[AK4671] AK4671 Stereo CODEC with MIC/RCV/HP-AMP GENERAL DESCRIPTION The AK4671 is a stereo CODEC with a built-in Microphone-Amplifier, Receiver-Amplifier and Headphone-Amplifier. The AK4671 features dual PCM I/F in addition to audio I/F that allows easy interfacing in mobile phone designs with Bluetooth I/F. The AK4671 is available in a 57pin BGA, utilizing less board space than competitive offerings. 1. 2. 3. 4. 5. 6. 7. 8. FEATURES Recording Function (Stereo CODEC) • 4 Stereo Input Selector x 2ch • 4 Stereo Inputs (Single-ended) or 2 Stereo Input (Full-differential) • MIC Amplifier: +30dB ∼ −12dB, 3dB step • Digital ALC (Automatic Level Control): +36dB ∼ −54dB, 0.375dB Step, Mute • Wind-noise Reduction Filter • Stereo Separation Emphasis • 5-band Programmable Notch Filter • Audio Interface Format: 16bit MSB justified, I2S, DSP Mode Playback Function (Stereo CODEC) • Digital Volume (+12dB ∼ −115.0dB, 0.5dB Step, Mute) • Digital ALC (Automatic Level Control): +36dB ∼ −54dB, 0.375dB Step, Mute • Stereo Separation Emphasis • 5-band EQ • Stereo Line Output • Mono Receiver-Amp - BTL Output - Output Power: 30mW@32Ω (AVDD=3.3V) • Stereo Headphone-Amp - Output Power: 30mW@16Ω (AVDD=3.3V) • Analog Mixing: 4 Stereo Input • Audio Interface Format: - 16bit MSB justified, 16bit LSB justified, 16-24bit I2S, DSP Mode Dual PCM I/F for Baseband & Bluetooth Interface • Sample Rate Converter (Up sample: up to x6: Down sample: down to x1/6) • Sample Rate: 8kHz • Digital Volume • Audio Interface Format: - 16bit Linear, 8bit A-law, 8bit μ-law - Short/Long Frame, I2S, MSB justified 10bit SAR ADC • 3 Input Selector Power Management Master Clock: (1) PLL Mode • Frequencies: 11.2896MHz, 12MHz, 12.288MHz, 13MHz, 13.5MHz, 19.2MHz, 24MHz, 26MHz, 27MHz (MCKI pin) 1fs (LRCK pin) 32fs or 64fs (BICK pin) (2) External Clock Mode • Frequencies: 256fs, 384fs, 512fs, 768fs or 1024fs (MCKI pin) Output Master Clock Frequencies: 32fs/64fs/128fs/256fs Sampling Rate (Stereo CODEC): MS0666-E-02 2010/06 -1- [AK4671] • PLL Slave Mode (LRCK pin): 8kHz ∼ 48kHz • PLL Slave Mode (BICK pin): 8kHz ∼ 48kHz • PLL Slave Mode (MCKI pin): 8kHz, 11.025kHz, 12kHz, 16kHz, 22.05kHz, 24kHz, 32kHz, 44.1kHz, 48kHz • PLL Master Mode: 8kHz, 11.025kHz, 12kHz, 16kHz, 22.05kHz, 24kHz, 32kHz, 44.1kHz, 48kHz • EXT Master/Slave Mode: 8kHz ∼ 48kHz (256fs, 384fs), 8kHz ∼ 26kHz (512fs, 768fs), 8kHz ∼ 13kHz (1024fs) 9. μP I/F: 4-wire Serial / I2C Bus (Ver 1.0, 400kHz Fast Mode) 10. Master/Slave mode 11. Ta = −30 ∼ 85°C 12. Power Supply: • AVDD, PVDD, SAVDD: 2.2 ∼ 3.6V • DVDD, TVDD2, TVDD3: 1.6 ∼ 3.6V 13. Package : 57pin BGA (5mm x 5mm, 0.5mm pitch) ■ Block Diagram AVDD VSS1 SAIN1 SAIN2 SAIN3 VCOM SAVDD VSS3 DVDD VSS4 GPO1 GPO2 PMSAD MDT PMMP MPWR CSN A/D MIC Power Supply Control Register MIC-Amp PMADL or PMADR RIN1/IN1− A/D LIN2/IN2+ External MIC CDTO PMMICL LIN1/IN1+ Internal MIC I2C HPF PDN PMMICR PFSEL=0 PMADL or PMADR RIN2/IN2− LIN3/IN3+ PFSEL=1 PMDAL or PMDAR or PMSRA RIN3/IN3− LIN4/IN4+ PMLO1 LOUT1/RCP PMLOOPR PMLOOPL PMAINR3 PMAINR4 PMAINL4 PMAINL3 PMAINR2 PMAINL2 PMAINL1 PMAINR1 RIN4/IN4− HPF LPF BICK Stereo Separation Audio I/F 5-band Notch ALC LRCK SDTO SDTI MIX PMDAL or PMDAR SVOLA PMDAL or PMDAR or PMSRA D/A Stereo Line Out or Mono Receiver CCLK/SCL CDTI/SDA M DATT 5-band I SMUTE EQ X S E L MCKI MCKO PMRO1 ROUT1/RCN PMPLL PLL PMLO2 PMLO2S PMPCM VCOC VCOCBT LOUT2 Headphone Out PMRO2 PLLBT PMSRA PMRO2S ROUT2 SRC-A BICKA MUTET SVOLB PCM I/F A PMSRB SDTOA PMLO3 SRC-B LOUT3/LOP Stereo Line Out SDTIA DATT-B DATT-C PMRO3 ROUT3/LON BVOL PVDD VSS2 SYNCA TVDD2 PCM I/F B BICKB SYNCB SDTOB SDTIB TVDD3 Figure 1. Block Diagram MS0666-E-02 2010/06 -2- [AK4671] ■ Ordering Guide −30 ∼ +85°C 57pin BGA (0.5mm pitch) Evaluation board for AK4671 AK4671EG AKD4671 ■ Pin Layout 9 8 7 6 AK4671 5 Top View 4 3 2 1 A B C D E F G H J 9 TEST LOUT2 ROUT2 VCOM VCOCBT VSS2 SDTOA SYNCA GPO2 8 AVDD VSS1 MUTET VCOC PVDD TVDD2 BICKA CDTI /SDA SDTIA LOUT1 /RCP ROUT3 /LON RIN4 /IN4− LIN3 /IN3+ LIN2 /IN2+ LIN1 /IN1+ ROUT1 /RCN LOUT3 /LOP LIN4 /IN4+ RIN3 /IN3− RIN2 /IN2− RIN1 /IN1− VSS4 DVDD CCLK /SCL CSN /CAD0 I2C BICK MCKI MCKO PDN LRCK MDT A 7 6 5 4 3 2 1 Top View NC SAIN2 SAVDD TVDD3 SDTOB BICKB SDTO CDTO MPWR SAIN3 SAIN1 VSS3 SYNCB SDTIB SDTI GPO1 B C D E F G H J MS0666-E-02 2010/06 -3- [AK4671] PIN/FUNCTION No. Pin Name A1 MDT B1 MPWR C1 SAIN3 C2 SAIN2 D1 SAIN1 D2 SAVDD E1 VSS3 E2 TVDD3 F2 SDTOB F1 SYNCB G2 BICKB G1 SDTIB H1 SDTI J1 GPO1 I/O I O I I I O I/O I/O I I O J2 CDTO O H2 SDTO O H3 PDN I J3 H4 J4 LRCK MCKI MCKO H5 I2C J5 BICK CSN CAD0 CCLK SCL VSS4 DVDD CDTI SDA GPO2 J6 H6 H7 J7 H8 J9 I/O I O I I/O I I I I I I/O O Function MIC Detection Pin (Internal pull down by 500kΩ) MIC Power Supply Pin 10bit SAR ADC Analog Input 3 Pin 10bit SAR ADC Analog Input 2 Pin 10bit SAR ADC Analog Input 1 Pin 10bit SAR ADC Power Supply Pin, 2.2 ∼ 3.6V Ground 3 Pin Digital I/O Power Supply 3 Pin, 1.6 ∼ 3.6V Serial Data Output B Pin Sync Signal B Pin Serial Data Clock B Pin Serial Data Input B Pin Audio Serial Data Input Pin General Purpose Output 1 Pin Control Data Output Pin (I2C pin = “L”: 4-wire Serial Mode) Hi-Z (I2C pin = “H”: I2C Bus Mode) Audio Serial Data Output Pin Power-Down Mode Pin “H”: Power-up, “L”: Power-down, reset and initializes the control register. “L” time of 150ns or more after power-up is needed to reset the AK4671. Input / Output Channel Clock Pin External Master Clock Input Pin Master Clock Output Pin Control Mode Select Pin “H”: I2C Bus, “L”: 4-wire Serial Audio Serial Data Clock Pin Chip Select Pin (I2C pin = “L”: 4-wire Serial Mode) Chip Address 0 Select Pin (I2C pin = “H”: I2C Bus Mode) Control Data Clock Pin (I2C pin = “L”: 4-wire Serial Mode) Control Data Clock Pin (I2C pin = “H”: I2C Bus Mode) Ground 4 Pin Digital Power Supply Pin, 1.6 ∼ 3.6V Control Data Input Pin (I2C pin = “L”: 4-wire Serial Mode) Control Data Input Pin (I2C pin = “H”: I2C Bus Mode) General Purpose Output 2 Pin MS0666-E-02 2010/06 -4- [AK4671] No. Pin Name J8 SDTIA G8 BICKA H9 SYNCA G9 SDTOA F8 TVDD2 F9 VSS2 E8 PVDD I/O I I/O I/O O - Function Serial Data Input A Pin Serial Data Clock A Pin Sync Signal A Pin Serial Data Output A Pin Digital I/O Power Supply 2 Pin, 1.6 ∼ 3.6V Ground 2 Pin PLLBT Power Supply Pin, 2.2 ∼ 3.6V Output Pin for Loop Filter of PLLBT Circuit E9 VCOCBT O This pin should be connected to VSS2 pin with one resistor and capacitor in series. Output Pin for Loop Filter of PLL Circuit D8 VCOC O This pin should be connected to VSS1 pin with one resistor and capacitor in series. Common Voltage Output Pin, 0.5 x AVDD D9 VCOM O Bias voltage of ADC inputs and DAC outputs. Mute Time Constant Control Pin C8 MUTET O Connected to VSS1 pin with a capacitor for mute time constant. C9 ROUT2 O Rch Headphone-Amp Output Pin B9 LOUT2 O Lch Headphone-Amp Output Pin Test Pin A9 TEST This pin should be open. A8 AVDD Analog Power Supply Pin, 2.2 ∼ 3.6V B8 VSS1 Ground 1 Pin Rch Stereo Line Output 1 Pin (RCV bit = “0”: Stereo Line Output) ROUT1 O B7 Receiver-Amp Negative Output Pin (RCV bit = “1”: Receiver Output) RCN O Lch Stereo Line Output 1 Pin (RCV bit = “0”: Stereo Line Output) LOUT1 O A7 Receiver-Amp Positive Output Pin (RCV bit = “1”: Receiver Output) RCP O Rch Stereo Line Output 3 Pin (LODIF bit = “0”: Single-ended Stereo Output) ROUT3 O A6 Negative Line Output Pin (LODIF bit = “1”: Full-differential Mono Output) LON O Lch Stereo Line Output 3 Pin (LODIF bit = “0”: Single-ended Stereo Output) LOUT3 O B6 Positive Line Output Pin (LODIF bit = “1”: Full-differential Mono Output) LOP O RIN4 I Rch Analog Input 4 Pin (MDIF4 bit = “0”: Single-ended Input) A5 I Negative Line Input 4 Pin (MDIF4 bit = “1”: Full-differential Input) IN4− LIN4 I Lch Analog Input 4 Pin (MDIF4 bit = “0”: Single-ended Input) B5 IN4+ I Positive Line Input 4 Pin (MDIF4 bit = “1”: Full-differential Input) RIN3 I Rch Analog Input 3 Pin (MDIF3 bit = “0”: Single-ended Input) B4 I Negative Line Input 3 Pin (MDIF3 bit = “1”: Full-differential Input) IN3− LIN3 I Lch Analog Input 3 Pin (MDIF3 bit = “0”: Single-ended Input) A4 IN3+ I Positive Line Input 3 Pin (MDIF3 bit = “1”: Full-differential Input) RIN2 I Rch Analog Input 2 Pin (MDIF2 bit = “0”: Single-ended Input) B3 I Negative Line Input 2 Pin (MDIF2 bit = “1”: Full-differential Input) IN2− LIN2 I Lch Analog Input 2 Pin (MDIF2 bit = “0”: Single-ended Input) A3 IN2+ I Positive Line Input 2 Pin (MDIF2 bit = “1”: Full-differential Input) RIN1 I Rch Analog Input 1 Pin (MDIF1 bit = “0”: Single-ended Input) B2 I Negative Line Input 1 Pin (MDIF1 bit = “1”: Full-differential Input) IN1− LIN1 I Lch Analog Input 1 Pin (MDIF1 bit = “0”: Single-ended Input) A2 IN1+ I Positive Line Input 1 Pin (MDIF1 bit = “1”: Full-differential Input) No Connect Pin C3 NC No internal bonding. This pin should be open or connected to the ground. Note 1. All input pins except analog input pins (MDT, LIN1/IN1+, RIN1/IN1−, LIN2/IN2+, RIN2/IN2−, LIN3/IN3+, RIN3/IN3−, LIN4/IN4+, RIN4/IN4−, SAIN1, SAIN2, SAIN3) should not be left floating. I/O pins except SDA pin (LRCK, BICK, SYNCA, BICKA, SYNCB, BICKB) should be processed appropriately. Please refer the “Master Mode/Slave Mode” (P.45) and “PCM I/F Master Mode/Slave Mode” (P.105). SDA pin should be pulled-up by a resistor externally and be connected to (DVDD+0.3)V or less voltage. MS0666-E-02 2010/06 -5- [AK4671] ■ Handling of Unused Pin on the System The unused I/O pins on the system should be processed appropriately as below. Classification Analog Pin Name MPWR, MDT, VCOC, ROUT3/LON, LOUT3/LOP, ROUT2, LOUT2, MUTET, ROUT1/RCN, LOUT1/RCP, RIN4/IN4−, LIN4/IN4+, RIN3/IN3−, LIN3/IN3+, RIN2/IN2−, LIN2/IN2+, RIN1/IN1−, LIN1/IN1+, VCOCBT, SAIN1, SAIN2, SAIN3 MCKO, SDTOA, SDTOB, GPO1, GPO2, CDTO MCKI, SDTIA, SDTIB Digital BICKA, SYNCA, BICKB, SYNCB MS0666-E-02 Setting These pins should be open. These pins should be open. These pins should be connected to VSS4. When all pins are unused, these pins should be connected to VSS4 and PMPCM bit must be always “0”. When either PCM I/F A(BICKA/ SYNCA) or PCM I/F B(BICKB/SYNCB) is used, unused pins are connected to pull-down/up resistor of about 100kΩ. 2010/06 -6- [AK4671] ABSOLUTE MAXIMUM RATINGS (VSS1=VSS2=VSS3=VSS4=0V; Note 2, Note 3) Parameter Symbol min Power Supplies: Analog AVDD −0.3 PLLBT PVDD −0.3 10bit SAR ADC SAVDD −0.3 Digital DVDD −0.3 Digital I/O 2 TVDD2 −0.3 Digital I/O 3 TVDD3 −0.3 Input Current, Any Pin Except Supplies IIN Analog Input Voltage 1 (Note 4) VINA1 −0.3 Analog Input Voltage 2 (Note 5) VINA2 −0.3 Digital Input Voltage 1 (Note 6) VIND1 −0.3 Digital Input Voltage 2 (Note 7) VIND2 −0.3 Digital Input Voltage 3 (Note 8) VIND3 −0.3 Ambient Temperature (powered applied) Ta −30 Storage Temperature Tstg −65 max 4.0 4.0 4.0 4.0 4.0 4.0 ±10 AVDD+0.3 SAVDD+0.3 DVDD+0.3 TVDD2+0.3 TVDD3+0.3 85 150 Units V V V V V V mA V V V V V °C °C Note 2. All voltages with respect to ground. Note 3. VSS1, VSS2, VSS3 and VSS4 must be connected to the same analog ground plane. Note 4. RIN4/IN4−, LIN4/IN4+, RIN3/IN3−, LIN3/IN3+, RIN2/IN2−, LIN2/IN2+, RIN1/IN1−, LIN1/IN1+ pins Note 5. SAIN1, SAIN2, SAIN3 pins Note 6. PDN, I2C, CSN/CAD0, CCLK/SCL, CDTI/SDA, SDTI, LRCK, BICK, MCKI pins Pull-up resistors at SDA and SCL pins should be connected to (DVDD+0.3)V or less voltage. Note 7. BICKA, SYNCA, SDTIA pins Note 8. BICKB, SYNCB, SDTIB pins WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. RECOMMENDED OPERATING CONDITIONS (VSS1=VSS2=VSS3=VSS4=0V; Note 2) Parameter Symbol min typ Power Supplies Analog AVDD 2.2 3.3 (Note 9) PLLBT PVDD 2.2 3.3 10bit SAR ADC SAVDD 2.2 3.3 Digital DVDD 1.6 3.3 Digital I/O 2 TVDD2 1.6 3.3 Digital I/O 3 TVDD3 1.6 3.3 Difference 0 AVDD−PVDD −0.1 max 3.6 3.6 3.6 3.6 3.6 3.6 +0.1 Units V V V V V V V Note 2. All voltages with respect to ground. Note 9. The power-up sequence between AVDD, PVDD, SAVDD, DVDD, TVDD2 and TVDD3 is not critical. The PDN pin should be held to “L” when power-up. The PDN pin should be set to “H” after all power supplies are powered-up. The AK4671 should be operated by the recommended power-up/down sequence shown in “System Design (Grounding and Power Supply Decoupling)” to avoid pop noise at receiver output, headphone output and line output. When the power is OFF partially except for DVDD, all power management bits (PMVCM, PMMP, PMMICL, PMMICR, PMADL, PMADR, PMDAL, PMDAR, PMPLL, PMLOOPL, PMLOOPR, PMAINL1, PMAINR1, PMAINL2, PMAINR2, PMAINL3, PMAINR3, PMAINL4, PMAINR4, PMLO1, PMRO1, PMLO2, PMRO2, PMLO2S, PMRO2S, PMLO3, PMRO3, PMSRA, PMSRB, PMPCM, PMSAD) should be “0” or the PDN pin should be “L”. DVDD should not be powered OFF while AVDD, PVDD, SAVDD, TVDD2 or TVDD3 is powered ON. When only DVDD is OFF, the current of 10mA to 100mA around may occur. * AKM assumes no responsibility for the usage beyond the conditions in this datasheet. MS0666-E-02 2010/06 -7- [AK4671] ANALOG CHARACTERISTICS (CODEC) (Ta=25°C; AVDD=PVDD=SAVDD=DVDD=TVDD2=TVDD3=3.3V; VSS1=VSS2=VSS3=VSS4=0V; Signal Frequency=1kHz; 16bit Data; fs=44.1kHz, BICK=64fs; Measurement frequency=20Hz ∼ 20kHz; unless otherwise specified) Parameter min typ max Units MIC Amplifier: LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 pins; PMAINL1/R1/L2/R2/L3/R3/L4/R4 bits = “0” Input Resistance MGNL/R0 bit = “0” 28 42 56 kΩ MGNL/R0 bit = “1” 20 30 40 kΩ Gain (Note 10) Max (MGNL/R3-0 bits = “FH”) +30 dB Min (MGNL/R3-0 bits = “1H”) dB −12 MIC Power Supply: MPWR pin Output Voltage (Note 11) 2.47 2.64 2.81 V Load Resistance 0.5 kΩ Load Capacitance 30 pF MIC Detection: MDT pin 0.247 0.165 mV Comparator Voltage Level (Note 12) 750 250 500 Internal pull down Resistance kΩ Stereo ADC Analog Input Characteristics: LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 pins → Stereo ADC → IVOL, IVOL=0dB, ALC=OFF Resolution 16 Bits (Note 14) 0.150 0.176 0.203 Vpp Input Voltage (Note 13) 1.68 1.98 2.28 Vpp (Note 15) (Note 14) 72 82 dB S/(N+D) (−1dBFS) 87 dB (Note 15) (Note 14) 75 85 dB D-Range (−60dBFS, A-weighted) 95 dB (Note 15) (Note 14) 75 85 dB S/N (A-weighted) 95 dB (Note 15) (Note 14) 75 90 dB Interchannel Isolation 100 dB (Note 15) (Note 14) 0.1 0.8 dB Interchannel Gain Mismatch 0.1 0.8 dB (Note 15) Note 10. In case of full-differential input, MGAIN=0dB (min) and AVDD=2.4V (min). Note 11. Output voltage is proportional to AVDD voltage. Vout = 0.8 x AVDD (typ). Note 12. Comparator Voltage Level is proportional to AVDD voltage. Vth = 0.05 x AVDD(min), 0.075 x AVDD(max). Note 13. Input voltage is proportional to AVDD voltage. Vin = 0.053 x AVDD (typ)@MGNL3-0=MGNR3-0 bits = “CH” (+21dB), Vin = 0.6 x AVDD(typ)@MGNL3-0=MGNR3-0 bits = “5H” (0dB). Note 14. MGNL3-0=MGNR3-0 bits = “CH” (+21dB). Note 15. MGNL3-0=MGNR3-0 bits = “5H” (0dB). MS0666-E-02 2010/06 -8- [AK4671] Parameter min typ max Units Stereo DAC Characteristics: Resolution 16 Bits Stereo Line Output Characteristics: Stereo DAC → LOUT1/ROUT1/LOUT3/ROUT3 pins, ALC=OFF, IVOL=0dB, OVOL=0dB, L1VL=L3VL=0dB, RCV bit = “0”, RL=10kΩ; unless otherwise specified. Output Voltage (Note 16) 1.78 1.98 2.18 Vpp S/(N+D) (0dBFS) 75 85 dB S/N (A-weighted) 82 92 dB Interchannel Isolation 85 100 dB Interchannel Gain Mismatch 0.1 0.8 dB Load Resistance 10 kΩ Load Capacitance 30 pF Mono Receiver-Amp Output Characteristics: Stereo DAC → RCP/RCN pins, ALC=OFF, IVOL=0dB, OVOL=0dB, L1VL=0dB, RCV bit = “1”, RL=32Ω, BTL; unless otherwise specified. Output Voltage (Note 17) 1.76 1.96 2.16 Vpp −6dBFS, RL=32Ω (Po=15mW) 2.77 Vpp −3dBFS, RL=32Ω (Po=30mW) S/(N+D) 40 60 dB −6dBFS, RL=32Ω (Po=15mW) 20 dB −3dBFS, RL=32Ω (Po=30mW) S/N (A-weighted) 82 92 dB Load Resistance 32 Ω Load Capacitance (Note 18) 30 pF Headphone-Amp Characteristics: DAC → LOUT2/ROUT2 pins, ALC=OFF, IVOL=0dB, OVOL=0dB, HPG=0dB, RL=16Ω Output Voltage (Note 19) 0.89 0.99 1.09 Vpp −6dBFS (Po=7.6mW) 0dBFS (Po=30mW) 1.98 Vpp S/(N+D) 40 60 dB −6dBFS (Po=7.6mW) 0dBFS (Po=30mW) 40 dB S/N (A-weighted) 80 90 dB Interchannel Isolation 65 75 dB Interchannel Gain Mismatch 0.1 0.8 dB Load Resistance 16 Ω C1 in Figure 2 30 pF Load Capacitance 300 pF C2 in Figure 2 Note 16. Output voltage is proportional to AVDD voltage. Vout = 0.6 x AVDD (typ). Note 17. Output voltage is proportional to AVDD voltage. Vout = (RCP) − (RCN) = 0.59 x AVDD (typ)@−6dBFS. Note 18. Load Capacitance for VSS1. Note 19. Output voltage is proportional to AVDD voltage. Vout = 0.3 x AVDD (typ)@−6dBFS. MS0666-E-02 2010/06 -9- [AK4671] HP-Amp LOUT2 pin ROUT2 pin C1 Measurement Point 100μ F 0.22μF C2 16Ω 10Ω Figure 2. Headphone-Amp output circuit Parameter min typ max Mono Line Output Characteristics: Stereo DAC → LOP/LON pins, ALC=OFF, IVOL=0dB, OVOL=0dB, L3VL=0dB, LODIF bit = “1”, RL=10kΩ for each pin (Full-differential) Output Voltage (Note 20) 3.52 3.96 4.36 S/(N+D) (0dBFS) 75 85 S/N (A-weighted) 85 95 Load Resistance (LOP/LON pins, respectively) 10 Load Capacitance (LOP/LON pins, respectively) 30 (Note 21) Single-ended Line Input: LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 pins; (MDIF1=MDIF2=MDIF3=MDIF4 bits = “0”) Maximum Input Voltage (Note 22) 1.98 Gain InputÆLOUT1/ROUT1/LOUT2/ROUT2/LOUT3/ROUT3 (LODIF=RCV bits = “0”) 0 +1 −1 Input Æ RCP/RCN/LOP/LON (LODIF=RCV bits = “1”) +6 Full-differential Line Input: IN1+/−, IN2+/−, IN3+/−, IN4+/− pins; (MDIF1=MDIF2=MDIF3=MDIF4 bits = “1”) Maximum Input Voltage (Note 23) 1.98 Gain InputÆLOUT1/ROUT1/LOUT2/ROUT2/LOUT3/ROUT3 (LODIF=RCV bits = “0”) 0 +1 −1 Input Æ RCP/RCN/LOP/LON (LODIF=RCV bits = “1”, Note 24) +6 Power Supply Current: Power Up (PDN pin = “H”, All Circuits Power-up) (Note 25) 21 AVDD+PVDD+DVDD 23 30 (Note 26) +TVDD2+TVDD3+SAVDD 8 12 (Note 27) Power Down (PDN pin = “L”) (Note 28) AVDD+PVDD+DVDD 1 30 +TVDD2+TVDD3+SAVDD Units Vpp dB dB kΩ pF Vpp dB dB Vpp dB dB mA mA mA μA Note 20. Output voltage is proportional to AVDD voltage. Vout = (LOP) − (LON) = 1.2 x AVDD (typ). Note 21. Load Capacitance for VSS1. Note 22. Maximum Input voltage which analog output does not clip is proportional to AVDD voltage. Vin = 0.6 x AVDD (typ). Note 23. Maximum Input voltage which analog output does not clip is proportional to AVDD voltage. Vin = (IN4+) − (IN4−) = 0.6 x AVDD (typ). Note 24. Vout = (RCP) − (RCN) at RCV bit = “1”, Vout = (LOP) − (LON) at LODIF bit = “1”. Note 25. EXT Slave Mode and LP bit = “0”, fs=44.1kHz, PMMICL = PMMICR = PMADL = PMADR = PMDAL = PMDAR = PMLO1 = PMRO1 = PMLO2 = PMRO2 = PMLO2S = PMRO2S = PMLO3 = PMRO3 =PMSAD = MS0666-E-02 2010/06 - 10 - [AK4671] PMVCM = MUTEN bits = “1”, PMPLL = MCKO = PMMP = M/S = PMSRA = PMSRB = PMPCM bits = “0”. AVDD=13.2mA (typ), PVDD=0mA (typ), DVDD=6.7mA (typ), TVDD2=0mA (typ), TVDD3=0mA (typ), SAVDD=0.8mA (typ). Note 26. PLL Master Mode and LP bit = “0”, fs=44.1kHz, PMADL = PMMICL= PMMICR= PMADR = PMDAL = PMDAR = PMLO1 = PMRO1 = PMLO2 = PMRO2 = PMLO2S = PMRO2S = PMLO3 = PMRO3 =PMSAD = PMVCM = PMPLL = M/S = PMMP = MUTEN bits = “1”, MCKO = PMSRA = PMSRB = PMPCM bits = “0”, PLL Reference Clock = MCKI = 11.2896MHz. AVDD=14.7mA (typ), PVDD=0mA (typ), DVDD=7.0mA (typ), TVDD2=0mA (typ), TVDD3=0mA (typ), SAVDD=0.8mA (typ). Note 27. In case of LP bit = “1”, fs=8kHz, EXT Slave Mode and PMVCM = PMMP = PMMICL = PMADL = PMDAR = RCV = PMLO1 = PMRO1 = PMSRA = PMSRB = PMPCM bits = “1”. AVDD=5.2mA (typ), PVDD=0.6mA (typ), DVDD=2.2mA (typ), TVDD2=0mA (typ), TVDD3=0mA (typ), SAVDD=0mA (typ). Note 28. All digital input pins are fixed to each supply pin (DVDD, TVDD2 or TVDD3) or VSS4. SRC CHARACTERISTICS (Ta=25°C; AVDD=PVDD=SAVDD=DVDD=TVDD2=TVDD3=3.3V; VSS1=VSS2=VSS3=VSS4=0V; Signal Frequency=1kHz; 16bit Data; Measurement frequency=20Hz ∼ 3.4kHz; unless otherwise specified) Parameter Symbol min typ max SRC Characteristics (Down Sampling: SRC-A): SDTI Æ SRC-A Æ SDTOA/SDTOB Resolution 16 Input Sample Rate FSI (fs) 8 48 Output Sample Rate FSO (fs2) 8 THD+N (Input = 1kHz, −1dBFS, Note 29) FSO/FSI = 8kHz/44.1kHz −94 Dynamic Range (Input = 1kHz, −60dBFS, Note 29) FSO/FSI = 8kHz/44.1kHz 97 Ratio between Input and Output Sample Rate FSO/FSI 1/6 1 SRC Characteristics (Up Sampling: SRC-B): SDTIA/SDTIB Æ SRC-B Æ SDTO Resolution 16 Input Sample Rate FSI (fs2) 8 Output Sample Rate FSO (fs) 8 48 THD+N (Input = 1kHz, −1dBFS, Note 29) FSO/FSI = 44.1kHz/8kHz −95 Dynamic Range (Input = 1kHz, −60dBFS, Note 29) FSO/FSI = 44.1kHz/8kHz 100 Ratio between Input and Output Sample Rate FSO/FSI 1 6 Units Bits kHz kHz dB dB Bits kHz kHz dB dB - Note 29. Measured by Audio Precision System Two Cascade. Note 30. fs is the sampling frequency for Stereo CODEC. fs2 is for PCM I/F. MS0666-E-02 2010/06 - 11 - [AK4671] ANALOG CHARACTERISTICS (10bit SAR ADC) (Ta=25°C; AVDD=PVDD=SAVDD=DVDD =TVDD2 =TVDD3=3.3V; VSS1=VSS2=VSS3=VSS4=0V; unless otherwise specified) Parameter min typ max Units 10bit SAR ADC Characteristics Resolution 10 Bits No Missing Codes 9 10 Bits Integral Linearity Error LSB ±2 DNL LSB ±1 Analog Input Voltage Range 0 SAVDD V Offset Error LSB ±3 Gain Error LSB ±2 Accuracy (Note 31) % ±1 Note 31. Accuracy is the difference between the output code when 1.1V is input to SAIN1, SAIN2 or SAIN3 pin and the “ideal” code at 1.1V. FILTER CHARACTERISTICS (CODEC) (Ta=25°C; AVDD=PVDD =SAVDD=2.2 ∼ 3.6V; DVDD=TVDD2 =TVDD3=1.6 ∼ 3.6V; fs=44.1kHz; Programmable Filter=OFF) Parameter Symbol min typ max Units ADC Digital Filter (Decimation LPF): Passband (Note 32) PB 0 17.3 kHz ±0.16dB 19.4 kHz −0.66dB 19.9 kHz −1.1dB 22.1 kHz −6.9dB Stopband SB 25.9 kHz Passband Ripple PR dB ±0.1 Stopband Attenuation SA 69 dB Group Delay (Note 33) GD 19 1/fs Group Delay Distortion 0 ΔGD μs DAC Digital Filter (LPF): Passband (Note 32) PB 0 17.4 kHz ±0.1dB 20.0 kHz −1.0dB 21.1 kHz −3.0dB Stopband SB 25.7 kHz Passband Ripple PR dB ±0.1 Stopband Attenuation SA 68 dB Group Delay (Note 33) GD 19 1/fs DAC Digital Filter (LPF) + SCF: FR dB Frequency Response: 0 ∼ 20.0kHz ±1.4 Note 32. The passband and stopband frequencies scale with fs (system sampling rate). For example, DAC is PB=0.454 x fs (@−0.7dB). Each response refers to that of 1kHz. Note 33. The calculated delay time caused by digital filtering. This time is from the input of analog signal to setting of the 16-bit data of both channels from the input register to the output register of the ADC. For the DAC, this time is from setting the 16-bit data of both channels from the input register to the output of analog signal. MS0666-E-02 2010/06 - 12 - [AK4671] FILTER CHARACTERISTICS (SRC) (Ta=25°C; AVDD=PVDD = SAVDD=2.2 ∼ 3.6V; DVDD=TVDD2 =TVDD3=1.6 ∼ 3.6V; fs2=8kHz; Programmable Filter=OFF) Parameter Symbol min typ max Units Down Sampling (SRC-A): fs=8kHz Passband PB 0 3.0 kHz ±0.15dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.15 Stopband Attenuation SA 69 dB Group Delay (Note 34) GD 5 ms Down Sampling (SRC-A): fs=11.025kHz Passband PB 0 3.1 kHz ±0.15dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.15 Stopband Attenuation SA 69 dB Group Delay (Note 34) GD 4 ms Down Sampling (SRC-A): fs=12kHz Passband PB 0 3.1 kHz ±0.15dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.15 Stopband Attenuation SA 69 dB Group Delay (Note 34) GD 4 ms Down Sampling (SRC-A): fs=16kHz Passband PB 0 3.1 kHz ±0.15dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.15 Stopband Attenuation SA 69 dB Group Delay (Note 34) GD 3 ms Down Sampling (SRC-A): fs=22.05kHz Passband PB 0 3.1 kHz ±0.15dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.15 Stopband Attenuation SA 69 dB Group Delay (Note 34) GD 3 ms Down Sampling (SRC-A): fs=24kHz Passband PB 0 3.1 kHz ±0.15dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.15 Stopband Attenuation SA 69 dB Group Delay (Note 34) GD 3 ms Note 34. The calculated delay time caused by digital filtering. This time is from setting the 16-bit data from the input register to the output register. MS0666-E-02 2010/06 - 13 - [AK4671] Parameter Symbol min typ max Units Down Sampling (SRC-A): fs=32kHz Passband PB 0 3.1 kHz ±0.1dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.1 Stopband Attenuation SA 69 dB Group Delay (Note 34) GD 3 ms Down Sampling (SRC-A): fs=44.1kHz Passband PB 0 3.1 kHz ±0.1dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.1 Stopband Attenuation SA 69 dB Group Delay (Note 34) GD 3 ms Down Sampling (SRC-A): fs=48kHz Passband PB 0 3.1 kHz ±0.1dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.1 Stopband Attenuation SA 69 dB Group Delay (Note 34) GD 3 ms Note 34. The calculated delay time caused by digital filtering. This time is from setting the 16-bit data from the input register to the output register. MS0666-E-02 2010/06 - 14 - [AK4671] Parameter Symbol min typ max Units Up Sampling (SRC-B): fs=8kHz Passband PB 0 3.1 kHz ±0.1dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.1 Stopband Attenuation SA 68 dB Group Delay (Note 34) GD 2 ms Up Sampling (SRC-B): fs=11.025kHz Passband PB 0 3.1 kHz ±0.1dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.1 Stopband Attenuation SA 68 dB Group Delay (Note 34) GD 2 ms Up Sampling (SRC-B): fs=12kHz Passband PB 0 3.1 kHz ±0.1dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.1 Stopband Attenuation SA 68 dB Group Delay (Note 34) GD 2 ms Up Sampling (SRC-B): fs=16kHz Passband PB 0 3.1 kHz ±0.1dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.1 Stopband Attenuation SA 68 dB Group Delay (Note 34) GD 2 ms Up Sampling (SRC-B): fs=22.05kHz Passband PB 0 3.1 kHz ±0.1dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.1 Stopband Attenuation SA 68 dB Group Delay (Note 34) GD 2 ms Up Sampling (SRC-B): fs=24kHz Passband PB 0 3.1 kHz ±0.1dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.1 Stopband Attenuation SA 68 dB Group Delay (Note 34) GD 2 ms Note 34. The calculated delay time caused by digital filtering. This time is from setting the 16-bit data from the input register to the output register. MS0666-E-02 2010/06 - 15 - [AK4671] Parameter Symbol min typ max Units Up Sampling (SRC-B): fs=32kHz Passband PB 0 3.1 kHz ±0.1dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.1 Stopband Attenuation SA 68 dB Group Delay (Note 34) GD 2 ms Up Sampling (SRC-B): fs=44.1kHz Passband PB 0 3.1 kHz ±0.1dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.1 Stopband Attenuation SA 68 dB Group Delay (Note 34) GD 2 ms Up Sampling (SRC-B): fs=48kHz Passband PB 0 3.1 kHz ±0.1dB Stopband SB 4.7 kHz Passband Ripple PR dB ±0.1 Stopband Attenuation SA 68 dB Group Delay (Note 34) GD 2 ms Note 34. The calculated delay time caused by digital filtering. This time is from setting the 16-bit data from the input register to the output register. MS0666-E-02 2010/06 - 16 - [AK4671] DC CHARACTERISTICS (Ta=25°C; AVDD=PVDD =SAVDD=2.2 ∼ 3.6V; DVDD=TVDD2 =TVDD3=1.6 ∼ 3.6V) Parameter Symbol min Typ High-Level Input Voltage 1 2.2V≤DVDD≤3.6V VIH1 70%DVDD (Note 35) 1.6V≤DVDD<2.2V VIH1 80%DVDD Low-Level Input Voltage 1 2.2V≤DVDD≤3.6V VIL1 (Note 35) 1.6V≤DVDD<2.2V VIL1 High-Level Input Voltage 2 2.2V≤TVDD2≤3.6V VIH2 70%TVDD2 (Note 36) 1.6V≤TVDD2<2.2V VIH2 80%TVDD2 Low-Level Input Voltage 2 2.2V≤TVDD2≤3.6V VIL2 (Note 36) 1.6V≤TVDD2<2.2V VIL2 High-Level Input Voltage 3 2.2V≤TVDD3≤3.6V VIH3 70%TVDD3 (Note 37) 1.6V≤TVDD3<2.2V VIH3 80%TVDD3 Low-Level Input Voltage 3 2.2V≤TVDD3≤3.6V VIL3 (Note 37) 1.6V≤TVDD3<2.2V VIL3 High-Level Output Voltage (Note 38) (Iout=−200μA) VOH1 DVDD−0.2 VOH2 (Note 39) (Iout=−200μA) TVDD2−0.2 (Note 40) (Iout=−200μA) VOH3 TVDD3−0.2 Low-Level Output Voltage (Except SDA pin: Iout=200μA) VOL1 (SDA pin, 2.0V≤DVDD≤3.6V: Iout=3mA) VOL2 (SDA pin, 1.6V≤DVDD<2.0V: Iout=3mA) VOL2 Input Leakage Current (Note 41) Iind (Note 42) Iina - max 30%DVDD 20%DVDD 30%TVDD2 20%TVDD2 30%TVDD3 20%TVDD3 Units V V V V V V V V V V V V - V V V 0.2 0.4 20%DVDD V V V ±2 ±2 μA μA Note 35. CSN/CAD0, CCLK/SCL, CDTI/SDA, I2C, PDN, BICK, LRCK, SDTI, MCKI pins. Note 36. BICKA, SYNCA, SDTIA pins. Note 37. BICKB, SYNCB, SDTIB pins. Note 38. MCKO, BICK, LRCK, SDTO, CDTO, GPO1, GPO2 pins. Note 39. BICKA, SYNCA, SDTOA pins. Note 40. BICKB, SYNCB, SDTOB pins. Note 41. SYNCB, BICKB, SDTIB, SDTI, LRCK, MCKI, BICK, CSN/CAD0, CCLK/SCL, CDTI/SDA, SDTIA,BICKA, SYNCA pins. I/O pins (SYNCB, BICKB, LRCK, BICK, SDA, BICKA, SYNCA) are at the time of Input state. Note 42. SAIN1, SAIN2, SAIN3 pins. MS0666-E-02 2010/06 - 17 - [AK4671] SWITCHING CHARACTERISTICS (Ta=25°C; AVDD=PVDD =SAVDD=2.2 ∼ 3.6V; DVDD=TVDD2 =TVDD3=1.6 ∼ 3.6V; CL=20pF (except SDA pin) or 400pF (SDA pin); unless otherwise specified) Parameter Symbol min typ max Units PLL Master Mode (PLL Reference Clock = MCKI pin) MCKI Input Timing Frequency fCLK 11.2896 27 MHz Pulse Width Low tCLKL 0.4/fCLK ns Pulse Width High tCLKH 0.4/fCLK ns MCKO Output Timing Frequency fMCK 0.256 12.288 MHz Duty Cycle Except 256fs at fs=32kHz, 29.4kHz dMCK 40 50 60 % 256fs at fs=32kHz, 29.4kHz dMCK 33 % LRCK Output Timing Frequency fs 8 48 kHz DSP Mode: Pulse Width High tLRCKH tBCK ns Except DSP Mode: Duty Cycle Duty 50 % BICK Output Timing Period BCKO bit = “0” tBCK 1/(32fs) ns BCKO bit = “1” tBCK 1/(64fs) ns Duty Cycle dBCK 50 % PLL Slave Mode (PLL Reference Clock = MCKI pin) MCKI Input Timing Frequency fCLK 11.2896 27 MHz Pulse Width Low tCLKL 0.4/fCLK ns Pulse Width High tCLKH 0.4/fCLK ns MCKO Output Timing Frequency fMCK 0.256 12.288 MHz Duty Cycle Except 256fs at fs=32kHz, 29.4kHz dMCK 40 50 60 % 256fs at fs=32kHz, 29.4kHz dMCK 33 % LRCK Input Timing Frequency fs 8 48 kHz DSP Mode: Pulse Width High tLRCKH tBCK−60 1/fs − tBCK ns Except DSP Mode: Duty Cycle Duty 45 55 % BICK Input Timing Period tBCK 1/(64fs) 1/(32fs) ns Pulse Width Low tBCKL 0.4 x tBCK ns Pulse Width High tBCKH 0.4 x tBCK ns MS0666-E-02 2010/06 - 18 - [AK4671] Parameter Symbol PLL Slave Mode (PLL Reference Clock = LRCK pin) LRCK Input Timing Frequency fs DSP Mode: Pulse Width High tLRCKH Except DSP Mode: Duty Cycle Duty BICK Input Timing Period tBCK Pulse Width Low tBCKL Pulse Width High tBCKH PLL Slave Mode (PLL Reference Clock = BICK pin) LRCK Input Timing Frequency fs DSP Mode: Pulse Width High tLRCKH Except DSP Mode: Duty Cycle Duty BICK Input Timing Period PLL3-0 bits = “0010” tBCK PLL3-0 bits = “0011” tBCK Pulse Width Low tBCKL Pulse Width High tBCKH External Slave Mode MCKI Input Timing Frequency 256fs fCLK 384fs fCLK 512fs fCLK 768fs fCLK 1024fs fCLK Pulse Width Low tCLKL Pulse Width High tCLKH LRCK Input Timing Frequency 256fs/384fs fs 512fs/768fs fs 1024fs fs DSP Mode: Pulse Width High tLRCKH Except DSP Mode: Duty Cycle Duty BICK Input Timing Period tBCK Pulse Width Low tBCKL Pulse Width High tBCKH External Master Mode MCKI Input Timing Frequency 256fs fCLK 384fs fCLK 512fs fCLK 768fs fCLK 1024fs fCLK Pulse Width Low tCLKL Pulse Width High tCLKH LRCK Output Timing Frequency fs DSP Mode: Pulse Width High tLRCKH Except DSP Mode: Duty Cycle Duty BICK Output Timing Period BCKO bit = “0” tBCK BCKO bit = “1” tBCK Duty Cycle dBCK MS0666-E-02 min typ max Units 8 tBCK−60 45 - 48 1/fs − tBCK 55 kHz ns % 1/(64fs) 130 130 - 1/(32fs) - ns ns ns 8 tBCK−60 45 - 48 1/fs − tBCK 55 kHz ns % 0.4 x tBCK 0.4 x tBCK 1/(32fs) 1/(64fs) - - ns ns ns ns 2.048 3.072 4.096 6.144 8.192 0.4/fCLK 0.4/fCLK - 12.288 18.432 13.312 19.968 13.312 - MHz MHz MHz MHz MHz ns ns 8 8 8 tBCK−60 45 - 48 26 13 1/fs − tBCK 55 kHz kHz kHz ns % 312.5 130 130 - - ns ns ns 2.048 3.072 4.096 6.144 8.192 0.4/fCLK 0.4/fCLK - 12.288 18.432 13.312 19.968 13.312 - MHz MHz MHz MHz MHz ns ns 8 - tBCK 50 48 - kHz ns % - 1/(32fs) 1/(64fs) 50 - ns ns % 2010/06 - 19 - [AK4671] Parameter Symbol Audio Interface Timing (DSP Mode) Master Mode tDBF LRCK “↑” to BICK “↑” (Note 43) tDBF LRCK “↑” to BICK “↓” (Note 44) tBSD BICK “↑” to SDTO (BCKP bit = “0”) tBSD BICK “↓” to SDTO (BCKP bit = “1”) SDTI Hold Time tSDH SDTI Setup Time tSDS Slave Mode tLRB LRCK “↑” to BICK “↑” (Note 43) tLRB LRCK “↑” to BICK “↓” (Note 44) tBLR BICK “↑” to LRCK “↑” (Note 43) tBLR BICK “↓” to LRCK “↑” (Note 44) tBSD BICK “↑” to SDTO (BCKP bit = “0”) tBSD BICK “↓” to SDTO (BCKP bit = “1”) SDTI Hold Time tSDH SDTI Setup Time tSDS Audio Interface Timing (Right/Left justified & I2S) Master Mode tMBLR BICK “↓” to LRCK Edge (Note 45) tLRD LRCK Edge to SDTO (MSB) (Except I2S mode) tBSD BICK “↓” to SDTO SDTI Hold Time tSDH SDTI Setup Time tSDS Slave Mode tLRB LRCK Edge to BICK “↑” (Note 45) tBLR BICK “↑” to LRCK Edge (Note 45) tLRD LRCK Edge to SDTO (MSB) (Except I2S mode) tBSD BICK “↓” to SDTO SDTI Hold Time tSDH SDTI Setup Time tSDS min typ max Units 0.5 x tBCK − 40 0.5 x tBCK − 40 −70 −70 50 50 0.5 x tBCK 0.5 x tBCK - 0.5 x tBCK + 40 0.5 x tBCK + 40 70 70 - ns ns ns ns ns ns 0.4 x tBCK 0.4 x tBCK 0.4 x tBCK 0.4 x tBCK 50 50 - 80 80 - ns ns ns ns ns ns ns ns −40 −70 - 40 70 ns ns −70 50 50 - 70 - ns ns ns 50 50 - - 80 ns ns ns 50 50 - 80 - ns ns ns Note 43. MSBS, BCKP bits = “00” or “11”. Note 44. MSBS, BCKP bits = “01” or “10”. Note 45. BICK rising edge must not occur at the same time as LRCK edge. MS0666-E-02 2010/06 - 20 - [AK4671] Parameter Symbol min PCM Interface Timing (BICKA, SYNCA, SDTIA, SDTOA pins; Slave Mode): SYNCA Timing Frequency fs2 Serial Interface Timing at Short/long Frame Sync BICKA Frequency fBCK2 128 BICKA Period tBCK2 488 BICKA Pulse Width Low tBCKL2 200 Pulse Width High tBCKH2 200 tSYB2 50 SYNCA Edge to BICKA “↓” (Note 46) tSYB2 50 SYNCA Edge to BICKA “↑” (Note 47) tBSY2 50 BICKA “↓” to SYNCA Edge (Note 46) tBSY2 50 BICKA “↑” to SYNCA Edge (Note 47) SYNCA to SDTOA (MSB) (Except Short Frame) tSYD2 tBSD2 BICKA “↑” to SDTOA (BCKPA bit = “0”) tBSD2 BICKA “↓” to SDTOA (BCKPA bit = “1”) SDTIA Hold Time tSDH2 50 SDTIA Setup Time tSDS2 50 SYNCA Pulse Width Low tSYL2 0.8 x tBCK2 Pulse Width High tSYH2 0.8 x tBCK2 Serial Interface Timing at MSB justified and I2S BICKA Frequency fBCK2 256 BICKA Period tBCK2 488 BICKA Pulse Width Low tBCKL2 200 Pulse Width High tBCKH2 200 tSYB2 50 SYNCA Edge to BICKA “↑” tBSY2 50 BICKA “↑” to SYNCA Edge SYNCA to SDTOA (MSB) (Except I2S mode) tSYD2 tBSD2 BICKA “↓” to SDTOA SDTIA Hold Time tSDH2 50 SDTIA Setup Time tSDS2 50 SYNCA Duty Cycle dSYC2 45 typ max Units 8 - kHz - 2048 80 80 80 - kHz ns ns ns ns ns ns ns ns ns ns ns ns ns ns 50 2048 80 80 55 kHz ns ns ns ns ns ns ns ns ns % Note 46. MSBSA, BCKPA bits = “00” or “11”. Note 47. MSBSA, BCKPA bits = “01” or “10”. MS0666-E-02 2010/06 - 21 - [AK4671] Parameter Symbol min PCM Interface Timing (BICKA, SYNCA, SDTIA, SDTOA pins; Master Mode): SYNCA Timing Frequency fs2 BICKA Timing Period (BCKO2 bit = “0”) tBCK2 (BCKO2 bit = “1”) tBCK2 Duty Cycle dBCK2 Serial Interface Timing at Short/long Frame Sync 0.5 x tBCK2 − 40 tSYB2 SYNCA Edge to BICKA “↓” (Note 46) 0.5 x tBCK2 − 40 tSYB2 SYNCA Edge to BICKA “↑” (Note 47) tBSD2 BICKA “↑” to SDTOA (BCKPA bit = “0”) −70 tBSD2 BICKA “↓” to SDTOA (BCKPA bit = “1”) −70 SDTIA Hold Time tSDH2 50 SDTIA Setup Time tSDS2 50 SYNCA Pulse Width High tSYH2 Serial Interface Timing at MSB justified and I2S tMBSY2 BICKA “↓” to SYNCA Edge −40 SYNCA to SDTOA (MSB) (Except I2S mode) tSYD2 −70 tBSD2 BICKA “↓” to SDTOA −70 SDTIA Hold Time tSDH2 50 SDTIA Setup Time tSDS2 50 SYNCA Duty Cycle dSYC2 - typ max Units 8 - kHz 1/(16fs2) 1/(32fs2) 50 - ns ns % 0.5 x tBCK2 0.5 x tBCK2 + 40 0.5 x tBCK2 0.5 x tBCK2 + 40 tBCK2 70 70 - ns ns ns ns ns ns ns 50 40 70 70 - ns ns ns ns ns % Note 46. MSBSA, BCKPA bits = “00” or “11”. Note 47. MSBSA, BCKPA bits = “01” or “10”. MS0666-E-02 2010/06 - 22 - [AK4671] Parameter Symbol min PCM Interface Timing (BICKB, SYNCB, SDTIB, SDTOB pins; Slave Mode): SYNCB Timing Frequency fs2 Serial Interface Timing at Short/long Frame Sync BICKB Frequency fBCK3 128 BICKB Period tBCK3 488 BICKB Pulse Width Low tBCKL3 200 Pulse Width High tBCKH3 200 tSYB3 50 SYNCB Edge to BICKB “↓” (Note 48) tSYB3 50 SYNCB Edge to BICKB “↑” (Note 49) tBSY3 50 BICKB “↓” to SYNCB Edge (Note 48) tBSY3 50 BICKB “↑” to SYNCB Edge (Note 49) SYNCB to SDTOB (MSB) (Except Short Frame) tSYD3 tBSD3 BICKB “↑” to SDTOB (BCKPB bit = “0”) tBSD3 BICKB “↓” to SDTOB (BCKPB bit = “1”) SDTIB Hold Time tSDH3 50 SDTIB Setup Time tSDS3 50 SYNCB Pulse Width Low tSYL3 0.8 x tBCK3 Pulse Width High tSYH3 0.8 x tBCK3 Serial Interface Timing at MSB justified and I2S BICKB Frequency fBCK3 256 BICKB Period tBCK3 488 BICKB Pulse Width Low tBCKL3 200 Pulse Width High tBCKH3 200 tSYB3 50 SYNCB Edge to BICKB “↑” tBSY3 50 BICKB “↑” to SYNCB Edge SYNCB to SDTOB (MSB) (Except I2S mode) tSYD3 tBSD3 BICKB “↓” to SDTOB SDTIB Hold Time tSDH3 50 SDTIB Setup Time tSDS3 50 SYNCB Duty Cycle dSYC3 45 typ max Units 8 - kHz - 2048 80 80 80 - kHz ns ns ns ns ns ns ns ns ns ns ns ns ns ns 50 2048 80 80 55 kHz ns ns ns ns ns ns ns ns ns % Note 48. MSBSB, BCKPB bits = “00” or “11”. Note 49. MSBSB, BCKPB bits = “01” or “10”. MS0666-E-02 2010/06 - 23 - [AK4671] Parameter Symbol min PCM Interface Timing (BICKB, SYNCB, SDTIB, SDTOB pins; Master Mode): SYNCB Timing Frequency fs2 BICKB Timing Period (BCKO2 bit = “0”) tBCK3 (BCKO2 bit = “1”) tBCK3 Duty Cycle dBCK3 Serial Interface Timing at Short/long Frame Sync 0.5 x tBCK3 − 40 tSYB3 SYNCB Edge to BICKB “↓” (Note 48) 0.5 x tBCK3 − 40 tSYB3 SYNCB Edge to BICKB “↑” (Note 49) tBSD3 BICKB “↑” to SDTOB (BCKPB bit = “0”) −70 tBSD3 BICKB “↓” to SDTOB (BCKPB bit = “1”) −70 SDTIB Hold Time tSDH3 50 SDTIB Setup Time tSDS3 50 SYNCB Pulse Width High tSYH3 Serial Interface Timing at MSB justified and I2S tMBSY3 BICKB “↓” to SYNCB Edge −40 SYNCB to SDTOB (MSB) (Except I2S mode) tSYD3 −70 tBSD3 BICKB “↓” to SDTOB −70 SDTIB Hold Time tSDH3 50 SDTIB Setup Time tSDS3 50 SYNCB Duty Cycle dSYC3 - typ max Units 8 - kHz 1/(16fs2) 1/(32fs2) 50 - ns ns % 0.5 x tBCK3 0.5 x tBCK3 + 40 0.5 x tBCK3 0.5 x tBCK3 + 40 tBCK3 70 70 - ns ns ns ns ns ns ns 50 40 70 70 - ns ns ns ns ns % Note 48. MSBSB, BCKPB bits = “00” or “11”. Note 49. MSBSB, BCKPB bits = “01” or “10”. MS0666-E-02 2010/06 - 24 - [AK4671] Parameter Control Interface Timing (4-wire Serial mode) CCLK Period (Note 51) CCLK Pulse Width Low Pulse Width High CDTI Setup Time CDTI Hold Time CSN “H” Time CSN Edge to CCLK “↑” (Note 52) CCLK “↑” to CSN Edge (Note 52) CDTO Delay CSN “↑” to CDTO Hi-Z Control Interface Timing (I2C Bus mode): (Note 50) SCL Clock Frequency (Note 53) Bus Free Time Between Transmissions Start Condition Hold Time (prior to first clock pulse) Clock Low Time Clock High Time Setup Time for Repeated Start Condition SDA Hold Time from SCL Falling (Note 54) SDA Setup Time from SCL Rising Rise Time of Both SDA and SCL Lines Fall Time of Both SDA and SCL Lines Setup Time for Stop Condition Capacitive Load on Bus Pulse Width of Spike Noise Suppressed by Input Filter Power-down & Reset Timing PDN Pulse Width (Note 55) PMADL or PMADR “↑” to SDTO valid (Note 56) PMSRA “↑” to SDTOA valid (Note 57) PMSRB “↑” to SDTO valid (Note 58) Symbol min typ max Units tCCK tCCKL tCCKH tCDS tCDH tCSW tCSS tCSH tDCD tCCZ 200 80 80 40 40 150 50 50 - - 33000 70 70 ns ns ns ns ns ns ns ns ns ns fSCL tBUF tHD:STA tLOW tHIGH tSU:STA tHD:DAT tSU:DAT tR tF tSU:STO Cb tSP 30 1.3 0.6 1.3 0.6 0.6 0 0.1 0.6 0 - 400 0.3 0.3 400 50 kHz μs μs μs μs μs μs μs μs μs μs pF ns tPD tPDV tPDV2 tPDV3 150 - 1059 21 135 - ns 1/fs 1/fs2 1/fs Note 50. I2C-bus is a trademark of NXP B.V. Note 51. CCLK should be input succeedingly until 10bit data of SAR ADC is read out at 4-wire serial mode (Figure 97). Note 52. CCLK rising edge must not occur at the same time as CSN edge. Note 53. In case that SAR ADC data is read out via I2C bus, SCL should be input succeedingly corresponding 2 byte data including ACK (Figure 104). Note 54. Data must be held long enough to bridge the 300ns-transition time of SCL. Note 55. The AK4671 can be reset by bringing PDN pin = “L” to “H” only upon power up. Note 56. This is the count of LRCK “↑” from the PMADL or PMADR bit = “1” at PMSRB bit = “1”. Note 57. The signal path is SDTI → SRC-A → SDTOA and PLLBT is locked. Note 58. The signal path is SDTIA → SRC-B → SDTO. MS0666-E-02 2010/06 - 25 - [AK4671] ■ Timing Diagram 1/fCLK VIH1 MCKI VIL1 tCLKH tCLKL 1/fs 50%DVDD LRCK tLRCKH tLRCKL tBCK Duty = tLRCKH x fs x 100 tLRCKL x fs x 100 50%DVDD BICK tBCKH tBCKL dBCK = tBCKH / tBCK x 100 tBCKL / tBCK x 100 1/fMCK 50%DVDD MCKO tMCKL dMCK = tMCKL x fMCK x 100 Figure 3. Clock Timing (PLL/EXT Master mode) Note 59. MCKO is not available at EXT Master mode. tLRCKH LRCK 50%DVDD tDBF BICK (BCKP = "0") 50%DVDD BICK (BCKP = "1") 50%DVDD tBSD SDTO MSB tSDS 50%DVDD tSDH VIH1 SDTI VIL1 Figure 4. Audio Interface Timing (PLL/EXT Master mode, DSP mode, MSBS = “0”) MS0666-E-02 2010/06 - 26 - [AK4671] tLRCKH LRCK 50%DVDD tDBF BICK (BCKP = "1") 50%DVDD BICK (BCKP = "0") 50%DVDD tBSD SDTO 50%DVDD MSB tSDS tSDH VIH1 SDTI VIL1 Figure 5. Audio Interface Timing (PLL/EXT Master mode, DSP mode, MSBS = “1”) 50%DVDD LRCK tMBLR BICK 50%DVDD tLRD tBSD SDTO 50%DVDD tSDS tSDH VIH SDTI VIL Figure 6. Audio Interface Timing (PLL/EXT Master mode, Except DSP mode) MS0666-E-02 2010/06 - 27 - [AK4671] 1/fs VIH1 LRCK VIL1 tLRCKH tBLR tBCK VIH1 BICK (BCKP = "0") VIL1 tBCKH tBCKL VIH1 BICK (BCKP = "1") VIL1 Figure 7. Clock Timing (PLL Slave mode; PLL Reference Clock = LRCK or BICK pin, DSP mode, MSBS = “0”) 1/fs VIH1 LRCK VIL1 tLRCKH tBLR tBCK VIH1 BICK (BCKP = "1") VIL1 tBCKH tBCKL VIH1 BICK (BCKP = "0") VIL1 Figure 8. Clock Timing (PLL Slave mode; PLL Reference Clock = LRCK or BICK pin, DSP mode, MSBS = “1”) MS0666-E-02 2010/06 - 28 - [AK4671] 1/fCLK VIH1 MCKI VIL1 tCLKH tCLKL 1/fs VIH1 LRCK VIL1 tLRCKH tLRCKL tBCK Duty = tLRCKH x fs x 100 tLRCKL x fs x 100 VIH1 BICK VIL1 tBCKH tBCKL 1/fMCK 50%DVDD MCKO tMCKL dMCK = tMCKL x fMCK x 100 Figure 9. Clock Timing (PLL Slave mode; Except DSP mode) tLRCKH VIH1 LRCK VIL1 tLRB VIH1 BICK VIL1 (BCKP = "0") VIH1 BICK (BCKP = "1") VIL1 tBSD SDTO MSB tSDS 50%DVDD tSDH VIH1 SDTI MSB VIL1 Figure 10. Audio Interface Timing (PLL Slave mode, DSP mode; MSBS = “0”) MS0666-E-02 2010/06 - 29 - [AK4671] tLRCKH VIH1 LRCK VIL1 tLRB VIH1 BICK VIL1 (BCKP = "1") VIH1 BICK (BCKP = "0") VIL1 tBSD SDTO 50%DVDD MSB tSDS tSDH VIH1 SDTI MSB VIL1 Figure 11. Audio Interface Timing (PLL Slave mode, DSP mode, MSBS = “1”) 1/fCLK VIH1 MCKI VIL1 tCLKH tCLKL 1/fs VIH1 LRCK VIL1 tLRCKH tLRCKL Duty = tLRCKH x fs x 100 tLRCKL x fs x 100 tBCK VIH1 BICK VIL1 tBCKH tBCKL Figure 12. Clock Timing (EXT Slave mode) MS0666-E-02 2010/06 - 30 - [AK4671] VIH1 LRCK VIL1 tLRB tBLR VIH1 BICK VIL1 tBSD tLRD SDTO 50%DVDD MSB tSDH tSDS VIH1 SDTI VIL1 Figure 13. Audio Interface Timing (PLL/EXT Slave mode, Except DSP mode) 1/fs2 VIH2 SYNCA VIL2 tSYH2 tSYL2 dSYC2 = tSYH2 x fs2 x 100 tSYL2 x fs2 x 100 tBC K2 = 1/fBC K2 VIH 2 VIL2 BIC KA tBC KH 2 tBC KL2 Figure 14. Clock Timing of PCM I/F A (Slave mode) MS0666-E-02 2010/06 - 31 - [AK4671] VIH2 SYNCA VIL2 tBSY2 tSYB2 VIH2 BICKA VIL2 (BCKPA = “0”) VIH2 BICKA VIL2 (BCKPA = “1”) tSYD2 tBSD2 SDTOA 50%TVDD2 tSDS2 tSDH2 VIH2 SDTIA VIL2 Figure 15. PCM I/F A Timing at short and long frame sync (Slave mode; MSBSA = “0”) VIH2 SYNCA VIL2 tBSY2 tSYB2 VIH2 BICKA VIL2 (BCKPA = “1”) VIH2 BICKA (BCKPA = “0”) VIL2 tBSD2 SDTOA 50%TVDD2 tSDS2 tSDH2 VIH2 SDTIA VIL2 Figure 16. PCM I/F A Timing at short and long frame sync (Slave mode; MSBSA = “1”) MS0666-E-02 2010/06 - 32 - [AK4671] VIH2 SYNCA VIL2 tBSY2 tSYB2 VIH2 BICKA VIL2 tSYD2 tBSD2 SDTOA 50%TVDD2 tSDS2 tSDH2 VIH2 SDTIA VIL2 Figure 17. PCM I/F A Timing at MSB justified and I2S (Slave mode) 1/fs2 50%TVDD2 SYNCA tSYH2 tSYL2 dSYC2 = tSYL2 x fs2 x 100 tBC K2 = 1/fBC K2 50% T VD D 2 BIC KA tBC KH 2 tBC KL2 dBC K2 = tBC KL2 / tBC K2 x 100 Figure 18. Clock Timing of PCM I/F A (Master mode) MS0666-E-02 2010/06 - 33 - [AK4671] SYNCA 50%TVDD2 tSYB2 BICKA (BCKPA = “0”) 50%TVDD2 BICKA 50%TVDD2 (BCKPA = “1”) tBSD2 SDTOA 50%TVDD2 tSDS2 tSDH2 VIH2 SDTIA VIL2 Figure 19. PCM I/F A Timing at short and long frame sync (Master mode; MSBSA = “0”) SYNCA 50%TVDD2 tSYB2 50%TVDD2 BICKA (BCKPA = “1”) 50%TVDD2 BICKA (BCKPA = “0”) tBSD2 SDTOA 50%TVDD2 tSDS2 tSDH2 VIH2 SDTIA VIL2 Figure 20. PCM I/F A Timing at short and long frame sync (Master mode; MSBSA = “1”) MS0666-E-02 2010/06 - 34 - [AK4671] 50%TVDD2 SYNCA tMBSY2 50%TVDD2 BICKA tSYD2 tBSD2 SDTOA 50%TVDD2 tSDS2 tSDH2 VIH2 SDTIA VIL2 Figure 21. PCM I/F A Timing at MSB justified and I2S (Master mode) 1/fs2 VIH3 SYNCB VIL3 tSYH3 tSYL3 dSYC3 = tSYH3 x fs2 x 100 tSYL3 x fs2 x 100 tBC K3 = 1/fBC K3 VIH 3 VIL3 BIC KB tBC KH 3 tBC KL3 Figure 22. Clock Timing of PCM I/F B (Slave mode) MS0666-E-02 2010/06 - 35 - [AK4671] VIH3 SYNCB VIL3 tBSY3 tSYB3 VIH3 BICKB VIL3 (BCKPB = “0”) VIH3 BICKB VIL3 (BCKPB = “1”) tSYD3 tBSD3 SDTOB 50%TVDD3 tSDS3 tSDH3 VIH3 SDTIB VIL3 Figure 23. PCM I/F B Timing at short and long frame sync (Slave mode; MSBSB = “0”) VIH3 SYNCB VIL3 tBSY3 tSYB3 VIH3 BICKB VIL3 (BCKPB = “1”) VIH3 BICKB (BCKPB = “0”) VIL3 tBSD3 SDTOB 50%TVDD3 tSDS3 tSDH3 VIH3 SDTIB VIL3 Figure 24. PCM I/F B Timing at short and long frame sync (Slave mode; MSBSB = “1”) MS0666-E-02 2010/06 - 36 - [AK4671] VIH3 SYNCB VIL3 tBSY3 tSYB3 VIH3 BICKB VIL3 tSYD3 tBSD3 SDTOB 50%TVDD3 tSDS3 tSDH3 VIH3 SDTIB VIL3 Figure 25. PCM I/F B Timing at MSB justified and I2S (Slave mode) 1/fs2 50%TVDD3 SYNCB tSYH3 tSYL3 dSYC3 = tSYL3 x fs2 x 100 tBC K3 = 1/fBC K3 50% T VD D 3 BIC KB tBC KH 3 tBC KL3 dBC K3 = tBC KL3 / tBC K3 x 100 Figure 26. Clock Timing of PCM I/F B (Master mode) MS0666-E-02 2010/06 - 37 - [AK4671] SYNCB 50%TVDD3 tSYB3 50%TVDD3 BICKB (BCKPB = “0”) 50%TVDD3 BICKB (BCKPB = “1”) tBSD3 SDTOB 50%TVDD3 tSDS3 tSDH3 VIH3 SDTIB VIL3 Figure 27. PCM I/F B Timing at short and long frame sync (Master mode; MSBSB = “0”) SYNCB 50%TVDD3 tSYB3 50%TVDD3 BICKB (BCKPB = “1”) 50%TVDD3 BICKB (BCKPB = “0”) tBSD3 SDTOB 50%TVDD3 tSDS3 tSDH3 VIH3 SDTIB VIL3 Figure 28. PCM I/F B Timing at short and long frame sync (Master mode; MSBSB = “1”) MS0666-E-02 2010/06 - 38 - [AK4671] 50%TVDD3 SYNCB tMBSY3 50%TVDD3 BICKB tSYD3 tBSD3 SDTOB 50%TVDD3 tSDS3 tSDH3 VIH3 SDTIB VIL3 Figure 29. PCM I/F B Timing at MSB justified and I2S (Master mode) VIH1 CSN VIL1 tCSH tCCKL tCSS tCCKH VIH1 CCLK VIL1 tCCK tCDH tCDS VIH1 CDTI CDTO C1 C0 R/W VIL1 Hi-Z Figure 30. WRITE Command Input Timing MS0666-E-02 2010/06 - 39 - [AK4671] tCSW VIH1 CSN VIL1 tCSH tCSS VIH1 CCLK VIL1 VIH1 CDTI D2 D1 D0 VIL1 Hi-Z CDTO Figure 31. WRITE Data Input Timing VIH1 CSN VIL1 VIH1 CCLK VIL1 VIH1 CDTI A1 A0 VIL1 tDCD CDTO Hi-Z D7 D6 50%DVDD Figure 32. READ Data Output Timing 1 MS0666-E-02 2010/06 - 40 - [AK4671] tCSW VIH1 CSN VIL1 tCSH VIH1 CCLK VIL1 VIH1 CDTI VIL1 tCCZ CDTO D2 D1 D0 Hi-Z 50%DVDD Figure 33. READ Data Output Timing 2 VIH1 SDA VIL1 tBUF tLOW tHIGH tR tF tSP VIH1 SCL VIL1 tHD:STA Stop tHD:DAT tSU:DAT Start tSU:STA Start tSU:STO Stop Figure 34. I2C Bus Mode Timing MS0666-E-02 2010/06 - 41 - [AK4671] PMADL bit or PMADR bit tPDV SDTO 50%DVDD Figure 35. Power Down & Reset Timing 1 tPD PDN VIL1 Figure 36. Power Down & Reset Timing 2 PMSRA bit tPDV2 SDTOA 50%TVDD2 Figure 37. Power Down & Reset Timing 3 PMSRB bit tPDV3 SDTO 50%DVDD Figure 38. Power Down & Reset Timing 4 MS0666-E-02 2010/06 - 42 - [AK4671] OPERATION OVERVIEW ■ System Clock (Audio I/F) There are the following five clock modes to interface with external devices. (Table 1 and Table 2) Mode PMPLL bit M/S bit PLL3-0 bits Figure PLL Master Mode (Note 60) 1 1 See Table 4 Figure 39 PLL Slave Mode 1 Figure 40 1 0 See Table 4 (PLL Reference Clock: MCKI pin) PLL Slave Mode 2 Figure 41 1 0 See Table 4 Figure 42 (PLL Reference Clock: LRCK or BICK pin) EXT Slave Mode 0 0 x Figure 43 EXT Master Mode 0 1 x Figure 44 Note 60. If M/S bit = “1”, PMPLL bit = “0” and MCKO bit = “1” during the setting of PLL Master Mode, the invalid clocks are output from MCKO pin when MCKO bit is “1”. Table 1. Clock Mode Setting (x: Don’t care) Mode MCKO bit 0 PLL Master Mode 1 0 PLL Slave Mode (PLL Reference Clock: MCKI pin) 1 MCKO pin L Selected by PS1-0 bits L Selected by PS1-0 bits MCKI pin Selected by PLL3-0 bits Selected by PLL3-0 bits PLL Slave Mode (PLL Reference Clock: LRCK or BICK pin) 0 L GND EXT Slave Mode 0 L Selected by FS1-0 bits EXT Master Mode 0 L Selected by FS1-0 bits BICK pin Output (Selected by BCKO bit) LRCK pin Input (≥ 32fs) Input (1fs) Input (Selected by PLL3-0 bits) Input (≥ 32fs) Output (Selected by BCKO bit) Output (1fs) Input (1fs) Input (1fs) Output (1fs) Table 2. Clock pins state in Clock Mode ■ Master Mode/Slave Mode The M/S bit selects either master or slave mode. M/S bit = “1” selects master mode and “0” selects slave mode. When the AK4671 is power-down mode (PDN pin = “L”) and exits reset state, the AK4671 is slave mode. After exiting reset state, the AK4671 goes to master mode by changing M/S bit = “1”. When the AK4671 is used by master mode, LRCK and BICK pins are a Hi-Z state until M/S bit becomes “1”. LRCK and BICK pins of the AK4671 should be pulled-down or pulled-up by the resistor (about 100kΩ) externally to avoid the floating state. M/S bit Mode 0 Slave Mode 1 Master Mode Table 3. Select Master/Slave Mode MS0666-E-02 (default) 2010/06 - 43 - [AK4671] ■ PLL Mode (PMPLL bit = “1”) When PMPLL bit is “1”, a fully integrated analog phase locked loop (PLL) generates a clock that is selected by the PLL3-0 and FS3-0 bits. The PLL lock time is shown in Table 4, whenever the AK4671 is supplied to a stable clocks after PLL is powered-up (PMPLL bit = “0” → “1”) or sampling frequency changes. When AIN3 bit = “1”, the PLL is not available. 1) Setting of PLL Mode Mode PLL3 bit PLL2 bit PLL1 bit PLL0 bit PLL Reference Clock Input Pin Input Frequency 0 0 0 0 0 LRCK pin 1fs 2 0 0 1 0 BICK pin 32fs 3 0 0 1 1 BICK pin 64fs 4 5 6 7 8 12 13 14 15 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 1 0 1 0 0 1 0 1 Others R and C of VCOC pin R[Ω] C[F] 6.8k 220n 10k 4.7n 10k 10n 10k 4.7n 10k 10n 10k 4.7n 10k 4.7n 10k 10n 10k 10n 10k 4.7n 10k 10n 10k 10n 10k 220n 10k 220n MCKI pin 11.2896MHz MCKI pin 12.288MHz MCKI pin 12MHz MCKI pin 24MHz MCKI pin 19.2MHz MCKI pin 13.5MHz MCKI pin 27MHz MCKI pin 13MHz MCKI pin 26MHz Others N/A Table 4. Setting of PLL Mode (*fs: Sampling Frequency, N/A: Not available) PLL Lock Time (max) 160ms 2ms 4ms 2ms 4ms 40ms 40ms 40ms 40ms 40ms 40ms 40ms 60ms 60ms (default) 2) Setting of sampling frequency in PLL Mode When PLL reference clock input is MCKI pin, the sampling frequency is selected by FS3-0 bits as defined in Table 5. Mode FS3 bit FS2 bit FS1 bit FS0 bit Sampling Frequency 0 0 0 0 0 8kHz 1 0 0 0 1 12kHz 2 0 0 1 0 16kHz 3 0 0 1 1 24kHz 5 0 1 0 1 11.025kHz 7 0 1 1 1 22.05kHz 10 1 0 1 0 32kHz 11 1 0 1 1 48kHz 15 1 1 1 1 44.1kHz (default) Others Others N/A (N/A: Not available) Table 5. Setting of Sampling Frequency at PMPLL bit = “1” (Reference Clock = MCKI pin) MS0666-E-02 2010/06 - 44 - [AK4671] When PLL reference clock input is LRCK or BICK pin, the sampling frequency is selected by FS3-2 bits (Table 6). Mode FS3 bit FS2 bit FS1 bit FS0 bit Sampling Frequency Range x x 0 0 0 8kHz ≤ fs ≤ 12kHz x x 1 0 1 12kHz < fs ≤ 24kHz x x x 2 1 (default) 24kHz < fs ≤ 48kHz Others Others N/A (x: Don’t care, N/A: Not available) Table 6. Setting of Sampling Frequency at PMPLL bit = “1” (Reference Clock = LRCK or BICK pin) ■ PLL Unlock State 1) PLL Master Mode (PMPLL bit = “1”, M/S bit = “1”) In this mode, LRCK and BICK pins go to “L” and irregular frequency clock is output from the MCKO pin at MCKO bit is “1” before the PLL goes to lock state after PMPLL bit = “0” Æ “1”. If MCKO bit is “0”, the MCKO pin changes to “L” (Table 7). After the PLL is locked, a first period of LRCK and BICK may be invalid clock, but these clocks return to normal state after a period of 1/fs. When sampling frequency is changed, BICK and LRCK pins do not output irregular frequency clocks but go to “L” by setting PMPLL bit to “0”. MCKO pin BICK pin MCKO bit = “0” MCKO bit = “1” After that PMPLL bit “0” Æ “1” “L” Output Invalid “L” Output PLL Unlock (except above case) “L” Output Invalid Invalid PLL Lock “L” Output See Table 9 See Table 10 Table 7. Clock Operation at PLL Master Mode (PMPLL bit = “1”, M/S bit = “1”) PLL State LRCK pin “L” Output Invalid 1fs Output 2) PLL Slave Mode (PMPLL bit = “1”, M/S bit = “0”) In this mode, an invalid clock is output from the MCKO pin before the PLL goes to lock state after PMPLL bit = “0” Æ “1”. After that, the clock selected by Table 9 is output from the MCKO pin when PLL is locked. ADC and DAC output invalid data when the PLL is unlocked. For DAC, the output signal should be muted by writing “0” to DACL and DACH bits. MCKO pin MCKO bit = “0” MCKO bit = “1” After that PMPLL bit “0” Æ “1” “L” Output Invalid PLL Unlock “L” Output Invalid PLL Lock “L” Output Output Table 8. Clock Operation at PLL Slave Mode (PMPLL bit = “0”, M/S bit = “0”) PLL State MS0666-E-02 2010/06 - 45 - [AK4671] ■ PLL Master Mode (PMPLL bit = “1”, M/S bit = “1”) When an external clock (11.2896MHz, 12MHz, 12.288MHz, 13MHz, 13.5MHz, 19.2MHz, 24MHz, 26MHz or 27MHz) is input to the MCKI pin, the MCKO, BICK and LRCK clocks are generated by an internal PLL circuit. The MCKO output frequency is selected by PS1-0 bits (Table 9) and the output is enabled by MCKO bit. The BICK output frequency is selected between 32fs or 64fs, by BCKO bit (Table 10). 11.2896MHz, 12MHz, 12.288MHz, 13MHz, 13.5MHz, 19.2MHz, 24MHz, 26MHz, 27MHz DSP or μP AK4671 MCKI 256fs/128fs/64fs/32fs MCKO 32fs, 64fs BICK 1fs LRCK MCLK BCLK LRCK SDTO SDTI SDTI SDTO Figure 39. PLL Master Mode Mode PS1 bit PS0 bit MCKO pin 0 0 0 256fs (default) 1 0 1 128fs 2 1 0 64fs 3 1 1 32fs Table 9. MCKO Output Frequency (PLL Mode, MCKO bit = “1”) BICK Output Frequency 0 32fs (default) 1 64fs Table 10. BICK Output Frequency at Master Mode BCKO bit MS0666-E-02 2010/06 - 46 - [AK4671] ■ PLL Slave Mode (PMPLL bit = “1”, M/S bit = “0”) A reference clock of PLL is selected among the input clocks to MCKI, BICK or LRCK pin. The required clock to the AK4671 is generated by an internal PLL circuit. Input frequency is selected by PLL3-0 bits (Table 4). a) PLL reference clock: MCKI pin BICK and LRCK inputs should be synchronized with MCKO output. The phase between MCKO and LRCK does not matter. The MCKO pin outputs the frequency selected by PS1-0 bits (Table 9) and the output is enabled by MCKO bit. Sampling frequency can be selected by FS3-0 bits (Table 5). In case that the CODEC is used without Audio I/F (like phone call), the CODEC can be operated by MCKI only. In this case, BICK and LRCK can be stopped. 11.2896MHz, 12MHz, 12.288MHz, 13MHz, 13.5MHz, 19.2MHz, 24MHz, 26MHz, 27MHz AK4671 DSP or μP MCKI MCKO BICK LRCK 256fs/128fs/64fs/32fs ≥ 32fs 1fs MCLK BCLK LRCK SDTO SDTI SDTI SDTO Figure 40. PLL Slave Mode 1 (PLL Reference Clock: MCKI pin) MS0666-E-02 2010/06 - 47 - [AK4671] b) PLL reference clock: BICK or LRCK pin Sampling frequency corresponds to 8kHz to 48kHz by changing FS3-0 bits (Table 6). AK4671 DSP or μP MCKO MCKI BICK LRCK 32fs or 64fs 1fs BCLK LRCK SDTO SDTI SDTI SDTO Figure 41. PLL Slave Mode 2 (PLL Reference Clock: BICK pin) AK4671 DSP or μP MCKO MCKI BICK LRCK ≥ 32fs 1fs BCLK LRCK SDTO SDTI SDTI SDTO Figure 42. PLL Slave Mode 2 (PLL Reference Clock: LRCK pin) MCKI should always be present whenever the ADC or DAC is in operation (PMADL bit = “1”, PMADR bit = “1”, PMDAL bit = “1” or PMDAR bit = “1”). If MCKI is not provided, the AK4671 may draw excess current and it is not possible to operate properly because utilizes dynamic refreshed logic internally. If MCKI is not present, the ADC and DAC should be in the power-down mode (PMADL=PMADR=PMDAL=PMDAR bits = “0”). MS0666-E-02 2010/06 - 48 - [AK4671] ■ EXT Slave Mode (PMPLL bit = “0”, M/S bit = “0”) When PMPLL bit is “0”, the AK4671 becomes EXT mode. Master clock is input from the MCKI pin, the internal PLL circuit is not operated. This mode is compatible with I/F of the normal audio CODEC. The clocks required to operate the AK4671 are MCKI (256fs, 384fs, 512fs, 768fs or 1024fs), LRCK (fs) and BICK (≥32fs). The master clock (MCKI) should be synchronized with LRCK. The phase between these clocks does not matter. The input frequency of MCKI is selected by FS2-0 bits (Table 11). In case that the CODEC is used without Audio I/F (like phone call), the CODEC can be operated by MCKI only. In this case, BICK and LRCK can be stopped. Mode 0 1 4 5 6 7 Others MCKI Input Sampling Frequency Frequency Range x 0 0 0 256fs 8kHz ∼ 48kHz x 0 0 1 1024fs 8kHz ∼ 13kHz x 1 0 0 384fs 8kHz ∼ 48kHz x 1 0 1 768fs 8kHz ∼ 26kHz x 1 1 0 512fs 8kHz ∼ 26kHz x 1 1 1 256fs (default) 8kHz ∼ 48kHz Others N/A N/A (x: Don’t care, N/A: Not available) Table 11. MCKI Frequency at EXT Slave Mode (PMPLL bit = “0”, M/S bit = “0”) FS3 bit FS2 bit FS1 bit FS0 bit The S/N of the DAC at low sampling frequencies is worse than at high sampling frequencies due to out-of-band noise. The out-of-band noise can be reduced by using higher frequency of the master clock. The S/N of the DAC output through LOUT/ROUT pins at fs=8kHz is shown in Table 12. S/N (fs=8kHz, 20kHzLPF + A-weighted) 256fs, 384fs 83dB 512fs, 768fs 93dB 1024fs 93dB Table 12. Relationship between MCKI and S/N of LOUT1/ROUT1 pins MCKI MCKI should always be present whenever the ADC or DAC is in operation (PMADL bit = “1”, PMADR bit = “1”, PMDAL bit = “1” or PMDAR bit = “1”). If MCKI is not provided, the AK4671 may draw excess current and it is not possible to operate properly because utilizes dynamic refreshed logic internally. If MCKI is not present, the ADC and DAC should be in the power-down mode (PMADL=PMADR=PMDAL=PMDAR bits = “0”). AK4671 DSP or μP MCKO MCKI BICK LRCK 256fs, 384fs, 512fs, 768fs or 1024fs ≥ 32fs 1fs MCLK BCLK LRCK SDTO SDTI SDTI SDTO Figure 43. EXT Slave Mode MS0666-E-02 2010/06 - 49 - [AK4671] ■ EXT Master Mode (PMPLL bit = “0”, M/S bit = “1”) The AK4671 becomes EXT Master Mode by setting PMPLL bit = “0” and M/S bit = “1”. Master clock is input from the MCKI pin, the internal PLL circuit is not operated. The clock required to operate is MCKI (256fs, 384fs, 512fs, 768fs or 1024fs). The input frequency of MCKI is selected by FS2-0 bits (Table 13). Mode 0 1 4 5 6 7 Others MCKI Input Sampling Frequency Frequency Range x 0 0 0 256fs 8kHz ∼ 48kHz x 0 0 1 1024fs 8kHz ∼ 13kHz x 1 0 0 384fs 8kHz ∼ 48kHz x 1 0 1 768fs 8kHz ∼ 26kHz x 1 1 0 512fs 8kHz ∼ 26kHz x 1 1 1 256fs (default) 8kHz ∼ 48kHz Others N/A N/A (x: Don’t care, N/A: Not available) Table 13. MCKI Frequency at EXT Master Mode (PMPLL bit = “0”, M/S bit = “1”) FS3 bit FS2 bit FS1 bit FS0 bit The S/N of the DAC at low sampling frequencies is worse than at high sampling frequencies due to out-of-band noise. The out-of-band noise can be reduced by using higher frequency of the master clock. The S/N of the DAC output through LOUT/ROUT pins at fs=8kHz is shown in Table 14. S/N (fs=8kHz, 20kHzLPF + A-weighted) 256fs, 384fs 83dB 512fs, 768fs 93dB 1024fs 93dB Table 14. Relationship between MCKI and S/N of LOUT1/ROUT1 pins MCKI MCKI should always be present whenever the ADC or DAC is in operation (PMADL bit = “1”, PMADR bit = “1”, PMDAL bit = “1” or PMDAR bit = “1”). If MCKI is not provided, the AK4671 may draw excess current and it is not possible to operate properly because utilizes dynamic refreshed logic internally. If MCKI is not present, the ADC and DAC should be in the power-down mode (PMADL=PMADR=PMDAL=PMDAR bits = “0”). AK4671 DSP or μP MCKO 256fs, 384fs, 512fs, 768fs or 1024fs MCKI 32fs or 64fs BICK 1fs LRCK MCLK BCLK LRCK SDTO SDTI SDTI SDTO Figure 44. EXT Master Mode BICK Output Frequency 0 32fs (default) 1 64fs Table 15. BICK Output Frequency at Master Mode BCKO bit MS0666-E-02 2010/06 - 50 - [AK4671] ■ System Reset When power-up, the AK4671 should be reset by bringing the PDN pin = “L”. This ensures that all internal registers reset to their initial values. The ADC enters an initialization cycle that starts when the PMADL or PMADR bit is changed from “0” to “1” at PMDAL and PMDAR bits are “0”. The initialization cycle time is 1059/fs=24ms@fs=44.1kHz. During the initialization cycle, the ADC digital data outputs of both channels are forced to a 2’s complement, “0”. The ADC output reflects the analog input signal after the initialization cycle is complete. When PMDAL or PMDAR is “1”, the ADC does not require an initialization cycle. ■ Audio Interface Format Four types of data formats are available and can be selected by setting the DIF1-0 bits (Table 16). In all modes, the serial data is MSB first, 2’s complement format. Audio interface formats can be used in both master and slave modes. LRCK and BICK are output from the AK4671 in master mode, but must be input to the AK4671 in slave mode. Mode 0 1 2 3 DIF1 bit 0 0 1 1 DIF0 bit 0 1 0 1 SDTO (ADC) SDTI (DAC) DSP Mode DSP Mode MSB justified LSB justified MSB justified MSB justified I2S compatible I2S compatible Table 16. Audio Interface Format BICK ≥ 32fs ≥ 32fs ≥ 32fs ≥ 32fs Figure Table 17 Figure 49 Figure 50 Figure 51 (default) In modes 1, 2 and 3, the SDTO is clocked out on the falling edge (“↓”) of BICK and the SDTI is latched on the rising edge (“↑”). In Modes 0 (DSP mode), the audio I/F timing is changed by BCKP and MSBS bits (Table 17). DIF1 0 DIF0 MSBS BCKP 0 0 0 1 1 0 1 1 0 Audio Interface Format MSB of SDTO is output by the rising edge (“↑”) of the first BICK after the rising edge (“↑”) of LRCK. MSB of SDTI is latched by the falling edge (“↓”) of the BICK just after the output timing of SDTO’s MSB. MSB of SDTO is output by the falling edge (“↓”) of the first BICK after the rising edge (“↑”) of LRCK. MSB of SDTI is latched by the rising edge (“↑”) of the BICK just after the output timing of SDTO’s MSB. MSB of SDTO is output by next rising edge (“↑”) of the falling edge (“↓”) of the first BICK after the rising edge (“↑”) of LRCK. MSB of SDTI is latched by the falling edge (“↓”) of the BICK just after the output timing of SDTO’s MSB. MSB of SDTO is output by next falling edge (“↓”) of the rising edge (“↑”) of the first BICK after the rising edge (“↑”) of LRCK. MSB of SDTI is latched by the rising edge (“↑”) of the BICK just after the output timing of SDTO’s MSB. Table 17. Audio Interface Format in Mode 0 Figure Figure 45 (default) Figure 46 Figure 47 Figure 48 If 16-bit data that ADC outputs is converted to 8-bit data by removing LSB 8-bit, “−1” at 16bit data is converted to “−1” at 8-bit data. And when the DAC playbacks this 8-bit data, “−1” at 8-bit data will be converted to “−256” at 16-bit data and this is a large offset. This offset can be removed by adding the offset of “128” to 16-bit data before converting to 8-bit data. MS0666-E-02 2010/06 - 51 - [AK4671] LRCK (Master) LRCK (Slave) 15 0 1 8 2 9 10 11 12 13 14 15 16 17 24 18 25 26 27 26 29 30 31 0 BICK(32fs) Lch SDTO(o) 0 SDTI(i) 0 Rch 15 14 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 Lch 15 1 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 Rch 15 14 0 15 14 14 2 15 16 17 18 30 31 15 14 32 33 46 34 47 48 49 50 26 27 26 62 63 30 31 BICK(64fs) Lch SDTO(o) Rch 15 14 2 1 0 2 1 0 15 14 1 0 2 1 0 Rch Lch SDTI(i) 2 15 14 15 14 1/fs 15:MSB, 0:LSB Figure 45. Mode 0 Timing (BCKP = “0”, MSBS = “0”) LRCK (Master) LRCK (Slave) 15 0 1 8 2 9 10 11 12 13 14 15 16 17 24 18 25 29 0 BICK(32fs) Lch SDTO(o) 0 SDTI(i) 0 Rch 15 14 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 Lch 15 1 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 Rch 15 14 0 15 14 14 2 15 16 17 18 30 31 15 14 32 33 34 46 47 48 49 50 62 63 BICK(64fs) Lch SDTO(o) 15 14 Rch 2 1 0 2 1 0 15 14 2 1 0 2 1 0 Rch Lch SDTI(i) 15 14 15 14 1/fs 15:MSB, 0:LSB Figure 46. Mode 0 Timing (BCKP = “1”, MSBS = “0”) MS0666-E-02 2010/06 - 52 - [AK4671] LRCK (Master) LRCK (Slave) 15 0 1 8 2 9 10 11 12 13 14 15 16 17 24 18 25 26 27 26 29 30 31 0 BICK(32fs) Lch SDTO(o) 0 SDTI(i) 0 Rch 15 14 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 Lch 15 1 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 Rch 15 14 0 15 14 14 2 15 16 17 18 30 31 15 14 32 33 46 34 47 48 49 50 26 27 26 62 63 30 31 BICK(64fs) Lch SDTO(o) Rch 15 14 2 1 0 15 14 Lch SDTI(i) 2 1 0 2 1 0 Rch 15 14 2 1 0 15 14 1/fs 15:MSB, 0:LSB Figure 47. Mode 0 Timing (BCKP = “0”, MSBS = “1”) LRCK (Master) LRCK (Slave) 15 0 1 8 2 9 10 11 12 13 14 15 16 17 24 18 25 29 0 BICK(32fs) Lch SDTO(o) 0 SDTI(i) 0 Rch 15 14 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 Lch 15 1 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 Rch 15 14 0 15 14 14 2 15 16 17 18 30 31 15 14 32 33 34 46 47 48 49 50 62 63 BICK(64fs) Lch SDTO(o) 15 14 Rch 2 1 0 Lch SDTI(i) 15 14 15 14 2 1 0 2 1 0 Rch 2 1 0 15 14 1/fs 15:MSB, 0:LSB Figure 48. Mode 0 Timing (BCKP = “1”, MSBS = “1”) MS0666-E-02 2010/06 - 53 - [AK4671] LRCK 0 1 2 3 9 10 11 12 13 14 15 0 1 2 3 9 10 11 12 13 14 15 0 1 BICK(32fs) SDTO(o) 15 14 13 7 6 5 4 3 2 1 0 15 14 13 7 6 5 4 3 2 1 0 15 SDTI(i) 15 14 13 7 6 5 4 3 2 1 0 15 14 13 7 6 5 4 3 2 1 0 15 0 1 2 3 15 16 17 18 31 0 1 2 3 15 16 17 18 31 0 1 BICK(64fs) SDTO(o) SDTI(i) 1 0 15 14 13 15 14 13 15 14 Don't Care 1 0 1 0 Don't Care 15 15 14 2 1 0 15:MSB, 0:LSB Lch Data Rch Data Figure 49. Mode 1 Timing LRCK 0 1 2 3 9 10 11 12 13 14 15 0 1 2 3 9 10 11 12 13 14 15 0 1 BICK(32fs) SDTO(o) 15 14 13 7 6 5 4 3 2 1 0 15 14 13 7 6 5 4 3 2 1 0 15 SDTI(i) 15 14 13 7 6 5 4 3 2 1 0 15 14 13 7 6 5 4 3 2 1 0 15 0 1 2 3 15 16 17 18 31 0 1 2 3 15 16 17 18 31 0 1 BICK(64fs) SDTO(o) 15 14 13 1 0 SDTI(i) 15 14 13 1 0 Don't Care 15 14 13 1 0 15 14 13 1 0 15 Don't Care 15 15:MSB, 0:LSB Lch Data Rch Data Figure 50. Mode 2 Timing MS0666-E-02 2010/06 - 54 - [AK4671] LRCK 0 1 2 3 9 10 11 12 13 14 15 0 1 2 3 9 10 11 12 13 14 15 0 1 BICK(32fs) SDTO(o) 0 15 14 8 7 6 5 4 3 2 1 0 15 14 8 7 6 5 4 3 2 1 0 SDTI(i) 0 15 14 8 7 6 5 4 3 2 1 0 15 14 8 7 6 5 4 3 2 1 0 0 1 2 3 15 16 17 18 31 0 1 2 3 15 16 17 18 31 0 1 BICK(64fs) SDTO(o) 15 14 2 1 0 SDTI(i) 15 14 2 1 0 Don't Care 15 14 2 1 0 15 14 2 1 0 Don't Care 15:MSB, 0:LSB Lch Data Rch Data Figure 51. Mode 3 Timing MS0666-E-02 2010/06 - 55 - [AK4671] ■ MIC/LINE Input Selector The AK4671 has input selector. When MDIF1, MDIF2, MDIF3 and MDIF4 bits are “0”, INL1-0 and INR1-0 bits select LIN1/LIN2/LIN3/LIN4 and RIN1/RIN2/RIN3/RIN4, respectively. When MDIF1, MDIF2, MDIF3 and MDIF4 bits are “1”, LIN1/RIN1, LIN2/RIN2, LIN3/RIN3 and LIN4/RIN4 pins become IN1+/−, IN2+/−, IN3+/− and IN4+/− pins, respectively. In this case, full-differential input is available (Figure 53). MDIF1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 MDIF2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 MDIF3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 MDIF4 INL1 INL0 INR1 INR0 Lch Rch 0 0 0 0 0 LIN1 RIN1 0 0 0 0 1 LIN1 RIN2 0 0 0 1 0 LIN1 RIN3 0 0 0 1 1 LIN1 RIN4 0 0 1 0 0 LIN2 RIN1 0 0 1 0 1 LIN2 RIN2 0 0 1 1 0 LIN2 RIN3 0 0 1 1 1 LIN2 RIN4 0 1 0 0 0 LIN3 RIN1 0 1 0 0 1 LIN3 RIN2 0 1 0 1 0 LIN3 RIN3 0 1 0 1 1 LIN3 RIN4 0 1 1 0 0 LIN4 RIN1 0 1 1 0 1 LIN4 RIN2 0 1 1 1 0 LIN4 RIN3 0 1 1 1 1 LIN4 RIN4 1 0 0 1 1 LIN1 IN4+/− 1 0 1 1 1 LIN2 IN4+/− 1 1 0 1 1 LIN3 IN4+/− 0 1 0 0 0 RIN1 IN3+/− 0 1 0 0 1 RIN2 IN3+/− 0 1 0 1 1 RIN4 IN3+/− 1 1 0 1 1 IN3+/− IN4+/− 0 0 0 0 1 LIN1 IN2+/− 0 1 0 0 1 LIN3 IN2+/− 0 1 1 0 1 LIN4 IN2+/− 0 1 0 0 1 IN3+/− IN2+/− 0 0 0 0 1 RIN2 IN1+/− 0 0 0 1 0 RIN3 IN1+/− 0 0 0 1 1 RIN4 IN1+/− 1 0 0 1 1 IN1+/− IN4+/− 0 0 0 0 1 IN1+/− IN2+/− Others N/A Table 18. MIC-Amp Input Signal (N/A: Not available) MS0666-E-02 (default) 2010/06 - 56 - [AK4671] AK4671 INL1-0 bits LIN1/IN1+ pin ADC Lch RIN1/IN1− pin MDIF1 bit MIC-Amp Lch MDIF3 bit INR1-0 bits LIN2/IN2+ pin ADC Rch RIN2/IN2− pin MDIF2 bit MIC-Amp Rch MDIF4 bit LIN3/IN3+ pin RIN3/IN3− pin LIN4/IN4+ pin PMLOOPR bit PMLOOPL bit PMAINR4 bit PMAINL4 bit PMAINR3 bit PMAINL3 bit PMAINR2 bit PMAINL2 bit PMAINR1 bit PMAINL1 bit RIN4/IN4− pin Lineout Figure 52. Mic/Line Input Selector AK4671 MPWR pin 1k MIC-Amp IN1+ pin IN1− pin 1k Figure 53. Connection Example for Full-differential Mic Input (MDIF1/2/3/4 bits = “1”) AK4671 MIC-Amp IN1+ pin IN1− pin Figure 54. Connection Example for Full-differential Mic Input (MDIF1/2/3/4 bits = “1”) MS0666-E-02 2010/06 - 57 - [AK4671] ■ MIC Gain Amplifier The AK4671 has a gain amplifier for microphone input. The gain of MIC-Amp Lch and Rch is independently selected by the MGNL3-0 and MGNR3-0 bits (Table 19). The typical input impedance is 42kΩ(typ)@MGNL/R0 bits = “0” or 30kΩ(typ)@MGNL/R0 bits = “1”. Mode 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 MGNL3 MGNR3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 MGNL2 MGNL1 MGNL0 Input Gain MGNR2 MGNR1 MGNR0 0 0 0 N/A 0 0 1 −12dB 0 1 0 −9dB 0 1 1 −6dB 1 0 0 −3dB 1 0 1 0dB 1 1 0 +3dB 1 1 1 +6dB 0 0 0 +9dB 0 0 1 +12dB 0 1 0 +15dB 0 1 1 +18dB 1 0 0 +21dB 1 0 1 +24dB 1 1 0 +27dB 1 1 1 +30dB Table 19. Mic Input Gain (N/A: Not available) MS0666-E-02 Input Resistance N/A 30kΩ 42kΩ 30kΩ 42kΩ 30kΩ 42kΩ 30kΩ 42kΩ 30kΩ 42kΩ 30kΩ 42kΩ 30kΩ 42kΩ 30kΩ (default) 2010/06 - 58 - [AK4671] ■ MIC Power When PMMP bit = “1”, the MPWR pin supplies power for the microphone. This output voltage is typically 0.8 x AVDD and the load resistance is minimum 0.5kΩ. In case of using two sets of stereo mic, the load resistance is minimum 2kΩ for each channel. Any capacitor must not be connected directly to the MPWR pin (Figure 55). PMMP bit MPWR pin 0 Hi-Z 1 Output Table 20. MIC Power (default) MIC Power ≥ 2kΩ ≥ 2kΩ ≥ 2kΩ ≥ 2kΩ MPWR pin Microphone LIN1 pin Microphone RIN1 pin Microphone LIN2 pin Microphone RIN2 pin Figure 55. MIC Block Circuit MS0666-E-02 2010/06 - 59 - [AK4671] ■ MIC Detection The AK4671 has the detecting function of microphone. The external circuit is showed in Figure 56. The followings show the example of external microphone detection sequence: (1) PMMP bit should be set to “1” after CPU detects the jack insertion of microphone or headphone. (2) The MPWR pin drives external microphone. (3) The GPO2 pin (at GPOM2 bit = “1”) and DTMIC bit are set as Table 21. In case of Headset (with Mic), the input voltage of MDT pin is higher than 0.075 x AVDD because of the relationship between the bias resistance at the MPWR pin (typ. 2.2kΩ) and the microphone impedance. In case of Headphone (No Mic), the input voltage of MDT pin is 0V because the pin of headphone jack connected to the MDT pin is assigned as ground. Input Level of MDT pin ≥ 0.075 x AVDD < 0.050 x AVDD GPO2 pin DTMIC bit H 1 L 0 Table 21. Microphone Detection Result MPWR Result Mic (Headset) No Mic (Headphone) PMMP bit AK4671 LIN1 LIN2 Headset G M R MDT L DTMIC bit typ. 500k or Headphone G R 0.075 x AVDD L Figure 56. Microphone Power Supply and Mic Detection MS0666-E-02 2010/06 - 60 - [AK4671] ■ Digital Block Digital block is composed as Figure 57. Each block can be powered-down by power management bits (PMADL, PMADR, PMDAL, PMDAR, PMSRA, PMSRB and PMPCM bits). When blocks from HPF to MIX are powered-down, both MIX and SVOLA blocks should not be selected by SDOL/R bits and PFMXL/R bits. PMADL or PMADR HPF A/D HPFAD PFSEL PFSEL=0 PMADL or PMADR PFSEL=1 PMDAL or PMDAR or PMSRA HPF HPF LPF LPF Stereo Separation 5-band Notch FIL3, EQ0, GN1-0 EQ1-5 ALC ALC, IVL/R MIX ADM SDOL/R1-0 SDOD SDTO Lch SDTO Rch SVAL/R2-0 SVOLA DAM, MIXD D/A PMDAL or PMDAR OVL/R EQ SRMXL/R1-0 M DATT 5-band I SMUTE EQ X PMDAL or PMDAR or PMSRA S E L SDTI Lch SDTI Rch SDIM1-0 PFMXL/R1-0 SRA1-0, MIXD PMPCM PMSRA SDOA SRC-A SDOAD SDTOA SVOLB SVB2-0 PMSRB SRC-B BVMX1-0 DATT-B SDTIA BVL7-0 SBMX1-0 DATT-C CVL7-0 BIV2-0 BIVOL SDOBD SDTOB SDTIB Figure 57. Path Select of Digital Block MS0666-E-02 2010/06 - 61 - [AK4671] 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. ADC: Include the Digital Filter (LPF) for ADC as shown in “FILTER CHRACTERISTICS”. DAC: Include the Digital Filter (LPF) for DAC as shown in “FILTER CHRACTERISTICS”. HPF: High Pass Filter. Applicable to use as Wind-Noise Reduction Filter. (See “Digital Programmable Filter”.) LPF: Low Pass Filter (See “Digital Programmable Filter”.) Stereo Separation: Stereo Separation Emphasis Filter & Gain Compensation. (See “Digital Programmable Filter”.) Gain Compensation is composed with EQ0 and Gain blocks. This block adjusts the frequency response after Stereo Separation Emphasis. 5-Band Notch: Applicable to use as Equalizer or Notch Filter. (See “Digital Programmable Filter”.) ALC: Input Digital Volume with ALC function. (See “Input Digital Volume” and “ALC Operation”.) SVOLA: Side Tone Volume at Internal MIC/SPK or External Headset Phone Call. (See “Side Tone Volume”.) 5-Band EQ: Equalizer for playback path. (See “5-band Equalizer”.) DATT: Digital Volume for playback path. (See “Digital Output Volume”.) SMUTE: Soft mute. (See “Soft Mute”.) DATT-B: Digital Volume for Recording of Received Voice. (See “Digital Volume for Recording of Received Voice”) DATT-C: Digital Volume of Received Voice. (See “Digital Volume for Received Voice”) SVOLA: Side Tone Volume at B/T Headset Phone Call. (See “Side Tone Volume for B/T Phone Call”.) Mode Recording Mode PMADL 1 1 0 1 1 0 0 Recording & Playback Mode Playback Mode ADC PMADR PMDAL PMDAR 1 0 0 0 0 0 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 Table 22. Recode/Playback Mode 2nd Order 1st Order HPF LPF Stereo Separation Gain Compensation PFSEL 0 0 0 0 0 0 1 Figure Figure 58 Figure 59 Figure 60 5 Band Notch ALC (Volume) Figure 58. Path at Recording Mode ADC DAC 2nd Order 1st Order HPF LPF DEM SMUTE DATT Stereo Separation Gain Compensation 5 Band Notch ALC (Volume) 5 Band EQ Figure 59. Path at Recording & Playback Mode ADC DAC 1st Order “0” Data HPF DEM SMUTE DATT 5 Band EQ ALC (Volume) 5 Band EQ Gain Compensation Stereo Separation 1st Order 1st Order LPF HPF Figure 60. Path at Playback Mode MS0666-E-02 2010/06 - 62 - [AK4671] ■ Digital Programmable Filter (1) High Pass Filter (HPF) Normally, this HPF is used for a Wind-Noise Reduction Filter. This is composed of 2 steps of 1st order HPF. The coefficient of both HPF is the same and set by F1A13-0 bits and F1B13-0 bits. HPFAD bit controls ON/OFF of the 1st step HPF and HPF bit controls ON/OFF of the 2nd step HPF. When the HPF is OFF, the audio data passes this block by 0dB gain. The coefficient should be set when HPFAD=HPF bits = “0” or PMADL=PMADR=PMDAL=PMDAR bits = “0”. fs: Sampling frequency fc: Cut-off frequency Register setting (Note 61) HPF: F1A[13:0] bits =A, F1B[13:0] bits =B (MSB=F1A13, F1B13; LSB=F1A0, F1B0) 1 − 1 / tan (πfc/fs) 1 / tan (πfc/fs) A= , B= 1 + 1 / tan (πfc/fs) 1 + 1 / tan (πfc/fs) Transfer function 1 − z −1 H(z) = A 1 + Bz −1 The cut-off frequency should be set as below. fc/fs ≥ 0.0001 (fc min = 4.41Hz at 44.1kHz) (2) Low Pass Filter (LPF) This is composed with 1st order LPF. F2A13-0 bits and F2B13-0 bits set the coefficient of LPF. LPF bit controls ON/OFF of the LPF. When the LPF is OFF, the audio data passes this block by 0dB gain. The coefficient should be set when LPF bit = “0” or PMADL=PMADR=PMDAL=PMDAR bits = “0”. fs: Sampling frequency fc: Cut-off frequency Register setting (Note 61) LPF: F2A[13:0] bits =A, F2B[13:0] bits =B (MSB=F2A13, F1B13; LSB=F2A0, F2B0) 1 − 1 / tan (πfc/fs) 1 A= , 1 + 1 / tan (πfc/fs) B= 1 + 1 / tan (πfc/fs) Transfer function 1 + z −1 H(z) = A 1 + Bz −1 The cut-off frequency should be set as below. fc/fs ≥ 0.05 (fc min = 2205Hz at 44.1kHz) MS0666-E-02 2010/06 - 63 - [AK4671] (3) Stereo Separation Emphasis Filter (FIL3) FIL3 is used to emphasize the stereo separation of stereo mic recording data or playback data. F3A13-0 and F3B13-0 bits set the filter coefficient of FIL3. FIL3 becomes High Pass Filter (HPF) at F3AS bit = “0”, and Low Pass Filter (LPF) at F3AS bit = “1”. FIL3 bit controls ON/OFF of FIL3. When Stereo Separation Emphasis Filter is OFF, the audio data passes this block by 0dB gain. The coefficient should be set when FIL3 bit = “0” or PMADL = PMADR = PMDAL = PMDAR bits = “0”. 1) When FIL3 is set to “HPF” fs: Sampling frequency fc: Cut-off frequency K: Filter gain [dB] (0dB ≥ K ≥ −10dB) Register setting (Note 61) FIL3: F3AS bit = “0”, F3A[13:0] bits =A, F3B[13:0] bits =B (MSB=F3A13, F3B13; LSB=F3A0, F3B0) 1 − 1 / tan (πfc/fs) 1 / tan (πfc/fs) A = 10K/20 x , B= 1 + 1 / tan (πfc/fs) 1 + 1 / tan (πfc/fs) Transfer function 1 − z −1 H(z) = A 1 + Bz −1 2) When FIL3 is set to “LPF” fs: Sampling frequency fc: Cut-off frequency K: Filter gain [dB] (0dB ≥ K ≥ −10dB) Register setting (Note 61) FIL3: F3AS bit = “1”, F3A[13:0] bits =A, F3B[13:0] bits =B (MSB=F3A13, F3B13; LSB= F3A0, F3B0) 1 − 1 / tan (πfc/fs) 1 A = 10K/20 x , 1 + 1 / tan (πfc/fs) B= 1 + 1 / tan (πfc/fs) Transfer function 1 + z −1 H(z) = A 1 + Bz −1 MS0666-E-02 2010/06 - 64 - [AK4671] (4) Gain Compensation (EQ0) Gain Compensation is used to compensate the frequency response and the gain that is changed by Stereo Separation Emphasis Filter. Gain Compensation is composed with Equalizer (EQ0) and the Gain (0dB/+12dB/+24dB). E0A15-0, E0B13-0 and E0C15-0 bits set the coefficient of EQ0. GN1-0 bits set the gain (Table 23). EQ0 bit controls ON/OFF of EQ0. When EQ is OFF and the gain is 0dB, the audio data passes this block by 0dB gain. The coefficient should be set when EQ0 bit = “0” or PMADL=PMADR=PMDAL=PMDAR bits = “0”. fs: Sampling frequency fc1: Pole frequency fc2: Zero-point frequency K: Filter gain [dB] (Maximum +12dB) Register setting (Note 61) E0A[15:0] bits =A, E0B[13:0] bits =B, E0C[15:0] bits =C (MSB=E0A15, E0B13, E0C15; LSB=E0A0, E0B0, E0C0) A = 10K/20 x 1 − 1 / tan (πfc1/fs) 1 + 1 / tan (πfc2/fs) , 1 + 1 / tan (πfc1/fs) B= , C =10K/20 x 1 + 1 / tan (πfc1/fs) 1 − 1 / tan (πfc2/fs) 1 + 1 / tan (πfc1/fs) Transfer function A + Cz −1 H(z) = 1 + Bz −1 Gain[dB] K fc1 fc2 Frequency Figure 61. EQ0 Frequency Response GN1 GN0 Gain 0 0 0dB (default) 0 1 +12dB 1 x +24dB Table 23. Gain select of gain block (x: Don’t care) MS0666-E-02 2010/06 - 65 - [AK4671] (5) 5-band Notch This block can be used as Equalizer or Notch Filter. 5-band Equalizer (EQ1, EQ2, EQ3, EQ4 and EQ5) is ON/OFF independently by EQ1, EQ2, EQ3, EQ4 and EQ5 bits. When Equalizer is OFF, the audio data passes this block by 0dB gain. E1A15-0, E1B15-0 and E1C15-0 bits set the coefficient of EQ1. E2A15-0, E2B15-0 and E2C15-0 bits set the coefficient of EQ2. E3A15-0, E3B15-0 and E3C15-0 bits set the coefficient of EQ3. E4A15-0, E4B15-0 and E4C15-0 bits set the coefficient of EQ4. E5A15-0, E5B15-0 and E5C15-0 bits set the coefficient of EQ5. The EQx (x=1∼5) coefficient should be set when EQx bit = “0” or PMADL=PMADR=PMDAL=PMDAR bits = “0”. fs: Sampling frequency fo1 ~ fo5: Center frequency fb1 ~ fb5: Band width where the gain is 3dB different from center frequency K1 ~ K5 : Gain (−1 ≤ Kn ≤ 3) Register setting (Note 61) EQ1: E1A[15:0] bits =A1, E1B[15:0] bits =B1, E1C[15:0] bits =C1 EQ2: E2A[15:0] bits =A2, E2B[15:0] bits =B2, E2C[15:0] bits =C2 EQ3: E3A[15:0] bits =A3, E3B[15:0] bits =B3, E3C[15:0] bits =C3 EQ4: E4A[15:0] bits =A4, E4B[15:0] bits =B4, E4C[15:0] bits =C4 EQ5: E5A[15:0] bits =A5, E5B[15:0] bits =B5, E5C[15:0] bits =C5 (MSB=E1A15, E1B15, E1C15, E2A15, E2B15, E2C15, E3A15, E3B15, E3C15, E4A15, E4B15, E4C15, E5A15, E5B15, E5C15; LSB= E1A0, E1B0, E1C0, E2A0, E2B0, E2C0, E3A0, E3B0, E3C0, E4A0, E4B0, E4C0, E5A0, E5B0, E5C0) 1 − tan (πfbn/fs) 2 tan (πfbn/fs) An = Kn x , Bn = cos(2π fon/fs) x 1 + tan (πfbn/fs) , 1 + tan (πfbn/fs) Cn = 1 + tan (πfbn/fs) (n = 1, 2, 3, 4, 5) Transfer function H(z) = 1 + h1(z) + h2(z) + h3(z) + h4(z) + h5(z) 1 − z −2 hn (z) = An 1− Bnz −1− Cnz −2 (n = 1, 2, 3, 4, 5) The center frequency should be set as below. fon / fs < 0.497 Note 61. [Translation the filter coefficient calculated by the equations above from real number to binary code (2’s complement)] X = (Real number of filter coefficient calculated by the equations above) x 213 X should be rounded to integer, and then should be translated to binary code (2’s complement). MSB of each filter coefficient setting register is sine bit. MS0666-E-02 2010/06 - 66 - [AK4671] ■ ALC Operation The ALC (Automatic Level Control) is executed by ALC block when ALC bit is “1”. ALC circuit operates at playback path for Playback mode and operates at recording path for Recording mode as shown in Figure 60. 1. ALC Limiter Operation During the ALC limiter operation, when either Lch or Rch exceeds the ALC limiter detection level (Table 24), the IVL and IVR values (same value) are attenuated automatically by the amount defined by the ALC limiter ATT step (Table 25). When ZELMN bit = “0” (zero cross detection is enabled), the IVL and IVR values are changed by ALC limiter operation at the individual zero crossing points of Lch and Rch or at the zero crossing timeout. ZTM1-0 bits set the zero crossing timeout period of both ALC limiter and recovery operation (Table 26). IVL and IVR values are attenuated 1 step immediately (period: 1/fs) by ALC limiter operation when output level is over FS (Digital Full Scale). When output level is not over FS, the IVL and IVR values are changed at the individual zero crossing points of Lch and Rch or at the zero crossing timeout. When ZELMN bit = “1” (zero cross detection is disabled), IVL and IVR values are immediately (period: 1/fs) changed by ALC limiter operation. Attenuation step is fixed to 1 step regardless of the setting of LMAT1-0 bits. The attenuation operation is done continuously until the input signal level becomes ALC limiter detection level (Table 24) or less. After completing the attenuate operation, unless ALC bit is changed to “0”, the operation repeats when the input signal level exceeds LMTH1-0 bits. LMTH1 0 0 1 1 LMTH0 0 1 0 1 ALC Limier Detection Level ALC Recovery Waiting Counter Reset Level −2.5dBFS > ALC Output ≥ −4.1dBFS ALC Output ≥ −2.5dBFS −4.1dBFS > ALC Output ≥ −6.0dBFS ALC Output ≥ −4.1dBFS −6.0dBFS > ALC Output ≥ −8.5dBFS ALC Output ≥ −6.0dBFS −8.5dBFS > ALC Output ≥ −12dBFS ALC Output ≥ −8.5dBFS Table 24. ALC Limiter Detection Level / Recovery Counter Reset Level LMAT1 LMAT0 0 0 1 1 0 1 0 1 ZTM1 ZTM0 0 0 1 1 0 1 0 1 ALC Limiter ATT Step ALC Output ALC Output ALC Output ≥ LMTH ≥ FS ≥ FS + 6dB 1 1 1 2 2 2 2 4 4 1 2 4 Table 25. ALC Limiter ATT Step ALC Output ≥ FS + 12dB 1 2 8 8 Zero Crossing Timeout Period 8kHz 16kHz 44.1kHz 128/fs 16ms 8ms 2.9ms 256/fs 32ms 16ms 5.8ms 512/fs 64ms 32ms 11.6ms 1024/fs 128ms 64ms 23.2ms Table 26. ALC Zero Crossing Timeout Period MS0666-E-02 (default) (default) (default) 2010/06 - 67 - [AK4671] 2. ALC Recovery Operation The ALC recovery operation waits for the WTM2-0 bits (Table 27) to be set after completing the ALC limiter operation. If the input signal does not exceed “ALC recovery waiting counter reset level” (Table 24) during the wait time, the ALC recovery operation is executed. The IVL and IVR values are automatically incremented by RGAIN1-0 bits (Table 28) up to the set reference level (Table 29) with zero crossing detection which timeout period is set by ZTM1-0 bits (Table 26). Then the IVL and IVR are set to the same value for both channels. The ALC recovery operation is executed in a period set by WTM2-0 bits. When zero cross is detected at both channels during the wait period set by WTM2-0 bits, the ALC recovery operation waits until WTM2-0 period and the next recovery operation is executed. If ZTM1-0 is longer than WTM2-0 and no zero crossing occurs, the ALC recovery operation is executed in a period set by ZTM1-0 bits. For example, when the current IVL and IVR values are 30H and RGAIN1-0 bits are set to “01”, IVL and IVR values are changed to 32H by the auto limiter operation and then the input signal level is gained by 0.75dB (=0.375dB x 2). When the IVL and IVR values exceed the reference level (REF7-0 bits), the IVL and IVR values are not increased. When “ALC recovery waiting counter reset level (LMTH1-0) ≤ Output Signal < ALC limiter detection level (LMTH1-0)” during the ALC recovery operation, the waiting timer of ALC recovery operation is reset. When “ALC recovery waiting counter reset level (LMTH1-0) > Output Signal”, the waiting timer of ALC recovery operation starts. The ALC operation corresponds to the impulse noise. When the impulse noise is input, the ALC recovery operation becomes faster than a normal recovery operation (Fast Recovery Operation). When large noise is input to microphone instantaneously, the quality of small signal level in the large noise can be improved by this fast recovery operation. The speed of fast recovery operation is set by RFST1-0 bits (Table 30). WTM2 WTM1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 ALC Recovery Operation Waiting Period 8kHz 16kHz 44.1kHz 0 128/fs 16ms 8ms 2.9ms 1 256/fs 32ms 16ms 5.8ms 0 512/fs 64ms 32ms 11.6ms 1 1024/fs 128ms 64ms 23.2ms 0 2048/fs 256ms 128ms 46.4ms 1 4096/fs 512ms 256ms 92.9ms 0 8192/fs 1024ms 512ms 185.8ms 1 16384/fs 2048ms 1024ms 371.5ms Table 27. ALC Recovery Operation Waiting Period WTM0 RGAIN1 0 0 1 1 RGAIN0 GAIN STEP 0 1 step 0.375dB 1 2 step 0.750dB 0 3 step 1.125dB 1 4 step 1.500dB Table 28. ALC Recovery GAIN Step MS0666-E-02 (default) (default) 2010/06 - 68 - [AK4671] REF7-0 bits GAIN (dB) Step F1H +36.0 F0H +35.625 EFH +35.25 : : (default) E1H +30.0 : : 0.375dB 92H +0.375 91H 0.0 90H −0.375 : : 2H −53.625 1H −54.0 0H MUTE Table 29. Reference Level at ALC Recovery Operation RFST1 bit RFST0 bit Recovery Speed 0 0 4 times (default) 0 1 8 times 1 0 16times 1 1 N/A Table 30. Fast Recovery Speed Setting (N/A: Not available) MS0666-E-02 2010/06 - 69 - [AK4671] 3. Example of ALC Operation Table 31 and Table 32 show the examples of the ALC setting for mic recording and playback, respectively. Register Name Comment LMTH1-0 ZELMN Limiter detection Level Limiter zero crossing detection Zero crossing timeout period * ZTM1-0 bits should be equal to or shorter than WTM2-0 bits. Recovery waiting period Maximum gain at recovery operation ZTM1-0 WTM2-0 REF7-0 IVL7-0, IVR7-0 LMAT1-0 RGAIN1-0 RFST1-0 ALC Gain of IVOL Data 01 0 fs=8kHz Operation −4.1dBFS Enable Data 01 0 fs=44.1kHz Operation −4.1dBFS Enable 01 32ms 11 23.2ms 001 E1H 32ms +30dB 100 E1H 46.4ms +30dB E1H +30dB E1H +30dB 00 00 00 1 1 step 1 step 4 times Enable Limiter ATT step 00 1 step Recovery GAIN step 00 1 step Fast Recovery Speed 00 4 times ALC enable 1 Enable Table 31. Example of the ALC setting (Recording Path) fs=8kHz Operation −4.1dBFS Enable 32ms fs=44.1kHz Operation −4.1dBFS Enable 23.2ms Register Name Comment LMTH1-0 ZELMN ZTM1-0 Limiter detection Level Limiter zero crossing detection Zero crossing timeout period Recovery waiting period *WTM2-0 bits should be the same or longer data as ZTM1-0 bits Maximum gain at recovery operation 001 32ms 100 46.4ms A1H +6dB A1H +6dB Gain of IVOL 91H 0dB 91H 0dB 00 00 00 1 1 step 1 step 4 times Enable WTM2-0 REF5-0 IVL7-0, IVR7-0 LMAT1-0 RGAIN1-0 RFST1-0 ALC Data 01 0 01 Limiter ATT step 00 1 step Recovery GAIN step 00 1 step Fast Recovery Speed 00 4 times ALC enable 1 Enable Table 32. Example of the ALC setting (Playback Path) MS0666-E-02 Data 01 0 11 2010/06 - 70 - [AK4671] The following registers should not be changed during the ALC operation. These bits should be changed after the ALC operation is finished by ALC bit = “0”. • LMTH1-0, LMAT1-0, WTM2-0, ZTM1-0, RGAIN1-0, REF7-0, ZELMN, RFST1-0 Example: Limiter = Zero crossing Enable Recovery Cycle = 32ms@8kHz Zero Crossing Timeout Period = 32ms@8kHz Limiter and Recovery Step = 1 Fast Recovery Speed = 4 step Gain of IVOL = +30dB Maximum Gain = +30.0dB Limiter Detection Level = −4.1dBFS ALC bit = “1” Manual Mode WR (IVL7-0) (1) Addr=12H, Data=E1H WR (IVR7-0) (2) Addr=13H, Data=E1H WR (REF7-0) * The value of IVOL should be (3) Addr=14H, Data=E1H the same or smaller than REF’s WR (ZTM1-0, WTM2-0, RFST1-0) (4) Addr=16H, Data=05H WR (LMTH1-0, RGAIN1-0, LMAT1-0, ZELMN) (5) Addr=17H, Data=01H WR (ALC = “1”) (6) Addr=18H, Data=03H ALC Operation Note : WR : Write Figure 62. Registers set-up sequence at ALC operation MS0666-E-02 2010/06 - 71 - [AK4671] ■ Input Digital Volume (Manual Mode) The input digital volume becomes a manual mode when ALC bit is “0”. This mode is used in the case shown below. 1. 2. 3. After exiting reset state, set-up the registers for the ALC operation (ZTM1-0, LMTH1-0 and etc) When the registers for the ALC operation (Limiter period, Recovery period and etc) are changed. For example, in case of changing the sampling frequency. When IVOL is used as a manual volume. IVL7-0 and IVR7-0 bits set the gain of the volume control (Table 33). When IVOLC bit is “0”, IVL7-0 and IVR7-0 bits control Lch and Rch volume values independently. When IVOLC bit is “1”, IVL7-0 bits controls both channels. The IVOL value is changed at zero crossing or timeout. Zero crossing timeout period is set by ZTM1-0 bits. If IVL7-0 or IVR7-0 bits are written during PMADL=PMADR bits = “0”, IVOL operation starts with the written values at the end of the ADC initialization cycle after PMADL or PMADR bit is changed to “1”. (default) IVL7-0 bits GAIN (dB) IVR7-0 bits F1H +36.0 F0H +35.625 EFH +35.25 : : 92H +0.375 91H 0.0 90H −0.375 : : 03H −53.25 02H −53.625 01H −54 00H MUTE Table 33. Input Digital Volume Setting Step 0.375dB ■ Side Tone Volume (SVOLA) The AK4671 has the channel independent side tone volume (5 levels, 6dB step). The volume can be set by the SVAL/R2-0 bits. The volume is included at mixing path from ALC to 5-band EQ. The output data of ALC is changed from 0 to –24dB. SVL2-0 Gain 0H 0dB (default) 1H −6dB 2H −12dB 3H −18dB 4H −24dB Others N/A Table 34. Side Tone Volume A Code Table (N/A: Not available) MS0666-E-02 2010/06 - 72 - [AK4671] ■ 5-Band Equalizer The AK4671 has 5-Band Equalizer before DAC of Stereo CODEC. The center frequencies and cut/boost amount are the followings. • Center frequency: 100Hz, 250Hz, 1kHz, 3.5kHz and 10kHz (Note 62, Note 63, Note 64) • Cut/Boost amount: –10.5dB ∼ +12dB, 1.5dB step Note 62. These are the frequencies when the sampling frequency is 44.1kHz. These frequencies are proportional to the sampling frequency. Note 63. 100Hz is not center frequency but the frequency component lower than 100Hz is controlled. Note 64. 10kHz is not center frequency but the frequency component higher than 10kHz is controlled. EQ bit controls ON/OFF of this Equalizer and these Boost amount are set by EQA3-0, EQB3-0, EQC3-0, EQD3-0 and EQE3-0 bits, respectively, as shown in Table 35. EQA3-0: EQB3-0: EQC3-0: EQD3-0: EQE3-0: Select the boost level of 100Hz Select the boost level of 250Hz Select the boost level of 1kHz Select the boost level of 3.5kHz Select the boost level of 10kHz EQx3-0 Boost amount 0H +12.0dB 1H +10.5dB 2H +9.0dB 3H +7.5dB : : 8H 0dB (default) : : DH −7.5dB EH −9.0dB FH −10.5dB Table 35. Boost amount of 5-Band Equalizer MS0666-E-02 2010/06 - 73 - [AK4671] ■ Digital Output Volume The AK4671 has a digital output volume (256 levels, 0.5dB step, Mute). The volume can be set by the OVL7-0 and OVR7-0 bits. The volume is included in front of a DAC block. The input data of DAC is changed from +12 to –115dB or MUTE. When the OVOLC bit = “1”, the OVL7-0 bits control both Lch and Rch attenuation levels. When the OVOLC bit = “0”, the OVL7-0 bits control Lch level and OVR7-0 bits control Rch level. This volume has a soft transition function. The OVTM bit sets the transition time between set values of OVL/R7-0 bits as either 1061/fs or 256/fs (Table 37). When OVTM bit = “0”, a soft transition between the set values occurs (1062 levels). It takes 1061/fs (=24ms@fs=44.1kHz) from 00H (+12dB) to FFH (MUTE). (default) OVTM bit 0 1 OVL/R7-0 Gain 00H +12.0dB 01H +11.5dB 02H +11.0dB : : 18H 0dB : : FDH −114.5dB FEH −115.0dB FFH MUTE (−∞) Table 36. Digital Volume Code Table Step 0.5dB Transition time between DVL/R7-0 bits = 00H and FFH Setting fs=8kHz fs=44.1kHz 1061/fs 133ms 24ms 256/fs 32ms 6ms Table 37. Transition Time Setting of Digital Output Volume MS0666-E-02 (default) 2010/06 - 74 - [AK4671] ■ Soft Mute Soft mute operation is performed in the digital domain. When the SMUTE bit is changed to “1”, the output signal is attenuated to −∞ (“0”) during the cycle set by the OVTM bit. When the SMUTE bit is returned to “0”, the mute is cancelled and the output attenuation gradually changes to the value set by the OVL/R7-0 bits during the cycle set of the OVTM bit. If the soft mute is cancelled within the cycle set by the OVTM bit after starting the operation, the attenuation is discontinued and returned to the value set by the OVL/R7-0 bits. The soft mute is effective for changing the signal source without stopping the signal transmission (Figure 63). S M U T E bit O VTM bit O VL/R 7-0 bits O VTM bit (1) (3) A ttenuation -∞ GD (2) GD A nalog O utput Figure 63. Soft Mute Function (1) The output signal is attenuated until −∞ (“0”) in the cycle set by the OVTM bit. (2) Analog output corresponding to digital input has the group delay (GD). (3) If the soft mute is cancelled within the cycle set by the OVTM bit, the attenuation is discounted and returned to the value set by the OVL/R7-0 bits. MS0666-E-02 2010/06 - 75 - [AK4671] ■ Digital Volume for Recording of Received Voice (DATT-B) The AK4671 has a digital output volume (DATT-B: 256 levels, 0.5dB step, Mute) for recording of received voice. The volume can be set by the BVL7-0 bits. The volume is included in front of an SRC-B block. The input data of SRC-B is changed from +12 to –115dB or MUTE. This volume has a soft transit function. The transition time between set values of BVL7-0 bits is 256/fs2. It takes 256/fs2 (=32ms@fs2=8kHz) from 00H (+12dB) to FFH (MUTE). (default) BVL7-0 Gain Step 00H +12.0dB 01H +11.5dB 02H +11.0dB : : 0.5dB 18H 0dB : : FDH −114.5dB FEH −115.0dB FFH MUTE (−∞) Table 38. Digital Volume B Code Table ■ Digital Volume for Received Voice (DATT-C) The AK4671 has a digital output volume (DATT-C: 256 levels, 0.5dB step, Mute) for received voice. The volume can be set by the CVL7-0 bits. The volume is included in front of SDTOB output. The input data of SRC-C is changed from +12 to –115dB or MUTE. This volume has a soft transition function. The transition time between set values of CVL7-0 bits is 256/fs2. It takes 256/fs2 (=32ms@fs2=8kHz) from 00H (+12dB) to FFH (MUTE). (default) CVL7-0 Gain Step 00H +12.0dB 01H +11.5dB 02H +11.0dB : : 0.5dB 18H 0dB : : FDH −114.5dB FEH −115.0dB FFH MUTE (−∞) Table 39. Digital Volume C Code Table ■ Side Tone Volume for B/T Phone Call (SVOLB) The AK4671 has the side tone volume (5 levels, 6dB step) for B/T phone call. The volume can be set by the SVL2-0 bits. The volume is included at mixing path from SRC-A to DATT-C. The output data of SRC-A is changed from 0 to –24dB. SVB2-0 Gain 0H 0dB (default) 1H −6dB 2H −12dB 3H −18dB 4H −24dB Others N/A Table 40. Side Tone Volume B Code Table (N/A: Not available) MS0666-E-02 2010/06 - 76 - [AK4671] ■ Digital Volume for B/T MIC Input (BIVOL) The AK4671 has the digital volume (5 levels, 6dB step) for B/T mic input. The volume can be set by the BIV2-0 bits. The volume is included at SDTIB input. The input data is changed from 0 to –24dB. BIV2-0 Gain 0H 0dB (default) 1H −6dB 2H −12dB 3H −18dB 4H −24dB Others N/A Table 41. SDTIB Volume Code Table (N/A: Not available) ■ Path & Mixing Setting of Digital Block (Figure 57) PMADL and PMADR bits set both ADC power management and output data selection. In case of mono operation, the same data is output to both channel slots. PMADL 0 0 1 1 PMADR ADC Lch data ADC Rch data 0 All “0” All “0” 1 Rch Input Signal Rch Input Signal 0 Lch Input Signal Lch Input Signal 1 Lch Input Signal Rch Input Signal Table 42. ADC Mono/Stereo Select (default) PFSEL bit select the input data of programmable filter. PFSEL Programmable Filter Input 0 ADC Output (selected by Table 42) (default) 1 SDTI Input (selected by Table 48) Table 43. Programmable Filter Input Signal Select When ADM bit is “1”, ALC output data is output to both channels of SDTO and SVOLA as (L+R)/2, respectively. ADM Lch Rch 0 L R (default) 1 (L+R)/2 (L+R)/2 Table 44. ALC Output Mono Mixing MS0666-E-02 2010/06 - 77 - [AK4671] SDOL1-0 and SDOR1-0 bits set the data mixing for each channel of SDTO from the data selected by Table 44 and SRC-B output data. SDOL1 0 0 1 1 SDOL0 SDTO Lch 0 Lch Signal selected by Table 44 1 SRC-B 0 (Lch Signal selected by Table 44) + (SRC-B) 1 N/A Table 45. SDTO Lch Output Mixing (N/A: Not available) SDOR1 0 0 1 1 SDOR0 SDTO Rch 0 Rch Signal selected by Table 44 1 SRC-B 0 (Rch Signal selected by Table 44) + (SRC-B) 1 N/A Table 46. SDTO Rch Output Mixing (N/A: Not available) (default) (default) When SDOD bit is “1”, SDTO output data can be disabled (fixed to “L”). Input data of SVOLA is not disabled. SDOD 0 1 SDTO Enable (Output) (default) Disable (“L”) Table 47. SDTO Disable SDIM1-0 bits select stereo or mono of SDTI input data. In case of mono mode, the same data is input to both channels. SDIM1 SDIM0 Lch Rch 0 0 L R (default) 0 1 L L 1 0 R R 1 1 N/A Table 48. SDTI Stereo/Mono Select (N/A: Not available) PFMXL1-0 and PFMXR1-0 bits set the data mixing for each channel of 5-band EQ from the data selected by Table 48 and SVOLA output data. PFMXL1 0 0 1 1 PFMXL0 5-band EQ Lch Input 0 Lch Signal selected by Table 48 1 SVOLA Lch 0 (Lch Signal selected by Table 48) + (SVOLA Lch) 1 N/A Table 49. 5-band EQ Lch Input Mixing 1 (N/A: Not available) PFMXR1 0 0 1 1 PFMXR0 5-band EQ Rch Input 0 Rch Signal selected by Table 48 1 SVOLA Rch 0 (Rch Signal selected by Table 48) + (SVOLA Rch) 1 N/A Table 50. 5-band EQ Rch Input Mixing 1 (N/A: Not available) MS0666-E-02 (default) (default) 2010/06 - 78 - [AK4671] SRMXL1-0 and SRMXR1-0 bits set the data mixing for each channel of 5-band EQ from the data selected by Table 49/Table 50 and SVOLA output data. SRMXL1 SRMXL0 5-band EQ Lch Input 0 0 Signal selected by Table 49 (default) 0 1 SRC-B 1 0 (Signal selected by Table 49) + (SRC-B) 1 1 N/A Table 51. 5-band EQ Lch Input Mixing 2 (N/A: Not available) SRMXR1 SRMXR0 5-band EQ Rch Input 0 0 Signal selected by Table 50 (default) 0 1 SRC-B 1 0 (Signal selected by Table 50) + (SRC-B) 1 1 N/A Table 52. 5-band EQ Rch Input Mixing 2 (N/A: Not available) DAM and MIXD bits set the data mixing for DAC input. DAM 0 1 1 MIXD Lch Rch x L R (default) 0 L+R L+R 1 (L+R)/2 (L+R)/2 Table 53. DAC Mono Mixing (x: Don’t care) SRA1-0 and MIXD bits set the data mixing for SRC-A input. SRA1 SRA0 MIXD SRC-A 0 0 x L (default) 0 1 x R 1 0 0 L+R 1 0 1 (L+R)/2 1 1 x N/A Table 54. SRC-A Input Mixing (x: Don’t care, N/A: Not available) SDOA bit selects the output data of SDTOA. SDOA 0 1 SDTOA SRC-A (default) SDTIB Table 55. SDTOA Output Select When SDOAD bit is “1”, SDTOA output data can be disabled (fixed to “L”). Input data of SVOLB is not disabled. SDOAD SDTOA 0 Enable (Output) (default) 1 Disable (“L”) Table 56. SDTOA Disable MS0666-E-02 2010/06 - 79 - [AK4671] SBMX1-0 bits set the data mixing from SDTIA input and SVOLB output. The mixed data is output to SDTOB via DATT-C. SBMX1 0 0 1 1 SBMX0 DATT-C Input 0 SDTIA (default) 1 SVOLB 0 (SDTIA) + (SVOLB) 1 N/A Table 57. SDTOB Mixing (N/A: Not available) When SDOBD bit is “1”, SDTOB output data can be disabled (fixed to “L”). SDOBD SDTOB 0 Enable (Output) (default) 1 Disable (“L”) Table 58. SDTOB Disable BVMX1-0 bits set the data mixing for SRC-B from SDTIA input (DATT-B output) and SDTIB input (BIVOL output). BVMX1 BVMX0 SRC-B Input 0 0 SDTIA (default) 0 1 SDTIB 1 0 (SDTIA) + (SDTIB) 1 1 N/A Table 59. SRC-B Input Mixing (N/A: Not available) MS0666-E-02 2010/06 - 80 - [AK4671] ■ Analog Mixing: Single-ended Input (LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 pins) AK4671 supports analog mixing function from each line input to each line output (Figure 64). When the analog mixing is used, A/D converter is also available if PMADL or PMADR bit is “1”. When PMAINL1=PMAINR1=PMAINL2=PMAINR2=PMAINL3=PMAINR3=PMAINL4=PMAINR4=PMMICL=PMMICR bits = “1”, the input resistance of LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 pins becomes 25kΩ (typ) at MGNL/R0 bits = “0” and 20kΩ (typ) at MGNL/R0 bits = “1”, respectively. L1G1-0, L2G1-0, L3G1-0, L4G1-0 and LPG1-0 bits adjust the gain for each path (Table 60, Table 61, Table 62, Table 63, Table 64). AK4671 INL4-0 bits LIN1/IN1+ pin ADC Lch RIN1/IN1− pin MDIF1 bit MIC-Amp Lch MDIF3 bit INR4-0 bits LIN2/IN2+ pin ADC Rch RIN2/IN2− pin MDIF2 bit MIC-Amp Rch MDIF4 bit LIN3/IN3+ pin RIN3/IN3− pin LIN4/IN4+ pin Figure 56, 57, 59, 60 LOUT1 pin Figure 62, 63 ROUT1 pin LOUT2 pin ROUT2 pin PMLOOPR bit PMLOOPL bit PMAINR4 bit PMAINL4 bit PMAINR3 bit PMAINL3 bit PMAINR2 bit PMAINL2 bit PMAINL1 bit PMAINR1 bit RIN4/IN4− pin Figure 66, 67, 69, 70 LOUT3 pin ROUT3 pin Figure 64. Analog Mixing Circuit MS0666-E-02 2010/06 - 81 - [AK4671] L1G1 bit L1G0 bit Gain 0 0 0dB (default) 0 1 +6dB 1 0 −6dB 1 1 N/A Table 60. LIN1/RIN1 (or IN1+/−) Mixing Gain (typ) (N/A: Not available) L2G1 bit L2G0 bit Gain 0 0 0dB (default) 0 1 +6dB 1 0 −6dB 1 1 N/A Table 61. LIN2/RIN2 (or IN2+/−) Mixing Gain (typ) (N/A: Not available) L3G1 bit L3G0 bit Gain 0 0 0dB (default) 0 1 +6dB 1 0 −6dB 1 1 N/A Table 62. LIN3/RIN3 (or IN3+/−) Mixing Gain (typ) (N/A: Not available) L4G1 bit L4G0 bit Gain 0 0 0dB (default) 0 1 +6dB 1 0 −6dB 1 1 N/A Table 63. LIN4/RIN4 (or IN4+/−) Mixing Gain (typ) (N/A: Not available) LPG1 bit LPG0 bit Gain 0 0 0dB (default) 0 1 +6dB 1 0 −6dB 1 1 N/A Table 64. MIC-Amp Mixing Gain (typ) (N/A: Not available) ■ Analog Mixing: Full-differential Input (IN1+/IN1−/IN2+/IN2−/IN3+/IN3−/IN4+/IN4− pins) When MDIF1, MDIF2, MDIF3 and MDIF4 bits are “1”, LIN1/RIN1, LIN2/RIN2, LIN3/RIN3 and LIN4/RIN4 pins become IN1+/−, IN2+/−, IN3+/− and IN4+/− pins, respectively, and analog mixing is availble. When the analog mixing is used, A/D converter is also available if PMADL or PMADR bit is “1”. When PMAINL1=PMAINR1=PMAINL2=PMAINR2=PMAINL3=PMAINR3=PMAINL4=PMAINR4=PMMICL=PMMICR bits = “1”, the input resistance of IN1+/−, IN2+/−, IN3+/− and IN4+/− pins becomes 25kΩ (typ) at MGNL/R0 bits = “0” and 20kΩ (typ) at MGNL/R0 bits = “1”, respectively. L1G1-0, L2G1-0, L3G1-0, L4G1-0 and LPG1-0 bits adjust the gain for each path (Table 60, Table 61, Table 62, Table 63, Table 64). MS0666-E-02 2010/06 - 82 - [AK4671] ■ Stereo Line Output (LOUT1/ROUT1 pins) When DACL and DACR bits are “1”, Lch/Rch signal of DAC is output from the LOUT1/ROUT1 pins which is single-ended. When DACL and DACR bits are “0”, output signal is muted and LOUT1/ROUT1 pins output VCOM voltage. The load impedance is 10kΩ (min.). When the PMLO1=PMRO1=LOPS1 bits = “0”, LOUT1/ROUT1 enters power-down mode and the output is pulled-down to VSS1 by 100kΩ(typ). When the LOPS1 bit is “1”, LOUT1/ROUT1 enters power-save mode. Pop noise at power-up/down can be reduced by changing PMLO1 and PMRO1 bits at LOPS1 bit = “1”. In this case, output signal line should be pulled-down to VSS1 by 20kΩ after AC coupled as Figure 65. Rise/Fall time is 300ms(max) at C=1μF and AVDD=3.3V. When PMLO1=PMRO1 bits = “1” and LOPS1 bit = “0”, LOUT1/ROUT1 is in normal operation. L1VL3-0 bits control the volume of LOUT1/ROUT1. When LOM bit = “1”, DAC output signal is output to LOUT1 and ROUT1 pins as (L+R) mono signal. When LOOPM bit = “1”, the MIC-Amp signal is output to LOUT1 and ROUT1 pins as (L+R) mono signal. LOPS1 0 1 LOPS1 0 1 PMLO1 Mode LOUT1 pin 0 Power-down Pull-down to VSS1 1 Normal Operation Normal Operation 0 Power-save Fall down to VSS1 1 Power-save Rise up to VCOM Table 65. Stereo Line Output Mode Select (LOUT1) PMRO1 Mode ROUT1 pin 0 Power-down Pull-down to VSS1 1 Normal Operation Normal Operation 0 Power-save Fall down to VSS1 1 Power-save Rise up to VCOM Table 66. Stereo Line Output Mode Select (ROUT1) (default) (default) L1VL2-0 Attenuation 6H +6dB 5H 0dB (default) 4H −6dB 3H −12dB 2H −18dB 1H −24dB 0H MUTE Table 67. Stereo Line Output Volume Setting LOUT1 ROUT1 1μF 220Ω 20kΩ Figure 65. External Circuit for Stereo Line Output (in case of using Pop Noise Reduction Circuit) MS0666-E-02 2010/06 - 83 - [AK4671] <Stereo Line Output Control Sequence (in case of using Pop Noise Reduction Circuit)> (2 ) (5 ) P M L O 1 b it P M R O 1 b it (1 ) (3 ) (4 ) (6 ) L O P S 1 b it L O U T 1 p in R O U T 1 p in N o r m a l O u tp u t ≥ 300 m s ≥ 300 m s Figure 66. Stereo Line Output Control Sequence (in case of using Pop Noise Reduction Circuit) (1) Set LOPS1 bit = “1”. Stereo line output enters the power-save mode. (2) Set PMLO1=PMRO1 bits = “1”. Stereo line output exits the power-down mode. LOUT1 and ROUT1 pins rise up to VCOM voltage. Rise time is 200ms (max 300ms) at C=1μF and AVDD=3.3V. (3) Set LOPS1 bit = “0” after LOUT1 and ROUT1 pins rise up. Stereo line output exits the power-save mode. Stereo line output is enabled. (4) Set LOPS1 bit = “1”. Stereo line output enters power-save mode. (5) Set PMLO1=PMRO1 bits = “0”. Stereo line output enters power-down mode. LOUT1 and ROUT1 pins fall down to VSS1. Fall time is 200ms (max 300ms) at C=1μF and AVDD=3.3V. (6) Set LOPS1 bit = “0” after LOUT1 and ROUT1 pins fall down. Stereo line output exits the power-save mode. MS0666-E-02 2010/06 - 84 - [AK4671] <Analog Mixing Circuit for LOUT1/ROUT1> DACL, DACR, LOM, LINL1, RINR1, LINL2, RINR2, LINL3, RINR3, LINL4, RINR4, LOOPL, LOOPR and LOOPM bits control each path switch. LINL1 bit LIN1 pin +6/0/−6dB LIN2 pin +6/0/−6dB LIN3 pin +6/0/−6dB LIN4 pin +6/0/−6dB LINL2 bit LINL3 bit LINL4 bit M LOOPL bit +6/0/−6dB I X LOUT1 pin L1VL2-0 bits LOOPR bit x LOOPM bit MIC-Amp Lch DACL bit DATT Stereo DAC Lch 0dB DACR bit x LOM bit RINR1 bit RIN1 pin +6/0/−6dB RIN2 pin +6/0/−6dB RIN3 pin +6/0/−6dB RIN4 pin +6/0/−6dB RINR2 bit RINR3 bit RINR4 bit M LOOPL bit x LOOPM bit I X ROUT1 pin L1VL2-0 bits LOOPR bit +6/0/−6dB DACL bit x LOM bit MIC-Amp Rch DACR bit DATT Stereo DAC Rch 0dB Figure 67. LOUT1/ROUT1 Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “0”) MS0666-E-02 2010/06 - 85 - [AK4671] LINL1 bit +6/0/−6dB IN1+/− pins LINL2 bit LINL3 bit +6/0/−6dB IN3+/− pins LINL4 bit M LOOPL bit +6/0/−6dB I X LOUT1 pin L1VL2-0 bits LOOPR bit x LOOPM bit MIC-Amp Lch DACL bit DATT Stereo DAC Lch 0dB DACR bit x LOM bit RINR1 bit RINR2 bit +6/0/−6dB IN2+/− pins RINR3 bit RINR4 bit M +6/0/−6dB IN4+/− pins LOOPL bit x LOOPM bit I X ROUT1 pin L1VL2-0 bits LOOPR bit +6/0/−6dB DACL bit x LOM bit MIC-Amp Rch DACR bit DATT Stereo DAC Rch 0dB Figure 68. LOUT1/ROUT1 Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “1”) MS0666-E-02 2010/06 - 86 - [AK4671] ■ Receiver-Amp (RCP/RCN pins) When RCV bit = “1”, LOUT1/ROUT1 pins become RCP/RCN pins, respectively. Lch/Rch signal of DAC or LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 is output from the RCP/RCN pins which is BTL as (L+R) signal. The load impedance is 32Ω (min). When the PMLO1 = PMRO1 bits = “0”, the mono receiver output enters power-down mode and the output is Hi-Z. When the PMLO1 = PMRO1 bits = “1” and LOPS1 bit = “1”, mono receiver output enters power-save mode. Pop noise at power-up/down can be reduced by changing PMLO1 and PMRO1 bits at LOPS1 bit = “0”. When PMLO1 = PMRO1 bits = “1” and LOPS1 bit = “0”, mono receiver output enters in normal operation. L1VL3-0 bits control the volume of mono receiver output. L1VL2-0 Attenuation 6H +12dB 5H +6dB (default) 4H 0dB 3H −6dB 2H −12dB 1H −18dB 0H MUTE Table 68. Mono Receiver Output Volume Setting PMLO1/RO1 0 1 LOPS1 Mode RCP RCN x Power-down Hi-Z Hi-Z 1 Power-save Hi-Z VCOM 0 Normal Operation Normal Operation Normal Operation Table 69. Receiver-Amp Mode Setting (x: Don’t care) (default) PMLO1 bit PMRO1 bit LOPS1 bit RCP pin RCN pin Hi-Z Hi-Z Hi-Z VCOM VCOM >1ms >0 Hi-Z Figure 69. Power-up/Power-down Timing for Receiver-Amp MS0666-E-02 2010/06 - 87 - [AK4671] <Analog Mixing Circuit for Receiver Output> DACL, DACR, LINL1, RINR1, LINL2, RINR2, LINL3, RINR3, LINL4, RINR4, LOOPL and LOOPR bits control each path switch. When MDIF1/2/3/4 bits = “1”, RINR1/2/3/4 bits should be “0”. LINL1 bit LIN1 pin +6/0/−6dB LINL2 bit LIN2 pin +6/0/−6dB LIN3 pin +6/0/−6dB LINL3 bit LINL4 bit LIN4 pin +6/0/−6dB LOOPL bit +6/0/−6dB MIC-Amp Lch RINR1 bit RIN1 pin +6/0/−6dB RIN2 pin +6/0/−6dB RIN3 pin +6/0/−6dB M RINR2 bit I X RCP/RCN pins L1VL2-0 bits RINR3 bit RINR4 bit RIN4 pin +6/0/−6dB LOOPR bit +6/0/−6dB MIC-Amp Rch DATT Stereo DAC Lch DACL bit 0dB DACR bit DATT Stereo DAC Rch 0dB Figure 70. Receiver Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “0”) MS0666-E-02 2010/06 - 88 - [AK4671] LINL1 bit +6/0/−6dB IN1+/− pins LINL2 bit +6/0/−6dB IN2+/− pins LINL3 bit IN3+/− pins +6/0/−6dB IN4+/− pins +6/0/−6dB LINL4 bit LOOPL bit RCP/RCN pins +6/0/−6dB MIC-Amp Lch L1VL2-0 bits LOOPR bit M +6/0/−6dB I MIC-Amp Rch DACL bit DATT Stereo DAC Lch 0dB DATT Stereo DAC Rch 0dB X DACR bit Figure 71. Receiver Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “1”) MS0666-E-02 2010/06 - 89 - [AK4671] ■ Headphone Output (LOUT2/ROUT2 pins) Power supply voltage for the LOUT2/ROUT2 is supplied from the AVDD pin and centered on the 0.5 x AVDD (typ) voltage. The load resistance is 16Ω (min). HPG3-0 bits control the output volume (Table 70). When LOM2 bit = “1”, DAC output signal is output to LOUT2 and ROUT2 pins as (L+R) mono signal. When LOOPM2 bit = “1”, the MIC-Amp signal is output to LOUT2 and ROUT2 pins as (L+R) mono signal. HPG3-0 Attenuation DH +6dB CH +3dB BH 0dB (default) AH −3dB : : : : 2H −27dB 1H −30dB 0H MUTE Table 70. LOUT2/ROUT2 Output Volume When the MUTEN bit is “0”, the common voltage of LOUT2/ROUT2 falls and the outputs (LOUT2 and ROUT2 pins) change to “L” (VSS1). When the MUTEN bit is “1”, the common voltage rises to VCOM voltage. A capacitor between the MUTET pin and ground reduces pop noise at power-up. Rise/Fall time constant is in proportional to AVDD voltage and the capacitor at MUTET pin. [Example]: A capacitor between the MUTET pin and ground = 1.0μF, AVDD=3.3V: Rise/fall time constant: τ = 100ms(typ), 250ms(max) Time until the common goes to VSS1 when MUTEN bit = “1” Æ “0”: 500ms(max) When PMLO2, PMRO2, PMLO2S and PMRO2S bits are “0”, the LOUT2/ROUT2 is powered-down, and the outputs (LOUT2 and ROUT2 pins) go to “L” (VSS1). PMLO2 bit, PMRO2 bit, PMLO2S bit, PMRO2S bit MUTEN bit LOUT2 pin, ROUT2 pin (1) (2) (3) (4) Figure 72. Power-up/Power-down Timing for LOUT2/ROUT2 (1) LOUT2/ROUT2 power-up (PMLO2, PMRO2, PMLO2S, PMRO2S bit = “1”). The outputs are still VSS1. (2) LOUT2/ROUT2 common voltage rises up (MUTEN bit = “1”). (3) LOUT2/ROUT2 common voltage falls down (MUTEN bit = “0”). (4) LOUT2/ROUT2 power-down (PMLO2, PMRO2, PMLO2S, PMRO2S bit = “0”). The outputs are VSS1. If the power supply is switched off or LOUT2/ROUT2 is powered-down before the common voltage goes to VSS1, some POP noise occurs. MS0666-E-02 2010/06 - 90 - [AK4671] <Analog Mixing Circuit for LOUT2/ROUT2> DACHL, DACHR, LOM2, LINH1, RINH1, LINH2, RINH2, LINH3, RINH3, LINH4, RINH4, LOOPHL, LOOPHR and LOOPM2 bits control each path switch. LINH1 bit LIN1 pin +6/0/−6dB LIN2 pin +6/0/−6dB LIN3 pin +6/0/−6dB LIN4 pin +6/0/−6dB LINH2 bit LINH3 bit LINH4 bit M LOOPHL bit +6/0/−6dB I X LOUT2 pin HPG3-0 bits LOOPHR bit x LOOPM2 bit MIC-Amp Lch DACHL bit DATT Stereo DAC Lch 0dB DACHR bit x LOM2 bit RINH1 bit RIN1 pin +6/0/−6dB RIN2 pin +6/0/−6dB RIN3 pin +6/0/−6dB RINH2 bit RINH3 bit RINH4 bit RIN4 pin M +6/0/−6dB LOOPHL bit x LOOPM2 bit I X ROUT2 pin HPG3-0 bits LOOPHR bit +6/0/−6dB DACHL bit x LOM2 bit MIC-Amp Rch DACHR bit DATT Stereo DAC Rch 0dB Figure 73. LOUT2/ROUT2 Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “0”) MS0666-E-02 2010/06 - 91 - [AK4671] LINH1 bit +6/0/−6dB IN1+/− pins LINH2 bit LINH3 bit +6/0/−6dB IN3+/− pins LINH4 bit M LOOPHL bit +6/0/−6dB I X LOUT2 pin HPG3-0 bits LOOPHR bit x LOOPM2 bit MIC-Amp Lch DACHL bit DATT Stereo DAC Lch 0dB DACHR bit x LOM2 bit RINH1 bit RINH2 bit +6/0/−6dB IN2+/− pins RINH3 bit RINH4 bit M +6/0/−6dB IN4+/− pins LOOPHL bit x LOOPM2 bit I X ROUT2 pin HPG3-0 bits LOOPHR bit +6/0/−6dB DACHL bit x LOM2 bit MIC-Amp Rch DACHR bit DATT Stereo DAC Rch 0dB Figure 74. LOUT2/ROUT2 Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “1”) MS0666-E-02 2010/06 - 92 - [AK4671] ■ Stereo Line Output 3 (LOUT3/ROUT3 pins) When DACSL and DACSR bits are “1”, Lch/Rch signal of DAC is output from the LOUT3/ROUT3 pins which is single-ended. When DACSL and DACSR bits are “0”, output signal is muted and LOUT3/ROUT3 pins output VCOM voltage. The load impedance is 10kΩ (min.). When the PMLO3=PMRO3=LOPS3 bits = “0”, LOUT3/ROUT3 enters power-down mode and the output is pulled-down to VSS1 by 100kΩ(typ). When the LOPS3 bit is “1”, LOUT3/ROUT3 enters power-save mode. Pop noise at power-up/down can be reduced by changing PMLO3 and PMRO3 bits at LOPS3 bit = “1”. In this case, output signal line should be pulled-down to VSS1 by 20kΩ after AC coupled as Figure 75. Rise/Fall time is 300ms(max) at C=1μF and AVDD=3.3V. When PMLO3=PMRO3 bits = “1” and LOPS3 bit = “0”, LOUT3/ROUT3 is in normal operation. L3VL3-0 bits control the volume of LOUT3/ROUT3. When LOM3 bit = “1”, DAC output signal is output to LOUT3 and ROUT3 pins as (L+R) mono signal. When LOOPM3 bit = “1”, the MIC-Amp signal is output to LOUT3 and ROUT3 pins as (L+R) mono signal. LOPS3 0 1 LOPS3 0 1 PMLO3 Mode LOUT3 pin 0 Power-down Pull-down to VSS1 1 Normal Operation Normal Operation 0 Power-save Fall down to VSS1 1 Power-save Rise up to VCOM Table 71. Stereo Line Output Mode Select (LOUT3) PMRO3 Mode ROUT3 pin 0 Power-down Pull-down to VSS1 1 Normal Operation Normal Operation 0 Power-save Fall down to VSS1 1 Power-save Rise up to VCOM Table 72. Stereo Line Output Mode Select (ROUT3) (default) (default) L3VL1 L3VL0 Attenuation 1 1 +3dB 1 0 0dB (default) 0 1 −3dB 0 0 −6dB Table 73. Stereo Line Output Volume Setting LOUT3 ROUT3 1μF 220Ω 20kΩ Figure 75. External Circuit for Stereo Line Output (in case of using Pop Noise Reduction Circuit) MS0666-E-02 2010/06 - 93 - [AK4671] <Stereo Line Output 3 Control Sequence (in case of using Pop Noise Reduction Circuit)> (2 ) (5 ) P M L O 3 b it P M R O 3 b it (1 ) (3 ) (4 ) (6 ) L O P S 3 b it L O U T 3 , R O U T 3 p in s N o r m a l O u tp u t ≥ 300 m s ≥ 300 m s Figure 76. Stereo Line Output 3 Control Sequence (in case of using Pop Noise Reduction Circuit) (1) Set LOPS3 bit = “1”. Stereo line output enters the power-save mode. (2) Set PMLO3=PMRO3 bits = “1”. Stereo line output exits the power-down mode. LOUT3 and ROUT3 pins rise up to VCOM voltage. Rise time is 200ms (max 300ms) at C=1μF and AVDD=3.3V. (3) Set LOPS3 bit = “0” after LOUT3 and ROUT3 pins rise up. Stereo line output exits the power-save mode. Stereo line output is enabled. (4) Set LOPS3 bit = “1”. Stereo line output enters power-save mode. (5) Set PMLO3=PMRO3 bits = “0”. Stereo line output enters power-down mode. LOUT3 and ROUT3 pins fall down to VSS1. Fall time is 200ms (max 300ms) at C=1μF and AVDD=3.3V. (6) Set LOPS3 bit = “0” after LOUT3 and ROUT3 pins fall down. Stereo line output exits the power-save mode. MS0666-E-02 2010/06 - 94 - [AK4671] <Analog Mixing Circuit for LOUT3/ROUT3> DACSL, DACSR, LOM3, LINS1, RINS1, LINS2, RINS2, LINS3, RINS3, LINS4, RINS4, LOOPSL, LOOPSR and LOM3 bits control each path switch. LINS1 bit LIN1 pin +6/0/−6dB LIN2 pin +6/0/−6dB LIN3 pin +6/0/−6dB LIN4 pin +6/0/−6dB LINS2 bit LINS3 bit LINS4 bit M LOOPSL bit +6/0/−6dB I X LOUT3 pin L3VL1-0 bits LOOPSR bit x LOOPM3 bit MIC-Amp Lch DACSL bit DATT Stereo DAC Lch 0dB DACSR bit x LOM3 bit RINS1 bit RIN1 pin +6/0/−6dB RIN2 pin +6/0/−6dB RIN3 pin +6/0/−6dB RIN4 pin +6/0/−6dB RINS2 bit RINS3 bit RINS4 bit M LOOPSL bit x LOOPM3 bit I X ROUT3 pin L3VL1-0 bits LOOPSR bit +6/0/−6dB DACSL bit x LOM3 bit MIC-Amp Rch DACSR bit DATT Stereo DAC Rch 0dB Figure 77. LOUT3/ROUT3 Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “0”) MS0666-E-02 2010/06 - 95 - [AK4671] LINS1 bit +6/0/−6dB IN1+/− pins LINS2 bit LINS3 bit +6/0/−6dB IN3+/− pins LINS4 bit M LOOPSL bit +6/0/−6dB I X LOUT3 pin L3VL1-0 bits LOOPSR bit x LOOPM3 bit MIC-Amp Lch DACSL bit DATT Stereo DAC Lch 0dB DACSR bit x LOM3 bit RINS1 bit RINS2 bit +6/0/−6dB IN2+/− pins RINS3 bit RINS4 bit M +6/0/−6dB IN4+/− pins LOOPSL bit x LOOPM3 bit I X ROUT3 pin L3VL1-0 bits LOOPSR bit +6/0/−6dB DACSL bit x LOM3 bit MIC-Amp Rch DACSR bit DATT Stereo DAC Rch 0dB Figure 78. LOUT3/ROUT3 Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “1”) MS0666-E-02 2010/06 - 96 - [AK4671] ■ Full-differential Mono Line Output (LOP/LON pins) When LODIF bit = “1”, LOUT3/ROUT3 pins become LOP/LON pins, respectively. Lch/Rch signal of DAC or LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 is output from the LOP/LON pins which is full-differential as (L+R) signal. The load impedance is 10kΩ (min) for LOP and LON pins, respectively. When the PMLO3 = PMRO3 bits = “0”, the mono line output enters power-down mode and the output is pulled-down to VSS1. When the PMLO3 = PMRO3 bits = “1” and LOPS3 bit = “1”, mono line output enters power-save mode. Pop noise at power-up/down can be reduced by changing PMLO3 and PMRO3 bits at LOPS3 bit = “0”. When PMLO3 = PMRO3 bits = “1” and LOPS3 bit = “0”, mono line output enters in normal operation. L3VL1-0 bits set the volume of mono line output. L3VL1-0 Attenuation 3H +9dB 2H +6dB (default) 1H +3dB 0H 0dB Table 74. Mono Line Output Gain Setting LOPS3 PMLO3/RO3 Mode LOUT3 pin 0 Power-down Pull-down to VSS1 1 Normal Operation Normal Operation 0 Power-save Fall down to VSS1 1 Power-save Rise up to VCOM Table 75. Mono Line Output Mode Setting 0 1 (default) <Full-differential Mono Line Output Control Sequence (in case of using Pop Noise Reduction Circuit)> (2 ) (5 ) P M L O 3 b it P M R O 3 b it (1 ) (3 ) (4 ) (6 ) L O P S 3 b it L O P , L O N p in s N o r m a l O u tp u t ≥ 300 m s ≥ 300 m s Figure 79. Mono Line Output 3 Control Sequence (in case of using Pop Noise Reduction Circuit) (1) Set LOPS3 bit = “1”. Mono line output enters the power-save mode. (2) Set PMLO3 = PMRO3 bits = “1”. Mono line output exits the power-down mode. LOP and LON pins rise up to VCOM voltage. Rise time is 200ms (max 300ms) at C=1μF and AVDD=3.3V. (3) Set LOPS3 bit = “0” after LOP and LON pins rise up. Mono line output exits the power-save mode. Mono line output is enabled. (4) Set LOPS3 bit = “1”. Mono line output enters power-save mode. (5) Set PMLO3 = PMRO3 bits = “0”. Mono line output enters power-down mode. LOP and LON pins fall down to VSS1. Fall time is 200ms (max 300ms) at C=1μF and AVDD=3.3V. (6) Set LOPS3 bit = “0” after LOP and LON pins fall down. Mono line output exits the power-save mode. MS0666-E-02 2010/06 - 97 - [AK4671] <Analog Mixing Circuit for Mono Line Output> DACSL, DACSR, LINS1, RINS1, LINS2, RINS2, LINS3, RINS3, LINS4, RINS4, LOOPSL and LOOPSR bits control each path switch. When MDIF1/2/3/4 bits = “1”, RINS1/2/3/4 bits should be “0”. LINS1 bit LIN1 pin +6/0/−6dB LINS2 bit LIN2 pin +6/0/−6dB LIN3 pin +6/0/−6dB LINS3 bit LINS4 bit LIN4 pin +6/0/−6dB LOOPSL bit +6/0/−6dB MIC-Amp Lch RINS1 bit RIN1 pin +6/0/−6dB RIN2 pin +6/0/−6dB M RINS2 bit I X LOP/LON pins L3VL1-0 bits RINS3 bit RIN3 pin +6/0/−6dB RINS4 bit RIN4 pin +6/0/−6dB LOOPSR bit +6/0/−6dB MIC-Amp Rch DATT Stereo DAC Lch DACSL bit 0dB DACSR bit DATT Stereo DAC Rch 0dB Figure 80. Mono Line Output Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “0”) MS0666-E-02 2010/06 - 98 - [AK4671] LINS1 bit IN1+/− pins +6/0/−6dB LINS2 bit IN2+/− pins +6/0/−6dB LINS3 bit IN3+/− pins +6/0/−6dB IN4+/− pins +6/0/−6dB LINS4 bit LOOPSL bit LOP/LON pins +6/0/−6dB MIC-Amp Lch L3VL1-0 bits LOOPSR bit M +6/0/−6dB I MIC-Amp Rch DACSL bit DATT Stereo DAC Lch 0dB DATT Stereo DAC Rch 0dB X DACSR bit Figure 81. Mono Line Output Mixing Circuit (MDIF1=MDIF2=MDIF3=MDIF4 bits = “1”) MS0666-E-02 2010/06 - 99 - [AK4671] ■ System Clock (PCM I/F) A reference clock of PLLBT is selected among the input clocks to SYNCA, BICKA, SYNCB or BICKB pin. The required clock to PCM I/F is generated by an internal PLLBT circuit. PLLBT circuit is powered up by PMPCM bit. Input frequency is selected by PLLBT3-0 bits (Table 76). BCKO2 bit select the output clock frequency of BICKA or BICKB pin (Table 77). AK4671 does not support master mode for both PCM I/F A and B nor slave mode for both PCM I/F A and B. Whether PCM I/F A or B should be set as slave mode. When PMPCM bit is “0”, SYNCA, BICKA, SYNCB and BICKB pins are Hi-Z. Table 78 indicates the output data of SDTOA and SDTOB pins in case of PMPCM bit = “0” and during lock time in Table 76, respectively. Table 79 indicates the output clock at master mode during lock time in Table 76. Mode PLLBT3 PLLBT2 PLLBT1 PLLBT0 Reference Clock Input Pin Frequency R, C at VCOCBT pin R SYNCA 1fs2 6.8k BICKA 16fs2 10k BICKA 32fs2 10k BICKA 64fs2 10k SYNCB 1fs2 6.8k BICKB 16fs2 10k BICKB 32fs2 10k BICKB 64fs2 10k BICKA 48fs2 10k BICKB 48fs2 10k N/A Table 76. PLLBT Reference Clock (N/A: Not available) Note 65. Mode 1 is available at only FMTA1 bit = “0”. Note 66. Mode 5 is available at only FMTB1 bit = “0”. 0 1 2 3 4 5 6 7 11 15 Others 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 1 1 0 1 0 1 0 1 0 1 1 1 C 220n 4.7n 4.7n 4.7n 220n 4.7n 4.7n 4.7n 4.7n 4.7n Lock Time (max) 260ms 40ms 40ms 40ms 260ms 40ms 40ms 40ms 40ms 40ms (default) BICKA/BICKB Output Frequency 0 16fs2 (default) 1 32fs2 Table 77. BICKA/B Output Frequency BCKO2 bit Mode 16bit Linear 8bit A-Law 8bit μ-Law After PMPCM bit = “0” → “1” & Before SYNCA/SYNCB Input L L L H L H Table 78. SDTOA, SDTOB pins Output Data PMPCM bit = “0” PMPCM bit = “1” During Locktime 0000H 11010101b 11111111b Format SYNCA, SYNCB BICKA, BICKB Except for I2S L L I2S H L Table 79. Output Clock during Lock Time MS0666-E-02 2010/06 - 100 - [AK4671] a) PLLBT reference clock: SYNCA or BICKA pin The PLLBT circuit generates the required clock for PCM I/F from SYNCA or BICKA. Generated clocks are output via SYNCB and BICKB pins. AK4671 SYNCA BICKA Phone Module 1fs2 ≥ 16fs2 SYNC BICK SDTOA SDTI SDTIA SDTO Bluetooth Module SYNCB BICKB 1fs2 16fs2 or 32fs2 SYNC BICK SDTOB SDTI SDTIB SDTO Figure 82. PCM I/F (PLLBT Reference Clock: SYNCA or BICKA pin) b) PLLBT reference clock: SYNCB or BICKB pin The PLLBT circuit generates the required clock for PCM I/F from SYNCB or BICKB. Generated clocks are output via SYNCA and BICKA pins. AK4671 SYNCA BICKA Phone Module 1fs2 16fs2 or 32fs2 SYNC BICK SDTOA SDTI SDTIA SDTO Bluetooth Module SYNCB BICKB 1fs2 ≥ 16fs2 SYNC BICK SDTOB SDTI SDTIB SDTO Figure 83. PCM I/F (PLLBT Reference Clock: SYNCB or BICKB pin) PLLBT should always be powered-up (PMPCM bit = “1”) whenever SRC-A or SRC-B is in operation (PMSRA bit = “1” or PMSRB bit = “1”). If PLLBT is powered-down, the AK4671 may draw excess current and it is not possible to operate properly because utilizes dynamic refreshed logic internally. If PLLBT is powered-down, SRC-A, SRC-B and SRC-C should be in the power-down mode (PMSRA=PMSRB bits = “0”). MS0666-E-02 2010/06 - 101 - [AK4671] ■ PCM I/F Master Mode/Slave Mode The PLLBT2 bit selects either master or slave mode (Table 80). When either PCM I/F A or PCM I/F B is set in slave mode, the other is set in master mode. (For example, when PCM I/F B is set in slave mode, PCM I/F A is set in master mode.) When the AK4671 is power-down mode (PDN pin = “L”) or PMPCM bit = “0”, each clock pins (SYNCA, BICKA, SYNCB, BICKB) of PCM I/F become a Hi-Z (Table 81). PLLBT3-0 bits should be set when PMPCM bit = “0” to avoid shorting out of the slave mode clock pins and master mode clock output. After setting the PDN pin = “H”, the PCM I/F clock pins are the Hi-Z state until PMPCM bit becomes “1”. The PCM I/F clock pins of master mode should be pulled-down or pulled-up by the resistor (about 100kΩ) externally to avoid the floating state. PLLBT2 bit 0 1 PCM I/F A Slave Mode Master Mode PDN pin L H SYNCA, BICKA pins PCM I/F B SYNCB, BICKB pins Input Master Mode Output Output Slave Mode Input Table 80. Select PCM I/F Master/Slave Mode PMPCM bit 0 1 (default) SYNCA, BICKA pin SYNCB, BICKB pin Hi-Z Hi-Z Hi-Z Hi-Z I/O Select by PLLBT2 bit I/O Select by PLLBT2 bit (Table 80) (Table 80) Table 81. PCM I/F Clock I/O State MS0666-E-02 2010/06 - 102 - [AK4671] ■ PCM I/F A & B Format AK4671 supports dual PCM I/F (PCM I/F A & PCM I/F B) that supports 3 kind of I/F (16bit Linear, 8bit A-Law and 8bit μ-Law) independently (Table 82 and Table 83). Mode 0 1 2 3 LAWA1 LAWA0 Format 0 0 16bit Linear 0 1 N/A 1 0 8bit A-Law 1 1 8bit μ-Law Table 82. PCM I/F A Mode (N/A: Not available) Mode 0 1 2 3 LAWB1 LAWB0 Format 0 0 16bit Linear 0 1 N/A 1 0 8bit A-Law 1 1 8bit μ-Law Table 83. PCM I/F B Mode (N/A: Not available) (default) (default) Four types of data formats are available and are selected by setting the FMTA1-0 and FMTB1-0 bits independently (Table 84 and Table 85). In 16bit Linear mode, the serial data is MSB first, 2’s complement format. In 8bit A-Law and μ-Law Mode, the serial data is MSB first. PCM I/F formats can be used in both master and slave modes. SYNCA/B and BICKA/B are output from the AK4671 in master mode, but must be input to the AK4671 in slave mode. Mode 0 1 2 3 FMTA1 0 0 1 1 FMTA0 0 1 0 1 Format BICKA Short Frame Sync ≥ 16fs2 Long Frame Sync ≥ 16fs2 MSB justified ≥ 32fs2 I2S ≥ 32fs2 Table 84. PCM I/F A Format Figure See Table 86 See Table 88 Figure 92 Figure 93 Mode 0 1 2 3 FMTB1 0 0 1 1 FMTB0 0 1 0 1 Format BICKB Short Frame Sync ≥ 16fs2 Long Frame Sync ≥ 16fs2 MSB justified ≥ 32fs2 I2S ≥ 32fs2 Table 85. PCM I/F B Format Figure See Table 87 See Table 89 Figure 92 Figure 93 (default) (default) In modes 2 and 3, the SDTOA/B is clocked out on the falling edge (“↓”) of BICKA/B and the SDTIA/B is latched on the rising edge (“↑”). In Modes 0 and 1, PCM I/F A timing is changed by BCKPA and MSBSA bits, and PCM I/F B timing is changed by BCKPB and MSBSB bits. When BCKPA bit = “0”, the SDTOA is clocked out on the rising edge (“↑”) of BICKA and the SDTIA is latched on the falling edge (“↓”). When BCKPA bit = “1”, the SDTOA is clocked out on the falling edge (“↓”) of BICKA and the SDTIA is latched on the rising edge (“↑”). MSBSA bit can shift the MSB position of SDTOA and SDTIA by half period of BICKA. When BCKPB bit = “0”, the SDTOB is clocked out on the rising edge (“↑”) of BICKB and the SDTIB is latched on the falling edge (“↓”). When BCKPB bit = “1”, the SDTOB is clocked out on the falling edge (“↓”) of BICKB and the SDTIB is latched on the rising edge (“↑”). MSBSB bit can shift the MSB position of SDTOB and SDTIB by half period of BICKB. MS0666-E-02 2010/06 - 103 - [AK4671] MSBSA BCKPA 0 0 0 1 1 0 1 1 MSBSB BCKPB 0 0 0 1 1 0 1 1 MSBSA BCKPA 0 0 0 1 1 0 1 1 MSBSB BCKPB 0 0 0 1 1 0 1 1 Data Interface Format MSB of SDTOA is output by next rising edge (“↑”) of the falling edge (“↓”) of BICKA after the rising edge (“↑”) of SYNCA. MSB of SDTIA is latched by the falling edge (“↓”) of the BICKA just after the output timing of SDTOA’s MSB. MSB of SDTOA is output by next falling edge (“↓”) of the rising edge (“↑”) of BICKA after the rising edge (“↑”) of SYNCA. MSB of SDTIA is latched by the rising edge (“↑”) of the BICKA just after the output timing of SDTOA’s MSB. MSB of SDTOA is output by the 2nd rising edge (“↑”) of BICKA after the rising edge (“↑”) of SYNCA. MSB of SDTIA is latched by the falling edge (“↓”) of the BICKA just after the output timing of SDTOA’s MSB. MSB of SDTOA is output by the 2nd falling edge (“↓”) of BICKA after the rising edge (“↑”) of SYNCA. MSB of SDTIA is latched by the rising edge (“↑”) of the BICKA just after the output timing of SDTOA’s MSB. Table 86. PCM I/F A Format in Mode 0 Data Interface Format MSB of SDTOB is output by next rising edge (“↑”) of the falling edge (“↓”) of BICKB after the rising edge (“↑”) of SYNCB. MSB of SDTIB is latched by the falling edge (“↓”) of the BICKB just after the output timing of SDTOB’s MSB. MSB of SDTOB is output by next falling edge (“↓”) of the rising edge (“↑”) of BICKB after the rising edge (“↑”) of SYNCB. MSB of SDTIB is latched by the rising edge (“↑”) of the BICKB just after the output timing of SDTOB’s MSB. MSB of SDTOB is output by the 2nd rising edge (“↑”) of BICKB after the rising edge (“↑”) of SYNCB. MSB of SDTIB is latched by the falling edge (“↓”) of the BICKB just after the output timing of SDTOB’s MSB. MSB of SDTOB is output by the 2nd falling edge (“↓”) of BICKB after the rising edge (“↑”) of SYNCB. MSB of SDTIB is latched by the rising edge (“↑”) of the BICKB just after the output timing of SDTOB’s MSB. Table 87. PCM I/F B Format in Mode 0 Data Interface Format MSB of SDTOA is output by the rising edge (“↑”) of SYNCA. MSB of SDTIA is latched by the falling edge (“↓”) of the BICKA just after the output timing of SDTOA’s MSB. MSB of SDTOA is output by the rising edge (“↑”) of SYNCA. MSB of SDTIA is latched by the rising edge (“↑”) of the BICKA just after the output timing of SDTOA’s MSB. MSB of SDTOA is output by the rising edge (“↑”) of the first BICKA after the rising edge (“↑”) of SYNCA. MSB of SDTIA is latched by the falling edge (“↓”) of the BICKA just after the output timing of SDTOA’s MSB. MSB of SDTOA is output by the falling edge (“↓”) of the first BICKA after the rising edge (“↑”) of SYNCA. MSB of SDTIA is latched by the rising edge (“↑”) of the BICKA just after the output timing of SDTOA’s MSB. Table 88. PCM I/F A Format in Mode 1 Data Interface Format MSB of SDTOB is output by the rising edge (“↑”) of SYNCB. MSB of SDTIB is latched by the falling edge (“↓”) of the BICKB just after the output timing of SDTOB’s MSB. MSB of SDTOB is output by the rising edge (“↑”) of SYNCB. MSB of SDTIB is latched by the rising edge (“↑”) of the BICKB just after the output timing of SDTOB’s MSB. MSB of SDTOB is output by the rising edge (“↑”) of the first BICKB after the rising edge (“↑”) of SYNCB. MSB of SDTIB is latched by the falling edge (“↓”) of the BICKB just after the output timing of SDTOB’s MSB. MSB of SDTOB is output by the falling edge (“↓”) of the first BICKB after the rising edge (“↑”) of SYNCB. MSB of SDTIB is latched by the rising edge (“↑”) of the BICKB just after the output timing of SDTOB’s MSB. Table 89. PCM I/F B Format in Mode 1 MS0666-E-02 Figure Figure 84 Figure 85 Figure 86 Figure 87 Figure Figure 84 Figure 85 Figure 86 Figure 87 Figure Figure 88 Figure 89 Figure 90 Figure 91 Figure Figure 88 Figure 89 Figure 90 Figure 91 2010/06 - 104 - [AK4671] 1/fs2 SYNCA BICKA (16bit Linear) SDTOA SDTIA Don’t Care (8bit A-Law/μ-Law) SDTOA SDTIA Don’t Care D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care Don’t Care D7 D6 Don’t Care D7 D6 Figure 84. Timing of Short Frame Sync (MSBSA bit = “0”, BCKPA bit = “0”) 1/fs2 SYNCA BICKA (16bit Linear) SDTOA SDTIA D on’t Care (8bit A-Law/μ-Law) SDTOA SDTIA Don’t Care D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D on’t Care D7 D6 D7 D6 Figure 85. Timing of Short Frame Sync (MSBSA bit = “0”, BCKPA bit = “1”) 1/fs2 SYNCA BICKA (16bit Linear) SDTOA SDTIA D on’t Care (8bit A-Law/μ-Law) SDTOA SDTIA Don’t Care D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D on’t Care D7 D6 D7 D6 Figure 86. Timing of Short Frame Sync (MSBSA bit = “1”, BCKPA bit = “0”) MS0666-E-02 2010/06 - 105 - [AK4671] 1/fs2 SYNCA BICKA (16bit Linear) SDTOA SDTIA D on’t Care (8bit A-Law/μ-Law) SDTOA SDTIA D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care Don’t Care D on’t Care Don’t Care D7 D6 D7 D6 Figure 87. Timing of Short Frame Sync (MSBSA bit = “1”, BCKPA bit = “1”) 1/fs2 SYNCA BICKA (16bit Linear) D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 Don’t Care D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 SDTOA SDTIA (8bit A-Law/μ-Law) SDTOA SDTIA Don’t Care D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D7 D6 D5 D7 D6 D5 Figure 88. Timing of Long Frame Sync (MSBSA bit = “0”, BCKPA bit = “0”) 1/fs2 SYNCA BICKA (16bit Linear) D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 Don’t Care D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 SDTOA SDTIA (8bit A-Law/μ-Law) SDTOA SDTIA Don’t Care D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D7 D6 D5 D7 D6 D5 Figure 89. Timing of Long Frame Sync (MSBSA bit = “0”, BCKPA bit = “1”) MS0666-E-02 2010/06 - 106 - [AK4671] 1/fs2 SYNCA BICKA (16bit Linear) D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 Don’t Care D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 SDTOA SDTIA (8bit A-Law/μ-Law) SDTOA SDTIA Don’t Care D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D7 D6 D5 Don’t Care D7 D6 D5 Figure 90. Timing of Long Frame Sync (MSBSA bit = “1”, BCKPA bit = “0”) 1/fs2 SYNCA (Slave) BICKA (16bit Linear) D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 Don’t Care D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 SDTOA SDTIA (8bit A-Law/μ-Law) SDTOA SDTIA Don’t Care D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D7 D6 D5 Don’t Care D7 D6 D5 Figure 91. Timing of Long Frame Sync (MSBSA bit = “1”, BCKPA bit = “1”) MS0666-E-02 2010/06 - 107 - [AK4671] SYNCA BICKA (32fs2) SDTOA(o) SDTIA(i) BICKA (64fs2) 0 1 2 3 9 10 11 12 13 14 15 0 1 2 3 15 14 13 7 6 5 4 3 2 1 0 15 14 13 7 6 5 4 3 2 1 0 0 1 2 3 15 16 17 18 SDTOA(o) 15 14 13 1 0 SDTIA(i) 15 14 13 1 0 9 10 11 12 13 14 15 0 1 15 Don't Care 31 0 1 2 3 Don't Care 15 16 17 18 15 31 0 1 15 Don't Care Don't Care 15 15:MSB, 0:LSB Figure 92. Timing of MSB justified SYNCA BICKA (32fs2) 0 1 2 3 9 10 11 12 13 14 15 0 1 2 3 SDTOA(o) 15 14 8 7 6 5 4 3 2 1 0 SDTIA(i) 15 14 8 7 6 5 4 3 2 1 0 BICKA (64fs2) 0 1 2 3 15 16 17 18 SDTOA(o) 15 14 2 1 0 SDTIA(i) 15 14 2 1 0 31 0 1 2 3 Don't Care 9 10 11 12 13 14 15 0 1 Don't Care 15 16 17 18 31 0 1 Don't Care 15:MSB, 0:LSB Figure 93. Timing of I2S MS0666-E-02 2010/06 - 108 - [AK4671] ■ Phone Path MIC-Amp & ALC A/D HPF MIC HPF LPF Stereo Separation 5-band Notch ALC MIX SDTO Lch SDTO Rch Audio I/F SVOLA D/A M DATT 5-band I SMUTE EQ X S E L CPU SDTI Lch SDTI Rch Receiver Headphone Speaker SRC-A PCM I/F A SVOLB SRC-B TX SDTOA RX SDTIA DATT-B DATT-C BIVOL SDTOB SDTIB Baseband PCM I/F B B/T Phone Call TX Phone Call TX Recording Phone Call Side Tone Phone Call RX Phone Call RX Recording Figure 94. Internal MIC/SPK or External MIC/HP Phone Call & Recoring MS0666-E-02 2010/06 - 109 - [AK4671] MIC-Amp & ALC A/D HPF MIC HPF LPF Stereo Separation 5-band Notch ALC MIX SDTO Lch SDTO Rch Audio I/F SVOLA D/A M DATT 5-band I SMUTE EQ X S E L CPU SDTI Lch SDTI Rch Receiver Headphone Speaker SRC-A PCM I/F A SVOLB SRC-B TX SDTOA RX SDTIA DATT-B DATT-C BIVOL SDTOB SDTIB Baseband PCM I/F B B/T Phone Call TX Phone Call TX Recording Phone Call Side Tone Phone Call RX Phone Call RX Recording Figure 95. B/T Headset Phone Call & Recording MS0666-E-02 2010/06 - 110 - [AK4671] ■ General Purpose Output AK4671 supports General Purpose Output Pin (GPO) to control the external component. In the case of GPOM1 bit = “0”, GPO1 pin goes to “H” at GPOE1 bit = “1”. GPOE1 bit GPO1 pin 0 L (default) 1 H Table 90. General Purpose Output 1 Pin Control (at GPOM1 bit = “0”) In the case of GPOM1 bit = “1”, GPO1 pin goes to “H” if the input level of the channel selected by A0 bit (SAIN1 or SAIN2 pin) is higher than the reference voltage that is input to the SAIN3 pin. In the case of GPOM1 bit = “1”, the reference voltage input to SAIN3 pin should be lower than 0.5 x SAVDD. SAIN1/2 pin GPO1 pin < SAIN3 pin L (default) H ≥ SAIN3 pin Table 91. General Purpose Output 1 Pin Control (at GPOM1 bit = “1”) In the case of GPOM2 bit = “0”, GPO2 pin goes to “H” at GPOE2 bit = “0”. GPOE2 bit GPO2 pin 0 L (default) 1 H Table 92. General Purpose Output 2 Pin Control (at GPOM2 bit = “0”) In the case of GPOM2 bit = “1”, GPO2 pin outputs the mic detection result. (Table 21) Input Level of MDT pin ≥ 0.075 x AVDD < 0.050 x AVDD GPO2 pin DTMIC bit H 1 L 0 Table 21. Microphone Detection Result MS0666-E-02 Result Mic (Headset) No Mic (Headphone) 2010/06 - 111 - [AK4671] ■ SAR 10bit ADC The AK4671 incorporates a 10-bit successive approximation resistor A/D converter for DC measurement. The A/D converter output is a straight binary format as shown in Table 93: Input Voltage (AVDD−1.5LSB) ~ AVDD (AVDD−2.5LSB) ~ (AVDD−1.5LSB) : 0.5LSB ~ 1.5LSB 0 ~ 0.5LSB Table 93. Output Code Output Code 3FFH 3FEH : 001H 000H When PMSAD bit is set to “1”, 10bit ADC is powered-up. When the control register is read, A/D conversion is executed and data is output. In case of 4-wire serial control mode, 10bit A/D data is output from 9th to 18th CCLK clock when 4th bit is set to “1” just after R/W bit. 10bit ADC supports 3 kinds of analog input. A1-0 bits select the measurement modes. Mode 0 1 2 3 A1 A0 Input Channel 0 0 SAIN1 (default) 0 1 SAIN2 1 0 SAIN3 1 1 N/A Table 94. SAR ADC Measurement Mode (N/A: Not available) MS0666-E-02 2010/06 - 112 - [AK4671] <SAR ADC Execute Sequence (in case that the interrupt function is not used.)> [4-wire Serial Mode] (1) Select the measurement mode by A1-0 bits and set PMSAD bit = “1” to power-up SAR ADC. (2) Input “1” at the 4th bit just after R/W bit so that A/D conversion is executed and 10bit A/D data is output from 9th to 18th CCLK clock. [I2C Mode] (1) Select the measurement mode by A1-0 bits and set PMSAD bit = “1” to power-up SAR ADC. (2) Read Addr=5BH so that A/D conversion is executed and MSB 8bit data is output. (3) Continuously read Addr=5CH then LSB 2bit data is output. <SAR ADC Execute Sequence (in case that the interrupt function is used.)> [4-wire Serial Mode] (1) GPOM1 bit should be set to “1”. The GPO1 pin can be used as the interrupt output pin. (2) Select the measurement mode by A0 bit. (3) The GPO1 pin goes to “H” when the input DC voltage of SAIN1 or SAIN2 pin (selected by A0 bit) is higher than the input voltage of SAIN3 pin. (4) After CPU detects GPO1 pin = “H”, set GPOM1 bit = “0” and PMSAD bit = “1” to power-up SAR ADC. (5) Input “1” at the 4th bit just after R/W bit so that A/D conversion is executed and 10bit A/D data is output from 9th to 18th CCLK clock. [I2C Mode] (1) GPOM1 bit should be set to “1”. The GPO1 pin can be used as the interrupt output pin. (2) Select the measurement mode by A0 bit. (3) The GPO1 pin goes to “H” when the input DC voltage of SAIN1 or SAIN2 pin (selected by A0 bit) is higher than the input voltage of SAIN3 pin. (4) After CPU detects GPO1 pin = “H”, set GPOM1 bit = “0” and PMSAD bit = “1” to power-up SAR ADC. (5) Read Addr=5BH so that A/D conversion is executed and MSB 8bit data is output. (6) Continuously read Addr=5CH then LSB 2bit data is output. MS0666-E-02 2010/06 - 113 - [AK4671] ■ Serial Control Interface (1) 4-wire Serial Control Mode (I2C pin = “L”) Internal registers may be written by using the 4-wire µP interface pins (CSN, CCLK, CDTI and CDTO). In case except for 10bit SAR ADC data read, the data on this interface consists of a 3-bit Chip address (fixed to “100”), Read/Write (1bit), Register address (MSB first, 7bits) and Control data (MSB first, 8bits). In case of 10bit SAR ADC data read, the data on this interface consists of a 3-bit Chip address (fixed to “101”), Read/Write (1bit: fixed to “0”) and SAR ADC Data (MSB first, 10bits). Address and data is clocked in on the rising edge of CCLK and data is clocked out on the falling edge. Address and data are latched on the 24th CCLK rising edge (“↑”) after CSN falling edge (“↓”) for write operations and CDTO bit goes to Hi-Z after CSN rising edge (“↑”). CSN should be set to “H” once after 24th CCLK for each address. The clock speed of CCLK is 5MHz (max). The value of internal registers is initialized at PDN pin = “L”. CSN 0 CCLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Clock, "H" or "L" Clock, "H" or "L" "H" or "L" CDTI "H" or "L" C2 C1 R/W C0 WRITE 0 0 0 0 0 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 A6 A5 A4 A3 A2 A1 A0 D7 D6 D4 D3 D2 D1 D0 Hi-Z CDTO "H" or "L" READ (except for 10bit SAR ADC Data) CDTI "H" or "L" C2 C1 R/W C0 Hi-Z CDTO D7 D6 D5 D5 D4 D3 D2 D1 D0 Hi-Z C2-C0: Chip Address (Fixed to “100”) R/W: READ/WRITE (0: READ, 1: WRITE) A6-A0: Register Address D7-D0: Control Data Figure 96. Serial Control I/F Timing (Except for 10bit SAR ADC Data) CSN 0 CCLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 CDTI CDTO 18 19 20 21 22 23 Clock, "H" or "L" "H" or "L" "H" or "L" READ (10bit SAR ADC Data) 17 Clock, "H" or "L" C2 C1 R/W C0 Hi-Z 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 Hi-Z C2-C0: Chip Address (Fixed to “101”) R/W: READ/WRITE (Fixed to “0”: READ Only) D9-D0: SAR ADC Data Figure 97. Serial Control I/F Timing (10bit SAR ADC Data) MS0666-E-02 2010/06 - 114 - [AK4671] (2) I2C-bus Control Mode (I2C pin = “H”) The AK4671 supports the fast-mode I2C-bus (max: 400kHz). Pull-up resistors at SDA and SCL pins should be connected to (DVDD+0.3)V or less voltage. (2)-1. WRITE Operations Figure 98 shows the data transfer sequence for the I2C-bus mode. All commands are preceded by a START condition. A HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START condition (Figure 105). After the START condition, a slave address is sent. This address is 7 bits long followed by the eighth bit that is a data direction bit (R/W). The most significant six bits of the slave address are fixed as “001001”. The next bit is CAD0 (device address bit). This bit identifies the specific device on the bus. The hard-wired input pin (CAD0 pin) sets these device address bits (Figure 99). If the slave address matches that of the AK4671, the AK4671 generates an acknowledge and the operation is executed. The master must generate the acknowledge-related clock pulse and release the SDA line (HIGH) during the acknowledge clock pulse (Figure 106). A R/W bit value of “1” indicates that the read operation is to be executed. A “0” indicates that the write operation is to be executed. The second byte consists of the control register address of the AK4671. The format is MSB first, and the most significant 1-bit is fixed to “0” (Figure 100). The data after the second byte contains control data. The format is MSB first, 8bits (Figure 101). The AK4671 generates an acknowledge after each byte is received. A data transfer is always terminated by a STOP condition generated by the master. A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition (Figure 105). The AK4671 can perform more than one byte write operation per sequence. After receipt of the third byte the AK4671 generates an acknowledge and awaits the next data. The master can transmit more than one byte instead of terminating the write cycle after the first data byte is transferred. After receiving each data packet the internal 6-bit address counter is incremented by one, and the next data is automatically taken into the next address. If the address exceeds 5AH prior to generating a stop condition, the address counter will “roll over” to 00H and the previous data will be overwritten. The data on the SDA line must remain stable during the HIGH period of the clock. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW (Figure 107) except for the START and STOP conditions. S T A R T SDA S T O P R/W="0" Slave S Address Sub Address(n) A C K Data(n) A C K Data(n+1) A C K Data(n+x) A C K A C K P A C K Figure 98. Data Transfer Sequence at the I2C-Bus Mode 0 0 1 0 0 1 CAD0 R/W A1 A0 D1 D0 (The CAD0 should match with CAD0 pin.) Figure 99. The First Byte 0 A6 A5 A4 A3 A2 Figure 100. The Second Byte D7 D6 D5 D4 D3 D2 Figure 101. Byte Structure after the second byte MS0666-E-02 2010/06 - 115 - [AK4671] (2)-2. READ Operations Set the R/W bit = “1” for the READ operation of the AK4671. After transmission of data, the master can read the next address’s data by generating an acknowledge instead of terminating the write cycle after the receipt of the first data word. After receiving each data packet the internal 7-bit address counter is incremented by one, and the next data is automatically taken into the next address. If the address exceeds 5AH prior to generating a stop condition, the address counter will “roll over” to 00H and the data of 00H will be read out. The AK4671 supports two basic read operations: CURRENT ADDRESS READ and RANDOM ADDRESS READ. (2)-2-1. CURRENT ADDRESS READ (except for 10bit SAR ADC Data) The AK4671 contains an internal address counter that maintains the address of the last word accessed, incremented by one. Therefore, if the last access (either a read or write) were to address n, the next CURRENT READ operation would access data from the address n+1. After receipt of the slave address with R/W bit set to “1”, the AK4671 generates an acknowledge, transmits 1-byte of data to the address set by the internal address counter and increments the internal address counter by 1. If the master does not generate an acknowledge but instead generates a stop condition, the AK4671 ceases transmission. S T A R T SDA S T O P R/W="1" Slave S Address Data(n) Data(n+1) Data(n+2) MA AC SK T E R A C K MA AC SK T E R Data(n+x) MA AC SK T E R P MA AC SK T E R MN AA SC T EK R Figure 102. CURRENT ADDRESS READ (2)-2-2. RANDOM ADDRESS READ The random read operation allows the master to access any memory location at random. Prior to issuing the slave address with the R/W bit “1”, the master must first perform a “dummy” write operation. The master issues a start request, a slave address (R/W bit = “0”) and then the register address to read. After the register address is acknowledged, the master immediately reissues the start request and the slave address with the R/W bit “1”. The AK4671 then generates an acknowledge, 1 byte of data and increments the internal address counter by 1. If the master does not generate an acknowledge but instead generates a stop condition, the AK4671 ceases transmission. S T A R T SDA S T A R T R/W="0" Slave S Address Slave S Address Sub Address(n) A C K S T O P R/W="1" Data(n) A C K Data(n+1) Data(n+x) MA AC S T K E R MA AC S K T E R A C K MA AC S T K E R P MN A A S T C E K R Figure 103. RANDOM ADDRESS READ (Except for 10bit SAR ADC Data) When SAR ADC data is read, 5BH should be set as register address and 2 byte data should be read by RANDOM ADDRESS READ, then stop condition should be input. A/D readout format is MSB first, 2 byte width. Upper 10bits are valid on 2byte (16-bit), and lower 6bits are filled with zero. S T A R T SDA S T A R T R/W="0" Slave S Address Slave S Address Sub Address(5BH) A C K S T O P R/W="1" A C K Data(D9-2) A C K Data(D1-0) MA AC SK T E R P MN AA SC T EK R Figure 104. RANDOM ADDRESS READ (10bit SAR ADC Data) MS0666-E-02 2010/06 - 116 - [AK4671] SDA SCL S P start condition stop condition Figure 105. START and STOP Conditions DATA OUTPUT BY TRANSMITTER not acknowledge DATA OUTPUT BY RECEIVER acknowledge SCL FROM MASTER 2 1 8 9 S clock pulse for acknowledgement START CONDITION Figure 106. Acknowledge on the I2C-Bus SDA SCL data line stable; data valid change of data allowed Figure 107. Bit Transfer on the I2C-Bus MS0666-E-02 2010/06 - 117 - [AK4671] ■ Register Map Addr 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH Register Name AD/DA Power Management PLL Mode Select 0 PLL Mode Select 1 Format Select MIC Signal Select MIC Amp Gain Mixing Power Management 0 Mixing Power Management Output Volume Control LOUT1 Signal Select ROUT1 Signal Select LOUT2 Signal Select ROUT2 Signal Select LOUT3 Signal Select ROUT3 Signal Select LOUT1 Power Management LOUT2 Power Management LOUT3 Power Management Lch Input Volume Control Rch Input Volume Control ALC Reference Select Digital Mixing Control ALC Timer Select ALC Mode Control Mode Control 1 Mode Control 2 Lch Output Volume Control Rch Output Volume Control Side Tone A Control Digital Filter Select FIL3 Co-efficient 0 FIL3 Co-efficient 1 FIL3 Co-efficient 2 FIL3 Co-efficient 3 EQ Co-efficient 0 EQ Co-efficient 1 EQ Co-efficient 2 EQ Co-efficient 3 EQ Co-efficient 4 EQ Co-efficient 5 FIL1 Co-efficient 0 FIL1 Co-efficient 1 FIL1 Co-efficient 2 FIL1 Co-efficient 3 FIL2 Co-efficient 0 FIL2 Co-efficient 1 FIL2 Co-efficient 2 FIL2 Co-efficient 3 D7 PMDAR FS3 BTCLK 0 MDIF4 D6 PMDAL FS2 LP 0 MDIF3 D5 PMADR FS1 BCKO 0 MDIF2 D4 PMADL FS0 PS1 SDOD MDIF1 MGNR3 MGNR2 MGNR1 MGNR0 MGNL3 MGNL2 MGNL1 MGNL0 0 0 0 0 0 DTMIC PMLOOPR PMLOOPL PMAINR4 PMAINL4 PMAINR3 PMAINL3 PMAINR2 PMAINL2 PMAINR1 PMAINL1 HPG3 L1G1 L2G1 L3G1 L4G1 LPG1 0 0 0 L3VL1 IVL7 IVR7 REF7 HPG2 L1G0 L2G0 L3G0 L4G0 LPG0 0 0 HPG1 LOOPL LOOPR HPG0 LINL4 RINR4 LINH4 RINH4 LINS4 RINS4 LOOPM IVL4 IVR4 REF4 0 LINL3 RINR3 LINH3 RINH3 LINS3 RINS3 LOM LOM2 LOM3 IVL3 IVR3 REF3 L1VL2 LINL2 RINR2 LINH2 RINH2 LINS2 RINS2 LOPS1 MUTEN LOPS3 IVL2 IVR2 REF2 L1VL1 LINL1 RINR1 LINH1 RINH1 LINS1 RINS1 PMRO1 PMRO2 PMRO3 IVL1 IVR1 REF1 L1VL0 DACL DACR DACHL DACHR DACSL DACSR PMLO1 PMLO2 PMLO3 IVL0 IVR0 REF0 LOOPHL LOOPHR LOOPSL LOOPSR RCV D2 PMMICL PLL3 PS0 MSBS INR1 PLL2 MCKO BCKP INR0 D1 PMMP PLL1 M/S DIF1 INL1 D0 PMVCM PLL0 PMPLL DIF0 INL0 PMRO2S PMLO2S L3VL0 IVL6 IVR6 REF6 LODIF IVL5 IVR5 REF5 SRMXR1 SRMXR0 SRMXL1 SRMXL0 PFMXR1 PFMXR0 PFMXL1 PFMXL0 0 0 DAM SRA1 OVL7 OVR7 0 GN1 F3A7 F3AS F3B7 0 E0A7 E0A15 E0B7 0 E0C7 E0C15 F1A7 F1AS F1B7 0 F2A7 0 F2B7 0 RFST1 ZELMN MIXD SRA0 OVL6 OVR6 0 GN0 F3A6 0 F3B6 0 E0A6 E0A14 E0B6 0 E0C6 E0C14 F1A6 0 F1B6 0 F2A6 0 F2B6 0 RFST0 LMAT1 SDIM1 BIV2 OVL5 OVR5 SVAR2 LPF F3A5 F3A13 F3B5 F3B13 E0A5 E0A13 E0B5 E0B13 E0C5 E0C13 F1A5 F1A13 F1B5 F1B13 F2A5 F2A13 F2B5 F2B13 WTM2 LMAT0 SDIM0 BIV1 OVL4 OVR4 SVAR1 HPF F3A4 F3A12 F3B4 F3B12 E0A4 E0A12 E0B4 E0B12 E0C4 E0C12 F1A4 F1A12 F1B4 F1B12 F2A4 F2A12 F2B4 F2B12 WTM1 RGAIN1 EQ BIV0 OVL3 OVR3 SVAR0 EQ0 F3A3 F3A11 F3B3 F3B11 E0A3 E0A11 E0B3 E0B11 E0C3 E0C11 F1A3 F1A11 F1B3 F1B11 F2A3 F2A11 F2B3 F2B11 WTM0 RGAIN0 ADM SMUTE OVL2 OVR2 SVAL2 FIL3 F3A2 F3A10 F3B2 F3B10 E0A2 E0A10 E0B2 E0B10 E0C2 E0C10 F1A2 F1A10 F1B2 F1B10 F2A2 F2A10 F2B2 F2B10 ZTM1 LMTH1 IVOLC OVTM OVL1 OVR1 SVAL1 0 F3A1 F3A9 F3B1 F3B9 E0A1 E0A9 E0B1 E0B9 E0C1 E0C9 F1A1 F1A9 F1B1 F1B9 F2A1 F2A9 F2B1 F2B9 ZTM0 LMTH0 ALC OVOLC OVL0 OVR0 SVAL0 PFSEL F3A0 F3A8 F3B0 F3B8 E0A0 E0A8 E0B0 E0B8 E0C0 E0C8 F1A0 F1A8 F1B0 F1B8 F2A0 F2A8 F2B0 F2B8 MS0666-E-02 LOOPM2 LOOPM3 D3 PMMICR 2010/06 - 118 - [AK4671] Addr 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH 40H 41H 42H 43H 44H 45H 46H 47H 48H 49H 4AH 4BH 4CH 4DH 4EH 4FH 50H 51H 52H 53H 54H 55H 56H 57H 58H 59H 5AH Register Name Digital Filter Select 2 Reserved E1 Co-efficient 0 E1 Co-efficient 1 E1 Co-efficient 2 E1 Co-efficient 3 E1 Co-efficient 4 E1 Co-efficient 5 E2 Co-efficient 0 E2 Co-efficient 1 E2 Co-efficient 2 E2 Co-efficient 3 E2 Co-efficient 4 E2 Co-efficient 5 E3 Co-efficient 0 E3 Co-efficient 1 E3 Co-efficient 2 E3 Co-efficient 3 E3 Co-efficient 4 E3 Co-efficient 5 E4 Co-efficient 0 E4 Co-efficient 1 E4 Co-efficient 2 E4 Co-efficient 3 E4 Co-efficient 4 E4 Co-efficient 5 E5 Co-efficient 0 E5 Co-efficient 1 E5 Co-efficient 2 E5 Co-efficient 3 E5 Co-efficient 4 E5 Co-efficient 5 EQ Control 250Hz/100Hz EQ Control 3.5kHz/1kHz EQ Control 10kHz PCM I/F Control 0 PCM I/F Control 1 PCM I/F Control 2 Digital Volume B Control Digital Volume C Control Side Tone Volume Control Digital Mixing Control SAR ADC Control D7 0 0 E1A7 E1A15 E1B7 E1B15 E1C7 E1C15 E2A7 E2A15 E2B7 E2B15 E2C7 E2C15 E3A7 E3A15 E3B7 E3B15 E3C7 E3C15 E4A7 E4A15 E4B7 E4B15 E4C7 E4C15 E5A7 E5A15 E5B7 E5B15 E5C7 E5C15 EQB3 EQD3 0 GPOM2 SDOAD SDOBD BVL7 CVL7 0 SDOR1 0 D6 0 0 E1A6 E1A14 E1B6 E1B14 E1C6 E1C14 E2A6 E2A14 E2B6 E2B14 E2C6 E2C14 E3A6 E3A14 E3B6 E3B14 E3C6 E3C14 E4A6 E4A14 E4B6 E4B14 E4C6 E4C14 E5A6 E5A14 E5B6 E5B14 E5C6 E5C14 EQB2 EQD2 0 GPOE2 BCKO2 PLLBT3 BVL6 CVL6 0 SDOR0 0 D5 0 0 E1A5 E1A13 E1B5 E1B13 E1C5 E1C13 E2A5 E2A13 E2B5 E2B13 E2C5 E2C13 E3A5 E3A13 E3B5 E3B13 E3C5 E3C13 E4A5 E4A13 E4B5 E4B13 E4C5 E4C13 E5A5 E5A13 E5B5 E5B13 E5C5 E5C13 EQB1 EQD1 0 PLLBT2 MSBSA MSBSB BVL5 CVL5 0 SDOL1 0 D4 EQ5 0 E1A4 E1A12 E1B4 E1B12 E1C4 E1C12 E2A4 E2A12 E2B4 E2B12 E2C4 E2C12 E3A4 E3A12 E3B4 E3B12 E3C4 E3C12 E4A4 E4A12 E4B4 E4B12 E4C4 E4C12 E5A4 E5A12 E5B4 E5B12 E5C4 E5C12 EQB0 EQD0 0 PLLBT1 BCKPA BCKPB BVL4 CVL4 0 SDOL0 GPOM1 D3 EQ4 0 E1A3 E1A11 E1B3 E1B11 E1C3 E1C11 E2A3 E2A11 E2B3 E2B11 E2C3 E2C11 E3A3 E3A11 E3B3 E3B11 E3C3 E3C11 E4A3 E4A11 E4B3 E4B11 E4C3 E4C11 E5A3 E5A11 E5B3 E5B11 E5C3 E5C11 EQA3 EQC3 EQE3 PLLBT0 LAWA1 LAWB1 BVL3 CVL3 SDOA BVMX1 GPOE1 D2 EQ3 0 E1A2 E1A10 E1B2 E1B10 E1C2 E1C10 E2A2 E2A10 E2B2 E2B10 E2C2 E2C10 E3A2 E3A10 E3B2 E3B10 E3C2 E3C10 E4A2 E4A10 E4B2 E4B10 E4C2 E4C10 E5A2 E5A10 E5B2 E5B10 E5C2 E5C10 EQA2 EQC2 EQE2 PMPCM LAWA0 LAWB0 BVL2 CVL2 SVB2 BVMX0 A1 D1 EQ2 0 E1A1 E1A9 E1B1 E1B9 E1C1 E1C9 E2A1 E2A9 E2B1 E2B9 E2C1 E2C9 E3A1 E3A9 E3B1 E3B9 E3C1 E3C9 E4A1 E4A9 E4B1 E4B9 E4C1 E4C9 E5A1 E5A9 E5B1 E5B9 E5C1 E5C9 EQA1 EQC1 EQE1 PMSRB FMTA1 FMTB1 BVL1 CVL1 SVB1 SBMX1 A0 D0 EQ1 0 E1A0 E1A8 E1B0 E1B8 E1C0 E1C8 E2A0 E2A8 E2B0 E2B8 E2C0 E2C8 E3A0 E3A8 E3B0 E3B8 E3C0 E3C8 E4A0 E4A8 E4B0 E4B8 E4C0 E4C8 E5A0 E5A8 E5B0 E5B8 E5C0 E5C8 EQA0 EQC0 EQE0 PMSRA FMTA0 FMTB0 BVL0 CVL0 SVB0 SBMX0 PMSAD Note 67. PDN pin = “L” resets the registers to their default values. Note 68. The bits defined as 0 must contain a “0” value. Note 69. Addresses 1EH to 2FH and 32H to 4FH cannot be read. MS0666-E-02 2010/06 - 119 - [AK4671] ■ Register Definitions Addr 00H Register Name AD/DA Power Management R/W (default) D7 PMDAR R/W 0 D6 PMDAL R/W 0 D5 PMADR R/W 0 D4 PMADL R/W 0 D3 D2 PMMICR PMMICL R/W 0 R/W 0 D1 PMMP R/W 0 D0 PMVCM R/W 0 PMVCM: VCOM Power Management 0: Power down (default) 1: Power up When any blocks are powered-up, the PMVCM bit must be set to “1”. PMVCM bit can be set to “0” only when all power management bits are “0”. PMMP: MPWR pin Power Management 0: Power down: Hi-Z (default) 1: Power up PMMICL: MIC-Amp Lch Power Management 0: Power down (default) 1: Power up PMMICR: MIC-Amp Rch Power Management 0: Power down (default) 1: Power up PMADL: ADC Lch Power Management 0: Power down (default) 1: Power up When the PMADL or PMADR bit is changed from “0” to “1”, the initialization cycle (1059/fs=24ms @44.1kHz) starts. After initializing, digital data of the ADC is output. PMADR: ADC Rch Power Management 0: Power down (default) 1: Power up PMDAL: DAC Lch Power Management 0: Power down (default) 1: Power up PMDAR: DAC Rch Power Management 0: Power down (default) 1: Power up Each block can be powered-down respectively by writing “0” in each bit of this address. When the PDN pin is “L”, all blocks are powered-down regardless of setting of this address. In this case, register is initialized to the default value. When all power management bits are “0”, all blocks are powered-down. The register values remain unchanged. Power supply current is 20μA(typ) in this case. For fully shut down (typ. 1μA), PDN pin should be “L”. When neither ADC nor DAC are used, external clocks may not be present. When ADC or DAC is used, external clocks must always be present. MS0666-E-02 2010/06 - 120 - [AK4671] Addr 01H Register Name PLL Mode Select 0 R/W Default D7 FS3 R/W 1 D6 FS2 R/W 1 D5 FS1 R/W 1 D4 FS0 R/W 1 D3 PLL3 R/W 0 D2 PLL2 R/W 1 D1 PLL1 R/W 1 D0 PLL0 R/W 0 PLL3-0: PLL Reference Clock Select (Table 4) Default: “0110”(MCKI pin, 12MHz) FS3-0: Sampling Frequency Select (Table 5 and Table 6) and MCKI Frequency Select (Table 11) FS3-0 bits select sampling frequency at PLL mode and MCKI frequency at EXT mode. Addr 02H Register Name PLL Mode Select 1 R/W Default D7 BTCLK R/W 0 D6 LP R/W 0 D5 BCKO R/W 0 D4 PS1 R/W 0 D3 PS0 R/W 0 D2 MCKO R/W 0 D1 M/S R/W 0 D0 PMPLL R/W 0 PMPLL: PLL Power Management 0: EXT Mode and Power Down (default) 1: PLL Mode and Power up M/S: Master / Slave Mode Select 0: Slave Mode (default) 1: Master Mode MCKO: Master Clock Output Enable 0: Disable: MCKO pin = “L” (default) 1: Enable: Output frequency is selected by PS1-0 bits. PS1-0: MCKO Output Frequency Select (Table 9) default: “00”(256fs) BCKO: BICK Output Frequency Select at Master Mode (Table 10) LP: Low Power Mode 0: Normal Mode (default) 1: Low Power Mode: available at fs=22.05kHz or less. BTCLK: Clock Mode of Audio CODEC 0: Synchronized to Audio I/F (default) 1: Synchronized to PCM I/F BTCLK bit is enabled at only PMPLL bit = “0”. When BTCLK bit is “1”, Audio CODEC and the digital block (shown in Figure 57) operate by the clock generated by PLLBT. MS0666-E-02 2010/06 - 121 - [AK4671] Addr 03H Register Name Format Select R/W Default D7 0 RD 0 D6 0 RD 0 D5 0 RD 0 D4 SDOD R/W 0 D3 MSBS R/W 0 D2 BCKP R/W 0 D1 DIF1 R/W 1 D0 DIF0 R/W 0 DIF1-0: Audio Interface Format (Table 16) Default: “10” (Left jutified) BCKP: BICK Polarity at DSP Mode (Table 17) “0”: SDTO is output by the rising edge (“↑”) of BICK and SDTI is latched by the falling edge (“↓”). (default) “1”: SDTO is output by the falling edge (“↓”) of BICK and SDTI is latched by the rising edge (“↑”). MSBS: LRCK Phase at DSP Mode (Table 17) “0”: The rising edge (“↑”) of LRCK is half clock of BICK before the channel change. (default) “1”: The rising edge (“↑”) of LRCK is one clock of BICK before the channel change. SDOD: SDTO Disable (Table 47) “0”: Enable (default) “1”: Disable (“L”) Addr 04H Register Name MIC Signal Select R/W Default D7 MDIF4 R/W 0 D6 MDIF3 R/W 0 D5 MDIF2 R/W 0 D4 MDIF1 R/W 0 D3 INR1 R/W 0 D2 INR0 R/W 0 D1 INL1 R/W 0 D0 INL0 R/W 0 INL1-0: MIC-Amp Lch Input Source Select (Table 18) Default: “00” (LIN1) INR1-0: MIC-Amp Rch Input Source Select (Table 18) Default: “00” (RIN1) MDIF1: Line1 Input Type Select 0: Single-ended input (LIN1/RIN1 pins: default) 1: Full-differential input (IN1+/IN1− pins) MDIF2: Line2 Input Type Select 0: Single-ended input (LIN2/RIN2 pins: default) 1: Full-differential input (IN2+/IN2− pins) MDIF3: Line3 Input Type Select 0: Single-ended input (LIN3/RIN3 pins: default) 1: Full-differential input (IN3+/IN3− pins) MDIF4: Line4 Input Type Select 0: Single-ended input (LIN4/RIN4 pins: default) 1: Full-differential input (IN4+/IN4− pins) MS0666-E-02 2010/06 - 122 - [AK4671] Addr 05H Register Name MIC Amp Gain R/W Default D7 D6 D5 D4 D3 D2 D1 D0 MGNR3 MGNR2 MGNR1 MGNR0 MGNL3 MGNL2 MGNL1 MGNL0 R/W 0 R/W 1 R/W 0 R/W 1 R/W 0 R/W 1 R/W 0 R/W 1 D5 0 RD 0 D4 0 RD 0 D3 0 RD 0 D2 DTMIC RD 0 MGNL3-0: MIC-Amp Lch Gain Control (Table 19) Default: “0101” (0dB) MGNR3-0: MIC-Amp Rch Gain Control (Table 19) Default: “0101” (0dB) Addr 06H Register Name Mixing Power Management 0 R/W Default D7 0 RD 0 D6 0 RD 0 D1 D0 PMLOOPR PMLOOPL R/W 0 R/W 0 PMLOOPL: MIC-Amp Lch Mixing Circuit Power Management 0: Power down (default) 1: Power up PMLOOPR: MIC-Amp Rch Mixing Circuit Power Management 0: Power down (default) 1: Power up DTMIC: Microphone Detection Result (Read Only: Table 21) 0: Microphone is not detected. (default) 1: Microphone is detected. MS0666-E-02 2010/06 - 123 - [AK4671] Addr 07H Register Name Mixing Power Management 1 R/W Default D7 D6 D5 D4 D3 D2 D1 D0 PMAINR4 PMAINL4 PMAINR3 PMAINL3 PMAINR2 PMAINL2 PMAINR1 PMAINL1 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 D5 HPG1 R/W 1 D4 HPG0 R/W 1 D3 0 RD 0 PMAINL1: LIN1 Mixing Circuit Power Management 0: Power down (default) 1: Power up PMAINR1: RIN1 Mixing Circuit Power Management 0: Power down (default) 1: Power up PMAINL2: LIN2 Mixing Circuit Power Management 0: Power down (default) 1: Power up PMAINR2: RIN2 Mixing Circuit Power Management 0: Power down (default) 1: Power up PMAINL3: LIN3 Mixing Circuit Power Management 0: Power down (default) 1: Power up PMAINR3: RIN3 Mixing Circuit Power Management 0: Power down (default) 1: Power up PMAINL4: LIN4 Mixing Circuit Power Management 0: Power down (default) 1: Power up PMAINR4: RIN4 Mixing Circuit Power Management 0: Power down (default) 1: Power up Addr 08H Register Name Output Volume Control R/W Default D7 HPG3 R/W 1 D6 HPG2 R/W 0 D2 L1VL2 R/W 1 D1 L1VL1 R/W 0 D0 L1VL0 R/W 1 L1VL2-0: LOUT1/ROUT1 Output Volume Control (Table 67) Default: “5H” (0dB) HPG3-0: LOUT2/ROUT2 Output Volume Control (Table 70) Default: “BH” (0dB) MS0666-E-02 2010/06 - 124 - [AK4671] Addr 09H Register Name LOUT1 Signal Select R/W Default D7 L1G1 R/W 0 D6 L1G0 R/W 0 D5 LOOPL R/W 0 D4 LINL4 R/W 0 D3 LINL3 R/W 0 D2 LINL2 R/W 0 D1 LINL1 R/W 0 D0 DACL R/W 0 DACL: Switch Control from DAC Lch to LOUT1 0: OFF (default) 1: ON When PMLO1 bit is “1”, DACL bit is enabled. When PMLO1 bit is “0”, the LOUT1 pin goes to VSS1. LINL1: Switch Control from LIN1 to LOUT1 0: OFF (default) 1: ON LINL2: Switch Control from LIN2 to LOUT1 0: OFF (default) 1: ON LINL3: Switch Control from LIN3 to LOUT1 0: OFF (default) 1: ON LINL4: Switch Control from LIN4 to LOUT1 0: OFF (default) 1: ON LOOPL: Switch Control from MIC-Amp Lch to LOUT1 0: OFF (default) 1: ON L1G1-0: LIN1/RIN1 Mixing Gain Control (Table 60) Default: “00” (0dB) MS0666-E-02 2010/06 - 125 - [AK4671] Addr 0AH Register Name ROUT1 Signal Select R/W Default D7 L2G1 R/W 0 D6 L2G0 R/W 0 D5 LOOPR R/W 0 D4 RINR4 R/W 0 D3 RINR3 R/W 0 D2 RINR2 R/W 0 D1 RINR1 R/W 0 D0 DACR R/W 0 DACR: Switch Control from DAC Rch to ROUT1 0: OFF (default) 1: ON When PMRO1 bit is “1”, DACR bit is enabled. When PMRO1 bit is “0”, the ROUT1 pin goes to VSS1. RINR1: Switch Control from RIN1 to ROUT1 0: OFF (default) 1: ON RINR2: Switch Control from RIN2 to ROUT1 0: OFF (default) 1: ON RINR3: Switch Control from RIN3 to ROUT1 0: OFF (default) 1: ON RINR4: Switch Control from RIN4 to ROUT1 0: OFF (default) 1: ON LOOPR: Switch Control from MIC-Amp Rch to ROUT1 0: OFF (default) 1: ON L2G1-0: LIN2/RIN2 Mixing Gain Control (Table 61) Default: “00” (0dB) MS0666-E-02 2010/06 - 126 - [AK4671] Addr 0BH Register Name LOUT2 Signal Select R/W Default D7 L3G1 R/W 0 D6 L3G0 R/W 0 D5 LOOPHL R/W 0 D4 LINH4 R/W 0 D3 LINH3 R/W 0 D2 LINH2 R/W 0 D1 LINH1 R/W 0 D0 DACHL R/W 0 DACHL: Switch Control from DAC Lch to LOUT2 0: OFF (default) 1: ON LINH1: Switch Control from LIN1 to LOUT2 0: OFF (default) 1: ON LINH2: Switch Control from LIN2 to LOUT2 0: OFF (default) 1: ON LINH3: Switch Control from LIN3 to LOUT2 0: OFF (default) 1: ON LINH4: Switch Control from LIN4 to LOUT2 0: OFF (default) 1: ON LOOPHL: Switch Control from MIC-Amp Lch to LOUT2 0: OFF (default) 1: ON L3G1-0: LIN3/RIN3 Mixing Gain Control (Table 62) Default: “00” (0dB) MS0666-E-02 2010/06 - 127 - [AK4671] Addr 0CH Register Name ROUT2 Signal Select R/W Default D7 L4G1 R/W 0 D6 L4G0 R/W 0 D5 LOOPHR R/W 0 D4 RINH4 R/W 0 D3 RINH3 R/W 0 D2 RINH2 R/W 0 D1 RINH1 R/W 0 D0 DACHR R/W 0 DACHR: Switch Control from DAC Rch to ROUT2 0: OFF (default) 1: ON RINH1: Switch Control from RIN1 to ROUT2 0: OFF (default) 1: ON RINH2: Switch Control from RIN2 to ROUT2 0: OFF (default) 1: ON RINH3: Switch Control from RIN3 to ROUT2 0: OFF (default) 1: ON RINH4: Switch Control from RIN4 to ROUT2 0: OFF (default) 1: ON LOOPHR: Switch Control from MIC-Amp Rch to ROUT2 0: OFF (default) 1: ON L4G1-0: LIN4/RIN4 Mixing Gain Control (Table 63) Default: “00” (0dB) MS0666-E-02 2010/06 - 128 - [AK4671] Addr 0DH Register Name LOUT3 Signal Select R/W Default D7 LPG1 R/W 0 D6 LPG0 R/W 0 D5 LOOPSL R/W 0 D4 LINS4 R/W 0 D3 LINS3 R/W 0 D2 LINS2 R/W 0 D1 LINS1 R/W 0 D0 DACSL R/W 0 DACSL: Switch Control from DAC Lch to LOUT3 0: OFF (default) 1: ON When PMLO3 bit is “1”, DACSL bit is enabled. When PMLO3 bit is “0”, the LOUT3 pin goes to VSS1. LINS1: Switch Control from LIN1 to LOUT3 0: OFF (default) 1: ON LINS2: Switch Control from LIN2 to LOUT3 0: OFF (default) 1: ON LINS3: Switch Control from LIN3 to LOUT3 0: OFF (default) 1: ON LINS4: Switch Control from LIN4 to LOUT3 0: OFF (default) 1: ON LOOPSL: Switch Control from MIC-Amp Lch to LOUT3 0: OFF (default) 1: ON LPG1-0: MIC-Amp Mixing Gain Control (Table 64) Default: “00” (0dB) MS0666-E-02 2010/06 - 129 - [AK4671] Addr 0EH Register Name ROUT3 Signal Select R/W Default D7 0 RD 0 D6 0 RD 0 D5 LOOPSR R/W 0 D4 RINS4 R/W 0 D3 RINS3 R/W 0 D2 RINS2 R/W 0 D1 RINS1 R/W 0 D0 DACSR R/W 0 DACSR: Switch Control from DAC Rch to ROUT3 0: OFF (default) 1: ON When PMRO3 bit is “1”, DACR bit is enabled. When PMRO3 bit is “0”, the ROUT3 pin goes to VSS1. RINS1: Switch Control from RIN1 to ROUT3 0: OFF (default) 1: ON RINS2: Switch Control from RIN2 to ROUT3 0: OFF (default) 1: ON RINS3: Switch Control from RIN3 to ROUT3 0: OFF (default) 1: ON RINS4: Switch Control from RIN4 to ROUT3 0: OFF (default) 1: ON LOOPSR: Switch Control from MIC-Amp Rch to ROUT3 0: OFF (default) 1: ON MS0666-E-02 2010/06 - 130 - [AK4671] Addr 0FH Register Name LOUT1 Power Management R/W Default D7 0 RD 0 D6 0 RD 0 D5 RCV R/W 0 D4 LOOPM R/W 0 D3 LOM R/W 0 D2 LOPS1 R/W 0 D1 PMRO1 R/W 0 D0 PMLO1 R/W 0 PMLO1: LOUT1 Power Management 0: Power down (default) 1: Power up PMRO1: ROUT1 Power Management 0: Power down (default) 1: Power up LOPS1: LOUT1/ROUT1 Power Save Mode 0: Normal Operation (default) 1: Power Save Mode LOM: Mono Mixing from DAC to LOUT1/ROUT1 0: Stereo Mixing (default) 1: Mono Mixing LOOPM: Mono Mixing from MIC-Amp to LOUT1/ROUT1 0: Stereo Mixing (default) 1: Mono Mixing RCV: Receiver Select 0: Stereo Line Output (LOUT1/ROUT1 pins) (default) 1: Mono Receiver Output (RCP/RCN pins) MS0666-E-02 2010/06 - 131 - [AK4671] Addr 10H Register Name LOUT2 Power Management R/W Default D7 0 RD 0 D6 D5 D4 PMRO2S PMLO2S LOOPM2 R/W 0 R/W 0 R/W 0 D3 LOM2 R/W 0 D2 MUTEN R/W 0 D1 PMRO2 R/W 0 D0 PMLO2 R/W 0 PMLO2: LOUT2 Power Management 0: Power down (default) 1: Power up PMRO2: ROUT2 Power Management 0: Power down (default) 1: Power up MUTEN: LOUT2/ROUT2 Mute Control 0: Mute (default) 1: Normal operation LOM2: Mono Mixing from DAC to LOUT2/ROUT2 0: Stereo Mixing (default) 1: Mono Mixing LOOPM2: Mono Mixing from MIC-Amp to LOUT2/ROUT2 0: Stereo Mixing (default) 1: Mono Mixing PMLO2S: LOUT2 MIX-Amp Power Management 0: Power down (default) 1: Power up PMRO2S: ROUT2 MIX-Amp Power Management 0: Power down (default) 1: Power up MS0666-E-02 2010/06 - 132 - [AK4671] Addr 11H Register Name LOUT3 Power Management R/W Default D7 L3VL1 R/W 1 D6 L3VL0 R/W 0 D5 D4 LODIF LOOPM3 R/W 0 R/W 0 D3 LOM3 R/W 0 D2 LOPS3 R/W 0 D1 PMRO3 R/W 0 D0 PMLO3 R/W 0 PMLO3: LOUT3 Power Management 0: Power down (default) 1: Power up PMRO3: ROUT3 Power Management 0: Power down (default) 1: Power up LOPS3: LOUT3/ROUT3 Power Save Mode 0: Normal Operation (default) 1: Power Save Mode LOM3: Mono Mixing from DAC to LOUT3/ROUT3 0: Stereo Mixing (default) 1: Mono Mixing LOOPM3: Mono Mixing from MIC-Amp to LOUT3/ROUT3 0: Stereo Mixing (default) 1: Mono Mixing LODIF: Lineout Select 0: Single-ended Stereo Line Output (LOUT3/ROUT3 pins) (default) 1: Full-differential Mono Line Output (LOP/LON pins) L3VL1-0: LOUT3/ROUT3 Output Gain Control (Table 73) Default: “10” (0dB) MS0666-E-02 2010/06 - 133 - [AK4671] Addr 12H 13H Register Name Lch Input Volume Control Rch Input Volume Control R/W Default D7 IVL7 IVR7 R/W 1 D6 IVL6 IVR6 R/W 0 D5 IVL5 IVR5 R/W 0 D4 IVL4 IVR4 R/W 1 D3 IVL3 IVR3 R/W 0 D2 IVL2 IVR2 R/W 0 D1 IVL1 IVR1 R/W 0 D0 IVL0 IVR0 R/W 1 D3 REF3 R/W 0 D2 REF2 R/W 0 D1 REF1 R/W 0 D0 REF0 R/W 1 IVL7-0, IVR7-0: Input Digital Volume; 0.375dB step, 242 Level (Table 33) Default: “91H” (0dB) Addr 14H Register Name ALC Reference Select R/W Default D7 REF7 R/W 1 D6 REF6 R/W 1 D5 REF5 R/W 1 D4 REF4 R/W 0 REF7-0: Reference Value at ALC Recovery Operation (Recording); 0.375dB step, 242 Level (Table 29) Default: “E1H” (+30.0dB) Addr 15H Register Name Digital Mixing Control R/W Default D7 D6 D5 D4 D3 D2 D1 D0 SRMXR1 SRMXR0 SRMXL1 SRMXL0 PFMXR1 PFMXR0 PFMXL1 PFMXL0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 D5 RFST0 R/W 0 D4 WTM2 R/W 0 D3 WTM1 R/W 0 D2 WTM0 R/W 0 D1 ZTM1 R/W 0 D0 ZTM0 R/W 0 PFMXL1-0: 5-band EQ Lch Input Mixing 1 (Table 49) Default: “00” (SDTI) PFMXR1-0: 5-band EQ Rch Input Mixing 1 (Table 50) Default: “00” (SDTI) SRMXL1-0: 5-band EQ Lch Input Mixing 2 (Table 51) Default: “00” (SDTI) SRMXR1-0: 5-band EQ Rch Input Mixing 2 (Table 52) Default: “00” (SDTI) Addr 16H Register Name ALC Timer Select R/W Default D7 0 RD 0 D6 RFST1 R/W 0 ZTM1-0: ALC Limiter/Recovery Operation Zero Crossing Timeout Period (Table 26) Default: “00” (128/fs) WTM2-0: ALC Recovery Waiting Period (Table 27) Default: “000” (128/fs) RFST1-0: ALC First recovery Speed (Table 30) Default: “00” (4times) MS0666-E-02 2010/06 - 134 - [AK4671] Addr 17H Register Name ALC Mode Control R/W Default D7 0 RD 0 D6 ZELMN R/W 0 D5 LMAT1 R/W 0 D4 LMAT0 R/W 0 D3 RGAIN1 R/W 0 D2 RGAIN0 R/W 0 D1 LMTH1 R/W 0 D0 LMTH0 R/W 0 D2 ADM R/W 0 D1 IVOLC R/W 1 D0 ALC R/W 0 LMTH1-0: ALC Limiter Detection Level / Recovery Counter Reset Level (Table 24) Default: “00” RGAIN1-0: ALC Recovery GAIN Step (Table 28) Default: “00” LMAT1-0: ALC Limiter ATT Step (Table 25) Default: “00” ZELMN: Zero Crossing Detection Enable at ALC Limiter Operation 0: Enable (default) 1: Disable Addr 18H Register Name Mode Control 1 R/W Default D7 DAM R/W 0 D6 MIXD R/W 0 D5 SDIM1 R/W 0 D4 SDIM0 R/W 0 D3 EQ R/W 0 ALC: ALC Enable 0: ALC Disable (default) 1: ALC Enable IVOLC: Input Digital Volume Control Mode Select 0: Independent 1: Dependent (default) When IVOLC bit = “1”, IVL7-0 bits control both Lch and Rch volume level, while register values of IVL7-0 bits are not written to IVR7-0 bits. When IVOLC bit = “0”, IVL7-0 bits control Lch level and IVR7-0 bits control Rch level, respectively. ADM: Mono Recording (Table 44) 0: Stereo (default) 1: Mono: (L+R)/2 EQ: Select 5-Band Equalizer 0: OFF (default) 1: ON SDIM1-0: SDTI Input Signal Select (Table 48) Default: “00” (L=Lch, R=Rch) MIXD: DAC and SRC-A Mono Mixing (Table 53 and Table 54) 0: L+R (default) 1: (L+R)/2 DAM: DAC Mono Mixing (Table 53) 0: Stereo (default) 1: Mono: (L+R) or (L+R)/2 is selected by MIXD bit. MS0666-E-02 2010/06 - 135 - [AK4671] Addr 19H Register Name Mode Control 2 R/W Default D7 SRA1 R/W 0 D6 SRA0 R/W 0 D5 BIV2 R/W 0 D4 BIV1 R/W 0 D3 BIV0 R/W 0 D2 SMUTE R/W 0 D1 OVTM R/W 0 D0 OVOLC R/W 1 OVOLC: Output Digital Volume Control Mode Select 0: Independent 1: Dependent (default) When OVOLC bit = “1”, OVL7-0 bits control both Lch and Rch volume level, while register values of OVL7-0 bits are not written to OVR7-0 bits. When OVOLC bit = “0”, OVL7-0 bits control Lch level and OVR7-0 bits control Rch level, respectively. OVTM: Digital Volume Transition Time Setting 0: 1061/fs (default) 1: 256/fs This is the transition time between OVL/R7-0 bits = 00H and FFH. SMUTE: Soft Mute Control 0: Normal Operation (default) 1: DAC outputs soft-muted BIV2-0: SDTIB Input Volume Control (Table 41) Default: “0H” (0dB) SRA1-0: SRC-A Input Signal Select (Table 54) Default: “00” (Lch) Addr 1AH 1BH Register Name Lch Output Volume Control Rch Output Volume Control R/W Default D7 OVL7 OVR7 R/W 0 D6 OVL6 OVR6 R/W 0 D5 OVL5 OVR5 R/W 0 D4 OVL4 OVR4 R/W 1 D3 OVL3 OVR3 R/W 1 D2 OVL2 OVR2 R/W 0 D1 OVL1 OVR1 R/W 0 D0 OVL0 OVR0 R/W 0 D5 SVAR2 R/W 0 D4 SVAR1 R/W 0 D3 SVAR0 R/W 0 D2 SVAL2 R/W 0 D1 SVAL1 R/W 0 D0 SVAL0 R/W 0 OVL7-0, OVR7-0: Output Digital Volume (Table 36) Default: “18H” (0dB) Addr 1CH Register Name Side Tone A Control R/W Default D7 0 RD 0 D6 0 RD 0 SVAL2-0, SVAR2-0: Side Tone Volume A (SVOLA) (Table 34) Default: “000” (0dB) MS0666-E-02 2010/06 - 136 - [AK4671] Addr 1DH Register Name Digital Filter Select R/W Default D7 GN1 R/W 0 D6 GN0 R/W 0 D5 LPF R/W 0 D4 HPF R/W 0 D3 EQ0 R/W 0 D2 FIL3 R/W 0 D1 HPFAD R/W 1 D0 PFSEL R/W 0 PFSEL: Signal Select of Programmable Filter Block (Table 43) 0: ADC Output Data (default) 1: SDTI Input Data HPFAD: HPF Control of ADC 0: OFF 1: ON (default) When HPFAD bit is “1”, the settings of F1A13-0 and F1B13-0 bits are enabled. When HPFAD bit is “0”, HPFAD block is through (0dB). GN1-0: Gain Select at GAIN block (Table 23) Default: “00” (0dB) FIL3: FIL3 (Stereo Separation Emphasis Filter) Coefficient Setting Enable 0: Disable (default) 1: Enable When FIL3 bit is “1”, the settings of F3A13-0 and F3B13-0 bits are enabled. When FIL3 bit is “0”, FIL3 block is OFF (MUTE). EQ0: EQ0 (Gain Compensation Filter) Coefficient Setting Enable 0: Disable (default) 1: Enable When EQ0 bit is “1”, the settings of E0A15-0, E0B13-0 and E0C15-0 bits are enabled. When EQ0 bit is “0”, EQ0 block is through (0dB). HPF: HPF Coefficient Setting Enable 0: Disable (default) 1: Enable When HPF bit is “1”, the settings of F1A13-0 and F1B13-0 bits are enabled. When HPF bit is “0”, HPF block is through (0dB). LPF: LPF Coefficient Setting Enable 0: Disable (default) 1: Enable When LPF bit is “1”, the settings of F2A13-0 and F2B13-0 bits are enabled. When LPF bit is “0”, LPF block is through (0dB). MS0666-E-02 2010/06 - 137 - [AK4671] Addr 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H Register Name FIL3 Co-efficient 0 FIL3 Co-efficient 1 FIL3 Co-efficient 2 FIL3 Co-efficient 3 EQ Co-efficient 0 EQ Co-efficient 1 EQ Co-efficient 2 EQ Co-efficient 3 EQ Co-efficient 4 EQ Co-efficient 5 R/W Default D7 F3A7 F3AS F3B7 0 E0A7 E0A15 E0B7 0 E0C7 E0C15 W 0 D6 F3A6 0 F3B6 0 E0A6 E0A14 E0B6 0 E0C6 E0C14 W 0 D5 F3A5 F3A13 F3B5 F3B13 E0A5 E0A13 E0B5 E0B13 E0C5 E0C13 W 0 D4 F3A4 F3A12 F3B4 F3B12 E0A4 E0A12 E0B4 E0B12 E0C4 E0C12 W 0 D3 F3A3 F3A11 F3B3 F3B11 E0A3 E0A11 E0B3 E0B11 E0C3 E0C11 W 0 D2 F3A2 F3A10 F3B2 F3B10 E0A2 E0A10 E0B2 E0B10 E0C2 E0C10 W 0 D1 F3A1 F3A9 F3B1 F3B9 E0A1 E0A9 E0B1 E0B9 E0C1 E0C9 W 0 D0 F3A0 F3A8 F3B0 F3B8 E0A0 E0A8 E0B0 E0B8 E0C0 E0C8 W 0 F3A13-0, F3B13-0: FIL3 (Stereo Separation Emphasis Filter) Coefficient (14bit x 2) Default: “0000H” F3AS: FIL3 (Stereo Separation Emphasis Filter) Select 0: HPF (default) 1: LPF E0A15-0, E0B13-0, E0C15-C0: EQ0 (Gain Compensation Filter) Coefficient (14bit x 2 + 16bit x 1) Default: “0000H” Addr 28H 29H 2AH 2BH Register Name FIL1 Co-efficient 0 FIL1 Co-efficient 1 FIL1 Co-efficient 2 FIL1 Co-efficient 3 R/W Default D7 F1A7 0 F1B7 0 W D6 F1A6 0 F1B6 0 W D5 F1A5 F1A13 F1B5 F1B13 W D4 F1A4 F1A12 F1B4 F1B12 W D3 F1A3 F1A11 F1B3 F1B11 W D2 F1A2 F1A10 F1B2 F1B10 W D1 F1A1 F1A9 F1B1 F1B9 W D0 F1A0 F1A8 F1B0 F1B8 W F1A13-0 bits = “1FA9H”, F1B13-0 bits = “20ADH” F1A13-0, F1B13-B0: FIL1 (Wind-noise Reduction Filter) Coefficient (14bit x 2) Default: F1A13-0 bits = “1FA9H”, F1B13-0 bits = “20ADH” (fc=150Hz@fs=44.1kHz) Addr 2CH 2DH 2EH 2FH Register Name FIL2 Co-efficient 0 FIL2 Co-efficient 1 FIL2 Co-efficient 2 FIL2 Co-efficient 3 R/W Default D7 F2A7 0 F2B7 0 W 0 D6 F2A6 0 F2B6 0 W 0 D5 F2A5 F2A13 F2B5 F2B13 W 0 D4 F2A4 F2A12 F2B4 F2B12 W 0 D3 F2A3 F2A11 F2B3 F2B11 W 0 D2 F2A2 F2A10 F2B2 F2B10 W 0 D1 F2A1 F2A9 F2B1 F2B9 W 0 D0 F2A0 F2A8 F2B0 F2B8 W 0 F2A13-0, F2B13-B0: FIL2 (LPF) Coefficient (14bit x 2) Default: “0000H” MS0666-E-02 2010/06 - 138 - [AK4671] Addr 30H Register Name Digital Filter Select 2 R/W Default D7 0 RD 0 D6 0 RD 0 D5 0 RD 0 D4 EQ5 R/W 0 D3 EQ4 R/W 0 D2 EQ3 R/W 0 D1 EQ2 R/W 0 D0 EQ1 R/W 0 EQ1: Equalizer 1 Coefficient Setting Enable 0: Disable (default) 1: Enable When EQ1 bit is “1”, the settings of E1A15-0, E1B15-0 and E1C15-0 bits are enabled. When EQ1 bit is “0”, EQ1 block is through (0dB). EQ2: Equalizer 2 Coefficient Setting Enable 0: Disable (default) 1: Enable When EQ2 bit is “1”, the settings of E2A15-0, E2B15-0 and E2C15-0 bits are enabled. When EQ2 bit is “0”, EQ2 block is through (0dB). EQ3: Equalizer 3 Coefficient Setting Enable 0: Disable (default) 1: Enable When EQ3 bit is “1”, the settings of E3A15-0, E3B15-0 and E3C15-0 bits are enabled. When EQ3 bit is “0”, EQ3 block is through (0dB). EQ4: Equalizer 4 Coefficient Setting Enable 0: Disable (default) 1: Enable When EQ4 bit is “1”, the settings of E4A15-0, E4B15-0 and E4C15-0 bits are enabled. When EQ4 bit is “0”, EQ4 block is through (0dB). EQ5: Equalizer 5 Coefficient Setting Enable 0: Disable (default) 1: Enable When EQ5 bit is “1”, the settings of E5A15-0, E5B15-0 and E5C15-0 bits are enabled. When EQ5 bit is “0”, EQ5 block is through (0dB). MS0666-E-02 2010/06 - 139 - [AK4671] Addr 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH 40H 41H 42H 43H 44H 45H 46H 47H 48H 49H 4AH 4BH 4CH 4DH 4EH 4FH Register Name E1 Co-efficient 0 E1 Co-efficient 1 E1 Co-efficient 2 E1 Co-efficient 3 E1 Co-efficient 4 E1 Co-efficient 5 E2 Co-efficient 0 E2 Co-efficient 1 E2 Co-efficient 2 E2 Co-efficient 3 E2 Co-efficient 4 E2 Co-efficient 5 E3 Co-efficient 0 E3 Co-efficient 1 E3 Co-efficient 2 E3 Co-efficient 3 E3 Co-efficient 4 E3 Co-efficient 5 E4 Co-efficient 0 E4 Co-efficient 1 E4 Co-efficient 2 E4 Co-efficient 3 E4 Co-efficient 4 E4 Co-efficient 5 E5 Co-efficient 0 E5 Co-efficient 1 E5 Co-efficient 2 E5 Co-efficient 3 E5 Co-efficient 4 E5 Co-efficient 5 R/W Default D7 E1A7 E1A15 E1B7 E1B15 E1C7 E1C15 E2A7 E2A15 E2B7 E2B15 E2C7 E2C15 E3A7 E3A15 E3B7 E3B15 E3C7 E3C15 E4A7 E4A15 E4B7 E4B15 E4C7 E4C15 E5A7 E5A15 E5B7 E5B15 E5C7 E5C15 W 0 D6 E1A6 E1A14 E1B6 E1B14 E1C6 E1C14 E2A6 E2A14 E2B6 E2B14 E2C6 E2C14 E3A6 E3A14 E3B6 E3B14 E3C6 E3C14 E4A6 E4A14 E4B6 E4B14 E4C6 E4C14 E5A6 E5A14 E5B6 E5B14 E5C6 E5C14 W 0 D5 E1A5 E1A13 E1B5 E1B13 E1C5 E1C13 E2A5 E2A13 E2B5 E2B13 E2C5 E2C13 E3A5 E3A13 E3B5 E3B13 E3C5 E3C13 E4A5 E4A13 E4B5 E4B13 E4C5 E4C13 E5A5 E5A13 E5B5 E5B13 E5C5 E5C13 W 0 D4 E1A4 E1A12 E1B4 E1B12 E1C4 E1C12 E2A4 E2A12 E2B4 E2B12 E2C4 E2C12 E3A4 E3A12 E3B4 E3B12 E3C4 E3C12 E4A4 E4A12 E4B4 E4B12 E4C4 E4C12 E5A4 E5A12 E5B4 E5B12 E5C4 E5C12 W 0 D3 E1A3 E1A11 E1B3 E1B11 E1C3 E1C11 E2A3 E2A11 E2B3 E2B11 E2C3 E2C11 E3A3 E3A11 E3B3 E3B11 E3C3 E3C11 E4A3 E4A11 E4B3 E4B11 E4C3 E4C11 E5A3 E5A11 E5B3 E5B11 E5C3 E5C11 W 0 D2 E1A2 E1A10 E1B2 E1B10 E1C2 E1C10 E2A2 E2A10 E2B2 E2B10 E2C2 E2C10 E3A2 E3A10 E3B2 E3B10 E3C2 E3C10 E4A2 E4A10 E4B2 E4B10 E4C2 E4C10 E5A2 E5A10 E5B2 E5B10 E5C2 E5C10 W 0 D1 E1A1 E1A9 E1B1 E1B9 E1C1 E1C9 E2A1 E2A9 E2B1 E2B9 E2C1 E2C9 E3A1 E3A9 E3B1 E3B9 E3C1 E3C9 E4A1 E4A9 E4B1 E4B9 E4C1 E4C9 E5A1 E5A9 E5B1 E5B9 E5C1 E5C9 W 0 D0 E1A0 E1A8 E1B0 E1B8 E1C0 E1C8 E2A0 E2A8 E2B0 E2B8 E2C0 E2C8 E3A0 E3A8 E3B0 E3B8 E3C0 E3C8 E4A0 E4A8 E4B0 E4B8 E4C0 E4C8 E5A0 E5A8 E5B0 E5B8 E5C0 E5C8 W 0 E1A15-0, E1B15-0, E1C15-0: Equalizer 1 Coefficient (16bit x3) Default: “0000H” E2A15-0, E2B15-0, E2C15-0: Equalizer 2 Coefficient (16bit x3) Default: “0000H” E3A15-0, E3B15-0, E3C15-0: Equalizer 3 Coefficient (16bit x3) Default: “0000H” E4A15-0, E4B15-0, E4C15-0: Equalizer 4 Coefficient (16bit x3) Default: “0000H” E5A15-0, E5B15-0, E5C15-0: Equalizer 5 Coefficient (16bit x3) Default: “0000H” MS0666-E-02 2010/06 - 140 - [AK4671] Addr 50H 51H Register Name EQ Control 250Hz/100Hz EQ Control 3.5kHz/1kHz R/W Default Addr 52H Register Name EQ Control 10kHz R/W Default D7 EQB3 EQD3 R/W 1 D6 EQB2 EQD2 R/W 0 D5 EQB1 EQD1 R/W 0 D4 EQB0 EQD0 R/W 0 D3 EQA3 EQC3 R/W 1 D2 EQA2 EQC2 R/W 0 D1 EQA1 EQC1 R/W 0 D0 EQA0 EQC0 R/W 0 D7 0 RD 0 D6 0 RD 0 D5 0 RD 0 D4 0 RD 0 D3 EQE3 R/W 1 D2 EQE2 R/W 0 D1 EQE1 R/W 0 D0 EQE0 R/W 0 D3 PLLBT0 R/W 0 D2 PMPCM R/W 0 D1 PMSRB R/W 0 D0 PMSRA R/W 0 EQA3-0: Select the boost level of 100Hz EQB3-0: Select the boost level of 250Hz EQC3-0: Select the boost level of 1kHz EQD3-0: Select the boost level of 3.5kHz EQE3-0: Select the boost level of 10kHz See Table 35. Addr 53H Register Name PCM I/F Control 0 R/W Default D7 GPOM2 R/W 0 D6 GPOE2 R/W 0 D5 PLLBT2 R/W 0 D4 PLLBT1 R/W 0 PMSRA: SRC-A Power Management 0: Power down (default) 1: Power up PMSRB: SRC-B Power Management 0: Power down (default) 1: Power up PMPCM: PCM I/F Power Management 0: Power down (default) 1: Power up PLLBT2-0: PLLBT Reference Clock Select (Table 76) PLLBT3 bit is D6 of Addr=55H. Default: “0000”: SYNCA GPOE2: General Purpose Output 2 Enable at GPOM2 bit = “1” “0”: GPO2 pin = “L” (default) “1”: GPO2 pin = “H” GPOM2: General Purpose Output 2 Operation Mode (Table 92) “0”: Controlled by GPOE2 bit (default) “1”: MIC Detection Interrupt MS0666-E-02 2010/06 - 141 - [AK4671] Addr 54H Register Name PCM I/F Control 2 R/W Default D7 SDOAD R/W 0 D6 BCKO2 R/W 0 D5 MSBSA R/W 0 D4 BCKPA R/W 0 D3 LAWA1 R/W 0 D2 LAWA0 R/W 0 D1 FMTA1 R/W 0 D0 FMTA0 R/W 0 FMTA1-0: PCM I/F A Format (Table 84) Default: “00” (Mode 0) LAWA1-0: PCM I/F A Mode (Table 82) Default: “00” (Mode 0) BCKPA: BICKA Polarity of PCM I/F A (Table 86) “0”: SDTOA is output by the rising edge (“↑”) of BICKA and SDTIA is latched by the falling edge (“↓”). (default) “1”: SDTOA is output by the falling edge (“↓”) of BICKA and SDTIA is latched by the rising edge (“↑”). MSBSA: SYNCA Phase of PCM I/F A (Table 86) “0”: The rising edge (“↑”) of SYNCA is half clock of BICKA before the channel change. (default) “1”: The rising edge (“↑”) of SYNCA is one clock of BICKA before the channel change. BCKO2: BICKA/B Output Frequency Select at Master Mode (Table 77) 0: 16fs2 (default) 1: 32fs2 SDOAD: SDTOA Disable (Table 56) “0”: Enable (default) “1”: Disable (“L”) Addr 55H Register Name PCM I/F Control 3 R/W Default D7 SDOBD R/W 0 D6 PLLBT3 R/W 0 D5 MSBSB R/W 0 D4 BCKPB R/W 0 D3 LAWB1 R/W 0 D2 LAWB0 R/W 0 D1 FMTB1 R/W 0 D0 FMTB0 R/W 0 FMTB1-0: PCM I/F B Format (Table 85) Default: “00” (Mode 0) LAWB1-0: PCM I/F B Mode (Table 83) Default: “00” (Mode 0) BCKPB: BICKB Polarity of PCM I/F B (Table 87) “0”: SDTOB is output by the rising edge (“↑”) of BICKB and SDTIB is latched by the falling edge (“↓”). (default) “1”: SDTOB is output by the falling edge (“↓”) of BICKB and SDTIB is latched by the rising edge (“↑”). MSBSB: SYNCB Phase of PCM I/F B (Table 87) “0”: The rising edge (“↑”) of SYNCB is half clock of BICKB before the channel change. (default) “1”: The rising edge (“↑”) of SYNCB is one clock of BICKB before the channel change. PLLBT3: PLLBT Reference Clock Select (Table 76) PLLBT2-0 bits is D5-3 of Addr=53H. Default: “0000”: SYNCA SDOBD: SDTOB Disable (Table 58) “0”: Enable (default) “1”: Disable (“L”) MS0666-E-02 2010/06 - 142 - [AK4671] Addr 56H Register Name Digital Volume B Control R/W Default D7 BVL7 R/W 0 D6 BVL6 R/W 0 D5 BVL5 R/W 0 D4 BVL4 R/W 1 D3 BVL3 R/W 1 D2 BVL2 R/W 0 D1 BVL1 R/W 0 D0 BVL0 R/W 0 D6 CVL6 R/W 0 D5 CVL5 R/W 0 D4 CVL4 R/W 1 D3 CVL3 R/W 1 D2 CVL2 R/W 0 D1 CVL1 R/W 0 D0 CVL0 R/W 0 D6 0 RD 0 D5 0 RD 0 D4 0 RD 0 D3 SDOA R/W 0 D2 SVB2 R/W 0 D1 SVB1 R/W 0 D0 SVB0 R/W 0 D5 SDOL1 R/W 0 D4 SDOL0 R/W 0 D3 BVMX1 R/W 0 D2 BVMX0 R/W 0 D1 SBMX1 R/W 0 D0 SBMX0 R/W 0 BVL7-0: Digital Volume B (Table 38) Default: “18H” (0dB) Addr 57H Register Name Digital Volume C Control R/W Default D7 CVL7 R/W 0 CVL7-0: Digital Volume C (Table 39) Default: “18H” (0dB) Addr 58H Register Name Side Tone Volume Control R/W Default D7 0 RD 0 SVB2-0: Side Tone Volume (Table 40) Default: “0H” (0dB) SDOA: SDTOA Output Signal Select (Table 55) “0”: SRC-A (default) “1”: SDTI-B Addr 59H Register Name Digital Mixing Control R/W Default D7 SDOR1 R/W 0 D6 SDOR0 R/W 0 SBMX1-0: SDTOB Output Signal Select (Table 57) Default: “00” (SDTIA) BVMX1-0: SRC-B Input Signal Select (Table 59) Default: “00” (SDTIA) SDOL1-0: SDTO Lch Output Mixing (Table 45) Default: “00” (Lch Signal Selected by Table 44) SDOR1-0: SDTO Rch Output Mixing (Table 46) Default: “00” (Rch Signal Selected by Table 44) MS0666-E-02 2010/06 - 143 - [AK4671] Addr 5AH Register Name SAR ADC Control R/W Default D7 0 RD 0 D6 0 RD 0 D5 0 RD 0 D4 GPOM1 R/W 0 D3 GPOE1 R/W 0 D2 A1 R/W 0 D1 A0 R/W 0 D0 PMSAD R/W 0 PMSAD: 10bit ADC Power Management “0”: Power down (default) “1”: Power up A1-0: SAR ADC Measurement Mode (Table 94) Default: “00” (AIN1) GPOE1: General Purpose Output 1 Enable at GPOM1 bit = “1” “0”: GPO pin = “L” (default) “1”: GPO pin = “H” GPOM1: General Purpose Output 1 Operation Mode “0”: Controlled by GPOE bit (default) “1”: Controlled by A0 bit MS0666-E-02 2010/06 - 144 - [AK4671] SYSTEM DESIGN Figure 108 shows the system connection diagram for the AK4671. The evaluation board [AKD4671] demonstrates the optimum layout, power supply arrangements and measurement results. Headphone Digital Ground Digital (Base Band) 1.6 ∼ 3.6V 10u 0.1u TEST LOUT2 AVDD VSS1 RCP ROUT2 MUTET C VCOM VCOCBT VCOC PVDD 0.1u 0.1u Base Band R 0.1u 2.2u 1u Rp Cp Analog 2.2 ∼ 3.6V Analog Ground VSS2 TVDD2 SDTOA BICKA SYNCA GPO2 CDTI SDTIA RCN VSS4 DVDD ROUT3 LOUT3 CCLK CSN RIN4 LIN4 I2C BICK LIN3 RIN3 MCKI MCKO Digital (μP & CPU) 1.6 ∼ 3.6V Receiver Ext SPK-Amp 0.1u μP Stereo Speaker AK4671EG Top View Line In CPU NC Internal MIC IN1+ IN1− SAIN2 SAVDD TVDD3 SDTOB MDT MPWR SAIN3 SAIN1 VSS3 SYNCB PDN LRCK BICKB SDTO CDTO SDTIB SDTI GPO1 Bluetooth Module 0.1u 0.1u 1k IN2− 1k IN2+ 2.2k External MIC Digital (Bluetooth) 1.6 ∼ 3.6V DC Measurement Notes: - VSS1, VSS2, VSS3 and VSS4 of the AK4671 should be distributed separately from the ground of external controllers. - All digital input pins should not be left floating. - When the AK4671 is EXT mode (PMPLL bit = “0”), a resistor and capacitor of the VCOC pin is not needed. - When the AK4671 is PLL mode (PMPLL bit = “1”), a resistor and capacitor of the VCOC pin is shown in Table 4. - When the AK4671 is used by master mode, LRCK and BICK pins are a Hi-Z state until M/S bit becomes “1”. LRCK and BICK pins of the AK4671 should be pulled-down or pulled-up by the resistor (about 100kΩ) externally to avoid the floating state. - A resistor and capacitor of the VCOCBT pin is shown in Table 76. - After setting PDN pin = “H”, the PCM I/F clock pins of AK4671 are a Hi-Z state until PMPCM bit becomes “1”. The PCM I/F clock pins of master mode should be pulled-down or pulled-up by the resistor (about 100kΩ) externally to avoid the floating state. Figure 108. Typical Connection Diagram (Internal Full-differentila Mic, External pseudo differential Mic, Recevier Output, 4-wire serial mode) MS0666-E-02 2010/06 - 145 - [AK4671] 1. Grounding and Power Supply Decoupling The AK4671 requires careful attention to power supply and grounding arrangements. AVDD, PVDD, SAVDD, DVDD, TVDD2 and TVDD3 are usually supplied from the system’s analog supply. If AVDD, PVDD, SAVDD, DVDD, TVDD2 and TVDD3 are supplied separately, the power-up sequence is not critical. The PDN pin should be held to “L” when power-up. The PDN pin should be set to “H” after all power supplies are powered-up. In case that the pop noise should be avoided at receiver output, headphone output and line output, the AK4671 should be operated by the following recommended power-up/down sequence. 1) Power-up - The PDN pin should be held to “L” when power-up. The AK4671 should be reset by bringing the PDN pin “L” for 150ns or more. - In case that the power supplies are separated in two or more groups, the power supply including DVDD should be powered ON at first. 2) Power-down - Each power supplies should be powered OFF after the PDN pin is set to “L”. - In case that the power supplies are separated in two or more groups, the power supply including DVDD should be powered OFF at last. VSS1, VSS2, VSS3 and VSS4 of the AK4671 should be connected to the analog ground plane. System analog ground and digital ground should be connected together near to where the supplies are brought onto the printed circuit board. Decoupling capacitors should be as near to the AK4671 as possible, with the small value ceramic capacitor being the nearest. 2. Voltage Reference VCOM is a signal ground of this chip. A 2.2μF electrolytic capacitor in parallel with a 0.1μF ceramic capacitor attached to the VCOM pin eliminates the effects of high frequency noise. No load current may be drawn from the VCOM pin. All signals, especially clocks, should be kept away from the VCOM pin in order to avoid unwanted coupling into the AK4671. 3. Analog Inputs The Mic, Line and MIN inputs are single-ended. The input signal range scales with nominally at 0.6 x AVDD Vpp (typ) at MGNL=MGNR=0dB and single-ended input, centered around the internal common voltage (0.5 x AVDD). The input signal should be AC coupled using a capacitor. The cut-off frequency is fc = 1/(2πRC). The AK4671 can accept input voltages from VSS1 to AVDD. 4. Analog Outputs The input data format for the DAC is 2’s complement. The output voltage is a positive full scale for 7FFFH(@16bit) and a negative full scale for 8000H(@16bit). The ideal output is VCOM voltage for 0000H(@16bit). VCOM voltage is 0.5 x AVDD (typ). When LOUT1, ROUT1, LOUT2, ROUT2, LOUT3/LOP and ROUT3/LON pins are single-ended output, these pins should be AC coupled using a capacitor. When RCP, RCN pins are full-differential output, these pins should be connected directly to a receiver. (RCP, RCN pins should be not AC coupled using a capacitor.) MS0666-E-02 2010/06 - 146 - [AK4671] CONTROL SEQUENCE (AUDIO) Clock Set up When ADC or DAC is powered-up, the clocks must be supplied. 1. PLL Master Mode. Example: Power Supply Audio I/F Format: MSB justified (ADC & DAC) BICK frequency at Master Mode: 64fs Input Master Clock Select at PLL Mode: 11.2896MHz MCKO: Enable Sampling Frequency: 44.1kHz (1) PDN pin (2) (3) PMVCM bit (Addr:00H, D0) (4) (1) Power Supply & PDN pin = “L” Æ “H” MCKO bit (Addr:02H, D2) PMPLL bit (2)Addr:02H, Data:22H Addr:03H, Data:02H Addr:01H, Data:F4H (Addr:02H, D0) (5) MCKI pin Input M/S bit (3)Addr:00H, Data:01H (Addr:02H, D1) 40msec(max) (6) BICK pin LRCK pin Output (4)Addr:02H, Data:27H Output MCKO, BICK and LRCK output 40msec(max) (8) MCKO pin (7) Figure 109. Clock Set Up Sequence (1) <Example> (1) After Power Up, PDN pin = “L” Æ “H”. “L” time of 150ns or more is needed to reset the AK4671. The AK4671 should be operated as the recommended power-up/down sequence shown in “System Design (Grounding and Power Supply Decoupling)” to avoid pop noise at the receiver output, headphone output and lineout output. (2) DIF1-0, PLL3-0, FS3-0, BCKO and M/S bits should be set during this period. (3) Power Up VCOM: PMVCM bit = “0” Æ “1” VCOM should first be powered-up before the other block operates. (4) In case of using MCKO output: MCKO bit = “1” (5) PLL lock time is 40ms(max.) after PMPLL bit changes from “0” to “1” and MCKI is supplied from an external source. (6) The AK4671 starts to output the LRCK and BICK clocks after the PLL becomes stable. Then normal operation starts. (7) The invalid frequency is output from MCKO pin during this period if MCKO bit = “1”. (8) The normal clock is output from MCKO pin after the PLL is locked if MCKO bit = “1”. MS0666-E-02 2010/06 - 147 - [AK4671] 2. PLL Slave Mode (MCKI pin) Example: Audio I/F Format: MSB justified (ADC & DAC) BICK frequency at Master Mode: 64fs Input Master Clock Select at PLL Mode: 11.2896MHz MCKO: Enable Sampling Frequency: 44.1kHz Power Supply (1) Power Supply & PDN pin = “L” Æ “H” (1) PDN pin (2) (3) (2)Addr:03H, Data:02H Addr:01H, Data:F4H PMVCM bit (Addr:00H, D0) (4) MCKO bit (Addr:02H, D2) (3)Addr:00H, Data:01H PMPLL bit (Addr:02H, D0) (5) MCKI pin (4)Addr:02H, Data:25H Input 40msec(max) (7) MCKO pin MCKO output start Output (6) (8) BICK pin LRCK pin Input BICK and LRCK input start Figure 110. Clock Set Up Sequence (2) <Example> (1) After Power Up, PDN pin = “L” Æ “H”. “L” time of 150ns or more is needed to reset the AK4671. The AK4671 should be operated as the recommended power-up/down sequence shown in “System Design (Grounding and Power Supply Decoupling)” to avoid pop noise at the receiver output, headphone output and lineout output. (2) DIF1-0, PLL3-0 and FS3-0 bits should be set during this period. (3) Power Up VCOM: PMVCM bit = “0” Æ “1” VCOM should first be powered up before the other block operates. (4) Enable MCKO output: MCKO bit = “1” (5) PLL starts after that the PMPLL bit changes from “0” to “1” and PLL reference clock (MCKI pin) is supplied. PLL lock time is 40ms(max.). (6) The normal clock is output from MCKO during this period. (7) The invalid frequency is output from MCKO after PLL is locked. (8) BICK and LRCK clocks should be synchronized with MCKO clock. MS0666-E-02 2010/06 - 148 - [AK4671] 3. PLL Slave Mode (LRCK or BICK pin) Example: Power Supply Audio I/F Format : MSB justified (ADC & DAC) PLL Reference clock: BICK BICK frequency: 64fs Sampling Frequency: 44.1kHz (1) PDN pin (2) 4fs (1)ofPower Supply & PDN pin = “L” Æ “H” (3) PMVCM bit (Addr:00H, D0) PMPLL bit (2) Addr:03H, Data:02H Addr:01H, Data:83H (Addr:02H, D0) LRCK pin BICK pin Input (3) Addr:00H, Data:01H (4) Internal Clock (5) (4) Addr:02H, Data:01H Figure 111. Clock Set Up Sequence (3) <Example> (1) After Power Up, PDN pin = “L” Æ “H”. “L” time of 150ns or more is needed to reset the AK4671. The AK4671 should be operated as the recommended power-up/down sequence shown in “System Design (Grounding and Power Supply Decoupling)” to avoid pop noise at the receiver output, headphone output and lineout output. (2) DIF1-0, FS3-2 and PLL3-0 bits should be set during this period. (3) Power Up VCOM: PMVCM bit = “0” Æ “1” VCOM should first be powered up before the other block operates. (4) PLL starts after the PMPLL bit changes from “0” to “1” and PLL reference clock (LRCK or BICK pin) is supplied. PLL lock time is 160ms(max.) when LRCK is a PLL reference clock. And PLL lock time is 2ms(max.) when BICK is a PLL reference clock. (5) Normal operation stats after that the PLL is locked. MS0666-E-02 2010/06 - 149 - [AK4671] 4. EXT Slave Mode Example: Audio I/F Format: MSB justified (ADC and DAC) Input MCKI frequency: 256fs Sampling Frequency: 44.1kHz MCKO: Disable Power Supply (1) Power Supply & PDN pin = “L” Æ “H” (1) PDN pin (2) (2) Addr:03H, Data:02H Addr:01H, Data:00H (3) PMVCM bit (Addr:00H, D0) (4) MCKI pin Input (3) Addr:00H, Data:01H (4) LRCK pin BICK pin Input MCKI, BICK and LRCK input Figure 112. Clock Set Up Sequence (4) <Example> (1) After Power Up, PDN pin = “L” Æ “H”. “L” time of 150ns or more is needed to reset the AK4671. The AK4671 should be operated as the recommended power-up/down sequence shown in “System Design (Grounding and Power Supply Decoupling)” to avoid pop noise at the receiver output, headphone output and lineout output. (2) DIF1-0 and FS1-0 bits should be set during this period. (3) Power Up VCOM: PMVCM bit = “0” Æ “1” VCOM should first be powered up before the other block operates. (4) Normal operation starts after the MCKI, LRCK and BICK are supplied. MS0666-E-02 2010/06 - 150 - [AK4671] 5. EXT Master Mode Example: Audio I/F Format: MSB justified (ADC and DAC) Input MCKI frequency: 256fs Sampling Frequency: 44.1kHz MCKO: Disable (1) Power Supply & PDN pin = “L” Æ “H” Power Supply (1) PDN pin (2) MCKI input (4) PMVCM bit (Addr:00H, D0) (3) Addr:03H, Data:02H Addr:01H, Data:00H Addr:02H, Data:02H (2) MCKI pin Input (3) M/S bit BICK and LRCK output (Addr:02H, D1) LRCK pin BICK pin Output (4) Addr:00H, Data:01H Figure 113. Clock Set Up Sequence (5) <Example> (1) After Power Up, PDN pin = “L” Æ “H”. “L” time of 150ns or more is needed to reset the AK4671. The AK4671 should be operated as the recommended power-up/down sequence shown in “System Design (Grounding and Power Supply Decoupling)” to avoid pop noise at the receiver output, headphone output and lineout output. (2) MCKI should be input. (3) After DIF1-0 and FS2-0 bits are set, M/S bit should be set to “1”. Then LRCK and BICK are output. (4) Power Up VCOM: PMVCM bit = “0” Æ “1” VCOM should first be powered up before the other block operates. MS0666-E-02 2010/06 - 151 - [AK4671] ■ MIC Input Recording (Stereo) Example: FS3-0 bits 0000 (Addr:01H, D7-4) PLL Master Mode Audio I/F Format: MSB justified (ADC & DAC) Sampling Frequency: 44.1kHz Pre MIC AMP: +15dB MIC Power: On ALC setting: Refer to Table 62 ALC: Enable 1111 (1) MIC Control 55H (Addr:05H, D7-0) AAH (2) ALC Control 1 (1) Addr:01H, Data:F4H 00H (Addr:16H) 05H (2) Addr:05H, Data: AAH (3) ALC Control 2 E1H (Addr:14H) E1H (3) Addr:16H, Data:05H (4) ALC Control 3 15H (Addr:17H) 01H (4) Addr:14H, Data:E1H (5) ALC Control 4 02H (Addr:18H) 03H 02H ALC State (5) Addr:17H, Data:01H (9) (6) ALC Disable ALC Enable ALC Disable (6) Addr:18H, Data:03H (7) Addr:00H, Data:3FH PMMP bit (Addr:00H, D1) Recording PMMICL/R bits PMADL/R bits 1059 / fs (Addr:00H, D5-2) ADC Internal State (8) (7) Power Down (8) Addr:00H, Data:01H Initialize Normal State Power Down (9) Addr:18H, Data:02H Figure 114. Stereo MIC Input Sequence (MIC Recording: LIN1/RIN1 → MICL/R → ADCL/R → ALC → Audio I/F → SDTO) <Example> This sequence is an example of ALC setting at fs=44.1kHz. If the parameter of the ALC is changed, please refer to “Figure 62”. At first, clocks should be supplied according to “Clock Set Up” sequence. (1) Set up a sampling frequency (FS3-0 bits). When the AK4671 is PLL mode, MIC and ADC should be powered-up in consideration of PLL lock time after a sampling frequency is changed. (2) Set up Gain for MIC-Amp (Addr: 05H) (3) Set up Timer Select for ALC (Addr: 16H) (4) Set up REF value for ALC (Addr: 14H) (5) Set up LMTH1-0, RGAIN1-0 and LMAT1-0 bits (Addr: 17H) (6) Set up ALC bit (Addr: 18H) (7) Power Up MIC and ADC: PMMP = PMMICL = PMMICR = PMADL = PMADR bits = “0” → “1” The initialization cycle time of ADC is 1059/fs=24ms@fs=44.1kHz. After the ALC bit is set to “1” and ADC block is powered-up, the ALC operation starts from IVOL default value (0dB). The time of offset voltage going to “0” after the ADC initialization cycle depends on both the time of analog input pin going to the common voltage and the time constant of the offset cancel digital HPF. This time can be shorter by using the following sequence: At first, PMVCM and PMMP bits should set to “1”. Then, the ADC should be powered-up. The wait time to power-up the ADC should be longer than 4 times of the time constant that is determined by the AC coupling capacitor at analog input pin and the internal input resistance. (8) Power Down MIC and ADC: PMMP = PMMICL = PMMICR = PMADL = PMADR bits = “1” → “0” When the registers for the ALC operation are not changed, ALC bit may be keeping “1”. The ALC operation is disabled because the ADC block is powered-down. If the registers for the ALC operation are also changed when the sampling frequency is changed, it should be done after the AK4671 goes to the manual mode (ALC bit = “0”) or ADC block is powered-down (PMADL = PMADR bits = “0”). IVOL gain is not reset when PMADL = PMADR bits = “0”, and then IVOL operation starts from the setting value when PMADL or PMADR bit is changed to “1”. (9) ALC Disable: ALC bit = “1” → “0” MS0666-E-02 2010/06 - 152 - [AK4671] ■ Headphone-Amp Output FS3-0 bits (Addr:01H, D7-4) 0000 1111 E x a m p le : (1) HPG3-0 bits (Addr:08H, D7-4) 1011 P L L M a s ter M o d e A u d i o I/F F o r m a t: M S B ju s tif i e d ( A D C & D A C ) S a m p l in g F r e q u e n c y : 4 4 . 1 k H z O V O L C b it = “ 1 ” ( d e f a u lt) D ig i t a l V o l u m e L e v e l : − 8 d B H P V o lu m e L e v e l: − 3 d B 5 b a n d E Q : E n a b le 1010 (2) ( 1 ) A d d r :0 1 H , D a t a :F 4 H DACHL/R bits (12) (Addr:0B&0CH, D0) EQ bit (Addr:18H, D3) 0 1 0 (3) ( 2 ) A d d r :0 8 H , D a t a A 5 H A d d r :0 B H & 0 C H , D a t a 0 1 H ( 3 ) A d d r :1 8 H , D a t a 0 A H (11) ( 4 ) A d d r :1 A H & 1 B H , D a ta 2 8 H OVL/R7-0 bits (Addr:1AH&1BH, D7-0) 18H 28H ( 5 ) A d d r :0 0 H , D a t a C 1 H (4) PMDAL/R bits (Addr:00H, D7-6) ( 6 ) A d d r :1 0 H , D a t a 6 3 H (5) (10) ( 7 ) A d d r :1 0 H , D a t a 6 7 H PML/RO2S bits P la y b a c k (Addr:10H, D6-5) (6) (9) PML/RO2 bits (Addr:10H, D1-0) MUTEN bit ( 8 ) A d d r :1 0 H , D a t a 6 3 H ( 9 ) A d d r :1 0 H , D a t a 0 0 H (7) (8) ( 1 0 ) A d d r : 0 0 H , D a ta 0 1 H (Addr:10H, D2) LOUT2 pin ROUT2 pin ( 1 1 ) A d d r : 1 8 H , D a ta 0 2 H Normal Output ( 1 2 ) A d d r : 0 B H & 0 C H , D a ta 0 0 H Figure 115. Headphone-Amp Output Sequence (Headphone Playback: SDTI → Audio I/F → EQ → DATT → DACL/R → LOUT2/ROUT2) <Example> At first, clocks should be supplied according to “Clock Set Up” sequence. (1) Set up a sampling frequency (FS3-0 bits). When the AK4671 is PLL mode, DAC and Headphone-Amp should be powered-up in consideration of PLL lock time after a sampling frequency is changed. (2) Set up the path of “SDTI Æ DAC Æ HP-Amp”: DACHL = DACHR bits = “0” → “1” Set up analog volume for HP-Amp (Addr: 08H, HPG3-0 bits) (3) Enable 5-band Equalizer: EQ bit = “0” Æ “1” (Boost amount is selected by Addr = 50H-52H.) (4) Set up the output digital volume (Addr: 1AH and 1BH) When OVOLC bit is “1” (default), OVL7-0 bits set the volume of both channels. After DAC is powered-up, the digital volume changes from default value (0dB) to the register setting value by the soft transition. (5) Power up DAC: PMDAL = PMDAR bits = “0” → “1” (6) Power up Headphone-Amp and MIX-Amp: PMLO2 = PMRO2 = PMLO2S = PMRO2S bits = “0” → “1” Output voltages of Headphone-Amp are still VSS1. (7) Rise up the common voltage of Headphone-Amp: MUTEN bit = “0” → “1” The rise time depends on AVDD and the capacitor value connected with the MUTET pin. When AVDD=3.3V and the capacitor value is 1.0μF, the time constant is τr = 250ms(max.). (8) Fall down the common voltage of Headphone-Amp: MUTEN bit = “1” → “0” The fall time depends on AVDD and the capacitor value connected with the MUTET pin. When AVDD=3.3V and the capacitor value is 1.0μF, the time constant is τ f = 250ms(max.). If the power supply is powered-off or Headphone-Amp is powered-down before the common voltage goes to VSS2, the pop noise occurs. It takes twice of τf that the common voltage goes to VSS2. (9) Power down Headphone-Amp and MIX-Amp: PMLO2 = PMRO2 = PMLO2S = PMRO2S bits = “1” → “0” (10) Power down DAC: PMDAL = PMDAR bits = “1” → “0” (11) Disable 5-band Equalizer: EQ bit = “1” Æ “0” (12) Disable the path of “DAC → Headphone-Amp”: DACHL = DACHR bits = “1” → “0” MS0666-E-02 2010/06 - 153 - [AK4671] ■ Stereo Line Output Example: FS3-0 bits (Addr:01H, D7-4) 0000 PLL, Master Mode Audio I/F Format: MSB justified (ADC & DAC) Sampling Frequency: 44.1kHz OVOLC bit = “1”(default) Digital Volume Level: −8dB LINEOUT Volume Level: −3dB 1111 (1) L3VL1-0 bits (Addr:11H, D7-D6) 10 01 (1) Addr:01H, Data:F4H (2) (2) Addr:11H, Data:40H Addr:1DH, Data:01H Addr:15H, Data:05H Addr:0DH&0EH, Data:01H PFSEL bis (Addr:1DH, D0) PFMXL/R1-0 bits 0000 0101 (Addr:15H, D3-0) (3) Addr:1AH&1BH, Data:28H DACSL/R bits (9) (Addr:0DH&0EH, D0) OVL/R7-0 bits (Addr:1AH&1BH, D7-0) 18H (4) Addr:11H, Data:44H (5) Addr:00H, Data:C1H Addr:11H, Data:47H 28H (3) (6) Addr:11H, Data:43H LOPS3 bit (Addr:11H, D2) (6) (4) (7) (10) PMDAL/R bits (7) Addr:11H, Data:47H (Addr:00H, D7-6) (8) (5) (8) Addr:00H, Data:01H Addr:11H, Data:44H PML/RO3 bits (Addr:11H, D1-0) LOUT3 pin ROUT3 pin Playback >300 ms >300 ms (9) Addr:0DH&0E, Data:00H Normal Output (10) Addr:11H, Data:40H Figure 116. Stereo Lineout Sequence (Speaker Playback: SDTI → Audio I/F → SVOLA → DATT → DACL/R → LOUT3/ROUT3 → External SPK-Amp) <Example> At first, clocks should be supplied according to “Clock Set Up” sequence. (1) Set up the sampling frequency (FS3-0 bits). When the AK4671 is PLL mode, DAC and Stereo Line-Amp should be powered-up in consideration of PLL lock time after the sampling frequency is changed. (2) Set up the path of “SDTI Æ DAC Æ Stereo Line-Amp”: PFSEL = “0” Æ “1”, PFMXL1-0 = PFMXR1-0 bits = “0000” Æ “0101”, DACSL = DACSR bits = “0” Æ “1” Set up analog volume for Stereo Line-Amp (Addr: 11H, L3VL1-0 bits) (3) Set up the output digital volume (Addr: 1AH and 1BH) When OVOLC bit is “1” (default), OVL7-0 bits set the volume of both channels. After DAC is powered-up, the digital volume changes from default value (0dB) to the register setting value by the soft transition. (4) Enter power-save mode of Stereo Line-Amp: LOPS3 bit = “0” Æ “1” (5) Power-up DAC and Stereo Line-Amp: PMDAL = PMDAR = PMLO3 = PMRO3 bits = “0” → “1” LOUT3 and ROUT3 pins rise up to VCOM voltage after PMLO3 and PMRO3 bits are changed to “1”. Rise time is 300ms(max.) at C=1μF and AVDD=3.3V. (6) Exit power-save mode of Stereo Line-Amp: LOPS3 bit = “1” Æ “0” LOPS3 bit should be set to “0” after LOUT3 and ROUT3 pins rise up. Stereo Line-Amp goes to normal operation by setting LOPS3 bit to “0”. (7) Enter power-save mode of Stereo Line-Amp: LOPS3 bit: “0” Æ “1” (8) Power-down DAC and Stereo Line-Amp: PMDAL = PMDAR = PMLO3 = PMRO3 bits = “1” → “0” LOUT3 and ROUT3 pins fall down to VSS1. Fall time is 300ms(max.) at C=1μF and AVDD=3.3V. (9) Disable the path of “DAC Æ Stereo Line-Amp”: DACSL = DACSR bits = “1” Æ “0” (10) Exit power-save mode of Stereo Line-Amp: LOPS3 bit = “1” Æ “0” LOPS3 bit should be set to “0” after LOUT3 and ROUT3 pins fall down. MS0666-E-02 2010/06 - 154 - [AK4671] ■ Stop of Clock Master clock can be stopped when ADC and DAC are not used. 1. PLL Master Mode Example: Audio I/F Format: MSB justified (ADC & DAC) BICK frequency at Master Mode: 64fs Input Master Clock Select at PLL Mode: 11.2896MHz Sampling Frequency: 44.1kHz (1) PMPLL bit (Addr:02H, D0) (1) MCKO bit "1" or "0" (1) Addr:02H, Data:02H (Addr:02H, D2) (2) External MCKI Input (2) Stop an external MCKI Figure 117. Clock Stopping Sequence (1) <Example> (1) Power down PLL: PMPLL bit = “1” → “0” Stop MCKO clock: MCKO bit = “1” → “0” (2) Stop an external MCKI clock. 2. PLL Slave (MCKI pin) Example (1) Audio I/F Format: MSB justified (ADC & DAC) PLL Reference clock: MCKI BICK frequency: 64fs Sampling Frequency: 44.1kHz PMPLL bit (Addr:02H, D0) (1) MCKO bit (1) Addr:02H, Data:00H (Addr:02H, D2) (2) External MCKI Input (2) Stop the external clocks Figure 118. Clock Stopping Sequence (2) <Example> (1) Power down PLL: PMPLL bit = “1” → “0” Stop MCKO output: MCKO bit = “1” → “0” (2) Stop the external master clock. 3. PLL Slave Mode (LRCK or BICK pin) Example Audio I/F Format: MSB justified (ADC & DAC) PLL Reference clock: BICK BICK frequency: 64fs Sampling Frequency: 44.1kHz (1) PMPLL bit (Addr:02H, D0) (2) External BICK Input (1) Addr:02H, Data:00H (2) External LRCK Input (2) Stop the external clocks Figure 119. Clock Stopping Sequence (3) <Example> (1) Power down PLL: PMPLL bit = “1” → “0” (2) Stop the external BICK and LRCK clocks MS0666-E-02 2010/06 - 155 - [AK4671] 4. EXT Slave Mode (1) External MCKI Input Example (1) External BICK Input External LRCK Input Audio I/F Format:MSB justified(ADC & DAC) Input MCKI frequency:1024fs Sampling Frequency:44.1kHz (1) (1) Stop the external clocks Figure 120. Clock Stopping Sequence (4) <Example> (1) Stop the external MCKI, BICK and LRCK clocks. 5. EXT Master Mode (1) External MCKI Input Example BICK Output "H" or "L" LRCK Output "H" or "L" Audio I/F Format:MSB justified(ADC & DAC) Input MCKI frequency:1024fs Sampling Frequency:44.1kHz (1) Stop the external MCKI Figure 121. Clock Stopping Sequence (5) <Example> (1) Stop MCKI clock. BICK and LRCK are fixed to “H” or “L”. ■ Power down Power supply current can be shut down (typ. 20μA) by stopping clocks and setting PMVCM bit = “0” after all blocks except for VCOM are powered-down. Power supply current can be also shut down (typ. 1μA) by stopping clocks and setting the PDN pin = “L”. When the PDN pin = “L”, the registers are initialized. MS0666-E-02 2010/06 - 156 - [AK4671] CONTROL SEQUENCE (PCM) ■ Clock Set up When ADC or DAC is powered-up, the clocks must be supplied. 1. PCM I/F A Slave Mode Example: PCM I/F A Format : Linear, Short Frame (ADC & DAC) PLLBT Reference clock: SYNCA SYNCA frequency: 1fs2 Sampling Frequency: 8kHz Power Supply 4fs (1)ofPower Supply & PDN pin = “L” Æ “H” (1) PDN pin (2) (3) PMVCM bit (2) Addr:02H, Data:C0H Addr:03H, Data:12H Addr:54H, Data:00H Addr:53H, Data:00H Addr:55H, Data:00H (Addr:00H, D0) PMPCM bit (Addr:53H, D2) SYNCA pin BICKA pin Input (3) Addr:00H, Data:01H (4) Internal Clock (5) (4) Addr:53H, Data:04H Figure 122. Clock Set Up Sequence (1) <Example> (1) After Power Up, PDN pin = “L” Æ “H”. “L” time of 150ns or more is needed to reset the AK4671. The AK4671 should be operated as the recommended power-up/down sequence shown in “System Design (Grounding and Power Supply Decoupling)” to avoid pop noise at the receiver output, headphone output and lineout output. (2) BTCLK, LP, SDOD, FMTA1-0, LAWA1-0, BCKPA, MSBSA, PLLBT3-0 bits should be set during this period. (3) Power Up VCOM: PMVCM bit = “0” Æ “1” VCOM should first be powered up before the other block operates. (4) PLLBT starts after the PMPCM bit changes from “0” to “1” and PLLBT reference clock (SYNCA or BICKA pin) is supplied. PLLBT lock time is 260ms(max.) when SYNCA is a PLLBT reference clock. And PLLBT lock time is 40ms(max.) when BICKA is a PLLBT reference clock. (5) Normal operation stats after that the PLLBT is locked. MS0666-E-02 2010/06 - 157 - [AK4671] 2. PCM I/F A Master Mode Example: Power Supply PCM I/F A Format : Linear, Short Frame (ADC & DAC) PLLBT Reference clock: SYNCB SYNCB frequency: 1fs2 Sampling Frequency: 8kHz (1) PDN pin (2) (3) 4fs (1)ofPower Supply & PDN pin = “L” Æ “H” PMVCM bit (Addr:00H, D0) PMPCM bit (2) Addr:02H, Data:C0H Addr:03H, Data:12H Addr:54H, Data:00H Addr:53H, Data:00H Addr:55H, Data:00H (Addr:53H, D2) SYNCB pin BICKB pin Input (4) Internal Clock (5) (3) Addr:00H, Data:01H (6) SYNCA pin BICKA pin Output (4) Addr:53H, Data:04H Figure 123. Clock Set Up Sequence (2) <Example> (1) After Power Up, PDN pin = “L” Æ “H”. “L” time of 150ns or more is needed to reset the AK4671. The AK4671 should be operated as the recommended power-up/down sequence shown in “System Design (Grounding and Power Supply Decoupling)” to avoid pop noise at the receiver output, headphone output and lineout output. (2) BTCLK, LP, SDOD, FMTA1-0, LAWA1-0, BCKPA, MSBSA, PLLBT3-0 bits should be set during this period. (3) Power Up VCOM: PMVCM bit = “0” Æ “1” VCOM should first be powered up before the other block operates. (4) PLLBT starts after the PMPCM bit changes from “0” to “1” and PLLBT reference clock (SYNCB or BICKB pin) is supplied. PLLBT lock time is 260ms(max.) when SYNCB is a PLLBT reference clock. And PLLBT lock time is 40ms(max.) when BICKB is a PLLBT reference clock. (5) Normal operation stats after that the PLLBT is locked. (6) The invalid frequency is output from SYNCA and BICKA after PLLBT is locked. MS0666-E-02 2010/06 - 158 - [AK4671] ■ MIC Input Phone Call (Mono) MIC Control 1 (Addr:04H, D7-0) 14H 00H Example: PCM I/F A: Slave Mode PCM I/F A Format: Linear, Short Frame (ADC & DAC) Sampling Frequency: 8kHz Pre MIC AMP: +15dB MIC Power: On Digital Volume Level: +17.25dB ADC HPF: Enable 5 band EQ: Enable (1) MIC Control 2 (Addr:05H, D3-0) HPFAD bit (Addr:1DH, D1) 0101 1010 0 1 (2) HPF bit (Addr:1DH, D4) (1) Addr:04H, Data:14H Addr:05H, Data: AAH (8) 0 1 00 01 (2) Addr:1DH, Data:12H PFMXL1-0 bits (Addr:15H, D1-0) (3) Addr:15H, Data:01H (3) EQ bit (Addr:18H, D3) 0 0 1 IVL7-0 bits (Addr:12H, D7-0) (4) Addr:18H, Data:0AH (9) (4) 91H (5) Addr:12H, Data:BFH BFH (5) (6) Addr:00H, Data:17H Addr:53H, Data:05H PMMP bit (Addr:00H, D1) Phone Call PMMICL bit PMADL bit (Addr:00H, D4&D2) (7) Addr:00H, Data:01H Addr:53H, Data:04H PMSRA bit (Addr:53H, D0) 1059 / fs (7) (6) ADC Internal State Power Down Initialize Normal State (8) Addr:1DH, Data:00H Power Down (9) Addr:18H, Data:02H Figure 124. Mono MIC Input Sequence (Phone Call Tx: IN1+/IN1- → MICL → ADCL → HPF→ IVL → EQ → SRC-A → PCM I/F A → SDTOA) <Example> At first, clocks should be supplied according to “Clock Set Up” sequence. Also, MIC, ADC and SRC-A should be powered-up in consideration of PLLBT lock time. (1) Set up Signal Select for MIC Input (Addr: 04H) and Gain for MIC-Amp (Addr: 05H) (2) Enable ADC High Pass Filter: HPFAD bit = “0” Æ “1” Enable the coefficient of High Pass Filter: HPF bit = “0” Æ “1” (Coefficient of wind-noise reduction filter is set by Addr = 28H- 2BH.) This sequence is an example of HPF setting at fs2=8kHz. The coefficient should be set when HPFAD = HPF bits = “0” or PMADL = PMADR = PMDAL = PMDAR bits = “0”. (3) Set up the path of “ADC Æ 5-band EQ”: PFMXL1-0 bits = “00” Æ “01” (4) Enable 5-band Equalizer: EQ bit = “0” Æ “1” (Boost amount is selected by Addr = 50H-52H.) (5) Set up input volume (Addr: 12H) When PMADL = PMADR bits = “0”, IVL7-0 and IVR7-0 bits should be set to “91H”(0dB). (6) Power Up MIC, ADC and SRC-A: PMMP = PMMICL = PMADL = PMSRA bits = “0” → “1” The initialization cycle time of ADC is 1059/fs2=132ms@fs2=8kHz. The time of offset voltage going to “0” after the ADC initialization cycle depends on both the time of analog input pin going to the common voltage and the time constant of the offset cancel digital HPF. This time can be shorter by using the following sequence: At first, PMVCM and PMMP bits should set to “1”. Then, the ADC should be powered-up. The wait time to power-up the ADC should be longer than 4 times of the time constant that is determined by the AC coupling capacitor at analog input pin and the internal input resistance. (7) Power Down MIC, ADC and SRC-A: PMMP = PMMICL = PMADL = PMSRA bits = “1” → “0” IVOL gain is not reset when PMADL = PMADR bits = “0”, and then IVOL operation starts from the setting value when PMADL or PMADR bit is changed to “1”. (8) Disable ADC High Pass Filter : HPFAD bit = “1” Æ “0” Disable the coefficient of High Pass Filter: HPF bit = “1” Æ “0” (9) Disable 5-band Equalizer: EQ bit = “1” Æ “0” MS0666-E-02 2010/06 - 159 - [AK4671] ■ Receiver-Amp Output Example: L1VL2-0 bits (Addr:08H, D2-0) 101 PCM I/F A: Slave Mode PCM I/F A Format : Linear, Short Frame (ADC & DAC) Sampling Frequency: 8kHz Digital Volume Level: −8dB RCV Volume Level: 0dB 5 band EQ: Enable 100 (1) SRMXR1-0 bits (Addr:15H, D7-6) 00 (1) Addr:08H, Data:B4H Addr:15H, Data:40H Addr:0AH, Data:01H Addr:0FH, Data:20H 01 DACR bit (10) (Addr:0AH, D0) (2) Addr:18H, Data:0AH RCV bit (Addr:0FH, D5) EQ bit (Addr:18H, D3) OVR7-0 bits (Addr:1BH, D7-0) (3) Addr:1BH, Data:28H 0 1 0 (2) (4) Addr:0FH, Data:24H (9) 18H (5) Addr:53H, Data:06H Addr:00H, Data:81H Addr:0FH, Data:27H 28H (3) (6) Addr:0FH, Data:23H LOPS1 bit (Addr:0FH, D2) (6) (4) (7) (11) PMSRB bit (7) Addr:0FH, Data:27H (Addr:53H, D1) PMDAR bit (Addr:00H, D7) (5) (8) PML/RO1 bits (Addr:0FH, D1-0) Phone Call (8) Addr:53H, Data:04H Addr:00H, Data:01H Addr:0FH, Data:24H (9) Addr:18H, Data:02H >1 ms (10) Addr:0AH, Data:00H RCP pin RCN pin Normal Output (11) Addr:0FH, Data:20H Figure 125. Receiver-Amp Output Sequence (Phone Call Rx: SDTIA → PCM I/F A → SRC-B → EQ → DATT → DACR → RCP/RCN) <Example> At first, clocks should be supplied according to “Clock Set Up” sequence. Also, SRC-B, DAC and Receiver-Amp should be powered-up in consideration of PLLBT lock time. (1) Set up the path of “SDTIA Æ DAC Æ Receiver-Amp”: SRMXR1-0 bits = “00” Æ “01”, DACR bit = “0” Æ “1”, RCV bit = “0” Æ “1” Set up analog volume for Receiver-Amp (Addr: 08H, L1VL2-0 bits) (2) Enable 5-band Equalizer: EQ bit = “0” Æ “1” (Boost amount is selected by Addr = 50H-52H.) (3) Set up the output digital volume (Addr: 1BH) When OVOLC bit is “1” (default), OVL7-0 bits set the volume of both channels. After DAC is powered-up, the digital volume changes from default value (0dB) to the register setting value by the soft transition. (4) Enter power-save mode of Receiver-Amp: LOPS1 bit = “0” Æ “1” (5) Power-up SRC-B, DAC and Receiver-Amp: PMSRB bit = PMDAR = PMLO1 = PMRO1 bits = “0” → “1” RCN pin rise up to VCOM voltage after PMLO1 and PMRO1 bits are changed to “1”. (6) Exit power-save mode of Receiver-Amp: LOPS1 bit = “1” Æ “0” LOPS1 bit should be set to “0” after PCN pin rise up. Receiver-Amp goes to normal operation by setting LOPS1 bit to “0”. (7) Enter power-save mode of Receiver-Amp: LOPS1 bit: “0” Æ “1” (8) Power-down SRC-B, DAC and Receiver-Amp: PMSRB bit = PMDAR = PMLO1 = PMRO1 bits = “1” → “0” Receiver-Amp becomes to power-down mode. (9) Disable 5-band Equalizer: EQ bit = “1” Æ “0” (10) Disable the path of “DAC Æ Receiver-Amp”: DACR bit = “1” Æ “0” (11) Exit power-save mode of Receiver-Amp: LOPS1 bit = “1” Æ “0” LOPS1 bit should be set to “0” after Receiver-Amp power-down. MS0666-E-02 2010/06 - 160 - [AK4671] ■ Mono Line Output Example: L3VL1-0 bits (Addr:11H, D7-D6) 10 PCM I/F A: Slave Mode PCM I/F A Format : Linear, Short Frame (ADC & DAC) Sampling Frequency: 8kHz Digital Volume Level: −8dB LINEOUT Volume Level: −3dB 5 band EQ: Enable 01 (1) Addr:11H, Data:40H Addr:15H, Data:40H Addr:0EH, Data:01H (1) SRMXR1-0 bits (Addr:15H, D7-6) 00 01 (2) Addr:18H, Data:0AH DACSR bit (10) (Addr:0EH, D0) EQ bit (Addr:18H, D3) OVR7-0 bits (Addr:1BH, D7-0) (3) Addr:1BH, Data:28H 0 1 0 (2) (4) Addr:11H, Data:44H (9) 18H (5) Addr:53H, Data:06H Addr:00H, Data:81H Addr:11H, Data:46H 28H (3) (6) Addr:11H, Data:42H LOPS3 bit (Addr:11H, D2) (4) (6) (7) (11) PMSRB bit (7) Addr:11H, Data:46H (Addr:53H, D1) PMDAR bit (Addr:00H, D7) (8) (5) PMRO3 bit (Addr:11H, D1) (8) Addr:53H, Data:04H Addr:00H, Data:01H Addr:11H, Data:44H (9) Addr:18H, Data:02H >300 ms >300 ms ROUT3 pin Playback (10) Addr:0EH, Data:00H Normal Output (11) Addr:11H, Data:40H Figure 126. Mono Lineout Sequence (Speaker Playback: SDTIA → PCM I/F A → SRC-B → EQ → DATT → DACR → ROUT3 → External SPK-Amp) <Example> At first, clocks should be supplied according to “Clock Set Up” sequence. Also, SRC-B, DAC and Mono Line-Amp should be powered-up in consideration of PLLBT lock time. (1) Set up the path of “SDTIA Æ DAC Æ Mono Line-Amp”: SRMXR1-0 bits = “00” Æ “01”, DACSR bit = “0” Æ “1” Set up analog volume for Mono Line-Amp (Addr: 11H, L3VL1-0 bits) (2) Enable 5-band Equalizer: EQ bit = “0” Æ “1” (Boost amount is selected by Addr = 50H-52H.) (3) Set up the output digital volume (Addr: 1BH) When OVOLC bit is “1” (default), OVL7-0 bits set the volume of both channels. After DAC is powered-up, the digital volume changes from default value (0dB) to the register setting value by the soft transition. (4) Enter power-save mode of Mono Line-Amp: LOPS3 bit = “0” Æ “1” (5) Power-up SRC-B, DAC and Mono Line-Amp: PMSRB = PMDAR = PMRO3 bits = “0” → “1” ROUT3 pin rise up to VCOM voltage after PMRO3 bit is changed to “1”. Rise time is 300ms(max.) at C=1μF and AVDD=3.3V. (6) Exit power-save mode of Mono Line-Amp: LOPS3 bit = “1” Æ “0” LOPS3 bit should be set to “0” after ROUT3 pin rise up. Mono Line-Amp goes to normal operation by setting LOPS3 bit to “0”. (7) Enter power-save mode of Mono Line-Amp: LOPS3 bit: “0” Æ “1” (8) Power-down SRC-B, DAC and Mono Line-Amp: PMSRB = PMDAR = PMRO3 bits = “1” → “0” ROUT3 pin fall down to VSS1. Fall time is 300ms(max.) at C=1μF and AVDD=3.3V. (9) Disable 5-band Equalizer: EQ bit = “1” Æ “0” (10) Disable the path of “DAC Æ Mono Line-Amp”: DACSR bit = “1” Æ “0” (11) Exit power-save mode of Mono Line-Amp: LOPS3 bit = “1” Æ “0” LOPS3 bit should be set to “0” after ROUT3 pin fall down. MS0666-E-02 2010/06 - 161 - [AK4671] ■ Stop of Clock Master clock can be stopped when ADC and DAC are not used. 1. PCM I/F A Slave Mode Example PCM I/F A Format : Linear, Short Frame (ADC & DAC) PLLBT Reference clock: SYNCA SYNCA frequency: 1fs2 Sampling Frequency: 8kHz (1) PMPCM bit (Addr:53H, D2) (2) External SYNCA Input (1) Addr:53H, Data:00H (2) External BICKA Input (2) Stop the external clocks Figure 127. Clock Stopping Sequence (1) <Example> (1) Power down PLLBT: PMPCM bit = “1” → “0” (2) Stop the external SYNCA and BICKA clocks 2. PCM I/F A Master Mode (1 ) PMPCM bit (Ad d r:5 3 H , D 2 ) Example (2 ) External SYNCB PCM I/F A Format : Linear, Short Frame (ADC & DAC) PLLBT Reference clock: SYNCB SYNCB frequency: 1fs2 Sampling Frequency: 8kHz Input (2 ) External BICKB Input SYNCA Output "H" or "L" BICKA Output "H" or "L" (1) Addr:53H, Data:00H (2) Stop the external clocks Figure 128. Clock Stopping Sequence (2) < Example > (1) Power down PLLBT: PMPCM bit = “1” → “0” (2) Stop the external SYNCB and BICKB clocks. SYNCA and BICKA are fixed to “H” or “L”. ■ Power down Power supply current can be shut down (typ. 20μA) by stopping clocks and setting PMVCM bit = “0” after all blocks except for VCOM are powered-down. Power supply current can be also shut down (typ. 1μA) by stopping clocks and setting the PDN pin = “L”. When the PDN pin = “L”, the registers are initialized. MS0666-E-02 2010/06 - 162 - [AK4671] PACKAGE 5.0 ± 0.1 φ 0.05 A 57 - φ 0.3 ± 0.05 M S AB 9 8 7 65 4 3 2 1 4.0 5.0 ± 0.1 A B C D E B F G H J 0.5 0.5 1.0MAX 0.25 ± 0.05 S 0.08 S ■ Material & Lead finish Package molding compound: Interposer material: Solder ball material: Epoxy, Halogen (bromine and chlorine) free BT resin SnAgCu MS0666-E-02 2010/06 - 163 - [AK4671] MARKING 4671 XXXX 1 A XXXX: Date code (4 digit) Pin #A1 indication REVISION HISTORY Date (YY/MM/DD) 07/10/15 08/12/04 Revision 00 01 10/06/04 02 Reason First Edition Specification Change Error Correct Page Contents 163 Package molding compound was changed. 6 Unused pin: BICKA, SYNCA, BICKB, SYNCB “Connect to VSS4” Î “When all pins are unused, these pins should be connected to VSS4 and PMPCM bit must be always “0”. When either PCM I/F A(BICKA/ SYNCA) or PCM I/F B(BICKB/SYNCB) is used, unused pins are connected to pull-down/up resistor of about 100kΩ.” Table 86: MSBSA, BCKPA=“00” [MSB of SDTOA is output by the falling edge (“↓”) of SYNCA.] Î [MSB of SDTOA is output by next rising edge (“↑”) of the falling edge (“↓”) of BICKA after the rising edge (“↑”) of SYNCA.] MSBSA, BCKPA=“01” [MSB of SDTOA is output by the falling edge (“↓”) of SYNCA.] Î [MSB of SDTOA is output by next falling edge (“↓”) of the rising edge (“↑”) of BICKA after the rising edge (“↑”) of SYNCA.] MSBSA, BCKPA=“10” [MSB of SDTOA is output by the rising edge (“↑”) of the first BICKA after the rising edge(“↑”) of SYNCA.] Î [MSB of SDTOA is output by the 2nd rising edge (“↑”) of BICKA after the rising edge (“↑”) of SYNCA.] 104 MS0666-E-02 2010/06 - 164 - [AK4671] Date (YY/MM/DD) 10/06/04 Revision 02 Reason Page Error Correct 104 105 ~ 107 Contents Table 86: MSBSA, BCKPA=“11” [MSB of SDTOA is output by the falling edge (“↓”) of the first BICKA after the rising edge(“↑”) of SYNCA.] Î [MSB of SDTOA is output by the 2nd falling edge (“↓”) of BICKA after the rising edge (“↑”) of SYNCA.] Table 87: MSBSB, BCKPB=“00” [MSB of SDTOB is output by the falling edge (“↓”) of SYNCB.] Î [MSB of SDTOB is output by next rising edge (“↑”) of the falling edge (“↓”) of BICKB after the rising edge (“↑”) of SYNCB.] MSBSB, BCKPB=“01” [MSB of SDTOB is output by the falling edge (“↓”) of SYNCB.] Î [MSB of SDTOB is output by next falling edge (“↓”) of the rising edge (“↑”) of BICKB after the rising edge (“↑”) of SYNCB.] MSBSB, BCKPB=“10” [MSB of SDTOB is output by the rising edge (“↑”) of the first BICKB after the rising edge(“↑”) of SYNCB.] Î [MSB of SDTOB is output by the 2nd rising edge (“↑”) of BICKB after the rising edge (“↑”) of SYNCB.] MSBSB, BCKPB=“11” [MSB of SDTOB is output by the falling edge (“↓”) of the first BICKB after the rising edge(“↑”) of SYNCB.] Î [MSB of SDTOB is output by the 2nd falling edge (“↓”) of BICKB after the rising edge (“↑”) of SYNCB.] Figure 84-91: Arrow of SYNCA and BICKA was added. MS0666-E-02 2010/06 - 165 - [AK4671] IMPORTANT NOTICE z These products and their specifications are subject to change without notice. When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei Microdevices Corporation (AKM) or authorized distributors as to current status of the products. z Descriptions of external circuits, application circuits, software and other related information contained in this document are provided only to illustrate the operation and application examples of the semiconductor products. You are fully responsible for the incorporation of these external circuits, application circuits, software and other related information in the design of your equipments. AKM assumes no responsibility for any losses incurred by you or third parties arising from the use of these information herein. AKM assumes no liability for infringement of any patent, intellectual property, or other rights in the application or use of such information contained herein. z Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials. z AKM products are neither intended nor authorized for use as critical componentsNote1) in any safety, life support, or other hazard related device or systemNote2), and AKM assumes no responsibility for such use, except for the use approved with the express written consent by Representative Director of AKM. As used here: Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability. Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property. z It is the responsibility of the buyer or distributor of AKM products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification. MS0666-E-02 2010/06 - 166 -