/(10 ⋅ ω n ) = 2π × 6 × 10 6 C2 = k vr ⋅ k dr / ω n 2 = When the VCO modules have 33 pF capacitance on the control line, C3 is 33 pF. C3 = 33 pF R3 = 804 Ω The result of the calculations for the PLL loop characteristic,based on the following block diagram (figure A-2), is showed in figure A-3 and figure A-4. The offset PLL will be stable if the component values shown are used. VCO module kvr/S kdr Input phase R3 Phase + detector − VCO Output phase 804 C2 7.2n C1 480p R2 66 C3 33p Unit: R : Ω C:F kvr = 2π ⋅ kv = 2π × 30 × 106 kdr = (1.7 × 10−3) / π (rad / Vsec) (A / rad) VCO module example GSM: MURATA MQE9P7-897 C3 = 33pF kv = 30MHz/V PCN: MURATA MQE9P7-1747 C3 = 22pF kv = 47MHz/V Figure A-2 Block Diagram for OPLL Simulation 54 HD155121F The open loop transfer function, Hol(S), of OPLL as shown in figure A-2 is given below. Hol(S) = k vr ⋅ k dr ⋅ (S + ω z ) k vr ⋅ k dr ⋅ (S + ω z ) = C1⋅ C3 ⋅ R3 ⋅ S 2 ⋅ (S 2 + 2S ⋅ ω p + ω p 2 ) C1⋅ C3 ⋅ R3 ⋅ S 2 ⋅ (S + ω p1) (S + ω p 2 ) C1 + C2 + C3 C1⋅ C2 ⋅ C3 ⋅ R2 ⋅ R3 ω p { C2 ⋅ R2 (C1 + C3) + C3 ⋅ R3 (C1 + C2) } ωp = ς= 2 (C1 + C2 + C3) 1 ωz = C2 ⋅ R 2 ω p1 = ω p (ς − ς 2 − 1) ω p 2 = ω p (ς + ς 2 − 1) Let: C1 = 480 pF C2 = 7.2 nF C3 = 33 pF (VCO input capci tan ce on the control line) R2 = 66 Ω R3 = 804 Ω Then: ω p = 35.70 × 10 6 = 2π × 5.68 (MHz) ς = 1.036 ω z = 2.104 × 10 6 = 2π × 335 (kHz) ω p1 = 27.32 × 10 6 = 2π × 4.348 (MHz) ω p 2 = 46.65 × 10 6 = 2π × 7.425 (MHz) k vr = 2π × 30 × 10 6 k dr = (1.7 × 10 −3 ) / π (rad / V sec) (A / rad) The magnitude, | Hol(jω) |, and the phase, Φ(jω), of Hol(S) are as shown in the following equations. When the above constants from ωp to kdr are substituted in the equations, then | Hol(jω) | and Φ(jω) in figure A-3 can be obtained. Hol( jω ) = k vr ⋅ k dr ⋅ ω 2 + ω p12 C1⋅ C3 ⋅ R3 ⋅ ω 2 ⋅ ω 2 + ω p12 ⋅ ω 2 + ω p 2 2 Φ( jω ) = tan −1 (ω / ω z ) − tan −1 (ω / ω p1) − tan −1 (ω / ω p 2 ) − 180 (deg) 55 HD155121F designed for 1.2MHz bandwidth loop filter 100 PCN 0 designed for 1.2MHz bandwidth loop filter −130 GSM Φ (jω) | Hol (jω) | 50 −80 −50 GSM, PCN −180 −230 −100 104 105 106 107 Frequency (Hz) 108 −280 104 105 106 107 Frequency (Hz) 108 Figure A-3 The Magnitude, | Hol(jω) |, and the Phase, Φ(jω), of Open Loop Transfer Function Hol(jω) Moreover, the closed loop transfer function, Hcl(jw) is the following equation, and the magnitude characteristic, Hcl(jω), of he closed loop is shown is figure A-4. Hcl( jω ) = Hol( jω ) 1 + Hol( jω ) 20 designed for 1.2MHz bandwidth loop filter GSM 0 PCN | Hcl (jω) | −20 −40 −60 −80 −100 104 105 106 107 Frequency (Hz) 108 Figure A-4 The Magnitude, | Hcl(jω) | of Closed Loop Transfer Function Hcl(jω) 56 HD155121F Cautions 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products. Hitachi, Ltd. Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 URL NorthAmerica : http:semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia (Singapore) : http://www.has.hitachi.com.sg/grp3/sicd/index.htm Asia (Taiwan) : http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm Japan : http://www.hitachi.co.jp/Sicd/indx.htm For further information write to: Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Straße 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322 Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533 Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180 Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX Copyright © Hitachi, Ltd., 1998. All rights reserved. Printed in Japan. 57