ELPIDA HM5316123BF-10

ct
du
ro
LP
EO
HM5316123B Series
Preliminary
131,072-word × 16-bit Multiport CMOS Video RAM
E0160H10 (Ver. 1.0)
(Previous ADE-203-266 (Z))
Jun. 14, 2001
The HM5316123B is a 2-Mbit multiport video
RAM equipped with a 128-kword × 16-bit dynamic
RAM and a 256-word × 16-bit SAM (full-sized
SAM). Its RAM and SAM operate independently
and asynchronously. The HM5316123B has
compatibility with the HM5316123.
Features
• Multiport organization
Asynchronous and simultaneous operation of
RAM and SAM capability
RAM: 128-kword × 16-bit
SAM: 256-word × 16-bit
• Access time
RAM: 70 ns/80 ns/100 ns (max)
SAM: 20 ns/23 ns/25 ns (max)
• Cycle time
RAM: 130 ns/150 ns/180 ns (min)
SAM: 25 ns/28 ns/30 ns (min)
• Low power
Active
RAM: 660 mW/605 mW/550 mW
SAM: 468 mW/413 mW/385 mW
Standby 38.5mW (max)
• Masked-write-transfer cycle capability
• Stopping column feature capability
• Persistent mask capability
• Byte write control capability: 2WE control
• Fast page mode capability
Cycle time: 45ns/50ns/55ns
Power RAM: 688 mW/660 mW/633 mW
• Mask write mode capability
• Bidirectional data transfer cycle between RAM
and SAM capability
• Split transfer cycle capability
• Block write mode capability
• Flash write mode capability
• 3 variations of refresh (8 ms/512 cycles)
–RAS-only refresh
–CAS-before-RAS refresh
–Hidden refresh
• TTL compatible
Ordering Information
Type No.
Access time Package
———————————————————————
HM5316123BF-7
70ns
64-pin plastic
——————————————
shrink SOP
HM5316123BF-8
80ns
(FP-64DS)
——————————————
HM5316123BF-10
100ns
———————————————————————
Preliminary: This document contains information on a new
product. Specifications and information contained herein
are subject to change without notice.
Elpida Memory, Inc. is a joint venture DRAM company of NEC corporation and Hitachi, Ltd.
ct
du
ro
LP
EO
HM5316123B Series
Pin Arrangement
Pin Description
HM5316123BF Series
VCC
DT/DE
VSS
SI/O0
I/O0
SI/O1
I/O1
VCC
SI/O2
I/O2
SI/O3
I/O3
VSS
SI/O4
I/O4
SI/O5
I/O5
VCC
SI/O6
I/O6
SI/O7
I/O7
VSS
WEL
WEU
RAS
A8
A7
A6
A5
A4
VCC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
SC
SE
VSS
SI/O15
I/O15
SI/O14
I/O14
VCC
SI/O13
I/O13
SI/O12
I/O12
VSS
SI/O11
I/O11
SI/O10
I/O10
VCC
SI/O9
I/O9
SI/O8
I/O8
VSS
DSF1
DSF2
CAS
QSF
A0
A1
A2
A3
VSS
Symbol
Function
——————————————————————–
A0 – A8
Address inputs
——————————————————————–
I/O0 – I/O15
RAM port data inputs/outputs
——————————————————————–
SI/O0 – SI/O15
SAM port data inputs/outputs
——————————————————————–
RAS
Row address strobe
——————————————————————–
CAS
Column address strobe
——————————————————————–
WEU
Upper byte write enable
——————————————————————–
WEL
Lower byte write enable
——————————————————————–
DT/OE
Date transfer/output enable
——————————————————————–
SC
Serial clock
——————————————————————–
SE
SAM port enable
——————————————————————–
DSF1, DSF2
Special function input flag
——————————————————————–
QSF
Special function output flag
——————————————————————–
VCC
Power Supply
——————————————————————–
VSS
Ground
——————————————————————–
(Top View)
2
Preliminary Data Sheet E0160H10
ct
du
ro
LP
EO
HM5316123B Series
Block Diagram
A0 – A8
A0 – A8
Row Address
Buffer
Refresh
Counter
0
Data
Register
Serial Output
Buffer
Color
Resister
Serial Input
Buffer
SI/O0 – SI/O15
Input
Buffer
Output
Buffer
Timing Generator
Preliminary Data Sheet E0160H10
WEU/WEL
DSF1/DSF2
SC
SE
I/O0 – I/O15
RAS
CAS
DT/OE
Mask
Register
Input Data
Control
Address Mask
Register
Transfer
Gate
511
Transfer
Gate
Data
Register
Sense Amplifier & I/O Bus
Column Decoder
Block Write Flash Write
Control
Control
0
255 Memory Array
QSF
SAM Column Decoder
Serial Address
Counter
Row Decoder
SAM I/O Bus
A0 – A7
Column Address
Buffer
3
ct
du
ro
LP
EO
HM5316123B Series
Pin Functions
RAS (input pin): RAS is a basic RAM signal. It is
active in low level and standby in high level. Row
address and signals as shown in table 1 are input at
the falling edge of RAS. The input level of these
signals determine the operation cycle of the
HM5316123B.
Table 1. Operation Cycles of the HM5316123B
RAS
CAS
Address
I/On Input
Mnemonic ———————————————— ——————— —————— ——————————
Code
CAS DT/OE WE DSF1 DSF2
DSF1 DSF2
RAS CAS
RAS
CAS/WE
———————————————————————————————————————————————–
CBRS
0
—
0
1
0
—
0
Stop —
—
—
———————————————————————————————————————————————–
CBRR
0
—
1
0
0
—
0
—
—
—
—
———————————————————————————————————————————————–
CBRN
0
—
1
1
0
—
0
—
—
—
—
———————————————————————————————————————————————–
MWT
1
0
0
0
0
—
0
Row TAP
WN
—
———————————————————————————————————————————————–
MSWT
1
0
0
1
0
—
0
Row TAP
WM
—
———————————————————————————————————————————————–
RT
1
0
1
0
0
—
0
Row TAP
—
—
———————————————————————————————————————————————–
SRT
1
0
1
1
0
—
0
Row TAP
—
—
———————————————————————————————————————————————–
RWM
1
1
0
0
0
0
0
Row Column WM
Input data
———————————————————————————————————————————————–
Register
Mnemonic Write
Pers
———————– No.of
Code
Mask
W.M.
WM
Color
Bndry
Function
———————————————————————————————————————————————–
CBRS
—
—
—
—
Set
CBR refresh with stop resister set
———————————————————————————————————————————————–
CBRR
—
Reset
Reset
—
Reset
CBR refresh with register reset
———————————————————————————————————————————————–
CBRN
—
—
—
—
—
CBR refresh (no reset)
———————————————————————————————————————————————–
MWT
Yes
No
Load/use —
—
Mask write transfer (new/old mask)
Yes
Use
———————————————————————————————————————————————–
MSWT
Yes
No
Load/use —
Use
Masked split write transfer (new/old mask)
Yes
Use
———————————————————————————————————————————————–
RT
—
—
—
—
—
Read transfer
———————————————————————————————————————————————–
SRT
—
—
—
—
Use
Split read transfer
———————————————————————————————————————————————–
RWM
YES
No
Load/use —
—
Road/write (new/old mask)
Yes
Use
———————————————————————————————————————————————–
4
Preliminary Data Sheet E0160H10
ct
du
ro
LP
EO
HM5316123B Series
Table 1. Operation Cycles of the HM5316123B (cont)
Mnemonic RAS
CAS
Address
I/On Input
————————————————
—————— ——————
—————————–
Code
CAS DT/OE WE DSF1 DSF2
DSF1 DSF2 RAS CAS
RAS
CAS/WE
———————————————————————————————————————————————–
BWM
1
1
0
0
0
1
0
Row Column WM
Column
Mask
———————————————————————————————————————————————–
RW (No)
1
1
1
0
0
0
0
Row Column —
Input data
———————————————————————————————————————————————–
BW (No)
1
1
1
0
0
1
0
Row Column —
Column
Mask
———————————————————————————————————————————————–
FWM
1
1
0
1
0
—
0
Row —
WM
—
———————————————————————————————————————————————–
LMR and
1
1
1
1
0
0
0
(Row) —
—
Mask
Old Mask Set
Data
———————————————————————————————————————————————–
LCR
1
1
1
1
0
1
0
(Row) —
—
Color
———————————————————————————————————————————————–
Option
0
0
0
0
0
—
0
Mode —
Data
—
———————————————————————————————————————————————–
Register
Mnemonic Write
Pers
———————
No.of
Code
Mask
W.M.
WM
Color
Bndry
Function
———————————————————————————————————————————————–
BWM
Yes
No
Load/use
Block write (new/old mask)
Yes
Use
Use
—
———————————————————————————————————————————————–
RW (No)
No
No
—
—
—
Read/write (no mask)
———————————————————————————————————————————————–
BW (No)
No
No
—
Use
—
Block write (no mask)
———————————————————————————————————————————————–
FWM
Yes
No
Load/use Use
—
Masked flash write (new/old mask)
Yes
Use
———————————————————————————————————————————————–
LMR and
—
Set
Load
—
—
Load mask register and old mask set
Old Mask Set
———————————————————————————————————————————————–
LCR
—
—
—
Load
—
Load color resister set
———————————————————————————————————————————————–
Option
—
—
—
—
—
—
———————————————————————————————————————————————–
Notes: 1. With CBRS, all SAM operations use stop register.
2. After LMR, RWM, BWM, FWM, MWT, and MSWT, use old mask which can be reset by CBRR.
3. DSF2 is fixed low in all operation. (for the addition of operation mode in future)
Preliminary Data Sheet E0160H10
5
ct
du
ro
LP
EO
HM5316123B Series
CAS (input pin): Column address and DSF1
signals are fetched into chip at the falling edge of
CAS, which determines the operation mode of the
HM5316123B. CAS controls output impedance of
I/O in RAM.
A0 – A8 (input pins): Row address (AX0 – AX8)
is determined by A0 – A8 level at the falling edge
of RAS. Column address (AY0 – AY7) is
determined by A0 – A7 level at the falling edge of
CAS. In transfer cycles, row address is the address
on the word line which transfers data with SAM
data register, and column address is the SAM start
address after transfer.
WEU and WEL (Input pins): WEU and WEL pins
have two functions at the falling edge of RAS and
after. When either WEU or WEL is low at the
falling edge of RAS, the HM5316123B turns to
mask write mode. According to the I/O level at the
time, write on each I/O can be masked. (WEU and
WEL levels at the falling edge of RAS is don’t
care in read cycle.) When both WEU and WEL
are high at the falling edge of RAS, a no mask
write cycle is executed. After that, WEU and
WEL switch read/write cycles. Both WEU and
WEL must be held high in a read cycle. In a
transfer cycle, the direction of transfer is
determined by WEU and WEL levels at the falling
edge of RAS. When either WEU or WEL is low,
data is transferred from SAM to RAM (data is
written into RAM), and when both WEU and WEL
are high, data is transferred from RAM to SAM
(data is read from RAM).
I/O0 – I/O15 (input/output pins): I/O pins function
as mask data at the falling edge of RAS (in mask
write mode). Data is written only to high I/O pins.
Data on low I/O pins are masked and internal data
are retained. After that, they function as
inut/output pins as those of a standard DRAM. In
block write cycle, they function as column mask
data at the falling edges of CAS, and WEU or
WEL.
6
DT/OE (input pin): DT/OE pin functions as DT
(data transfer) pin at the falling edge of RAS and
as OE (output enable) pin after that. When DT is
low at the falling edge of RAS, this cycle becomes
a transfer cycle. When DT is high at the falling
edge of RAS, RAM and SAM operate
independently.
SC (input pin): SC is a basic SAM clock. In a
serial read cycle, data outputs from an SI/O pin
synchronously with the rising edge of SC. In a
serial write cycle, data on an SI/O pin at the rising
edge of SC is fetched into the SAM data register.
SE (input pin): SE pin activates SAM. When SE is
high, SI/O is in the high impedance state in serial
read cycle and data on SI/O is not fetched into the
SAM data register in serial write cycle. SE can be
used as a mask for serial write because the internal
pointer is incremented at the rising edge of SC.
SI/O0 – SI/O15 (input/output pins): SI/Os are
input/output pins in SAM. Direction of
input/output is determined by the previous transfer
cycle. When it was a read transfer cycle, SI/O
outputs data. When it was a masked write transfer
cycle, SI/O inputs data.
DSF1 (input pin): DSF1 is a special function data
input flag pin. It is set to high at the falling edge
of RAS when new functions such as color register
and mask register read/write, split transfer, and
flash write, are used.
DSF2 (input pin): DSF2 is also a special function
data input flag pin. This pin is fixed to low level in
all operations of the HM5316123B.
QSF (output pin): QSF outputs data of address A7
in SAM. QSF is switched from low to high by
accessing address 127 in SAM and from high to
low by accessing address 255 in SAM.
Preliminary Data Sheet E0160H10
ct
du
ro
LP
EO
HM5316123B Series
Operation of HM5316123B
RAM Port Operation
RAM Read Cycle (DT/OE high, CAS high and
DSF1 low at the falling edge of RAS, DSF1 low at
the falling edge of CAS)
Row address is entered at the RAS falling edge and
column address at the CAS falling edge to the
device as in standard DRAM. Then, when WEU
or WEL is high and DT/OE is low while CAS is
low, the selected address data outputs through I/O
pin. At the falling edge of RAS, DT/OE and CAS
become high to distinguish RAM read cycle from
transfer cycle and CBR refresh cycle. Address
access time (t AA ) and RAS to column address
delay time (t RAD ) specifications are added to
enable fast page mode.
RAM Write Cycle (Eraly Write, Delayed Write,
Read-Modify-Write)
(DT/OE high, CAS high and DSF1 low at the
falling edge of RAS, DSF1 low at the falling edge
of CAS)
• No Mask Write Cycle (WEU and WEL high at
the falling edge of RAS)
When CAS is set low and either WEU or WEL is
set low after RAS low, a write cycle is executed.
If either WEU or WEL is set low before the CAS
falling edge, this cycle becomes an early write
cycle and all I/O become in high impedance. All
16 data are latched on the falling edge of CAS. If
only one of WEU and WEL is low when CAS
falls, the write will affect only those corresponding
8 bits. If the other of WEU and WEL falls at the
same time in the cycle, the write will then occur
for those 8 bits, with the latched data.
If both WEU and WEL are set low after the CAS
falling edge, this cycle becomes a delayed write
cycle and all 16 data are latched on the falling edge
of WEU or WEL. Byte write occures if only one
of WEU or WEL falls during the cycle. I/O does
not become high impedance in this cycle, so data
should be entered with OE in high.
If both WEU and WEL are set low after tCWD
(min) and tAWD (min) after the CAS falling edge,
this cycle becomes a read-modify-write cycle and
enables read/write at the same address in one
cycle. In this cycle also, to avoid I/O contention,
data should be input after reading data and driving
OE high.
• Mask Write Mode (WEU or WEL low at the
falling edge of RAS)
If WEU or WEL is set low at the falling edge of
RAS, two modes of mask write cycle are capable.
1. In new mask mode, mask data is loaded from
I/O pin and used. Whether or not an I/O is written
depends on I/O level at the falling edge of RAS.
The data is written in high level I/Os, and the data
is masked and retained in low level I/Os. This
mask data is effective during the RAS cycle. So,
in page mode cycles the mask data is retained
during the page access.
2. If a load mask register cycle (LMR) has been
performed, the mask data is not loaded from I/O
pins and the mask data stored in mask registers
persistently are used. This operation is known as
persistent write mask, set by LMR cycle and reset
by CBRR cycle.
Fast Page Mode Cycle (DT/OE high, CAS high
and DSF1 low at the falling edge of RAS)
High-speed page mode cycle reads/writes the data
of the same row address at high speed by toggling
CAS while RAS is low. Its cycle time is one third
of the random read/write cycle. In this cycle, read,
write, and block write cycles can be mixed. Note
that address access time (tAA), RAS to column
address delay time (tRAD), and access time from
CAS precharge (tACP) are added. In one RAS
cycle, 256-word memory cells of the same row
address can be accessed. It is necessary to specify
access frequency within tRASP max (100 µs).
Preliminary Data Sheet E0160H10
7
ct
du
ro
LP
EO
HM5316123B Series
Color Register Set/Read Cycle (CAS high,
DT/OE high, WEU and WEL high and DSF1 high
at the falling edge of RAS)
In color register set cycle, color data is set to the
internal color register used in flash write cycle or
block write cycle. 16 bits of internal color register
are provided at each I/O. This register is
composed of static circuits, so once it is set, it
retains the data until reset. Since color register set
cycle is just as same as the usual write cycle, so
read, early write and delayed write cycle can be
executed. In this cycle, the HM5316123B
refreshes the row address fetched at the falling
edge of RAS.
Mask Register Set/Read Cycle (CAS high,
DT/OE high, WEU and WEL high, and DSF1 high
at the falling edge of RAS)
In mask register set cycle, mask data is set to the
internal mask register used in mask write cycle,
block write cycle, flash write cycle, masked write
transfer, and masked split write transfer. 16 bits of
internal mask register are provided at each I/O.
This mask register is composed of static circuits,
Color Register Set Cycle
so once it is set, it retains the data until reset.
Since mask register set cycle is just as same as the
usual read and write cycle, so read, early and
delayed write cycles can be executed.
Flash Write Cycle (CAS high, DT/OE high, WEU
or WEL low, and DSF1 high at the falling edge of
RAS)
In a flash write cycle, a row of data (256 word x 16
bit) is cleared to 0 or 1 at each I/O according to the
data of color register mentioned before. It is also
necessary to mask I/O in this cycle. When CAS
and DT/OE is set high, WEU or WEL is low, and
DSF1 is high at the falling edge of RAS, this cycle
starts. Then, the row address to clear is given to
row address. Mask data is as same as that of a
RAM write cycle.
Cycle time is the same as
those of RAM read/write cycles, so all bits can be
cleared in 1/256 of the usual cycle time. (See
figure 1.)
Flash Write Cycle
Flash Write Cycle
RAS
CAS
Address
Row
Xi
Xj
WEU,WEL
DT/OE
DSF1
I/O
Color Data
Set color register
*1
*1
Execute flash write into each
I/O on row address Xi using
color register.
Note: 1. I/O Mask Data (In new mask mode)
Low: Mask
High: Non Mask
In persistent mask mode, I/O don't care
Figure 1 Use of Flash Write
8
Preliminary Data Sheet E0160H10
Execute flash write into
each I/O on row address
Xj using color register.
ct
du
ro
LP
EO
HM5316123B Series
Block Write Cycle (CAS high, DT/OE high and
DSF1 low at the falling edge of RAS, DSF1 high
and WEU or WEL low at the falling edge of CAS)
In a block write cycle, 4 columns of data (4
column x 16 bit) are cleared to 0 or 1 at each I/O
according to the data of color register. Column
addresses A0 and A1 are disregarded. The mask
data on I/Os and the mask data on column
addresses can be determined independently. I/O
level at the falling edge of CAS determines the
address to be cleared. (See Figure 2.) The block
write cycle is as the same as the usual write cycle,
so early and delayed write, read-modify-write, and
page mode write cycle can be executed.
• No mask Mode Block Write Cycle (WEU and
WEL high at the falling edge of RAS)
The data on 16 I/Os are all cleared when WEU and
WEL are high at the falling edge of RAS.
• Mask Block Write Cycle (WEU or WEL low at
the falling edge of RAS)
When either WEU or WEL is low at the falling
edge of RAS, the HM5316123B starts mask block
write cycle to clear the data on an optional I/O.
The mask data is the same as that of a RAM write
cycle. High I/O is cleared, low I/O is not cleared
and the internal data is retained. In new mask
mode, the mask data is available in the RAS cycle.
In persistent mask mode, I/O don't care about mask
mode.
• Column Mask (WEU or WEL low at the falling
edge of CAS)
Column mask data is determined by 4I/Os (I/O0,
I/O1, I/O2, I/O3) level at CAS low and WEU or
WEL low edge. When upper byte column mask is
performed by WEL high and WEU low, column
mask data are determined by 4I/Os (I/O0, I/O1,
I/O2, I/O3) and other I/Os (I/O4 to I/O15) don't
care.
Preliminary Data Sheet E0160H10
9
ct
du
ro
LP
EO
HM5316123B Series
Color Register Set Cycle
Block Write Cycle
Block Write Cycle
RAS
CAS
Address
Row
Row
Column A2–A7
*1
WEU, WEL
Row
Column A2–A7
*1
DT/OE
DSF1
Color Data
I/O
Column Mask
*1
*1
*1
WEU, WEL
Either Low
Both High
Mode
New mask mode
Persistent
mask mode
No mask
I/O data/RAS
Mask
H or L
(mask register used)
H or L
I/O Mask Data (In new mask mode)
Low: Mask
High: Non Mask
In persistent mask mode, I/O don't care
Column Mask Data
I/O0
I/O1
I/O2
I/O3
Column0 (A0 = 0, A1 = 0) Mask Data
Column1 (A0 = 1, A1 = 0) Mask Data
Column2 (A0 = 0, A1 = 1) Mask Data
Column3 (A0 = 1, A1 = 1) Mask Data
Low: Mask
High: Non Mask
Figure 2 Use of Block Write
10
Preliminary Data Sheet E0160H10
Column Mask
ct
du
ro
LP
EO
HM5316123B Series
Transfer Operation
The HM5316123B provides the read transfer
cycle, split read transfer cycle, masked write
transfer cycle and masked split write transfer cycle
as data transfer cycles. Theses transfer cycles are
set by driving CAS high and DT/OE low at the
falling edge of RAS. They have following
functions:
(1) Transfer data between row address and SAM
data register
Read transfer cycle and split read transfer cycle:
RAM to SAM
Masked write transfer cycle and masked split write
transfer cycle: SAM to RAM
(2) Determine SI/O state (except for split read
transfer cycle and masked split write transfer
cycle)
Read transfer cycle: SI/O output
Masked write transfer cycle: SI/O input
(3) Determine first SAM address to access after
transferring at column address (SAM start
address).
SAM start address must be determined by read
transfer cycle or masked write transfer cycle (split
transfer cycle isn’t available)before SAM access,
after power on, and determined for each transfer
cycle.
(4) Use the stopping columns (boundaries) in the
serial shift register. If the stopping columns have
been set, split transfer cycles use the stopping
columns, but any boundaries cannot be set as the
start address.
(5) Load/use mask data in masked write transfer
cycle and masked split write transfer cycle.
Read Transfer Cycle (CAS high, DT/OE low,
WEU and WEL high and DSF1 low at the falling
edge of RAS)
This cycle becomes read transfer cycle by driving
DT/OE low, WEU and WEL high and DSF1 low at
the falling edge of RAS. The row address data
(256 x 16 bits) determined by this cycle is
transferred to SAM data register synchronously at
the rising edge of DT/OE. After the rising edge of
DT/OE, the new address data outputs from SAM
start address determined by column address. In
read transfer cycle, DT/OE must be risen to
transfer data from RAM to SAM.
This cycle can access SAM even during transfer
(real time read transfer). In this case, the timing
tSDD (min) specified between the last SAM access
before transfer and DT/OE rising edge and tSDH
(min) specified between the first SAM access and
DT/OE rising edge must be satisfied. (See figure
3.)
When read transfer cycle is executed, SI/O
becomes output state by first SAM access. Input
must be set high impedance before tSZS (min) of
the first SAM access to avoid data contention.
RAS
CAS
Address
DT/OE
DSF1
Xi
Yj
L
t SDD
t SDH
SC
Yj
SI/O
SAM Data before Transfer
Yj + 1
SAM Data after Transfer
Figure 3 Real Time Read Transfer
Preliminary Data Sheet E0160H10
11
ct
du
ro
LP
EO
HM5316123B Series
Masked Write Transfer cycle (CAS high, DT/OE
low, WEU or WEL low, and DSF1 low at the
falling edge of RAS)
Masked write transfer cycle can transfer only
selected I/O data in a row of data input by serial
write cycle to RAM. Whether one I/O data is
transferred or not depends on the corresponding
I/O level (mask data) at the falling edge of RAS.
This mask transfer operation is the same as a mask
write operation in RAM cycles, so the persistent
mode can be supported. The row address of data
transferred into RAM is determined by the address
at the falling edge of RAS. The column address is
specified as the first address for serial write after
terminating this cycle. Also in this cycle, SAM
access becomes enabled after tSRD (min) after
RAS becomes high. SAM access is inhibited
during RAS low. In this period, SC must bot be
risen. Data transferred to SAM by read transfer
cycle or split read transfer cycle can be written to
other addreses of RAM by write transfer cycle.
However, the adddress to write data must be the
same as that of the read transfer cycle or the split
read transfer cycle (row address AX8)
Split Read Transfer Cycle (CAS high, DT/OE low,
WEU and WEL high and DSF1 high at the falling edge of
RAS)
To execute a continuous serial read by real time
read transfer, the HM5316123B must satisfy SC
and DT/OE timings and requires an external circuit
to detect SAM last address. Split read transfer
cycle makes it possible to execute a continuous
serial read without the above timing limitation.
The HM5316123B supports two types of split
register operation. One is the normal split register
operation to split the data register into two halves.
The other is the boundary split register operation
using stopping columns described later.
Figure 4 shows the block diagram for the normal
split register operation. SAM data register (DR)
consists of 2 split buffers, whose organizations are
128-word x 16-bit each. Let us suppose that data
is read from upper data reagister DR1 (The row
address AX8 is 0 and SAM address A7 is 1.).
When split read transfer is executed setting row
address AX8 to 0 and SAM start addresses A0 to
A6, 128-word x 16-bit data are transferred from
RAM to the lower data register DR0 (SAM
12
address A7 is 0) automatically. After data are read
from data register DR1, data start to be read from
SAM start addresses of data register DR0. If the
next split read transfer isn’t executed while data
are read from data register DR0, data start to be
read from SAM start address 0 of DR1 after data
are read from data register DR0. If split read
transfer is executed setting row address AX8 to 1
and SAM start addresses A0 to A6 while data are
read from data register DR1, 128-word x 16-bit
data are transferred to data register DR2. After
data are read from data register DR1, data start to
be read from SAM start addresses of data register
DR2. If the next split read transfer isn’t executed
while data is read from data register DR2, data
start to be read from SAM start address 0 of data
register DR1 after data are read from data register
DR2. In split read data transfer, the SAM start
address A7 is automatically set in the data register,
which isn’t used.
The data on SAM address A7, which will be
accessed next, outputs to QSF, QSF is switched
from low to high by accessing SAM last address
127 and from high to low by accessing address
255.
Split read transfer cycle is set when CAS is high,
DT/OE is low, WEU and WEL is high and DSF1 is
high at the falling edge of RAS. The cycle can be
executed asyncronously with SC. However,
HM5316123B must be satisfied tSTS (min) timing
specified between SC rising (Boundary address)
and RAS falling. In split transfer cycle, the
HM5316123B must satisfy tRST (min), tCST (min)
and tAST (min) timings specified between RAS or
CAS falling and column address. (See figure 5.)
In split read transfer, SI/O isn’t switched to output
state. Therefore, read transfer must be executed to
switch SI/O to output state when the previous
transfer cycle is masked write transfer cycle or
masked split write transfer cycle. SAM start
address must be set in every split read transfer
cycle.
Preliminary Data Sheet E0160H10
DR3
Memory
Array
AX8 = 1
DR2
DR0
AX8 = 0
SAM I/O Bus
SAM Column Decoder
Memory
Array
SAM I/O Bus
DR1
ct
du
ro
LP
EO
HM5316123B Series
SAM I/O Buffer
SI/O
Figure 4 Block Diagram for Split Transfer
RAS
tSTS (min)
tRST (min)
CAS
t CST (min)
Address
Xi
Yj
t AST (min)
DT/OE
DSF1
SC
Bi
Ym
Bj – 1
Bj
Yj
Note: Ym is the SAM start address in before SRT. Bi and Bj initiate the boundary address.
Figure 5 Limitation in Split Transfer
Preliminary Data Sheet E0160H10
13
ct
du
ro
LP
EO
HM5316123B Series
Masked Split Write Transfer Cycle (CAS high,
DT/OE low, WEU or WEL low and DSF1 high at
the falling edge of RAS)
A continuous serial write cannot be executed
because accessing SAM is inhibited during RAS
low in write transfer. Masked split write transfer
cycle makes it possible. In this cycle, tSTS (min),
tRST (min), tCST (min) and tAST (min) timings
must be satisfied like split read transfer cycle. And
it is impossible to switch SI/O to input state in this
cycle. If SI/O is in output state, masked write
transfer cycle should be executed to switch SI/O
into input state. Data transferred to SAM by read
transfer cycle or split read transfer cycle can be
written to other addresses of RAM by masked split
write transfer cycle. However, masked write
transfer cycle must be executed before split write
transfer cycle. And in this masked split write
transfer cycle, the MSB of row address (AX8) to
write data must be the same as that of the read
transfer cycle or the split read transfer cycle.
Column size
64 bit
(Y1)
Start
Stopping Column in Split Transfer Cycle
The HM5316123B has the boundary split register
operation using stopping columns. If a CBRS
cycle has been performed, split transfer cycle
performs the boundary operation. Figure 6 shows
an example of boundary split register. (Boundary
code is B6.)
First of all a read data transfer cycle is executed,
and SAM start addresses A0 to A7 are set. The
RAM data are transferred to the SAM, and SAM
serial read starts from the start address (Y1) on the
lower SAM. After that, a split read transfer cycle
is executed, and the next start address (Y2) is set.
The RAM data are transferred to the upper SAM.
When the serial read arrive at the first boundary
after the split read transfer cycle, the next read
jumps to the start address (Y2) on the upper SAM
(jump 1) and continues. Then the second split read
transfer cycle is executed, and another start address
(Y3) is set. The RAM data are transferred to the
lower SAM. When the serial read arrive at the
other boundary again, the next read jumps to the
start address (Y3) on the lower SAM. In stopping
column, split transfer is needed for jump operation
between lower SAM and upper SAM.
Boundaries (B6)
(Y3)
(Y2)
Jump 2
Jump 1
Lower SAM
128 bits
Upper SAM
128 bits
Figure 6 Example of Boundary Split Register
14
Preliminary Data Sheet E0160H10
ct
du
ro
LP
EO
HM5316123B Series
Stopping Column Boundary Table
——————————————————————————————
Stop
Address
——————————————————————————————
Boundary code Column size A2
A3
A4
A5
A6
——————————————————————————————
B2
4
0
*
*
*
*
——————————————————————————————
B3
8
1
0
*
*
*
——————————————————————————————
B4
16
1
1
0
*
*
——————————————————————————————
B5
32
1
1
1
0
*
——————————————————————————————
B6
64
1
1
1
1
0
——————————————————————————————
B7
128
1
1
1
1
1
——————————————————————————————
Notes: 1. A0, A1, and A7: don't care
2. *: don’t care
Stopping Column Set Cycle (CBRS)
No Reset CBR Cycle (CBRN)
This cycle becomes stopping column set cycle by
driving CAS low, WEU or WEL low, DSF1 high at
This cycle becomes no reset CBR cycle (CBRN)
by driving CAS low, WE high and DSF1 high at
the falling edge of RAS. The CBRN can only
execute the refresh operation.
the falling edge of RAS. Stopping column data
(boundaries) are latched from address inputs on the
falling edge of RAS. To determine the boundary,
A2 to A6 can be used and don’t care A0, A1, and
A7. In the HM5316123B, 6 types of boundary (B2
to B7) can be set including the default case. (See
stopping column boundary table.) If A2 to A5 are
set to high and A6 is set to low, the boundaries
(B6) are selected. Figure 6 shows the example.
The stop address that is set by the CBRS is used
from next split transfer cycle. Once a CBRS is
executed, the stopping column operation mode
continues until CBRR.
Register Reset Cycle (CBRR)
This cycle becomes register reset cycle (CBRR) by
driving CAS low, WEU and WEL high, and DSF1
low at the falling edge of RAS. A CBRR can reset
the persistent mask operation and stopping column
operation, so the HM5316123B becomes the new
mask operation and boundary code B7. When a
CBRR is executed for stopping column operation
reset and split transfer operation, it need to satisfy
tSTS (min) and tRST (min) between RAS falling
and SC rising for correct SAM read/write
operation.
Byte Control (WEU, WEL)
In a write cycle, when WEL set low and WEU set
high, I/O0 to I/O7 become write mode and I/O8 to
I/O15 become no write mode, and when WEL set
high and WEU set low, I/O0 to I/O7 become no
write mode and I/O8 to I/O15 become write mode.
The write cycle that byte control is capable are
RAM write cycle, block write cycle, load write
mask register cycle and load color register cycle.
The byte control write cycle is capable to execute
early write, delay write, read-modify-write and
page mode. But write mask in new mask mode,
flash write, transfer and refresh cycle can not
execute byte control.
Preliminary Data Sheet E0160H10
15
ct
du
ro
LP
EO
HM5316123B Series
SAM Port Operation
Refresh
Serial Read Cycle
RAM Refresh
SAM port is in read mode when the previous data
transfer cycle is a read transfer cycle. Access is
synchronized with SC rising, and SAM data is
output from SI/O. When SE is set high, SI/O
becomes high impedance, and the internal pointer
is incremented by the SC rising. After indicating
the last address (address 255), the internal pointer
indicates address 0 at the next access.
RAM, which is composed of dynamic circuits,
requires refresh cycle to retain data. Refresh is
executed by accessing all 512 row addresses within
8 ms. There are three refresh cycles: (1) RAS-only
refresh cycle, (2) CAS-before-RAS (CBRN,
CBRS, and CBRR) refresh cycle, and (3) Hidden
refresh cycle. Besides them, the cycles which
activate RAS, such as read/write cycles or transfer
cycles, can also refresh the row address.
Therefore, no refresh cycle is required when all
row addresses are accessed within 8 ms.
Serial Write Cycle
If previous data transfer cycle is masked write
transfer cycle, SAM port goes into write mode. In
this cycle, SI/O data is fetched into data register at
the SC rising edge like in the serial read cycle. If
SE is high, SI/O data isn ’t fetched into data
register. The internal pointer is incremented by the
SC rising, so SE high can be used as mask data for
SAM. After indicating the last address (address
255), the internal pointer indicates address 0 at the
next access.
(1) RAS-Only Refresh Cycle: RAS-only refresh
cycle is executed by activating only the RAS cycle
with CAS fixed to high after inputting the row
address (= refresh address) from external circuits.
To distinguish this cycle from a data transfer cycle,
DT/OE must be high at the falling edge of RAS.
(2) CBR Refresh Cycle: CBR refresh cycle
(CBRN, CBRS and CBRR) are set by activating
CAS before RAS. In this cycle, the refresh address
need not to be input through external circuits
because it is input through an internal refresh
counter. In this cycle, output is in high impedance
and power dissipation is lowered because CAS
circuits don’t operate.
(3) Hidden Refresh Cycle: Hidden refresh cycle
executes CBR refresh with the data output by
reactivating RAS when DT/OE and CAS keep low
in normal RAM read cycles.
SAM Refresh
SAM parts (data register, shift resister and
selector), organized as fully static circuitry, require
no refresh.
16
Preliminary Data Sheet E0160H10
ct
du
ro
LP
EO
HM5316123B Series
Absolute Maximum Ratings
Parameter
Symbol
Value
Unit
——————————————————————————————————————————
Voltage on any pin relative to VSS
VT
–1.0 to +7.0
Supply voltage relative to VSS
VCC
–0.5 to +7.0
Short circuit output current
Iout
50
V
——————————————————————————————————————————
V
——————————————————————————————————————————
mA
——————————————————————————————————————————
Power dissipation
PT
1.0
Topr
0 to +70
W
——————————————————————————————————————————
Operating temperature
°C
——————————————————————————————————————————
Storage temperature
Tstg
–55 to +125
°C
——————————————————————————————————————————
Recommended DC Operating Conditions (Ta = 0 to +70°C)
Parameter
Symbol
Min
Typ
Max
Unit
Notes
——————————————————————————————————————————
Supply voltage
VCC
4.5
VIH
2.4
VIL
–0.5*2
5.0
5.5
V
1
——————————————————————————————————————————
Input high voltage
—
6.5
V
1
——————————————————————————————————————————
Input low voltage
—
0.8
V
1
——————————————————————————————————————————
Notes: 1. All voltage referred to VSS
2. –3.0 V for pulse width < 10 ns.
Preliminary Data Sheet E0160H10
17
ct
du
ro
LP
EO
HM5316123B Series
DC Characteristics (Ta = 0 to +70°C, VCC = 5 V ± 10%, VSS = 0 V)
HM5316123B
—————————————–
-7
-8
-10
———— ———— ————
Parameter
Symbol Min Max Min Max Min Max Unit Test conditions
——————————————————————————————————————————
120
—————————
ICC7
—
SE = VIL, SC cycling
tSCC = min
—
110
—
175 —
100
160
mA
SC = VIL, SE = VIH
—
———————————————————— cycling
195
—
RAS, CAS
Operating current ICC1
mA
tRC = min
—————————————————————————————————————–––––––––
—
—
—————————
ICC7BW —
200
SE = VIL, SC cycling
tSCC = min
180 —
100
160
mA
SC = VIL, SE = VIH
125
———————————————————— cycling
—
115
RAS, CAS
Block write current ICC1BW —
mA
tRC = min
—————————————————————————————————————–––––––––
Standby current
ICC2
—
ICC8
—
7
—
7
—
7
mA
RAS, CAS
———————————————————— = VIH
85
—
75
—
70
mA
SC = VIL, SE = VIH
—————————
SE = VIL, SC cycling
tSCC = min
—————————————————————————————————————–––––––––
RAS-only refresh ICC3 —
115 —
105 — 90
mA RAS cycling SC = VIL, SE = VIH
current
———————————————————— CAS =VIH —————————
ICC9 —
185 —
165 — 150 mA tRC = min
SE = VIL, SC cycling
tSCC = min
—————————————————————————————————————–––––––––
Fast page mode
current *3
ICC4
—
ICC10
—
125
—
120 —
115
mA
CAS cycling SC = VIL, SE = VIH
———————————————————— RAS = VIL
200
—
185 —
175
mA
tPC = min
—————————
SE = VIL, SC cycling
tSCC = min
—————————————————————————————————————–––––––––
Fast page mode
block write
current *3
ICC4BW —
145
ICC10BW —
220
—
135 —
130
mA
CAS cycling SC = VIL, SE = VIH
———————————————————— RAS = VIL
—
205 —
195
mA
tPC = min
—————————
SE = VIL, SC cycling
tSCC = min
—————————————————————————————————————–––––––––
CAS-before RAS ICC5 —
85
—
75
— 65
mA RAS cycling SC = VIL, SE = VIH
refresh current
———————————————————— tRC = min —————————
ICC11 —
155 —
140 — 125 mA
SE = VIL, SC cycling
tSCC = min
—————————————————————————————————————–––––––––
Data transfer
current
130
ICC12
—
SE = VIL, SC cycling
tSCC = min
—
120 —
185 —
110
165
mA
SC = VIL, SE = VIH
—————————
205
—
RAS, CAS
ICC6
—
———————————————————— cycling
mA
tRC = min
—————————————————————————————————————–––––––––
Input leakage current ILI
–10 10
Output leakage current ILO
–10 10
Output high voltage VOH
2.4
Output low voltage VOL
—
–10 10
–10 10
µA
—————————————————————————————————————–––––––––
–10 10
–10 10
µA
—————————————————————————————————————–––––––––
—
2.4
—
2.4 —
V
IOH = –1 mA
—————————————————————————————————————–––––––––
0.4
—
0.4
—
0.4
V
IOL = 2.1 mA
——————————————————————————————————————————
18
Preliminary Data Sheet E0160H10
ct
du
ro
LP
EO
HM5316123B Series
Notes: 1. ICC depends on output load condition when the device is selected. ICC max is specified at the
output open condition.
2. Address can be changed once while RAS is low and CAS is high.
3. Address can be changed once in 1 page cycle (tPC).
Capacitance (Ta = 25°C, VCC = 5 V ± 10 %, f = 1 MHz, Bias: Clock, I/O = VCC, address = VSS)
Parameter
Symbol
Typ
Max
Unit
Note
——————————————————————————————————————————
Input capacitance (Address)
CI1
—
CI2
—
CI/O
—
5
pF
1
——————————————————————————————————————————
Input capacitance (Clocks)
5
pF
1
——————————————————————————————————————————
Output capacitance (I/O, SI/O, QSF)
7
pF
1
——————————————————————————————————————————
Notes: 1. This parameter is sampled and not 100% tested.
Preliminary Data Sheet E0160H10
19
ct
du
ro
LP
EO
HM5316123B Series
AC Characteristics (Ta = 0 to +70°C, VCC = 5 V ± 10%, VSS = 0 V) *1, *16
Test Conditions
– Input rise and fall times: 5ns
– Input pulse levels: VSS to 3.0 V
– Input timing reference levels: 0.8 V, 2.4 V
– Output timing reference levels: 0.8 V, 2.0 V
– Output load: RAM 1TTL+CL(50PF)
SAM, QSF 1TTL+CL(30PF)
(Including scope and jig)
Common Parameter
HM5316123B
——————————————
Parameter
Symbol
-7
-8
-10
————
————
————
Min Max
Min Max
Min Max
Unit Notes
—————————————————————————————————————————
Random read or write cycle time
tRC
130 —
tRP
50
tRAS
70
tCAS
20
tASR
0
tRAH
10
tASC
0
tCAH
12
tRCD
20
RAS hold time referenced to CAS tRSH
20
CAS hold time referenced to RAS tCSH
70
CAS to RAS precharge time
10
150 —
180 —
ns
—————————————————————————————————————————
RAS precharge time
—
60
—
70
—
ns
—————————————————————————————————————————
RAS pulse width
10000 80
10000 100 10000 ns
—————————————————————————————————————————
CAS pulse width
—
20
—
25
—
ns
—————————————————————————————————————————
Row address setup time
—
0
—
0
—
ns
—————————————————————————————————————————
Row address hold time
—
10
—
10
—
ns
—————————————————————————————————————————
Column address setup time
—
0
—
0
—
ns
—————————————————————————————————————————
Column address hold time
—
15
—
15
—
ns
—————————————————————————————————————————
RAS to CAS delay time
50
20
60
20
75
ns
2
—————————————————————————————————————————
—
20
—
25
—
ns
—————————————————————————————————————————
—
80
—
100 —
ns
—————————————————————————————————————————
tCRP
—
10
—
10
—
ns
—————————————————————————————————————————
20
Preliminary Data Sheet E0160H10
ct
du
ro
LP
EO
HM5316123B Series
Common Parameter (cont)
HM5316123B
——————————————
Parameter
Symbol
-7
-8
-10
————
————
————
Min Max
Min Max
Min Max
Unit Notes
—————————————————————————————————————————
Transition time (rise to fall)
tT
3
tREF
—
tDTS
0
tDTH
10
tFSR
0
tRFH
10
tFSC
0
tCFH
12
tDZC
0
tDZO
0
tOFF1
—
50
3
50
3
50
ns
3
—————————————————————————————————————————
Refresh period
8
—
8
—
8
ms
—————————————————————————————————————————
DT to RAS setup time
—
0
—
0
—
ns
—————————————————————————————————————————
DT to RAS hold time
—
10
—
10
—
ns
—————————————————————————————————————————
DSF1 to RAS setup time
—
0
—
0
—
ns
—————————————————————————————————————————
DSF1 to RAS hold time
—
10
—
10
—
ns
—————————————————————————————————————————
DSF1 to CAS setup time
—
0
—
0
—
ns
—————————————————————————————————————————
DSF1 to CAS hold time
—
15
—
15
—
ns
—————————————————————————————————————————
Data-in to CAS delay time
—
0
—
0
—
ns
4
—————————————————————————————————————————
Data-in to OE delay time
—
0
—
0
—
ns
4
—————————————————————————————————————————
Output buffer turn-off delay
referenced to CAS
15
—
20
—
20
ns
5
—————————————————————————————————————————
Output buffer turn-off delay
referenced to OE
tOFF2
—
15
—
20
—
20
ns
5
—————————————————————————————————————————
Preliminary Data Sheet E0160H10
21
ct
du
ro
LP
EO
HM5316123B Series
Read Cycle (RAM), Page Mode Read Cycle
HM5316123B
——————————————
Parameter
Symbol
-7
-8
-10
————
————
————
Min Max
Min Max
Min Max
Unit Notes
—————————————————————————————————————————
Access time from RAS
tRAC
—
tCAC
—
tOAC
—
tAA
—
tRCS
0
tRCH
0
tRRH
0
70
—
80
—
100
ns
6, 7
—————————————————————————————————————————
Access time from CAS
20
—
20
—
25
ns
7, 8
—————————————————————————————————————————
Access time from OE
20
—
20
—
25
ns
7
—————————————————————————————————————————
Address access time
35
—
40
—
45
ns
7, 9
—————————————————————————————————————————
Read command setup time
—
0
—
0
—
ns
—————————————————————————————————————————
Read command hold time
—
0
—
0
—
ns
10
—————————————————————————————————————————
Read command hold time
referenced to RAS
—
5
—
10
—
ns
10
—————————————————————————————————————————
RAS to column address delay time tRAD
15
Column address to RAS lead time tRAL
35
Column address to CAS lead time tCAL
35
Page mode cycle time
tPC
45
tCP
7
tACP
—
tRASP
70 100000 80 100000 100 100000 ns
35
15
40
15
55
ns
2
—————————————————————————————————————————
—
40
—
45
—
ns
—————————————————————————————————————————
—
40
—
45
—
ns
—————————————————————————————————————————
—
50
—
55
—
ns
—————————————————————————————————————————
CAS precharge time
—
10
—
10
—
ns
—————————————————————————————————————————
Access time from CAS precharge
40
—
45
—
50
ns
—————————————————————————————————————————
Page mode RAS pulse width
—————————————————————————————————————————
22
Preliminary Data Sheet E0160H10
ct
du
ro
LP
EO
HM5316123B Series
Write Cycle (RAM), Page Mode Write Cycle, Color Register Set Cycle
HM5316123B
——————————————
Parameter
Symbol
-7
-8
-10
————
————
————
Min Max
Min Max
Min Max
Unit Notes
—————————————————————————————————————————
Write command setup time
tWCS
0
—
0
—
0
—
ns
tWCH
12
tWP
12
tRWL
20
tCWL
20
tDS
0
tDH
12
tWS
0
tWH
10
tMS
0
tMH
10
tOEH
15
tPC
45
tCP
7
tCDD
15
tRASP
70 100000 80 100000 100 100000 ns
11
—————————————————————————————————————————
Write command hold time
—
15
—
15
—
ns
—————————————————————————————————————————
Write command pulse width
—
15
—
15
—
ns
—————————————————————————————————————————
Write command to RAS lead time
—
20
—
20
—
ns
—————————————————————————————————————————
Write command to CAS lead time
—
20
—
20
—
ns
—————————————————————————————————————————
Data-in setup time
—
0
—
0
—
ns
12
—————————————————————————————————————————
Data-in hold time
—
15
—
15
—
ns
12
—————————————————————————————————————————
WE to RAS setup time
—
0
—
0
—
ns
—————————————————————————————————————————
WE to RAS hold time
—
10
—
10
—
ns
—————————————————————————————————————————
Mask data to RAS setup time
—
0
—
0
—
ns
—————————————————————————————————————————
Mask data to RAS hold time
—
10
—
10
—
ns
—————————————————————————————————————————
OE hold time referenced to WE
—
20
—
20
—
ns
—————————————————————————————————————————
Page mode cycle time
—
50
—
55
—
ns
—————————————————————————————————————————
CAS precharge time
—
10
—
10
—
ns
—————————————————————————————————————————
CAS to data-in delay time
—
20
—
20
—
ns
13
—————————————————————————————————————————
Page mode RAS pulse width
—————————————————————————————————————————
Preliminary Data Sheet E0160H10
23
ct
du
ro
LP
EO
HM5316123B Series
Read-Modify-Write Cycle
HM5316123B
——————————————
Parameter
-7
-8
-10
————
————
————
Symbol Min Max
Min Max
Min Max
Unit Notes
—————————————————————————————————————————
Read-modify-write cycle time
tRWC
180 —
200 —
230 —
ns
—————————————————————————————————————————
RAS pulse width (read-modify-write cycle) tRWS
120 10000 130 10000 150 10000 ns
CAS to WE delay time
tCWD
40
tAWD
60
tODD
15
tRAC
—
tCAC
—
tOAC
—
tAA
—
tRAD
15
tRCS
0
tRWL
20
tCWL
20
tWP
12
tDS
0
tDH
12
tOEH
15
—————————————————————————————————————————
—
45
—
50
—
ns
14
—————————————————————————————————————————
Column address to WE delay time
—
65
—
70
—
ns
14
—————————————————————————————————————————
OE to data-in delay time
—
20
—
20
—
ns
12
—————————————————————————————————————————
Access time from RAS
70
—
80
—
100
ns
6, 7
—————————————————————————————————————————
Access time from CAS
20
—
20
—
25
ns
7, 8
—————————————————————————————————————————
Access time from OE
20
—
20
—
25
ns
7
—————————————————————————————————————————
Address access time
35
—
40
—
45
ns
7, 9
—————————————————————————————————————————
RAS to column address delay time
35
15
40
15
55
ns
—————————————————————————————————————————
Read command setup time
—
0
—
0
—
ns
—————————————————————————————————————————
Write command to RAS lead time
—
20
—
20
—
ns
—————————————————————————————————————————
Write command to CAS lead time
—
20
—
20
—
ns
—————————————————————————————————————————
Write command pulse width
—
15
—
15
—
ns
—————————————————————————————————————————
Data-in setup time
—
0
—
0
—
ns
12
—————————————————————————————————————————
Data-in hold time
—
15
—
15
—
ns
12
—————————————————————————————————————————
OE hold time referenced to WE
—
20
—
20
—
ns
—————————————————————————————————————————
24
Preliminary Data Sheet E0160H10
ct
du
ro
LP
EO
HM5316123B Series
Refresh Cycle
HM5316123B
——————————————
-7
-8
-10
———— ————
Parameter
Symbol Min Max
Min Max
————
Min Max
Unit Notes
—————————————————————————————————————————
CAS setup time (CAS-before-RAS refresh) tCSR
10
CAS hold time (CAS-before-RAS refresh)
10
—
10
—
10
—
ns
—————————————————————————————————————————
tCHR
—
10
—
10
—
ns
—————————————————————————————————————————
RAS precharge to CAS hold time
tRPC
10
—
10
—
10
—
ns
—————————————————————————————————————————
Flash Write Cycle, Block Write Cycle, and Register Read Cycle
HM5316123B
——————————————
Parameter
Symbol
-7
8
-10
————
————
————
Min Max
Min Max
Min Max
Unit Notes
—————————————————————————————————————————
CAS to data-in delay time
tCDD
15
tODD
15
—
20
—
20
—
ns
13
—————————————————————————————————————————
OE to data-in delay time
—
20
—
20
—
ns
13
—————————————————————————————————————————
CBR Refresh with Register Reset
HM5316123B
——————————————
Parameter
-7
-8
-10
————
————
————
Symbol Min Max
Min Max
Min Max
Unit Notes
—————————————————————————————————————————
Split transfer setup time
tSTS
20
Split transfer hold time referenced to RAS tRST
70
—
20
—
25
—
ns
—————————————————————————————————————————
—
80
—
100 —
ns
—————————————————————————————————————————
Preliminary Data Sheet E0160H10
25
ct
du
ro
LP
EO
HM5316123B Series
Read Transfer Cycle
HM5316123B
——————————————
Parameter
-7
-8
-10
————
————
————
Symbol Min Max
Min Max
Min Max
Unit Notes
—————————————————————————————————————————
DT hold time referenced to RAS
tRDH
60
tCDH
20
DT hold time referenced to column address tADH
25
DT precharge time
tDTP
20
tDRD
60
tSRS
15
tSRH
70
tSCH
25
tSAH
40
tSDD
5
tSDH
10
tDQD
—
tDQH
5
tSZS
0
tSCC
25
tSC
5
tSCP
10
tSCA
—
tSOH
5
tSIS
0
tSIH
15
tRAD
15
tRAL
35
tRQD
—
tCQD
—
10000 65
10000 80
10000 ns
—————————————————————————————————————————
DT hold time referenced to CAS
—
20
—
25
—
ns
—————————————————————————————————————————
—
30
—
30
—
ns
—————————————————————————————————————————
—
20
—
30
—
ns
—————————————————————————————————————————
DT to RAS delay time
—
70
—
80
—
ns
—————————————————————————————————————————
SC to RAS setup time
—
20
—
30
—
ns
—————————————————————————————————————————
1st SC to RAS hold time
—
80
—
100 —
ns
—————————————————————————————————————————
1st SC to CAS hold time
—
25
—
25
—
ns
—————————————————————————————————————————
1st SC to column address hold time
—
45
—
50
—
ns
—————————————————————————————————————————
Last SC to DT delay time
—
5
—
5
—
ns
—————————————————————————————————————————
1st SC to DT hold time
—
13
—
15
—
ns
—————————————————————————————————————————
DT to QSF delay time
30
—
35
—
35
ns
15
—————————————————————————————————————————
QSF hold time referenced to DT
—
5
—
5
—
ns
—————————————————————————————————————————
Serial data-in to 1st SC delay time
—
0
—
0
—
ns
—————————————————————————————————————————
Serial clock cycle time
—
28
—
30
—
ns
—————————————————————————————————————————
SC pulse width
—
10
—
10
—
ns
—————————————————————————————————————————
SC precharge time
—
10
—
10
—
ns
—————————————————————————————————————————
SC access time
20
—
23
—
25
ns
15
—————————————————————————————————————————
Serial data-out hold time
—
5
—
5
—
ns
—————————————————————————————————————————
Serial data-in setup time
—
0
—
0
—
ns
—————————————————————————————————————————
Serial data-in hold time
—
15
—
15
—
ns
—————————————————————————————————————————
RAS to column address delay time
35
15
40
15
55
ns
—————————————————————————————————————————
Column address to RAS lead time
—
40
—
45
—
ns
—————————————————————————————————————————
RAS to QSF delay time
70
—
75
—
85
ns
15
—————————————————————————————————————————
CAS to QSF delay time
35
—
35
—
35
ns
15
—————————————————————————————————————————
26
Preliminary Data Sheet E0160H10
ct
du
ro
LP
EO
HM5316123B Series
Read Transfer Cycle (cont)
HM5316123B
——————————————
Parameter
Symbol
-7
-8
-10
————
————
————
Min Max
Min Max
Min Max
Unit Notes
—————————————————————————————————————————
QSF hold time referenced toRAS
tRQH
20
—
20
—
25
—
ns
—————————————————————————————————————————
QSF hold time referenced to CAS tCQH
5
—
5
—
5
—
ns
—————————————————————————————————————————
Masked Write Transfer Cycle
HM5316123B
——————————————
Parameter
Symbol
-7
-8
-10
————
————
————
Min Max
Min Max
Min Max
Unit Notes
—————————————————————————————————————————
SC setup time referenced to RAS
tSRS
15
tSRD
20
tSRZ
10
—
20
—
30
—
ns
—————————————————————————————————————————
RAS to SC delay time
—
25
—
25
—
ns
—————————————————————————————————————————
Serial output buffer turn-off time
referenced to RAS
30
10
35
10
50
ns
—————————————————————————————————————————
RAS to serial data-in delay time
tSID
30
tRQD
—
tCQD
—
QSF hold time referenced to RAS tRQH
20
QSF hold time referenced to CAS tCQH
5
Serial clock cycle time
tSCC
25
tSC
5
tSCP
10
tSCA
—
tSOH
5
tSIS
0
tSIH
15
—
35
—
50
—
ns
—————————————————————————————————————————
RAS to QSF delay time
70
—
75
—
85
ns
15
—————————————————————————————————————————
CAS to QSF delay time
35
—
35
—
35
ns
15
—————————————————————————————————————————
—
20
—
25
—
ns
—————————————————————————————————————————
—
5
—
5
—
ns
—————————————————————————————————————————
—
28
—
30
—
ns
—————————————————————————————————————————
SC pulse width
—
10
—
10
—
ns
—————————————————————————————————————————
SC precharge time
—
10
—
10
—
ns
—————————————————————————————————————————
SC access time
20
—
23
—
25
ns
15
—————————————————————————————————————————
Serial data-out hold time
—
5
—
5
—
ns
—————————————————————————————————————————
Serial data-in setup time
—
0
—
0
—
ns
—————————————————————————————————————————
Serial data-in hold time
—
15
—
15
—
ns
—————————————————————————————————————————
Preliminary Data Sheet E0160H10
27
ct
du
ro
LP
EO
HM5316123B Series
Split Read Transfer Cycle, Masked Split Write Transfer Cycle
HM5316123B
——————————————
Parameter
-7
-8
-10
————
————
————
Symbol Min Max
Min Max
Min Max
Unit Notes
—————————————————————————————————————————
Split transfer setup time
tSTS
20
Split transfer hold time referenced to RAS tRST
70
Split transfer hold time referenced to CAS tCST
20
Split transfer hold time referenced
to column address
35
—
20
—
25
—
ns
—————————————————————————————————————————
—
80
—
100 —
ns
—————————————————————————————————————————
—
20
—
25
—
ns
—————————————————————————————————————————
tAST
—
40
—
45
—
ns
—————————————————————————————————————————
SC to QSF delay time
tSQD
—
tSQH
5
tSCC
25
tSC
5
tSCP
10
tSCA
—
tSOH
5
tSIS
0
tSIH
15
tRAD
15
tRAL
35
30
—
30
—
30
ns
15
—————————————————————————————————————————
QSF hold time referenced to SC
—
5
—
5
—
ns
—————————————————————————————————————————
Serial clock cycle time
—
28
—
30
—
ns
—————————————————————————————————————————
SC pulse width
—
10
—
10
—
ns
—————————————————————————————————————————
SC precharge time
—
10
—
10
—
ns
—————————————————————————————————————————
SC access time
20
—
23
—
25
ns
15
—————————————————————————————————————————
Serial data-out hold time
—
5
—
5
—
ns
—————————————————————————————————————————
Serial data-in setup time
—
0
—
0
—
ns
—————————————————————————————————————————
Serial data-in hold time
—
15
—
15
—
ns
—————————————————————————————————————————
RAS to column address delay time
35
15
40
15
55
ns
—————————————————————————————————————————
Column address to RAS lead time
—
40
—
45
—
ns
—————————————————————————————————————————
28
Preliminary Data Sheet E0160H10
ct
du
ro
LP
EO
HM5316123B Series
Serial Read Cycle, Serial Write Cycle
HM5316123B
——————————————
Parameter
-7
-8
-10
————
————
————
Symbol Min Max
Min Max
Min Max
Unit Notes
—————————————————————————————————————————
Serial clock cycle time
tSCC
25
tSC
5
tSCP
10
tSCA
—
tSEA
—
tSOH
5
tSHZ
—
—
28
—
30
—
ns
—————————————————————————————————————————
SC pulse width
—
10
—
10
—
ns
—————————————————————————————————————————
SC precharge width
—
10
—
10
—
ns
—————————————————————————————————————————
Access time from SC
20
—
23
—
25
ns
15
—————————————————————————————————————————
Access time from SE
17
—
20
—
25
ns
15
—————————————————————————————————————————
Serial data-out hold time
—
5
—
5
—
ns
—————————————————————————————————————————
Serial output buffer turn-off time
referenced to SE
15
—
20
—
20
ns
5,17
—————————————————————————————————————————
SE to serial output in low-Z
tSLZ
0
tSIS
0
tSIH
15
tSWS
0
tSWH
15
tSWIS
0
tSWIH
15
—
0
—
0
—
ns
5,17
—————————————————————————————————————————
Serial data-in setup time
—
0
—
0
—
ns
—————————————————————————————————————————
Serial data-in hold time
—
15
—
15
—
ns
—————————————————————————————————————————
Serial write enable setup time
—
0
—
0
—
ns
—————————————————————————————————————————
Serial wrtie enable hold time
—
15
—
15
—
ns
—————————————————————————————————————————
Serial write disable setup time
—
0
—
0
—
ns
—————————————————————————————————————————
Serial write disable hold time
—
15
—
15
—
ns
—————————————————————————————————————————
Preliminary Data Sheet E0160H10
29
ct
du
ro
LP
EO
HM5316123B Series
Notes: 1. AC measurements assume tT = 5 ns.
2. When tRCD > tRCD (max) and tRAD > tRAD (max), access time is specified by tCAC or tAA.
3. VIH (min) and VIL (max) are reference levels for measuring timing of input signals. Transition
time tT is measured between VIH and VIL.
4. Data input must be floating before output buffer is turned on. In read cycle, read-modify-write
cycle and delayed write cycle, either tDZC (min) or tDZO (min) must be satisfied.
5. tOFF1 (max), tOFF2 (max), tSHZ (max) and tSLZ (min) are defined as the time at which the
output acheives the open circuit condition (VOH – 100 mV, VOL + 100 mV). This parameter is
sampled and not 100% tested.
6. Assume that tRCD < tRCD (max) and tRAD < tRAD (max). If tRCD or tRAD is greater than the
maximum recommended value shown in this table, tRAC exceeds the value shown.
7. Measured with a load circuit equivalent to 1 TTL loads and 50 pF.
8. When tRCD > tRCD (max) and tRAD < tRAD (max), access time is specified by tCAC.
9. When tRCD < tRCD (max) and tRAD > tRAD (max), access time is specified by tAA.
10. If either tRCH or tRRH is satisfied, operation is guaranteed.
11. When tWCS > tWCS (min), the cycle is an early write cycle, and I/O pins remain in an open
circuit (high impedance) condition.
12. These parameters are specified by the later falling edge of CAS or WEU and WEL.
13. Either tCDD (min) or tODD (min) must be satisfied because output buffer must be turned off by
CAS or OE prior to applying data to the device when output buffer is on.
14. When tAWD > tAWD (min) and tCWD > tCWD (min) in read-modify-write cycle, the data of the
selected address outputs to an I/O pin and input data is written into the selected address. tODD
(min) must be satisfied because output buffer must be turned off by OE prior to applying data to
the device.
15. Measured with a load circuit equivalent to 1 TTL loads and 30 pF.
16. After power-up, pause for 100 µs or more and execute at least 8 initialization cycle (normal
memory cycle or refresh cycle), then start operation. Hitachi recommends that least 8
initialization cycle is the CBRR for internal register reset. This CBRR need not tSTS and tRST.
17. When tSHZ and tSLZ are measured in the same VCC and Ta condition and tr and tf of SE are
less than 5 ns, tSHZ < tSLZ +5 ns. This parameter is sampled and not 100% tested.
18. When both WEU and WEL go low at the same time, all 16-bits data are written into the device,
WEU and WEL cannot be staggered within the same write cycles.
19. After power-up, QSF output may be High-Z, so 1 sc cycle is needed to be Low-Z it.
20. DSF2 pin is open pin, but Hitachi recommends it is fixed low in all operation for the addition
mode in future.
30
Preliminary Data Sheet E0160H10
ct
du
ro
LP
EO
HM5316123B Series
Timing Waveforms*21
Read Cycle
t RC
t RAS
t RP
RAS
t CRP
t CSH
t RSH
t CAS
t RCD
CAS
Address
t RAL
t RAD
t ASR
t RAH
t ASC
Row
Column
t RCS
WEL
t CAL
t CAH
t RRH
t RCH
t CAC
t AA
t CDD
t OFF1
t RAC
I/O 0 to I/O 7
(Output)
Valid Dout
t OAC
t DZC
I/O 0 to I/O 7
(Input)
t OFF2
t DZO
t RCS
t RRH
WEU
t RCH
t CAC
t CDD
t AA
t OFF1
t RAC
I/O 8 to I/O 15
(Output)
Valid Dout
t OAC
t DZC
I/O 8 to I/O 15
(Input)
t OFF2
t DZO
t DTS
t DTH
t FSR
t RFH
DT/OE
t FSC
t CFH
DSF1
Note: 21.
VIH or V IL
Invalid Dout
Preliminary Data Sheet E0160H10
31
ct
du
ro
LP
EO
HM5316123B Series
Fast page Mode Read Cycle
t RC
t RASP
RAS
t PC
t CSH
t CAS
t RCD
CAS
t RAD
t ASR
Address
t RAH t ASC
Row
t CP
t CAL
t CAH
WEU, WEL
I/O
(Input)
t DTS
t DZO
t DTH
t FSR
t RFH
Column
t RCS t RCH
t AA
t ACP
t CAC
Valid
Dout
t DZC
t CAL
t CAH
t ASC
Column
t RCH
t CDD
t OAC t OFF2
t RCS
32
t CFH
t FSC
t FSC
t DZC
t OAC
t CFH
t OFF1
Valid Dout
t CDD
t OFF2
t OAC
DT/OE
DSF1
t RRH
t RCH
t AA
t ACP
t CAC
t OFF1
Valid
Dout
t DZC
t CRP
t RAL
t CAL
t CAH
t RAC t OFF1
t AA
t CAC
I/O
(Output)
t RSH
t CAS
t CP
t CAS
t ASC
Column
t RCS
t RP
t FSC
Preliminary Data Sheet E0160H10
t CFH
t CDD
ct
du
ro
LP
EO
HM5316123B Series
Write Cycle
The write cycle state table as shown below is
applied to early write, delayed write, page mode
write, and read-modify write.
Write Cycle State Table
RAS
CAS
RAS
RAS
CAS
—————————————————————————
DSF1
DSF1 WEU, WEL I/O
I/O
—————————————————————————
MNEU
Cycle
W1
W2
W3
W4
W5
——————————————————————————————————————————
RWM
Write mask (new/old)
Write DQs to I/Os
0
0
0
Write mask*1 Valid data
——————————————————————————————————————————
BWM
Write mask (new/old)
Block write
0
1
0
Write mask*2 Column mask*2
——————————————————————————————————————————
RW
Normal write (no mask)
0
0
1
H or L*1
Valid data
——————————————————————————————————————————
BW
Block write (no mask)
0
1
1
H or L*2
Column mask*2
——————————————————————————————————————————
LMR*4
Load write mask resister
1
0
1
H or L
Write mask data*3
——————————————————————————————————————————
LCR*4
Load color resister
1
1
1
H or L
Color data
——————————————————————————————————————————
Notes: 1.
WEU, WEL
Either Low
Both High
2.
3.
4.
Mode
New mask mode
Persistent
mask mode
No mask
I/O data/RAS
Mask
H or L
(mask register used)
H or L
I/O Mask Data (In new mask mode)
Low: Mask
High: Non Mask
In persistent mask mode, I/O don't care
Reference Figure 2 Use of Block Write.
I/O Write Mask Data
Low: Mask
High: Non Mask
Column Address: H or L
Preliminary Data Sheet E0160H10
33
ct
du
ro
LP
EO
HM5316123B Series
Early Write Cycle
t RC
t RAS
t RP
RAS
t CRP
t CSH
t RSH
t RCD
CAS
(CASU/CASL)
Address
t CAS
t ASR
t RAH
Row
t WS
t WH
t WCS
t WCH
High-Z
t MH
t MS
I/O 0 to I/O 7
(Input)
t DH
t DS
W4
t WS
W5
t WH
t WCS
t WCH
W3
WEU
I/O 8 to I/O 15
(Output)
t CAH
Column
W3
WEL
I/O 0 to I/O7
(Output)
t ASC
High-Z
t MH
t MS
I/O 8 to I/O 15
(Input)
W4
t DTS
t DH
t DS
W5
t DTH
DT/OE
t FSR
DSF1
t RFH
W1
t FSC
t CFH
W2
W1 to W5: See write cycle state table for the logic states.
34
Preliminary Data Sheet E0160H10
ct
du
ro
LP
EO
HM5316123B Series
Delayed Write Cycle
t RC
t RAS
t RP
RAS
CAS
(CASU, CASL)
t CAS
t ASR
Address
t RAH
Row
t WS
t DS
t DZC
t DH
t RWL
t WH
I/O 8 to I/O 15
(Input)
t MH
t DS
t DZC
t DTS
t DTH
t FSR
t RFH
t DH
W5
W4
W1
CWL
t WP
W3
t MS
t CWL
W5
W4
WEU
DSF1
t RWL
t WP
t MH
t WS
DT/OE
t CAH
Column
t WH
t MS
I/O 0 to I/O 7
(Input)
I/O 8 to I/O 15
(Output)
t ASC
W3
WEL
I/O 0 to I/O 7
(Output)
t CRP
t CSH
t RSH
t RCD
t OFF2
t ODD
t FSC
t OEH
t CFH
W2
W1 to W5: See write cycle state table for the logic states
Preliminary Data Sheet E0160H10
35
ct
du
ro
LP
EO
HM5316123B Series
Fast page Mode Write Cycle (Early Write)
t RC
t RP
t RASP
RAS
t CSH
t PC
t RCD
CAS
(CASU, CASL) t ASR
Address
t CP
t CAS
t RAH t ASC
t CAH t ASC
Row
Column
t WS t WH t WCS t WCH
WEU, WEL
t RSH
t CAS
t CP
t CAS
t CAH t ASC
t CRP
t CAH
Column
Column
t WCS t WCH
t WCS t WCH
W3
High-Z
I/O
(Output)
t MS
I/O
(Input)
t DS
t MH
t DH
W4
W5
t DTS
t DH
t DS
W5
W5
t DTH
DT/OE
t RFH
t FSC
t FSR
W1
DSF1
t DS
t DH
t CFH
t FSC
W2
t CFH
t FSC
t CFH
W2
W2
W1 to W5: See write cycle state table for the logic states
Fast page Mode Write Cycle (Delayed Write)
t RC
t RASP
t RP
RAS
t CSH
t RCD
t PC
CAS
(CASU, CASL) t ASR t RAH t ASC
Address
WEU, WEL
I/O
(Output)
t CAH
Column
Row
t WS
t CP
t CAS
t ASC
t CAS
t ASC
t CAH
Column
t CAH
t RWL
t CWL
t WP
t WP
t WP
W3
High-Z
t MS
I/O
(Input)
t MH
t DS t DH
t DS t DH
t DS t DH
W5
W5
W5
W4
t OEH
t DTS
DT/OE
t FSR
DSF1
t RFH t FSC
W1
t CFH
W2
t FSC t CFH
W2
W1 to W5: See write cycle state table for the logic states
36
t CRP
Column
t CWL
t WH
t RSH
t CP
t CAS
Preliminary Data Sheet E0160H10
t FSC
t CFH
W2
t CWL
ct
du
ro
LP
EO
HM5316123B Series
Read Modify Write Cycle
t RWC
t RP
t RWS
RAS
t CRP
t RCD
CAS
(CASU, CASL)
t RAD
t ASR
Address
Row
t WS
t CAH
t AWD
t CWD
t RCS
t RWL
t CWL
t WP
t CAC
t AA
W3
t RAC
Valid Dout
t MS
I/O 0 to I/O 7
(Input)
t MH
t OAC
t DZC
W4
t WS
t RCS
t CWD
W5
t RWL
t CWL
t WP
t ODD
Valid Dout
I/O 8 to I/O 15
(Input)
t DH
t CAC
t AA
t RAC
W3
t MS
t DS
t OFF2
t WH
WEU
I/O 8 to I/O 15
(Output)
t ASC
Column
t WH
WEL
I/O 0 to I/O 7
(Output)
t RAH
t MH
t OAC
t DZC
W4
t DS
t DH
W5
t DTS
t DTH
t DZO
t ODD
t OEH
DT/OE
t FSR
DSF1
t RFH
W1
t FSC
t CFH
W2
W1 to W5: See write cycle state table for the logic states
Preliminary Data Sheet E0160H10
37
ct
du
ro
LP
EO
HM5316123B Series
RAS-Only Refresh Cycle
t RC
t RP
t RAS
RAS
t RPC
t CRP
CAS
t ASR
t RAH
Row
Address
t OFF1
I/O
(Output)
t CDD
I/O
(Input)
t OFF2
t ODD
t DTS
t DTH
t FSR
t RFH
DT/OE
DSF1
WE: H or L
CAS-Before-RAS refresh Cycle
t RC
t RP
RAS
t RPC
t CP
t CSR
t CHR
CAS
t RPC
Inhibit Falling Transition
Address
t WS
t WH
WEU, WEL
t OFF1
High-Z
I/O
(Output)
DT/OE
t FSR
t RFH
DSF1
SC : H or L
38
t RP
t RAS
Preliminary Data Sheet E0160H10
t CSR
ct
du
ro
LP
EO
HM5316123B Series
Hidden Refresh Cycle
t RC
t RAS
t RC
t RAS
t RP
t RP
RAS
t RCD
CAS
t CHR
Row
Column
t RCS
t RRH
t WS
t WH
t CAC
WEU, WEL
t AA
t RAC
I/O
(Output)
t OFF1
Valid Dout
t DZC
I/O
(Input)
t DTS
DT/OE
t CRP
t RAD t RAL
t RAH t
ASC t CAH
t ASR
Address
t RSH
t FSR
t OAC
t OFF2
t DZO
t DTH
t RFH
t FSC
t CFH
t FSR
t RFH
DSF1
Preliminary Data Sheet E0160H10
39
ct
du
ro
LP
EO
HM5316123B Series
CAS-Before-RAS Set Cycle (CBRS)
t RC
t RAS
t RP
t RP
RAS
t RPC
t CSR
t CHR
t CRP
Inhibit falling transition
CAS
t ASR
Address
(A2-A6)
t RAH
Stop Address
t WS
t WH
WEU, WEL
High-Z
I/O
(Output)
I/O
(Input)
DT/OE
t FSR
t RFH
DSF1
A0, A1, A7 : Don't care
SC: Dont care
CAS-Before-RAS Reset Cycle (CBRR)
t RC
t RP
t RAS
t RP
RAS
t RPC
t CSR
t CHR
t CRP
Inhibit falling transition
CAS
Address
t WS
t WH
WEU, WEL
High-Z
I/O
(Output)
I/O
(Input)
DT/OE
t FSR
t RFH
DSF1
t STS
SC
Bi*1
t RST
Bj-2
Note: 1. Bi, Bj initiate the boundary addresses.
40
Preliminary Data Sheet E0160H10
Bj-1
Bj*1
ct
du
ro
LP
EO
HM5316123B Series
Flash Write Cycle
t RC
t RAS
t RP
RAS
t CRP
CAS
t RCD
t ASR
t RAH
Row
Address
t WS
t WH
WEU, WEL
t OFF1
I/O
(Output)
I/O
(Input)
DT/OE
t OFF2
t CDD
High-Z
t MS
t ODD
t DTS
t MH
Mask Data
t DTH
t FSR
t RFH
DSF1
Preliminary Data Sheet E0160H10
41
ct
du
ro
LP
EO
HM5316123B Series
Register Read Cycle (Mask data, Color data)
t RC
t RAS
t RP
RAS
t CSH
t RCD
CAS
t ASR
t RAH
Row
t WS t WH
Address
t CAS
t RRH
t RCS
WEU, WEL
t CAC
t RAC
I/O
(Output)
I/O
(Input)
DT/OE
t FSR
t OAC
t DZO
t DTH
t RFH
t FSC
DSF1
t CFH
*1
Note: 1. State of DSF1 at falling edge of CAS
State
0
Accessed Mask data
data
(LMR)
42
1
Color data
(LCR)
Preliminary Data Sheet E0160H10
t RCH
t CDO
t OFF1
t DZC
t DTS
t CRP
t RSH
Valid Out
t OFF2
t ODD
ct
du
ro
LP
EO
HM5316123B Series
Read Transfer Cycle-1
t RC
t RP
t RAS
RAS
t CRP
t CSH
t RCD
t RSH
t CAS
CAS
t RAD
t RAH
t ASR
Address
Row
t WS
t RAL
t ASC t CAH
SAM Start
Address
t WH
WEU, WEL
High-Z
I/O
(Output)
t CDH
t DTS
t DRD
t ADH
t DTP
t RDH
DT/OE
t FSR
t RFH
DSF1
t SCC
t SCC
SC
SI/O
(Output)
t SCA
t SOH
Valid Sout
Valid Sout
t SC
t SCA
t SOH
t SCA
t SOH
t SCA
t SOH
t SCC
t SCC
t SDH
t SDD
Valid Sout
Valid Sout
Previous Row
t SCP
t SOH
Valid Sout
New Row
High-Z
SI/O
(Input)
t DQD
t DQH
QSF
SAM Address MSB
Preliminary Data Sheet E0160H10
43
ct
du
ro
LP
EO
HM5316123B Series
Read Transfer Cycle-2
t RC
t RAS
t RP
RAS
t CSH
t CRP
t RSH
t CAS
t RCD
CAS
t ASR
Address
t RAD
t RAH
t CAH
SAM Start
Address
Row
t WS
t RAL
t ASC
t WH
WEU, WEL
High-Z
I/O
(Output)
t DTS
t DTH
t DRD
t DTP
DT/OE
t FSR
t RFH
DSF1
t SRS
t SDH
t SAH
t SC
t SCP
t SOH
t SRH
t SIS
t SIH
t SZS
Valid
Sin
t RQD
t RQH
t DQD
t CQD
t CQH
t DQH
QSF
44
t SCA
t SCA
t SCH
SI/O
(Input)
t SCP
Inhibit Rising Transition
SC
SI/O
(Output)
t SCC
t SC
SAM Address MSB
Preliminary Data Sheet E0160H10
Valid Sout
ct
du
ro
LP
EO
HM5316123B Series
Masked Write Transfer Cycle
t RC
t RP
t RAS
RAS
t CSH
t RCD
CAS
t ASR
Address
t RAH
t CAS
t ASC
t CRP
t RSH
t CAH
SAM Start
Address
Row
t WS t WH
WEU, WEL
High-Z
I/O
(Output)
DT/OE
t DTS t DTH
t FSR t RFH
DSF1
t SRD
t SRS
t SC
SC
SI/O
(Output)
SI/O
(Input)
QSF
I/O
(Input)
t SCA
Valid
t SOH
t SCP
t SRZ
t SCC
t SC t SCP
Inhibit Rising Transition
t SID
Valid
t SIS t SIH
High-Z
t RQD t CQH
t RQH
SAM Address MSB
t MS t MH
t CQD
Valid Sin
t SIS t SIH
Valid Sin
I/O Mask Data *1
Note: 1. I/O mask data (In new mask mode)
Low: Mask
High: Non mask
I/O: Don't care in persistent mask mode.
Preliminary Data Sheet E0160H10
45
ct
du
ro
LP
EO
HM5316123B Series
Split Read Transfer Cycle
t RC
t RP
t RAS
RAS
t CSH
t RSH
t RCD
t CRP
t CRP
t CAS
CAS
t RAD
t ASR
Address
t RAL
t RAH
SAM Start *3
Address Yi
Row
t WS
t CAH
t ASC
t WH
WEU, WEL
t OFF1
High-Z
I/O
(Output)
t DTS
t DTH
t FSR
t RFH
DT/OE
DSF1
t CST
t AST
t RST
t SCC
t SC
t STS
SC
Bi *2
Ym*1
Ym + 1
SI/O
(Input)
Bj – 2
Valid
Sout
Valid
Sout
Valid
Sout
Valid
Sout
Valid
Sout
t SQD
t SQD
t SQH
SAM Address MSB
Notes: 1. Ym is the SAM start address in before SRT.
2. Bi, Bj initiate the boundary address.
3. A7 : H or L
SAM start address can't set on the boundary address.
46
Bj *2
High-Z
t SQH
QSF
Bj – 1
t SOH
t SOH
Valid Sout
Ym + 2
t SCA
t SCA
SI/O
(Output)
t SCP
Preliminary Data Sheet E0160H10
Yi
ct
du
ro
LP
EO
HM5316123B Series
Masked Split Write Transfer Cycle
t RC
t RAS
t RP
RAS
,
t CSH
t RSH
t CAS
t RCD
CAS
t ASR t RAH
t ASC t CAH
Row
SAM Start
Address Yi
Address
*4
t WS tWH
WEU, WEL
t OFF1
High-Z
I/O
(Output)
t DTS t DTH
DT/OE
t FSR t RFH
DSF1
t RST
Bi*2
Ym*1
t CST
t SCC
t SC t SCP
t STS
SC
t AST
Ym+1
Ym+2
Bj-2
Bj-1
Bj*2
Yi
SI/O
(Output)
t SIS
SI/O
(Input)
Valid
Sin
t SIH
Valid
Sin
t SIS t SIH
Valid
Sin
Valid
Sin
Valid
Sin
Valid
Sin
t SQD
t SQH
t SQD
t SQH
SAM Address MSB
QSF
t CDD t MS
I/O
(Input)
Valid
Sin
t SIS t SIH
t MH
I/O Mask Data*3
Notes: 1. Ym is the SAM start address in before SRWT.
2. Bi, Bj initiate the boundary address.
3. I/O Mask data (In new mask mode)
Low: Mask
High: Non mask
I/O: Don't care in persistent mask mode.
4. A7: H or L
SAM start address can't set on the boundary address.
Preliminary Data Sheet E0160H10
47
ct
du
ro
LP
EO
HM5316123B Series
Serial Read Cycle
SE
tSCC
tSCC
tSC
SC
tSCP
tSC
tSCA
tSOH
tSEA
tSCA
tSLZ
tSHZ
Valid Sout
tSCC
tSCP
tSC
tSCA
tSOH
SI/O
(Output)
tSCP
tSC
Valid Sout
Valid Sout
Sereal Write Cycle
tSWH
tSWIS
tSWIH
tSWS
SE
tSCC
tSC
tSCC
tSCC
tSCP
tSC
tSC
tSCP
tSCP
tSC
SC
tSIS
SI/O
(Input)
48
tSIH
Valid Sin
tSIS
tSIH
Valid Sin
Preliminary Data Sheet E0160H10
tSIS
tSIH
Valid Sin
Valid
Sout
ct
du
ro
LP
EO
HM5316123B Series
Package Dimensions
HM5316123BF Series (FP-64DS)
Unit: mm
26.2
27.0 Max
33
11.60
64
1
13.8 ± 0.2
0 – 10°
+0.30
0.16 M
0.80
0.10
0.05 Min
0.20 Max
0.30 +0.08
–0.02
+0.08
1.10 Max
0.17 –0.07
3.0 Max
32
Preliminary Data Sheet E0160H10
0.50 –0.25
49
HM5316123B Series
ct
du
ro
LP
EO
Cautions
1. Elpida Memory, Inc. neither warrants nor grants licenses of any rights of Elpida Memory, Inc.’s or any
third party’s patent, copyright, trademark, or other intellectual property rights for information
contained in this document. Elpida Memory, Inc. bears no responsibility for problems that may arise
with third party’s rights, including intellectual property rights, in connection with use of the
information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability.
However, contact Elpida Memory, Inc. before using the product in an application that demands
especially high quality and reliability or where its failure or malfunction may directly threaten human
life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control,
transportation, traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Elpida Memory,
Inc. particularly for maximum rating, operating supply voltage range, heat radiation characteristics,
installation conditions and other characteristics. Elpida Memory, Inc. bears no responsibility for
failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges,
consider normally foreseeable failure rates or failure modes in semiconductor devices and employ
systemic measures such as fail-safes, so that the equipment incorporating Elpida Memory, Inc.
product does not cause bodily injury, fire or other consequential damage due to operation of the
Elpida Memory, Inc. product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Elpida Memory, Inc..
7. Contact Elpida Memory, Inc. for any questions regarding this document or Elpida Memory, Inc.
semiconductor products.
50
Preliminary Data Sheet E0160H10