FUJITSU MB91121PFV

FUJITSU SEMICONDUCTOR
DATA SHEET
DS07-16303-3E
32-bit RISC Microcontroller
CMOS
FR30 Series MB91121
MB91121
■ DESCRIPTION
The MB91121 is a microcontroller with a 32-bit RISC CPU (FR family *) as the core, incorporating a variety of
I/O resources, a bus control facility, and a multiplier-accumulator (simplified DSP) with internal program RAM for
built-in control applications which require advanced, high-speed CPU processing.
While being based on external bus access for supporting a vast address space accessed by the 32-bit CPU, it
contains 1 K bytes of instruction cache memory and 4 K bytes of RAM (8 K bytes when the DSP is not used) for
speeding up the execution of instructions by the CPU.
In this way, the device is designed for built-in applications which require high performance and processing power
of the CPU, such as digital camera, navigation system, and high-performance FAX, and printer controls.
* : FR Family stands for FUJITSU RISC controller.
■ FEATURES
1. FR CPU
•
•
•
•
•
32-bit RISC, load/store architecture, 5-stage pipeline
Operating clock frequency : Internal 50 MHz/external 25 MHz (PLL used at source oscillation 12.5 MHz)
General purpose registers : 32 bits × 16
16-bit fixed length instructions (basic instructions) , 1 instruction/1 cycle
Memory to memory transfer, bit processing, barrel shifter processing : Optimized for embedded applications
(Continued)
■ PACKAGE
120-pin plastic LQFP
(FPT-120P-M21)
MB91121
(Continued)
• Function entrance/exit instructions, multiple load/store instructions of register contents, instruction systems
supporting high level languages
• Register interlock functions, efficient assembly language coding
• Branch instructions with delay slots : Reduced overhead time in branch executions
• Internal multiplier/supported at instruction level
Signed 32-bit multiplication : 5 cycles
Signed 16-bit multiplication : 3 cycles
• Interrupt (push PC and PS) : 6 cycles, 16 priority levels
2. Bus interface
•
•
•
•
•
•
Clock doubler : Internal 50 MHz, external bus 25 MHz operation
25-bit address bus (32 Mbytes memory space)
8/16-bit data bus
Basic external bus cycle : 2 clock cycles
Chip select outputs for setting down to a minimum memory block size of 64 Kbytes : 6
Interface supported for various memory technologies
DRAM interface (area 4 and 5)
• Automatic wait cycle insertion : Flexible setting, from 0 to 7 for each area
• Unused data/address pins can be configured as input/output ports.
• Little endian mode supported (Select 1 area from area 1 to 5)
3. DRAM interface
•
•
•
•
•
2 banks independent control (area 4 and 5)
Double CAS DRAM (Normal DRAM I/F) /Single CAS DRAM/Hyper DRAM
Basic bus cycle : Normally 5 cycles, 2-cycle access possible in high-speed page mode
Programmable waveform : Automatic 1-cycle wait insertion to RAS and CAS cycles
DRAM refresh
CBR refresh (interval time configurable by 6-bit timer)
Self-refresh mode
• Supports 8/9/10/12-bit column address width
• 2CAS/1WE, 2WE/1CAS selective
4. DSP Macros (Simplified DSP)
•
•
•
•
•
•
•
•
•
•
•
High-speed multiply-accumulate operation (1 machine cycle)
Data format :
16-bit fixed-point (16 × 16 + 40 bits)
Instruction area :
256 words × 16 bits
Data area :
64 words × 16 bits × 1 set, 1024 words × 16 bits × 2 sets (banks)
Capable of rounding and saturation processing
Number of terms in addition : Up to 32 terms
Instructions :
MAC, STR, and JMP instructions
Delay processing :
Capable of free transfer within 32 words
Fixed-point system :
Capable of selection from among Q12 to Q15
Program execution control : Capable of externally selecting eight calculation programs
Variable monitoring :
Capable of monitoring calculation results of up to 4 words without stopping the
program
• Efficient data variable areas : Two banks of data variable areas provided, enabling the CPU to execute a DSP
calculation program using one bank while accessing a data variable in the other.
5. Cache memory
• 1 K-byte instruction cache
• 2-way set-associative configuration
• 32 blocks/way, 4 entries (4 words) /block
2
MB91121
(Continued)
• Lock feature: Keeping a specific program code resident in the cache
6. DMAC (DMA Controller)
•
•
•
•
•
8 channels
Transfer incident/external pins/UART interrupt requests/DSP Macros/Software start
Transfer sequence : Step transfer/block transfer/burst transfer/continuous transfer
Transfer data length : 8 bits/16 bits/32 bits selective
Interrupt request enables temporary stop operation
7. UART
•
•
•
•
•
•
•
•
3 independent channels
Full-duplex double buffer
Data length : 7 bits to 9 bits (non-parity) , 6 bits to 8 bits (parity)
Asynchronous (start-stop system) , CLK-synchronized communication selective
Multi-processor mode
Internal 16-bit timer (U-TIMER) operating as a proprietary baud rate generator : Generates any given baud rate
Use external clock can be used as a transfer clock
Error detection : Parity, frame, overrun
8. A/D converter (successive approximation conversion type)
•
•
•
•
•
9.
10-bit resolution, 8 channels
Successive approximation type : Conversion time of 5.6 µs at 25 MHz
Internal sample and hold circuit
Conversion mode : Single conversion/scanning conversion/repeated conversion selective
Start : Software/external trigger/internal timer selective
Reload timer
• 16-bit timer : 3 channels
• Internal clock : 2 clock cycle resolution, divide by 2/8/32 selective
10. Other interval timers
• 16-bit timer : 3 channels (U-TIMER)
• PWM timer : 4 channels
• Watchdog timer : 1 channel
11. Bit search module
• First bit transition “1” or “0” from MSB can be detected in 1 cycle
12. Interrupt controller
• External interrupt input : Non-maskable interrupt (NMI) , normal interrupt × 8 (INT0 to INT7)
• Internal interrupt incident : UART, DMA controller (DMAC) , A/D converter, U-TIMER, delayed interrupt
module and DSP Macros
• Priority levels of interrupts are programmable except for non-maskable interrupt (in 16 steps) .
Others
1. Reset cause
• Power-on reset/watchdog timer/software reset/external reset
2. Low-power consumption mode
• Sleep mode/stop mode
3. Clock control
• Gear function : Operating clocks for CPU and peripherals are independently selective
Gear clock can be selected from 1/1, 1/2, 1/4 and 1/8 (or 1/2, 1/4, 1/8 and 1/16)
However, operating frequency for peripherals is less than 25 MHz.
3
MB91121
(Continued)
4. Packages : LQFP-120
5. CMOS technology (0.35 µm)
6. Power supply voltage 3.3 V ± 0.3 V
4
MB91121
■ PIN ASSIGNMENT
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
RAS1/PB4
DW0/PB3
CSOH/PB2
CSOL/PB1
RAS0/PB0
VCC
X0
X1
VSS
PI1/EOP2/ATG
PI0/DACK2
PE7/DREQ2
PE6/EOP1
PE5/DACK1
PE4/DREQ1
PE3/EOP0
PE2/DACK0
PE1/DREQ0
PE0/SC2
PF7/SO2
PF6/SI2
PF5/SC1
PF4/SO1
PF3/SI1
PF2/SC0
PF1/SO0
VSS
PF0/SI0
PG7/INT7/TRG3
PG6/INT6/TRG2
(TOP VIEW)
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
PG5/INT5/TRG1
PG4/INT4/TRG0
PG3/INT3
PG2/INT2
PG1/INT1
PG0/INT0
VCC
PH7/OCPA3
PH6/OCPA2
PH5/OCPA1
PH4/OCPA0
AN7
AN6
AN5
AN4
AN3
AN2
AN1
AN0
AVSS/AVRL
AVRH
AVCC
A24
A23/P67
A22/P66
A21/P65
A20/P64
A19/P63
A18/P62
A17/P61
P26/D22
P27/D23
D24
D25
D26
D27
D28
D29
D30
D31
VSS
A00
A01
A02
A03
A04
A05
A06
A07
VCC
A08
A09
A10
A11
A12
A13
A14
A15
VSS
P60/A16
PB5/CS1L
PB6/CS1H
PB7/DW1
VCC
CS0
PA1/CS1
PA2/CS2
PA3/CS3
PA4/CS4
PA5/CS5
PA6/CLK
NMI
MD3
RST
VSS
MD0
MD1
MD2
P80/RDY
P81/BGRNT
P82/BRQ
RD
WR0
P85/WR1
P20/D16
P21/D17
P22/D18
P23/D19
P24/D20
P25/D21
(FPT-120P-M21)
5
MB91121
■ PIN DESCRIPTION
Pin no.
Pin name
Circuit type
Function
1
2
3
4
5
6
7
A17/P61
A18/P62
A19/P63
A20/P64
A21/P65
A22/P66
A23/P67
F
Bits 16 to 23 for the external address bus.
When not used for the address bus, these pins serve as ports (P60
to P67) .
8
A24
M
Bit 24 for the external address bus
9
AVCC

A/D converter VCC power supply
10
AVRH

A/D converter reference voltage (high potential side)
The VCC pin must be applied with voltage equal to or higher than
the voltage at this pin (AVRH) when the AVRH pin is turned on or
off.
11
AVSS/AVRL

A/D converter VSS power supply or reference voltage (low potential
side)
12 to 19
AN0 to AN7
N
[AN0 to AN7] A/D converter analog input. This function is enabled
with the AIC register set for the analog input.
20 to 23
OCPA0/PH4
OCPA1/PH5
OCPA2/PH6
OCPA3/PH7
25 to 32
33
INT0/PG0
INT1/PG1
INT2/PG2
INT3/PG3
INT4/PG4/TRG0
INT5/PG5/TRG1
INT6/PG6/TRG2
INT7/PG7/TRG3
SI0/PF0
F
[OCPA0 to OCPA3] PWM timer output. This function is enabled
with the PWM timer output flag set to “Enabled”.
[PH4 to PH7] General-purpose I/O port
[INT0 to INT7] External interrupt request input
F
[TRG0 to TRG3] PWM timer
external trigger input
Since these inputs are used during their respective input operations, the output by the other
function must remain off unless
used intentionally.
[PG0 to PG7] General-purpose I/O port
F
[SI0] UART0 data input. Since this input is used whenever
UART0 is in input operation, the output by the other function must
remain off unless used intentionally.
[PF0] General-purpose I/O port
35
36
SO0/PF1
SC0/PF2
F
F
[SO0] UART0 data output. This function is enabled with the
UART0 data output flag set to “Enabled”.
[PF1] General-purpose I/O port. This function is enabled with the
UART0 data output flag set to “Disabled”.
[SC0] UART0 clock input/output. The clock output is enabled with
the UART0 clock output flag set to “Enabled”.
[PF2] General-purpose I/O port. This function is enabled with the
UART0 clock output flag set to “Disabled”.
(Continued)
6
MB91121
(Continued)
Pin no.
37
Pin name
SI1/PF3
Circuit type
Function
F
[SI1] UART1 data input. Since this input is used whenever
UART1 is in input operation, the output by the other function must
remain off unless used intentionally.
[PF3] General-purpose I/O port
38
39
40
SO1/PF4
SC1/PF5
SI2/PF6
F
F
F
[SO1] UART1 data output. This function is enabled with the
UART1 data output flag set to “Enabled”.
[PF4] General-purpose I/O port. This function is enabled with the
UART1 data output flag set to “Disabled”.
[SC1] UART1 clock input/output. The clock output is enabled with
the UART1 clock output flag set to “Enabled”.
[PF5] General-purpose I/O port. This function is enabled with the
UART1 clock output flag set to “Disabled”.
[SI2] UART2 data input. Since this input is used whenever
UART2 is in input operation, the output by the other function must
remain off unless used intentionally.
[PF6] General-purpose I/O port
41
42
43
SO2/PF7
SC2/PE0
DREQ0/PE1
F
F
F
[SO2] UART2 data output. This function is enabled with the
UART2 data output flag set to “Enabled”.
[PF7] General-purpose I/O port. This function is enabled with the
UART2 data output flag set to “Disabled”.
[SC2] UART2 clock input/output. The clock output is enabled with
the UART2 clock output flag set to “Enabled”.
[PE0] General-purpose I/O port. This function is enabled with the
UART2 clock output flag set to “Disabled”.
[DREQ0] DMA external transfer request input (ch0) . Since this
input is used whenever the DMA external transfer request has
been selected as a DMA transfer trigger event, the output by the
other function must remain off unless used intentionally.
[PE1] General-purpose I/O port
44
DACK0/PE2
F
45
EOP0/PE3
F
[DACK0] DMAC external transfer request acknowledge output
(ch0) . This function is enabled with the DMAC transfer request acknowledge output flag set to “Enabled”.
[PE2] General-purpose I/O port. This function is enabled with the
DMAC transfer request acknowledge output flag or DACK0 output
flag set to “Disabled”.
[EOP0] DMAC EOP output (ch0) . This function is enabled with
the EOP output flag set to “Enabled”.
[PE3] General-purpose I/O port
46
DREQ1/PE4
F
[DREQ1] DMA external transfer request input (ch1) . Since this
input is used whenever the DMA external transfer request has
been selected as a DMA transfer trigger event, the output by the
other function must remain off unless used intentionally.
[PE4] General-purpose I/O port
(Continued)
7
MB91121
(Continued)
Pin no.
47
48
Pin name
DACK1/PE5
EOP1/PE6
Circuit type
F
F
Function
[DACK1] DMAC external transfer request acknowledge output
(ch1) . This function is enabled with the DMAC transfer request acknowledge output flag set to “Enabled”.
[PE5] General-purpose I/O port. This function is enabled with the
DMAC transfer request acknowledge output flag or DACK0 output
flag set to “Disabled”.
[EOP1] DMAC EOP output (ch1) . This function is enabled with
the EOP output flag set to “Enabled”.
[PE6] General-purpose I/O port
49
DREQ2/PE7
F
[DREQ2] DMA external transfer request input (ch2) . Since this
input is used whenever the DMA external transfer request has
been selected as a DMA transfer trigger event, the output by the
other function must remain off unless used intentionally.
[PE7] General-purpose I/O port
50
DACK2/PI0
F
[DACK2] DMAC external transfer request acknowledge output
(ch2) . This function is enabled with the DMAC transfer request acknowledge output flag set to “Enabled”.
[PI0] General-purpose I/O port. This function is enabled with the
DMAC transfer request acknowledge output flag or DACK0 output
flag set to "Disabled".
[EOP2] DMAC EOP output (ch2) . This function is enabled with
the EOP output flag set to “Enabled”.
51
EOP2/ATG/PI1
F
[ATG] A/D converter external trigger input. Since this input is used
whenever the A/D converter external trigger signal has been selected as an A/D trigger event, the output by the other function
must remain off unless used intentionally.
[PI1] General-purpose I/O port. This function is enabled with the
DMAC transfer termination signal output flag set to “Disabled”.
53
54
X1
X0
56
57
58
59
60
RAS0/PB0
CSOL/PB1
CSOH/PB2
DW0/PB3
RAS1/PB4
61
62
63
CS1L/PB5
CS1H/PB6
DW1/PB7
F
65
CS0
M
A
F
Clock (oscillation) output.
Clock (oscillation) input.
RAS output of DRAM bank 0
CASL output of DRAM bank 0
CASH output of DRAM bank 0
WE output of DRAM bank 0 (Low active)
RAS output of DRAM bank 1
[PB0 to PB3] Can serve as a port when not used for signal output.
CASL output of DRAM bank 1
CASH output of DRAM bank 1
WE output of DRAM bank 1 (Low active)
[PB5 to PB7] Can serve as a port when not used for signal output.
Chip select 0 output (Low active) .
(Continued)
8
MB91121
(Continued)
Pin no.
66
67
68
69
70
71
Pin name
CS1/PA1
CS2/PA2
CS3/PA3
CS4/PA4
CS5/PA5
CLK/PA6
Circuit type
F
Function
Chip select 1 output (Low active) .
Chip select 2 output (Low active) .
Chip select 3 output (Low active) .
Chip select 4 output (Low active) .
Chip select 5 output (Low active) .
[PA1 to PA5] Can serve as a port when not used for signal output.
F
System clock output. This pin outputs the same clock frequency
as the external bus operating frequency.
[PA6] Can serve as a port when not used for signal output.
72
NMI
H
NMI (Non Maskable Interrupt) input (Low active) .
73
MD3
G
Mode pin 3.
Connect this pin directly to the VCC or VSS pin.
74
RST
B
External reset input.
76
77
78
MD0
MD1
MD2
G
Mode pins 0 to 2.
These pins are set to MCU basic operation modes.
Connect this pin directly to the VCC or VSS pin.
79
RDY/P80
C
External ready signal input. This pin inputs 0 when the bus cycle
being executed is not completed. It can serve as a port when not
used for that input.
80
BGRNT/P81
F
External bus release request acknowledge output. This pin outputs the L signal when the eternal bus has been released. The pin
can serve as a port when not used for that output.
81
BRQ/P82
C
External bus release request input. Input 1 to this pin to release
the external bus. The pin can serve as a port when not used for
that input.
82
RD
M
External bus read strobe.
83
WR0
M
External bus write strobe. The control signals and data bus byte
locations have the following relationships.
84
WR1/P85
F
16-bit bus width
8-bit bus width
D31 to D24
WR0
WR0
D23 to D16
WR1
(Usable as port)
Note : WR1 remains in the Hi-Z state during a reset. For use with
a 16-bit bus width, add an external pull-up resistor.
85
86
87
88
89
90
91
92
D16/P20
D17/P21
D18/P22
D19/P23
D20/P24
D21/P25
D22/P26
D23/P27
C
External data bus bits 16 to 23.
These pins can be used as ports (P20 to P27) when the external
bus width has been set to 8 bits.
(Continued)
9
MB91121
(Continued)
Pin no.
Pin name
Circuit type
Function
93
94
95
96
97
98
99
100
D24
D25
D26
D27
D28
D29
D30
D31
C
External data bus bits 24 to 31.
102
103
104
105
106
107
108
109
111
112
113
114
115
116
117
118
A00
A01
A02
A03
A04
A05
A06
A07
A08
A09
A10
A11
A12
A13
A14
A15
F
External address bus bits 00 to 15.
120
A16/P60
24
55
64
110
VCC

Power supply pin for digital circuit.
34
52
75
101
119
VSS

Earth level for digital circuit.
External address bus bit 16. This pin can serve as a port (P60)
when not used as the address bus.
Note : In most of the above pins, I/O port and resource I/O are multiplexed xxxx/Pxx. In case of conflict between
output of I/O port and resource I/O, priority is always given to the output of resource I/O.
10
MB91121
■ DRAM CONTROL PIN
Pin name
Data bus 16-bit mode
2CAS/1WR mode
1CAS/2WR mode
Data bus 8-bit mode

RAS0
Area 4 RAS
Area 4 RAS
Area 4 RAS
RAS1
Area 5 RAS
Area 5 RAS
Area 5 RAS
CS0L
Area 4 CASL
Area 4 CAS
Area 4 CAS
CS0H
Area 4 CASH
Area 4 WEL
Area 4 CAS
CS1L
Area 5 CASL
Area 5 CAS
Area 5 CAS
CS1H
Area 5 CASH
Area 5 WEL
Area 5 CAS
DW0
Area 4 WE
Area 4 WEH
Area 4 WE
DW1
Area 5 WE
Area 5 WEH
Area 5 WE
Remarks
Correspondence of “L”
“H” to lower address 1 bit
(A0) in data bus 16-bit
mode
“L” : “0”
“H” : “1”
CASL : CAS which A0
corresponds to
“0” area
CASH : CAS which A0
corresponds to
“1” area
WEL : WE which A0
corresponds to
“0” area
WEH : WE which A0
corresponds to
“1” area
11
MB91121
■ I/O CIRCUIT TYPE
Circuit Type
Circuit
Remarks
X1
Clock input
A
• Oscillation feedback resistance
1 MΩ approx.
X0
Standby control signal
VCC
P-channel type Tr
B
Diffuse
resistor
N-channel type Tr
• CMOS level
Hysteresis input
Without standby control
With pull-up resistance
VSS
Digital input
Digital output
Digital output
C
• CMOS level I/O
With standby control
Digital input
STANDBY
CONTROL
• Analog input
N
Analog input
(Continued)
12
MB91121
(Continued)
Circuit Type
Circuit
Remarks
Digital output
Digital output
F
Digital input
• CMOS level output
• CMOS level
Hysteresis input
With standby control
STANDBY
CONTROL
• CMOS level input
Without standby control
G
Digital input
• CMOS level
Hysteresis input
Without standby control
H
Digital input
Digital output
• CMOS level output
M
Digital output
13
MB91121
■ HANDLING DEVICES
• Preventing Latchup
In CMOS ICs, applying voltage higher than VCC or lower than VSS to input/output pin or applying voltage over
rating across VCC and VSS may cause latchup.
This phenomenon rapidly increases the power supply current, which may result in thermal breakdown of the
device. Make sure to prevent the voltage from exceeding the maximum rating.
Take care that the analog power supply (AVCC AVR) and the analog input do not exceed the digital power supply
(VCC) when the analog power supply turned on or off.
• Treatment of Unused Pins
Unused pins left open may cause malfunctions. Make sure to connect them to pull-up or pull-down resistors.
• External Reset Input
It takes at least 5 machine cycle to input “L” level to the RST pin and to ensure inner reset operation properly.
• Remarks for External Clock Operation
When external clock is selected, supply it to X0 pin generally, and simultaneously the opposite phase clock to
X0 must be supplied to X1 pin. However, in this case the stop mode must not be used (because X1 pin stops
at “H” output in stop mode) .
And can be used to supply only to X0 pin with 5 V power supply at 12.5 MHz and less than.
• Using an external clock
X0
X1
MB91121
Using an external clock (normal)
Note: Can not be used stop mode (oscillation stop mode).
X0
OPEN
X1
MB91121
Using an external clock (can be used at 12.5 MHz and less than.)
• Power Supply Pins
When there are several VCC and VSS pins, each of them is equipotentially connected to its counterpart inside of
the device, minimizing the risk of malfunctions such as latch up. To further reduce the risk of malfunctions, to
prevent EMI radiation, to prevent strobe signal malfunction resulting from creeping-up of ground level and to
observe the total output current standard, connect all VCC and VSS pins to the power supply or GND.
It is preferred to connect VCC and VSS of MB91121 to power supply with minimal impedance possible.
It is also recommended to connect a ceramic capacitor as a bypass capacitor of about 0.1 µF between VCC and
VSS at a position as close as possible to MB91121.
14
MB91121
• Crystal Oscillator Circuit
Noises around X0 and X1 pins may cause malfunctions of MB91121. In designing the PC board, layout X0, X1
and crystal oscillator (or ceramic oscillator) and bypass capacitor for grounding as close as possible.
It is strongly recommended to design PC board so that X1 and X0 pins are surrounded by grounding area for
stable operation.
• Treatment of N.C. Pins
Make sure to leave N.C. pins open.
• Mode Setting Pins (MD0 to MD3)
Connect mode setting pins (MD0 to MD3) directly to VCC or VSS.
Arrange each mode setting pin and VCC or VSS patterns on the printed circuit board as close as possible and
make the impedance between them minimal to prevent mistaken entrance to the test mode caused by noises.
• Turning on the Power Supply
When turning on the power supply, never fail to start from setting the RST pin to “L” level. And after the power
supply voltage goes to VCC level, at least after ensuring the time for 5 machine cycle, then set to “H” level.
• Pin Condition at Turning on the Power Supply
The pin condition at turning on the power supply is unstable. The circuit starts being initialized after turning on
the power supply and then starting oscillation and then the operation becomes stable.
• Source Oscillation Input at Turning on the Power Supply
At turning on the power supply, never fail to input the clock before cancellation of the oscillation stabilizing waiting.
• The device contains registers which are initialized only at a power-on reset. When it is expected to initialize
them, recycle the power to execute a power-on reset.
• Even when the A/D converter is not used, make the connections : AVCC = VCC, AVSS = VSS.
• Caution on operations during PLL clock mode
If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even
when there is no external oscillator or external clock input is stopped. Performance of this operation, however,
cannot be guaranteed.
15
MB91121
■ BLOCK DIAGRAM
FR CPU
3
3
3
DREQ0 to DREQ2
DACK0 to DACK2
EOP0 to EOP2
DMAC (8 ch)
D -bus (32 bit)
Bit Search Module
I -bus (16 bit)
RAM (4 KB)
Instruction Cache (1 KB)
Bus Converter
(Harvard↔Princeton)
16
25
DSP macro
(Embedded RAM 4 )
2
Bus Converter (32 bit ↔16 bit)
Bus Controller
6
X0
X1
RST
8
Interrupt Control
Unit
C-bus (32 bit)
AN0 to AN7
AVCC
AVRH
AVSS /AVRL
Clock Control Unit
(Watct Dog Timer)
8
RAS0
RAS1
CS0L
CS0H
CS1L
CS1H
DW0
DW1
DRAM Controller
10 bit A/D
Converter (8 ch)
Reload Timer (3 ch)
R -bus (16 bit)
INT0 to INT7
NMI
D16 to D31
A00 to A24
RDY
WR0 to WR1
RDY
CLK
CS0 to CS5
BRQ
BGRNT
Port 0 to Port B
STRG
Soft DMA Start Circuit
Port
3
UART (3 ch)
with
Baud Rate Timer
PWM Timer (4 ch)
3
3
4
4
SI0 to SI2
SO0 to SO2
SC0 to SC2
OCPA0 to OCPA3
TRG0 to TRG3
Note : Pins are display for functions (Actually some pins are multiplexer) .
When using REALOS, time control should be done by using external interrupt or inner timer.
16
MB91121
■ CPU CORE
1. Memory Space
The FR family has a logical address space of 4 Gbytes (232 bytes) and the CPU linearly accesses the memory
space.
• Memory space
External ROM/external bus mode
0000 0000H
I/O
0000 0400H
I/O
Direct addressing area
See “■ I/O MAP”
0000 0800H
Access inhibited
0000 1000H
Embedded RAM 4 KB
0000 2000H
Y-RAM1
←Usable as RAM in the DSP Macros YBANK unused mode.
Y-RAM1
←Usable as RAM when DSP Macros is not used.
0000 2800H
0000 3000H
Access inhibited
0000 F000H
DSP Macros
0000 F300H
Access inhibited
0001 0000H
External area
FFFF FFFFH
• Direct addressing area
The following areas on the memory space are assigned to direct addressing area for I/O. In these areas, an
address can be specified in a direct operand of a code.
Direct areas consist of the following areas dependent on accessible data sizes.
Byte data access : 000H to 0FFH
Half word data access : 000H to 1FFH
Word data access : 000H to 3FFH
17
MB91121
2. Registers
The FR family has two types of registers; dedicated registers embedded on the CPU and general-purpose
registers on memory.
• Dedicated registers
Program counter (PC)
Program status (PS)
Table base register (TBR)
: 32-bit length, indicates the location of the instruction to be executed.
: 32-bit length, register for storing register pointer or condition codes
: Holds top address of vector table used in EIT (Exceptional/Interrupt/Trap)
processing.
Return pointer (RP)
: Holds address to resume operation after returning from a subroutine.
System stack pointer (SSP) : Indicates system stack space.
User’s stack pointer (USP) : Indicates user’s stack space.
Multiplication/division result register (MDH/MDL) : 32-bit length, register for multiplication/division
Initial value
32 bit
PC
Program counter
PS
Program status
TBR
XXXX XXXXH Indeterminate
Table base register
0 0 0 F FC0 0H
Return pointer
XXXX XXXXH Indeterminate
SSP
System stack pointer
0 0 0 0 0 0 0 0H
USP
User’s stack pointer
XXXX XXXXH Indeterminate
RP
XXXX XXXXH Indeterminate
MDH
Multiplication/division result register
MDL
XXXX XXXXH Indeterminate
• Program status (PS)
The PS register is for holding program status and consists of a condition code register (CCR) , a system condition
code register (SCR) and a interrupt level mask register (ILM) .
31
PS

20
19
18
16
ILM4 ILM3 ILM2 ILM1 ILM0
ILM
18
17

10
9
8
7
6
5
4
3
2
1
0
D1
D0
T


S
I
N
Z
V
C
SCR
CCR
MB91121
• Condition code register (CCR)
S-flag : Specifies a stack pointer used as R15.
I-flag : Controls user interrupt request enable/disable.
N-flag : Indicates sign bit when division result is assumed to be in the 2’s complement format.
Z-flag : Indicates whether or not the result of division was “0”.
V-flag : Assumes the operand used in calculation in the 2’s complement format and indicates whether
or not overflow has occurred.
C-flag : Indicates if a carry or borrow from the MSB has occurred.
• System condition code register (SCR)
T-flag : Specifies whether or not to enable step trace trap.
• Interrupt level mask register (ILM)
ILM4 to ILM0 : Register for holding interrupt level mask value. The value held by this register is used as a
level mask. When an interrupt request issued to the CPU is higher than the level held by ILM,
the interrupt request is accepted.
ILM4
ILM3
ILM2
ILM1
ILM0
Interrupt level
High-low
0
0
0
0
0
:
:
0
1
0
1
1
High
:
:
0
0
:
:
1
0
15
:
:
1
1
31
Low
19
MB91121
■ GENERAL-PURPOSE REGISTERS
R0 to R15 are general-purpose registers embedded on the CPU. These registers functions as an accumulator
and a memory access pointer (field for indicating address) .
• Register bank structure
32 bits
R0
R1
R12
R13
R14
R15
AC (Accumulator)
FP (Frame Pointer)
SP (Stack Pointer)
Initial value
XXXX XXXXH
XXXX XXXXH
0 0 0 0 0 0 0 0H
Of the above 16 registers, following registers have special functions. To support the special functions, part of
the instruction set has been sophisticated to have enhanced functions.
R13 : Virtual accumulator (AC)
R14 : Frame pointer (FP)
R15 : Stack pointer (SP)
Upon reset, values in R0 to R14 are not fixed. Value in R15 is initialized to be 0000 0000H (SSP value) .
20
MB91121
■ SETTING MODE
1. Pin
• Mode setting pins and modes
Mode setting pins
Mode name
MD3 MD2 MD1 MD0
Reset vector
access area
External data
bus width
Bus mode
1
0
0
0
External vector mode 0
External
8 bits
1
0
0
1
External vector mode 1
External
16 bits
1
0
1
0



1
0
1
1
Internal vector mode
Internal
(Mode register)
1
1





Inhibited
0






Inhibited
External ROM/external
bus mode
Inhibited
Single-chip mode*
* : MB91121 does not support single-chip mode.
2. Registers
• Mode setting registers (MODR) and modes
Address
0000 07FFH
M1
M0
*
*
*
*
*
*
Initial value
Access
XXXX XXXXB
W
Bus mode setting bit
W : Write only
X : Indeterminate
* : Always write “0” except for M1 and M0.
• Bus mode setting bits and functions
M1
M0
Functions
0
0
Single-chip mode
0
1
Internal ROM/external bus mode
1
0
External ROM/external bus mode
1
1

Note
Inhibited
Note : Because of without internal ROM, MB91121 allows “10B” setting value only.
21
MB91121
■ I/O MAP
Address
Register name
(abbreviated)
Register name
0000H
0001H
Initial value
R/W
XXXXXXXXB
R/W
XXXXXXXXB
(Vacancy)
PDR2
Port 2 data register
0002H
to
0004H
0005H
Read/write
(Vacancy)
PDR6
Port 6 data register
0006H
(Vacancy)
0007H
0008H
PDRB
Port B data register
R/W
XXXXXXXXB
0009H
PDRA
Port A data register
R/W
−XXXXXX −B
R/W
− −X − −XXXB
000AH
000BH
(Vacancy)
PDR8
Port 8 data register
000CH
to
0011H
(Vacancy)
0012H
PDRE
Port E data register
R/W
XXXXXXXXB
0013H
PDRF
Port F data register
R/W
XXXXXXXXB
0014H
PDRG
Port G data register
R/W
XXXXXXXXB
0015H
PDRH
Port H data register
R/W
XXXX − − − −B
0016H
PDRI
Port I data register
R/W
− − − − − − XXB
0017H
to
001BH
(Vacancy)
001CH
SSR0
Serial status register 0
R/W
0 0 0 0 1 − 0 0B
001DH
SIDR0/SODR0
Serial input register 0/serial output register 0
R/W
XXXXXXXXB
001EH
SCR0
Serial control register 0
R/W
0 0 0 0 0 1 0 0B
001FH
SMR0
Serial mode register 0
R/W
0 0 − − 0 − 0 0B
0020H
SSR1
Serial status register 1
R/W
0 0 0 0 1 − 0 0B
0021H
SIDR1/SODR1
Serial input register 1/serial output register 1
R/W
XXXXXXXXB
0022H
SCR1
Serial control register 1
R/W
0 0 0 0 0 1 0 0B
0023H
SMR1
Serial mode register 1
R/W
0 0 − − 0 − 0 0B
0024H
SSR2
Serial status register 2
R/W
0 0 0 0 1 − 0 0B
0025H
SIDR2/SODR2
Serial input register 2/serial output register 2
R/W
XXXXXXXXB
0026H
SCR2
Serial control register 2
R/W
0 0 0 0 0 1 0 0B
0027H
SMR2
Serial mode register 2
R/W
0 0 − − 0 − 0 0B
(Continued)
22
MB91121
Address
0028H
0029H
002AH
002BH
Register name
(abbreviated)
Register name
TMRLR0
16-bit reload register ch. 0
W
TMR0
16-bit timer register ch. 0
R
002CH
002FH
0030H
0031H
0032H
0033H
TMCSR0
16-bit reload timer control status register ch. 0
TMRLR1
16-bit reload register ch. 1
W
TMR1
16-bit timer register ch. 1
R
0034H
0037H
0038H
0039H
003AH
003BH
003CH
003DH
003EH
003FH
16-bit reload timer control status register ch. 1
ADCR
A/D converter data register
ADCS
A/D converter control status register
TMRLR2
16-bit reload register ch. 2
W
TMR2
16-bit timer register ch. 2
R
TMCSR2
16-bit reload timer control status register ch. 2
0044H
to
004FH
0050H
0051H
to
0077H
XXXXXXXXB
XXXXXXXXB
XXXXXXXXB
− − − − 0 0 0 0B
0 0 0 0 0 0 0 0B
XXXXXXXXB
XXXXXXXXB
XXXXXXXXB
XXXXXXXXB
R/W
R
R/W
− − − − 0 0 0 0B
0 0 0 0 0 0 0 0B
− − − − − − XXB
XXXXXXXXB
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 0B
XXXXXXXXB
XXXXXXXXB
XXXXXXXXB
XXXXXXXXB
(Vacancy)
0041H
0043H
R/W
TMCSR1
0040H
0042H
XXXXXXXXB
(Vacancy)
0035H
0036H
Initial value
(Vacancy)
002DH
002EH
Read/write
R/W
− − − − 0 0 0 0B
0 0 0 0 0 0 0 0B
(Vacancy)
STRG
Soft DMA Start
R/W
− − − − − − 0 0B
(Vacancy)
(Continued)
23
MB91121
Address
0078H
0079H
Register name
(abbreviated)
UTIM0/UTIMR0
Register name
U-TIMER register ch. 0/reload register ch. 0
007AH
007BH
007CH
007DH
0080H
0081H
UTIMC0
U-TIMER control register ch. 0
R/W
UTIM1/UTIMR1
U-TIMER register ch. 1/reload register ch. 1
R/W
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 0B
0 − − 0 0 0 0 1B
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 0B
(Vacancy)
UTIMC1
U-TIMER control register ch. 1
R/W
UTIM2/UTIMR2
U-TIMER register ch. 2/reload register ch. 2
R/W
0082H
0083H
R/W
Initial value
(Vacancy)
007EH
007FH
Read/write
0 − − 0 0 0 0 1B
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 0B
(Vacancy)
UTIMC2
U-TIMER control register ch. 2
0084H
to
0093H
R/W
0 − − 0 0 0 0 1B
(Vacancy)
0094H
EIRR
External interrupt cause register
R/W
0 0 0 0 0 0 0 0B
0095H
ENIR
Interrupt enable register
R/W
0 0 0 0 0 0 0 0B
R/W
0 0 0 0 0 0 0 0B
0096H
to
0097H
0098H
0099H
(Vacancy)
ELVR
009AH
to
00D1H
External interrupt request level setting register
(Vacancy)
00D2H
DDRE
Port E data direction register
W
0 0 0 0 0 0 0 0B
00D3H
DDRF
Port F data direction register
W
0 0 0 0 0 0 0 0B
00D4H
DDRG
Port G data direction register
W
0 0 0 0 0 0 0 0B
00D5H
DDRH
Port H data direction register
W
0 0 0 0 − − − −B
00D6H
DDRI
Port I data direction register
W
− − − − − − 0 0B
00D7H
to
00DBH
00DCH
00DDH
(Vacancy)
GCN1
00DEH
00DFH
General control register 1
R/W
0 0 1 1 0 0 1 0B
0 0 0 1 0 0 0 0B
(Vacancy)
GCN2
General control register 2
R/W
0 0 0 0 0 0 0 0B
(Continued)
24
MB91121
Address
00E0H
Register name
(abbreviated)
Register name
Read/write
Initial value
1 1 1 1 1 1 1 1B
PTMR0
PWM timer register
R
PCSR0
PWM cycle setting register
W
PDUT0
PWM duty setting register
W
00E6H
PCNH0
PWM control status register H
R/W
0 0 0 0 0 0 0 −B
00E7H
PCNL0
PWM control status register L
R/W
0 0 0 0 0 0 0 0B
PTMR1
PWM timer register
R
PCSR1
PWM cycle setting register
W
PDUT1
PWM duty setting register
W
00EEH
PCNH1
PWM control status register H
R/W
0 0 0 0 0 0 0 −B
00EFH
PCNL1
PWM control status register L
R/W
0 0 0 0 0 0 0 0B
PTMR2
PWM timer register
R
PCSR2
PWM cycle setting register
W
PDUT2
PWM duty setting register
W
00F6H
PCNH2
PWM control status register H
R/W
0 0 0 0 0 0 0 −B
00F7H
PCNL2
PWM control status register L
R/W
0 0 0 0 0 0 0 0B
PTMR3
PWM timer register
R
PCSR3
PWM cycle setting register
W
PDUT3
PWM duty setting register
W
00FEH
PCNH3
PWM control status register H
R/W
0 0 0 0 0 0 0 −B
00FFH
PCNL3
PWM control status register L
R/W
0 0 0 0 0 0 0 0B
00E1H
00E2H
00E3H
00E4H
00E5H
00E8H
00E9H
00EAH
00EBH
00ECH
00EDH
00F0H
00F1H
00F2H
00F3H
00F4H
00F5H
00F8H
00F9H
00FAH
00FBH
00FCH
00FDH
0100H
to
01FFH
1 1 1 1 1 1 1 1B
XXXXXXXXB
XXXXXXXXB
XXXXXXXXB
XXXXXXXXB
1 1 1 1 1 1 1 1B
1 1 1 1 1 1 1 1B
XXXXXXXXB
XXXXXXXXB
XXXXXXXXB
XXXXXXXXB
1 1 1 1 1 1 1 1B
1 1 1 1 1 1 1 1B
XXXXXXXXB
XXXXXXXXB
XXXXXXXXB
XXXXXXXXB
1 1 1 1 1 1 1 1B
1 1 1 1 1 1 1 1B
XXXXXXXXB
XXXXXXXXB
XXXXXXXXB
XXXXXXXXB
(Vacancy)
(Continued)
25
MB91121
Address
Register name
(abbreviated)
Register name
Read/write
XXXXXXXXB
0200H
0201H
0202H
Initial value
DPDP
DMAC parameter descriptor pointer
R/W
XXXXXXXXB
XXXXXXXXB
0203H
X0 0 0 0 0 0 0B
0204H
0 0 0 0 0 0 0 0B
0205H
0206H
DACSR
DMAC control status register
R/W
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 0B
0207H
0 0 0 0 0 0 0 0B
0208H
XXXXXXXXB
0209H
020AH
DATCR
DMAC pin control register
R/W
020BH
0211H
0212H
0213H
0214H
XXXX0 0 0 0B
XXXX0 0 0 0B
020CH
to
020FH
0210H
XXXX0 0 0 0B
(Vacancy)
− − − − 0 0 0 0B
OFAS
STRS
0 0 0 0 0 0 0 0B
DSP macro register
R/W
− − − − 0 0 0 0B
0 0 0 0 0 0 0 0B
0 0 0 0 − − − 0B
OFSC
0215H
(Vacancy)
0216H
OFSS
R/W
0 0 0 0 0 0 0 0B
0217H
Y-BANKC
R/W
0 − − 0 0 0 0 0B
OFSD
R/W
021AH
DSP-PC
R/W
XXXXXXXXB
021BH
DSP-CSR
R/W
0 0 0 0 0 0 0 0B
0218H
0219H
021CH
021DH
021EH
021FH
0220H
0221H
0222H
0223H
DSP-LY
DSP macro register
R/W
DSP-OT0
R
DSP-OT1
R
DSP-OT2
R
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 0B
XXXXXXXXB
XXXXXXXXB
XXXXXXXXB
XXXXXXXXB
XXXXXXXXB
XXXXXXXXB
XXXXXXXXB
XXXXXXXXB
(Continued)
26
MB91121
Address
0224H
0225H
Register name
(abbreviated)
DSP-OT3
0226H
to
03E3H
Register name
DSP macro register
Read/write
R
03E6H
ICHCR
Instruction cache control register
R/W
− − − − − − − −B
− − − − − − − −B
− − 0 0 0 0 0 0B
03E8H
to
03EFH
(Vacancy)
XXXXXXXXB
03F0H
03F2H
XXXXXXXXB
− − − − − − − −B
03E7H
03F1H
XXXXXXXXB
(Vacancy)
03E4H
03E5H
Initial value
BSD0
Bit search module 0-detection data register
W
XXXXXXXXB
XXXXXXXXB
03F3H
XXXXXXXXB
03F4H
XXXXXXXXB
03F5H
03F6H
BSD1
Bit search module 1-detection data register
R/W
XXXXXXXXB
XXXXXXXXB
03F7H
XXXXXXXXB
03F8H
XXXXXXXXB
03F9H
03FAH
BSDC
Bit search module transition-detection data
register
W
XXXXXXXXB
XXXXXXXXB
03FBH
XXXXXXXXB
03FCH
XXXXXXXXB
03FDH
03FEH
BSRR
Bit search module detection result register
R
03FFH
XXXXXXXXB
XXXXXXXXB
XXXXXXXXB
0400H
ICR00
Interrupt control register 0
R/W
− − − 1 1 1 1 1B
0401H
ICR01
Interrupt control register 1
R/W
− − − 1 1 1 1 1B
0402H
ICR02
Interrupt control register 2
R/W
− − − 1 1 1 1 1B
0403H
ICR03
Interrupt control register 3
R/W
− − − 1 1 1 1 1B
0404H
ICR04
Interrupt control register 4
R/W
− − − 1 1 1 1 1B
0405H
ICR05
Interrupt control register 5
R/W
− − − 1 1 1 1 1B
0406H
ICR06
Interrupt control register 6
R/W
− − − 1 1 1 1 1B
0407H
ICR07
Interrupt control register 7
R/W
− − − 1 1 1 1 1B
(Continued)
27
MB91121
Address
Register name
(abbreviated)
Register name
Read/write
Initial value
0408H
ICR08
Interrupt control register 8
R/W
− − − 1 1 1 1 1B
0409H
ICR09
Interrupt control register 9
R/W
− − − 1 1 1 1 1B
040AH
ICR10
Interrupt control register 10
R/W
− − − 1 1 1 1 1B
040BH
ICR11
Interrupt control register 11
R/W
− − − 1 1 1 1 1B
040CH
ICR12
Interrupt control register 12
R/W
− − − 1 1 1 1 1B
040DH
ICR13
Interrupt control register 13
R/W
− − − 1 1 1 1 1B
040EH
ICR14
Interrupt control register 14
R/W
− − − 1 1 1 1 1B
040FH
ICR15
Interrupt control register 15
R/W
− − − 1 1 1 1 1B
0410H
ICR16
Interrupt control register 16
R/W
− − − 1 1 1 1 1B
0411H
ICR17
Interrupt control register 17
R/W
− − − 1 1 1 1 1B
0412H
ICR18
Interrupt control register 18
R/W
− − − 1 1 1 1 1B
0413H
ICR19
Interrupt control register 19
R/W
− − − 1 1 1 1 1B
0414H
ICR20
Interrupt control register 20
R/W
− − − 1 1 1 1 1B
0415H
ICR21
Interrupt control register 21
R/W
− − − 1 1 1 1 1B
0416H
ICR22
Interrupt control register 22
R/W
− − − 1 1 1 1 1B
0417H
ICR23
Interrupt control register 23
R/W
− − − 1 1 1 1 1B
0418H
ICR24
Interrupt control register 24
R/W
− − − 1 1 1 1 1B
0419H
ICR25
Interrupt control register 25
R/W
− − − 1 1 1 1 1B
041AH
ICR26
Interrupt control register 26
R/W
− − − 1 1 1 1 1B
041BH
ICR27
Interrupt control register 27
R/W
− − − 1 1 1 1 1B
041CH
ICR28
Interrupt control register 28
R/W
− − − 1 1 1 1 1B
041DH
ICR29
Interrupt control register 29
R/W
− − − 1 1 1 1 1B
041EH
ICR30
Interrupt control register 30
R/W
− − − 1 1 1 1 1B
041FH
ICR31
Interrupt control register 31
R/W
− − − 1 1 1 1 1B
0420H
to
042EH
ICR32 to ICR46
Interrupt control register 32 to 46
R/W
− − − 1 1 1 1 1B
042FH
ICR47
Interrupt control register 47
R/W
− − − 1 1 1 1 1B
0430H
DICR
Delayed interrupt control register
R/W
− − − − − − − 0B
0431H
HRCL
Hold request cancel request level setting register
R/W
− − − 1 1 1 1 1B
0432H
to
047FH
(Vacancy)
0480H
RSRR/WTCR
Reset cause register/
watchdog peripheral control register
R/W
1XXXX − 0 0B
0481H
STCR
Standby control register
R/W
0 0 0 1 1 1 − −B
0482H
PDRR
DMA controller request squelch register
R/W
− − − − 0 0 0 0B
(Continued)
28
MB91121
Address
Register name
(abbreviated)
Register name
0483H
CTBR
Timebase timer clear register
0484H
GCR
Gear control register
0485H
WPR
Watchdog reset occurrence postpone register
0486H
PCTR
PLL control register
0489H
to
0600H
0601H
W
XXXXXXXXB
R/W
1 1 0 0 1 1 − 1B
W
XXXXXXXXB
R/W
0 0 − − 0 − − −B
W
0 0 0 0 0 0 0 0B
W
0 0 0 0 0 0 0 0B
(Vacancy)
DDR2
Port 2 data direction register
0602H
to
0604H
0605H
Initial value
(Vacancy)
0487H
0488H
Read/write
(Vacancy)
DDR6
Port 6 data direction register
0606H
(Vacancy)
0607H
0608H
DDRB
Port B data direction register
W
0 0 0 0 0 0 0 0B
0609H
DDRA
Port A data direction register
W
− 0 0 0 0 0 0 −B
− − 0 − − 0 0 0B
060AH
060BH
060CH
060DH
060EH
060FH
0610H
0611H
0612H
0613H
0614H
0615H
0616H
0617H
0618H
0619H
061AH
061BH
(Vacancy)
DDR8
Port 8 data direction register
W
ASR1
Area select register 1
W
AMR1
Area mask register 1
W
ASR2
Area select register 2
W
AMR2
Area mask register 2
W
ASR3
Area select register 3
W
AMR3
Area mask register 3
W
ASR4
Area select register 4
W
AMR4
Area mask register 4
W
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 1B
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 1 0B
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 1 1B
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 0B
0 0 0 0 0 1 0 0B
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 0B
(Continued)
29
MB91121
(Continued)
Address
061CH
Register name
(abbreviated)
Register name
Initial value
0 0 0 0 0 0 0 0B
ASR5
Area select register 5
W
AMR5
Area mask register 5
W
0620H
AMD0
Area mode register 0
R/W
− − − 0 0 1 1 1B
0621H
AMD1
Area mode register 1
R/W
0 − − 0 0 0 0 0B
0622H
AMD32
Area mode register 32
R/W
0 0 0 0 0 0 0 0B
0623H
AMD4
Area mode register 4
R/W
0 − − 0 0 0 0 0B
0624H
AMD5
Area mode register 5
R/W
0 − − 0 0 0 0 0B
0625H
DSCR
DRAM signal control register
W
0 0 0 0 0 0 0 0B
RFCR
Refresh control register
EPCR0
External pin control register 0
061DH
061EH
061FH
0626H
0627H
0628H
0629H
062AH
062BH
062CH
062DH
062EH
062FH
R/W
W
0 0 0 0 0 1 0 1B
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 0B
− −XXXXXXB
0 0 − − − 0 0 0B
− − − − 1 1 0 0B
− 1 1 1 1 1 1 1B
(Vacancy)
EPCR1
External pin control register 1
DMCR4
DRAM control register 4
R/W
DMCR5
DRAM control register 5
R/W
0630H
to
07FDH
W
1 1 1 1 1 1 1 1B
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 −B
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 −B
(Vacancy)
07FEH
LER
Little endian register
W
− − − − − 0 0 0B
07FFH
MODR
Mode register
W
XXXXXXXXB
002000H
to
002FFFH
Y-RAM
(Variable RAM)
4096 byte (Max.)
00F000H
to
00F07FH
X-RAM
(Coefficient RAM) DSP macro RAM
128 byte
00F100H
to
00F2FFH
I-RAM
(Instruction RAM)
512 byte
Note : Do not use (vacancy) .
30
Read/write
MB91121
■ INTERRUPT CAUSES, INTERRUPT VECTORS
AND INTERRUPT CONTROL REGISTER ALLOCATIONS
Interrupt number
Interrupt level
Decimal
Hexadecimal
Register
Offset
TBR default
address
Reset
0
00

3F4H
000FFFFCH
Reserved for system
1
01

3F8H
000FFFF8H
Reserved for system
2
02

3F4H
000FFFF4H
Reserved for system
3
03

3F0H
000FFFF0H
Reserved for system
4
04

3ECH
000FFFECH
Reserved for system
5
05

3E8H
000FFFE8H
Reserved for system
6
06

3E4H
000FFFE4H
Reserved for system
7
07

3E0H
000FFFE0H
Reserved for system
8
08

3DCH
000FFFDCH
Reserved for system
9
09

3D8H
000FFFD8H
Reserved for system
10
0A

3D4H
000FFFD4H
Reserved for system
11
0B

3D0H
000FFFD0H
Reserved for system
12
0C

3CCH
000FFFCCH
Reserved for system
13
0D

3C8H
000FFFC8H
Exception for undefined instruction
14
0E

3C4H
000FFFC4H
NMI request
15
0F
FH fixed
3C0H
000FFFC0H
External interrupt 0
16
10
ICR00
3BCH
000FFFBCH
External interrupt 1
17
11
ICR01
3B8H
000FFFB8H
External interrupt 2
18
12
ICR02
3B4H
000FFFB4H
External interrupt 3
19
13
ICR03
3B0H
000FFFB0H
UART0 receive complete
20
14
ICR04
3ACH
000FFFACH
UART1 receive complete
21
15
ICR05
3A8H
000FFFA8H
UART2 receive complete
22
16
ICR06
3A4H
000FFFA4H
UART0 transmit complete
23
17
ICR07
3A0H
000FFFA0H
UART1 transmit complete
24
18
ICR08
39CH
000FFF9CH
UART2 transmit complete
25
19
ICR09
398H
000FFF98H
DMAC0 (complete, error)
26
1A
ICR10
394H
000FFF94H
DMAC1 (complete, error)
27
1B
ICR11
390H
000FFF90H
DMAC2 (complete, error)
28
1C
ICR12
38CH
000FFF8CH
DMAC3 (complete, error)
29
1D
ICR13
388H
000FFF88H
DMAC4 (complete, error)
30
1E
ICR14
384H
000FFF84H
DMAC5 (complete, error)
31
1F
ICR15
380H
000FFF80H
DMAC6 (complete, error)
32
20
ICR16
37CH
000FFF7CH
Interrupt causes
(Continued)
31
MB91121
Interrupt number
Interrupt level
Decimal
Hexadecimal
Register
Offset
TBR default
address
DMAC7 (complete, error)
33
21
ICR17
378H
000FFF78H
A/D converter (successive approximation conversion type)
34
22
ICR18
374H
000FFF74H
16-bit reload timer 0
35
23
ICR19
370H
000FFF70H
16-bit reload timer 1
36
24
ICR20
36CH
000FFF6CH
16-bit reload timer 2
37
25
ICR21
368H
000FFF68H
PWM 0
38
26
ICR22
364H
000FFF64H
PWM 1
39
27
ICR23
360H
000FFF60H
PWM 2
40
28
ICR24
35CH
000FFF5CH
PWM 3
41
29
ICR25
358H
000FFF58H
U-TIMER 0
42
2A
ICR26
354H
000FFF54H
U-TIMER 1
43
2B
ICR27
350H
000FFF50H
U-TIMER 2
44
2C
ICR28
34CH
000FFF4CH
External interrupt 4
45
2D
ICR29
348H
000FFF48H
External interrupt 5
46
2E
ICR30
344H
000FFF44H
External interrupt 6
47
2F
ICR31
340H
000FFF40H
External interrupt 7
48
30
ICR32
33CH
000FFF3CH
DSP Macros soft interrupt
49
31
ICR33
338H
000FFF38H
DSP Macros offset interrupt
50
32
ICR34
334H
000FFF34H
Reserved for system
51
33
ICR35
330H
000FFF30H
Reserved for system
52
34
ICR36
32CH
000FFF2CH
Reserved for system
53
35
ICR37
328H
000FFF28H
Reserved for system
54
36
ICR38
324H
000FFF24H
Reserved for system
55
37
ICR39
320H
000FFF20H
Reserved for system
56
38
ICR40
31CH
000FFF1CH
Reserved for system
57
39
ICR41
318H
000FFF18H
Reserved for system
58
3A
ICR42
314H
000FFF14H
Reserved for system
59
3B
ICR43
310H
000FFF10H
Reserved for system
60
3C
ICR44
30CH
000FFF0CH
Reserved for system
61
3D
ICR45
308H
000FFF08H
Reserved for system
62
3E
ICR46
304H
000FFF04H
Delayed interrupt cause bit
63
3F
ICR47
300H
000FFF00H
Reserved for system
(used in REALOS*)
64
40

2FCH
000FFEFCH
Reserved for system
(used in REALOS*)
65
41

2F8H
000FFEF8H
Interrupt causes
(Continued)
32
MB91121
(Continued)
Interrupt causes
Used in INT instructions
Interrupt number
Interrupt level
Decimal
Hexadecimal
Register
Offset
TBR default
address
66
to
255
42
to
FF

2F4H
to
000H
000FFEF4H
to
000FFC00H
* : When using in REALOS/FR, interrupt 0x40, 0x41 for system code.
33
MB91121
■ PERIPHERAL RESOURCES
1. I/O Ports
There are 2 types of I/O port register structure; port data register (PDR2, 6, 8, A, B, E to I) and data direction
register (DDR2, 6, 8, A, B, E to I) , where bits PDR2, 6, 8, A, B, E to I and bits DDR2, 6, 8, A, B, E to I corresponds
respectively. Each bit on the register corresponds to an external pin. In port registers input/output register of
the port configures input/output function of the port, while corresponding bit (pin) configures input/output function
in data direction registers. Bit “0” specifies input and “1” specifies output.
• For input (DDR = “0”) setting;
PDR reading operation : reads level of corresponding external pin.
PDR writing operation : writes set value to PDR.
• For output (DDR = “1”) setting;
PDR reading operation : reads PDR value.
PDR writing operation : outputs PDR value to corresponding external pin.
• Block diagram
Resource input
0
1
Data bus
PDR read
0
PDR
(Port data register)
Resource output
1
Resource output enable
DDR
(Data direction register)
34
Pin
MB91121
• Register explanation
• Port Data Register (PDR)
PDR2
Address : 000001H
PDR6
Address : 000005H
PDR8
Address : 00000BH
PDRA
Address : 000009H
PDRB
Address : 000008H
PDRE
Address : 000012H
PDRF
Address : 000013H
PDRG
Address : 000014H
PDRH
Address : 000015H
PDRI
Address : 000016H
7
6
5
4
3
2
1
0
P27
P26
P25
P24
P23
P22
P21
P20
7
6
5
4
3
2
1
0
P67
P66
P65
P64
P63
P62
P61
P60
7
6
5
4
3
2
1
0


P85


P82
P81
P80
7
6
5
4
3
2
1
0

PA6
PA5
PA4
PA3
PA2
PA1

7
6
5
4
3
2
1
0
PB7
PB6
PB5
PB4
PB3
PB2
PB1
PB0
7
6
5
4
3
2
1
0
PE7
PE6
PE5
PE4
PE3
PE2
PE1
PE0
7
6
5
4
3
2
1
0
PF7
PF6
PF5
PF4
PF3
PF2
PF1
PF0
7
6
5
4
3
2
1
0
PG7
PG6
PG5
PG4
PG3
PG2
PG1
PG0
7
6
5
4
3
2
1
0
PH7
PH6
PH5
PH4




7
6
5
4
3
2
1
0






PI1
PI0
Initial value
X X X X X X X XB
Access
R/W
Initial value
X X X X X X X XB
Access
R/W
Initial value
− − X − − X X XB
Access
R/W
Initial value
− X X X X X X −B
Access
R/W
Initial value
X X X X X X X XB
Access
R/W
Initial value
X X X X X X X XB
Access
R/W
Initial value
X X X X X X X XB
Access
R/W
Initial value
X X X X X X X XB
Access
R/W
Initial value
X X X X − − − −B
Access
R/W
Initial value
− − − − − − X XB
Access
R/W
PDR2 to PDRI is the I/O port input/output data register.
The associated register, DDR2 to DDRI, controls the input/output.
35
MB91121
• Data Direction Register (DDR)
DDR2
Address : 000601H
DDR6
Address : 000605H
DDR8
Address : 00060BH
DDRA
Address : 000609H
DDRB
Address : 000608H
DDRE
Address : 0000D2H
DDRF
Address : 0000D3H
DDRG
Address : 0000D4H
DDRH
Address : 0000D5H
DDRI
Address : 0000D6H
7
6
5
4
3
2
1
0
P27
P26
P25
P24
P23
P22
P21
P20
7
6
5
4
3
2
1
0
P67
P66
P65
P64
P63
P62
P61
P60
7
6
5
4
3
2
1
0


P85


P82
P81
P80
7
6
5
4
3
2
1
0

PA6
PA5
PA4
PA3
PA2
PA1

7
6
5
4
3
2
1
0
PB7
PB6
PB5
PB4
PB3
PB2
PB1
PB0
7
6
5
4
3
2
1
0
PE7
PE6
PE5
PE4
PE3
PE2
PE1
PE0
7
6
5
4
3
2
1
0
PF7
PF6
PF5
PF4
PF3
PF2
PF1
PF0
7
6
5
4
3
2
1
0
PG7
PG6
PG5
PG4
PG3
PG2
PG1
PG0
7
6
5
4
3
2
1
0
PH7
PH6
PH5
PH4




7
6
5
4
3
2
1
0






PI1
PI0
DDR2 to DDRI controls the I/O port input/output direction bit by bit.
0 : Input
1 : Output
36
Initial value
0 0 0 0 0 0 0 0B
Access
W
Initial value
0 0 0 0 0 0 0 0B
Access
W
Initial value
− − 0 − − 0 0 0B
Access
W
Initial value
− 0 0 0 0 0 0 −B
Access
W
Initial value
0 0 0 0 0 0 0 0B
Access
W
Initial value
0 0 0 0 0 0 0 0B
Access
W
Initial value
0 0 0 0 0 0 0 0B
Access
W
Initial value
0 0 0 0 0 0 0 0B
Access
W
Initial value
0 0 0 0 − − − −B
Access
W
Initial value
− − − − − − 0 0B
Access
W
MB91121
2. DMA Controller (DMAC)
The DMA controller is a module embedded in FR family devices, and performs DMA (direct memory access)
transfer.
DMA transfer performed by the DMA controller transfers data without intervention of CPU, contributing to
enhanced performance of the system.
•
•
•
•
•
•
•
8 channels
Mode : single/block transfer, burst transfer and continuous transfer : 3 kinds of transfer
Transfer all through the area
Max. 65536 of transfer cycles
Interrupt function right after the transfer
Selectable for address transfer increase/decrease by the software
External transfer request input pin, external transfer request accept output pin, external transfer complete
output pin three pins for each
• Block diagram
DREQ0 to DREQ2
3
Edge/level
detection circuit
3
3
DACK0 to DACK2
3
Sequencer
EOP0 to EOP2
8
Interrupt request
5
Inner resource
transfer request
Data buffer
Switcher
DACSR
DATCR
Data bus
DPDP
Mode
BLK DEC
BLK
DMACT
INC / DEC
SADR
DADR
37
MB91121
• Registers (DMAC internal registers)
Address
Initial value
bit 31
bit 16
bit 0
00000200H
00000201H
00000202H
00000203H
DPDP
X X X X X X X XB
X X X X X X X XB
X X X X X X X XB
X 0 0 0 0 0 0 0B
(R/W)
00000204H
00000205H
00000206H
00000207H
DACSR
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 0B
(R/W)
00000208H
00000209H
0000020AH
0000020BH
DATCR
X X X X X X X XB
X X X X 0 0 0 0B
X X X X 0 0 0 0B
X X X X 0 0 0 0B
(R/W)
( ) : Access
R/W : Readable and writable
X : Indeterminate
• Registers (DMA descriptor)
Address
DPDP + 0H
DPDP + 0CH
DPDP + 54H
38
bit 31
bit 0
DMA
ch.0
Descriptor
DMA
ch.1
Descriptor
DMA
ch.7
Descriptor
MB91121
3. UART
The UART is a serial I/O port for supporting asynchronous (start-stop system) communication or CLK
synchronous communication, and it has the following features.
The MB91121 consists of 3 channels of UART.
•
•
•
•
•
•
•
•
Full double double buffer
Both a synchronous (start-stop system) communication and CLK synchronous communication are available.
Supporting multi-processor mode
Perfect programmable baud rate
Any baud rate can be set by internal timer (refer to section “4. U-TIMER”) .
Any baud rate can be set by external clock.
Error checking function (parity, framing and overrun)
Transfer signal : NRZ code
Enable DMA transfer start by interrupt.
39
MB91121
• Block diagram
Control signals
Receive interrupt
(to CPU)
SC (clock)
Transmit interrupt
(to CPU)
Transmit clock
From U-TIMER
Clock select
circuit
Receive clock
From external clock
SC
SI
(receive data)
Receive control circuit
Transmit control circuit
Start bit detect
circuit
Transmit start
circuit
Receive bit counter
Transmit bit counter
Receive parity
counter
Transmit parity
counter
SO (transmit data)
Receive status
judge circuit
Receive shifter
Receive error
generate signal
for DMA
(to DMAC)
Transmit shifter
Receive
complete
Transmit
start
SODR
SIDR
R-bus
MD1
MD0
SMR
register
CS0
SCKE
SOE
SCR
register
PEN
P
SBL
CL
A/D
REC
RXE
TXE
SSR
register
PE
ORE
FRE
RDRF
TDRE
RIE
TIE
Control signals
40
MB91121
• Register configuration
Address
Initial value
bit 15
bit 8
bit 0
0000001EH
SCR0
0 0 0 0 0 1 0 0B
(R/W)
00000022H
SCR1
0 0 0 0 0 1 0 0B
(R/W)
00000026H
SCR2
0 0 0 0 0 1 0 0B
(R/W)
0000001FH
SMR0
0 0 − − 0 − 0 0B
(R/W)
00000023H
SMR1
0 0 − − 0 − 0 0B
(R/W)
00000027H
SMR2
0 0 − − 0 − 0 0B
(R/W)
0000001CH
SSR0
0 0 0 0 1 − 0 0B
(R/W)
00000020H
SSR1
0 0 0 0 1 − 0 0B
(R/W)
00000024H
SSR2
0 0 0 0 1 − 0 0B
(R/W)
0000001DH
SIDR0/SODR0
X X X X X X X XB
(R/W)
00000021H
SIDR1/SIDR1
X X X X X X X XB
(R/W)
00000002H
SIDR2/SIDR2
X X X X X X X XB
(R/W)
( )
R/W

X
: Access
: Readable and writable
: Unused
: Indeterminate
41
MB91121
4. U-TIMER (16-bit Timer for UART Baud Rate Generation)
The U-TIMER is a 16-bit timer for generating UART baud rate. Combination of chip operating frequency and
reload value of U-TIMER allows flexible setting of baud rate.
The U-TIMER operates as an interval timer by using interrupt issued on counter underflow.
The MB91121 has 3 channel U-TIMER embedded on the chip. An interval of up to 216 × φ can be counted.
• Block diagram
bit 15
bit 0
UTIMR (reload register)
Load
bit 15
bit 0
UTIM ( U-TIMER register)
Underflow
Clock
φ
(Peripheral clock)
Control
To UART
f.f.
• Register configuration
Address
Initial value
bit 15
00000078H
00000079H
UTIM0/UTIMR0
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 0B
(R/W)
0000007CH
0000007DH
UTIM1/UTIMR1
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 0B
(R/W)
00000080H
00000081H
UTIM2/UTIMR2
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 0B
(R/W)
0000007BH
UTIMC0
0 − − 0 0 0 0 1B
(R/W)
0000007FH
UTIMC1
0 − − 0 0 0 0 1B
(R/W)
00000083H
UTIMC2
0 − − 0 0 0 0 1B
(R/W)
( ) : Access
R/W : Readable and writable
 : Unused
42
bit 0
MB91121
5. PWM Timer
The PWM timer can output high accurate PWM waves efficiently.
MB91121 has inner 4-channel PWM timers, and has the following features.
• Each channel consists of a 16-bit down counter, a 16-bit data resister with a buffer for cycle setting, a 16-bit
compare resister with a buffer for duty setting, and a pin controller.
• The count clock of a 16-bit down counter can be selected from the following four inner clocks.
Inner clock φ, φ/4, φ/16, φ/64
• The counter value can be initialized “FFFFH” by the resetting or the counter borrow.
• PWM output (each channel)
• Resister description
• Block diagram (general construction)
16-bit reload timer
ch.0
16-bit reload timer
ch.1
General control
register 2
General control
register 1
(cause selection)
4
4
External TRG0 to TRG3
TRG input
PWM timer ch.0
PWM0
TRG input
PWM timer ch.1
PWM1
TRG input
PWM timer ch.2
PWM2
TRG input
PWM timer ch.3
PWM3
43
MB91121
• Block diagram (for one channel)
PDUT
PCSR
Prescaler
1/1
1/4
1 / 16
1 / 64
cmp
Load
ck
16-bit down counter
Start
Borrow
PPG mask
S
Peripheral clock
Q
PWM output
R
Enable
TRG input
Edge detect
Soft trigger
44
Interrupt
selection
Reverse bit
IRQ
MB91121
• Register configuration
Address
Initial value
bit 15
bit 8
000000DCH
000000DDH
bit 0
GCN1
000000DFH
GCN2
0 0 1 1 0 0 1 0B
0 0 0 1 0 0 1 0B
(R/W)
0 0 0 0 0 0 0 0B
(R/W)
000000E0H
000000E1H
PTMR0
1 1 1 1 1 1 1 1B
1 1 1 1 1 1 1 1B
(R)
000000E2H
000000E3H
PCSR0
X X X X X X X XB
X X X X X X X XB
(W)
000000E4H
000000E5H
PDUT0
X X X X X X X XB
X X X X X X X XB
(W)
0 0 0 0 0 0 0 −B
(R/W)
0 0 0 0 0 0 0 0B
(R/W)
000000E6H
PCNH0
000000E7H
PCNL0
000000E8H
000000E9H
PTMR1
1 1 1 1 1 1 1 1B
1 1 1 1 1 1 1 1B
(R)
000000EAH
000000EBH
PCSR1
X X X X X X X XB
X X X X X X X XB
(W)
000000ECH
000000EDH
PDUT1
X X X X X X X XB
X X X X X X X XB
(W)
0 0 0 0 0 0 0 −B
(R/W)
0 0 0 0 0 0 0 0B
(R/W)
000000EEH
PCNH1
000000EFH
PCNL1
000000F0H
000000F1H
PTMR2
1 1 1 1 1 1 1 1B
1 1 1 1 1 1 1 1B
(R)
000000F2H
000000F3H
PCSR2
X X X X X X X XB
X X X X X X X XB
(W)
000000F4H
000000F5H
PDUT2
X X X X X X X XB
X X X X X X X XB
(W)
0 0 0 0 0 0 0 −B
(R/W)
0 0 0 0 0 0 0 0B
(R/W)
000000F6H
PCNH2
000000F7H
PCNL2
000000F8H
000000F9H
PTMR3
1 1 1 1 1 1 1 1B
1 1 1 1 1 1 1 1B
(R)
000000FAH
000000FBH
PCSR3
X X X X X X X XB
X X X X X X X XB
(W)
000000FCH
000000FDH
PDUT3
X X X X X X X XB
X X X X X X X XB
(W)
0 0 0 0 0 0 0 −B
(R/W)
0 0 0 0 0 0 0 0B
(R/W)
000000FEH
PCNH3
000000FFH
( )
R/W
R
W

X
PCNL3
: Access
: Readable and writable
: Read only
: Write only
: Unused
: Indeterminate
45
MB91121
6. 16-bit Reload Timer
The 16-bit reload timer consists of a 16-bit down counter, a 16-bit reload timer, a prescaler for generating internal
count clock and control registers.
Internal clock can be selected from 3 types of internal clocks (divided by 2/8/32 of machine clock) .
The DMA transfer can be started by the interruption.
The MB91121 consists of 3 channels of the 16-bit reload timer.
• Block diagram
16
16-bit reload register
8
Reload
RELD
16
16-bit down counter UF
OUTE
OUTL
2
OUT
CTL.
GATE
INTE
R-bus
2
IRQ
UF
CSL1
Clock selector
CNTE
CSL0
2
TRG
Retrigger
IN CTL.
EXCK
φ
φ
φ
21 23 25
3
Prescaler
clear
MOD2
MOD1
Internal clock
MOD0
3
46
PWM (ch0, ch1)
A/D (ch2)
MB91121
• Register configuration
Address
Initial value
bit 15
bit 0
0000002EH
0000002FH
TMCSR0
− − − − 0 0 0 0B
0 0 0 0 0 0 0 0B
(R/W)
00000036H
00000037H
TMCSR1
− − − − 0 0 0 0B
0 0 0 0 0 0 0 0B
(R/W)
00000042H
00000043H
TMCSR2
− − − − 0 0 0 0B
0 0 0 0 0 0 0 0B
(R/W)
0000002AH
0000002BH
TMR0
X X X X X X X XB
X X X X X X X XB
(R)
00000032H
00000033H
TMR1
X X X X X X X XB
X X X X X X X XB
(R)
0000003EH
0000003FH
TMR2
X X X X X X X XB
X X X X X X X XB
(R)
00000028H
00000029H
TMRLR0
X X X X X X X XB
X X X X X X X XB
(W)
00000030H
00000031H
TMRLR1
X X X X X X X XB
X X X X X X X XB
(W)
0000003CH
0000003DH
TMRLR2
X X X X X X X XB
X X X X X X X XB
(W)
( )
R/W
R
W

X
: Access
: Readable and writable
: Read only
: Write only
: Unused
: Indeterminate
47
MB91121
7. Bit Search Module
The bit search module detects transitions of data (0 to 1/1 to 0) on the data written on the input registers and
returns locations of the transitions.
• Block diagram
Input latch
Address
decoder
Detection
mode
D-bus
Single-detection data recovery
Bit search circuit
Search result
• Register configuration
Address
Initial value
bit 31
bit 0
000003F0H
000003F1H
000003F2H
000003F3H
BSD0
X X X X X X X XB
X X X X X X X XB
X X X X X X X XB
X X X X X X X XB
(W)
000003F4H
000003F5H
000003F6H
000003F7H
BSD1
X X X X X X X XB
X X X X X X X XB
X X X X X X X XB
X X X X X X X XB
(W)
000003F8H
000003F9H
000003FAH
000003FBH
BSDC
X X X X X X X XB
X X X X X X X XB
X X X X X X X XB
X X X X X X X XB
(W)
000003FCH
000003FEH
000003FDH
000003FFH
BSRR
X X X X X X X XB
X X X X X X X XB
X X X X X X X XB
X X X X X X X XB
(W)
( )
R/W
R
W
X
48
bit 16
: Access
: Readable and writable
: Read only
: Write only
: Indeterminate
MB91121
8. 10-bit A/D Converter (Successive Approximation Conversion Type)
The A/D converter is the module which converts an analog input voltage to a digital value, and it has following
features.
Minimum converting time : 5.6 µs/ch. (system clock : 25 MHz)
Inner sample and hold circuit
Resolution : 10 bits
Analog input can be selected from 4 channels by program.
Single convert mode
: 1 channel is selected and converted.
Scan convert mode
: Converting continuous channels. Maximum 4 channels are programmable.
Continuous convert mode : Converting the specified channel repeatedly.
Stop convert mode
: After converting one channel then stop and wait till next activation
synchronising at the beginning of conversion can be peformed.
• DMA transfer operation is available by interruption.
• Operating factor can be selected from the software, the external trigger (falling edge) , and 16-bit reroad timer
(rising edge) .
•
•
•
•
49
MB91121
• Block diagram
AVCC
AVR
AVSS
Internal voltage generator
MPX
Successive approximation
register
Input circuit
AN0
AN1
AN2
AN3
Comparator
R-bus
Sample & hold circuit
Decoder
Data register (ADCR)
A/D control register (ADCS)
Trigger start
ATG
TIM0
(internal connection)
(16-bit reload timer ch.2)
Timer start
Operating clock
φ
(Peripheral clock)
Prescaler
• Register configuration
Address
Initial value
bit 15
0000003AH
0000003BH
ADCS
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 0B
(R/W)
00000038H
00000039H
ADCR
− − − − − − X XB
X X X X X X X XB
(R)
( )
R/W
R

X
50
bit 0
: Access
: Readable and writable
: Read only
: Unused
: Indeterminate
MB91121
9. Interrupt Controller
The interrupt controller processes interrupt acknowledgments and arbitration between interrupts.
• Block diagram
INT0
2
IM
Priority judgment
OR
5
5
NMI processing
NMI
4
Level judgment
ICR00
RI00
•
•
•
6
•
•
•
•
•
Vector judgment
6
HLDCAN
3
VCT5 to
VCT0 5
ICR47
RI47
(DLYIRQ)
Level
vector
generation
HLDREQ
cancel
request
LEVEL4 to
LEVEL0 4
DLYI
1
R-bus
*1 : DLYI stands for delayed interrupt module (delayed interrupt generation block) (refer to the section
“11. Delayed Interrupt Module” for detail) .
*2 : INT0 is a wake-up signal to clock control block in the sleep or stop status.
*3 : HLDCAN is a bus release request signal for bus masters other than CPU.
*4 : LEVEL5 to LEVEL0 are interrupt level outputs.
*5 : VCT5 to VCT0 are interrupt vector outputs.
51
MB91121
• Register configuration
Address
Initial value
bit 7
Initial value
bit 7
bit 0
00000400H
ICR00
− − − 1 1 1 1 1B
(R/W)
00000411H
ICR17
− − − 1 1 1 1 1B
(R/W)
00000401H
ICR01
− − − 1 1 1 1 1B
(R/W)
00000412H
ICR18
− − − 1 1 1 1 1B
(R/W)
00000402H
ICR02
− − − 1 1 1 1 1B
(R/W)
00000413H
ICR19
− − − 1 1 1 1 1B
(R/W)
00000403H
ICR03
− − − 1 1 1 1 1B
(R/W)
00000414H
ICR20
− − − 1 1 1 1 1B
(R/W)
00000404H
ICR04
− − − 1 1 1 1 1B
(R/W)
00000415H
ICR21
− − − 1 1 1 1 1B
(R/W)
00000405H
ICR05
− − − 1 1 1 1 1B
(R/W)
00000416H
ICR22
− − − 1 1 1 1 1B
(R/W)
00000406H
ICR06
− − − 1 1 1 1 1B
(R/W)
00000417H
ICR23
− − − 1 1 1 1 1B
(R/W)
00000407H
ICR07
− − − 1 1 1 1 1B
(R/W)
00000418H
ICR24
− − − 1 1 1 1 1B
(R/W)
00000408H
ICR08
− − − 1 1 1 1 1B
(R/W)
00000419H
ICR25
− − − 1 1 1 1 1B
(R/W)
00000409H
ICR09
− − − 1 1 1 1 1B
(R/W)
0000041AH
ICR26
− − − 1 1 1 1 1B
(R/W)
0000040AH
ICR10
− − − 1 1 1 1 1B
(R/W)
0000041BH
ICR27
− − − 1 1 1 1 1B
(R/W)
0000040BH
ICR11
− − − 1 1 1 1 1B
(R/W)
0000041CH
ICR28
− − − 1 1 1 1 1B
(R/W)
0000040CH
ICR12
− − − 1 1 1 1 1B
(R/W)
0000041DH
ICR29
− − − 1 1 1 1 1B
(R/W)
0000040DH
ICR13
− − − 1 1 1 1 1B
(R/W)
0000041EH
ICR30
− − − 1 1 1 1 1B
(R/W)
0000040EH
ICR14
− − − 1 1 1 1 1B
(R/W)
0000041FH
ICR31
− − − 1 1 1 1 1B
(R/W)
0000040FH
ICR15
− − − 1 1 1 1 1B
(R/W)
0000042FH
ICR47
− − − 1 1 1 1 1B
(R/W)
00000410H
ICR16
− − − 1 1 1 1 1B
(R/W)
00000431H
HRCL
− − − 1 1 1 1 1B
(R/W)
00000430H
DICR
− − − − − − − 0B
(R/W)
( ) : Access
R/W : Readable and writable
 : Unused
52
Address
bit 0
MB91121
10. External Interrupt/NMI Control Block
The external interrupt/NMI control block controls external interrupt request signals input to NMI pin and INT0 to
INT3 pins.
Detecting levels can be selected from “H”, “L”, rising edge and falling edge (not for NMI pin) .
• Block diagram
8
9
R-bus
Interrupt
request
Interrupt enable register
Gate
8
Cause F/F
Edge detection circuit
5
INT0 to INT7
NMI
Interrupt cause register
8
Request level setting register
• Register configuration
Address
Initial value
bit 15
bit 8
ENIR
00000095H
00000094H
bit 0
EIRR
00000099H
ELVR
0 0 0 0 0 0 0 0B
(R/W)
0 0 0 0 0 0 0 0B
(R/W)
0 0 0 0 0 0 0 0B
(R/W)
( ) : Access
R/W : Readable and writable
53
MB91121
11. Delayed Interrupt Module
Delayed interrupt module is a module which generates an interrupt for changing a task. By using this delayed
interrupt module, an interrupt request to CPU can be generated/cancelled by the software.
Refer to the section “9. Interrupt Controller” for delayed interrupt module block diagram.
• Register configuration
Address
Initial value
bit 7
00000430H
( ) : Access
R/W : Readable and writable
 : Unused
54
bit 0
DICR
− − − − − − − 0B
(R/W)
MB91121
12. Clock Generation (Low-power consumption mechanism)
The clock control block is a module which undertakes the following functions.
•
•
•
•
•
•
CPU clock generation (including gear function)
Peripheral clock generation (including gear function)
Reset generation and cause hold
Standby function (including hardware standby)
DMA request prohibit
PLL (multiplier circuit) embedded
55
MB91121
• Block diagram
[Gear control block]
Gear control register (GCR)
CPU gear
X0
X1
Oscillator
circuit
PCTR register
PLL
1/2
Selection
circuit
R-bus
Peripheral
gear
CPU clock
Internal bus clock
External bus clock
Internal clock
generation
circuit
Peripheral DMA clock
DSP Macros clock
Internal
peripheral clock
[Stop/sleep control block]
Internal
interrupt request
Internal reset
Standby control
register (STCR)
STOP state
SLEEP state
Status
transition
control circuit
CPU hold enable
HST pin
CPU hold request
Reset
generation
F/F
[DMA prohibit circuit]
DMA
request
DMA request prohibit
register (PDRR)
[Reset cause circuit]
Power on sel
RST pin
Reset cause register (RSRR)
[Watchdog control block]
Watchdog reset generation
postpone register (WPR)
Watchdog reset
postpone register
Timebase timer clear
register (CTBR)
Timebase timer
56
Count clock
Internal reset
MB91121
• Register configuration
Address
Initial value
bit 15
00000480H
bit 8
RSRR/WTCR
00000481H
00000482H
STCR
PDRR
00000483H
00000484H
CDBR
GCR
00000485H
( )
R/W
R

X
bit 0
WPR
1 X X X X − 0 0B
(R/W)
0 0 0 1 1 1 − −B
(R/W)
− − − − 0 0 0 0B
(R/W)
X X X X X X X XB
(W)
1 1 0 0 1 1 − 1B
(R/W)
X X X X X X X XB
(W)
: Access
: Readable and writable
: Read only
: Unused
: Indeterminate
57
MB91121
13. External Bus Interface
The external bus interface controls the interface between the device and the external memory and also the
external I/O, and has the following features.
• 25-bit (32 Mbytes) address output
• 6 independent banks owing to the chip select function.
Can be set to anywhere on the logical address space for minimum unit 64 Kbytes.
Total 32 Mbytes × 6 area setting is available by the address pin and the chip select pin.
• 8/16-bit bus width setting are available for every chip select area.
• Programmable automatic memory wait (Max. for 7 cycles) can be inserted.
• DRAM interface support
Three kinds of DRAM interface : Double CAS DRAM (normally DRAM I/F)
Single CAS DRAM
Hyper DRAM
2 banks independent control (RAS, CAS, etc. control signals)
DRAM select is available from 2CAS/1WE and 1CAS/2WE.
Hi-speed page mode supported
CBR/self refresh supported
Programmable wave form
• Unused address/data pin can be used for I/O port.
• Little endian mode supported
• Clock doublure : Internal bus 50 MHz, external bus 25 MHz
58
MB91121
• Block diagram
Address bus
32
A-OUT
Data bus
32
External data bus
Write buffer
Switch
Read buffer
Switch
MUX
DATA BLOCK
ADDRESS BLOCK
+1 or +2
External address bus
Inpage
Shifter
Address buffer
6
ASR
AMR
CS0 to CS5
Comparator
8
DRAM control
RAS0, RAS1
CS0L, CS1L
CS0H, CS1H
DW0, DW1
Underflow
DMCR
Refresh counter
To TBT
3
External pin control block
All blocks control
4
Registers & control
RD
WR0, WR1
BRQ
BGRNT
CLK
RDY
59
MB91121
• Register configuration
Address
Initial value
bit 31
0000060CH
0000060DH
bit 16
bit 0
ASR1
0000060EH
0000060FH
AMR1
00000610H
00000611H
ASR2
00000612H
00000613H
AMR2
00000614H
00000615H
ASR3
00000616H
00000617H
AMR3
00000618H
00000619H
ASR4
0000061AH
0000061BH
AMR4
0000061CH
0000061DH
ASR5
0000061EH
0000061FH
00000620H
AMR5
AMD0
00000621H
AMD1
00000622H
AMD32
00000623H
00000624H
AMD4
AMD5
00000625H
DSCR
00000626H
00000627H
00000628H
00000629H
RFCR
EPCR0
0000062BH
0000062CH
0000062DH
0000062EH
0000062FH
000007FEH
000007FFH
( ) : Access
W : Write only
X
: Indeterminate
60
EPCR1
DMCR4
DMCR5
LER
MODR
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 1B
(W)
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 0B
(W)
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 1 0B
(W)
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 0B
(W)
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 1 1B
(W)
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 0B
(W)
0 0 0 0 0 0 0 0B
0 0 0 0 0 1 0 0B
(W)
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 0B
(W)
0 0 0 0 0 0 0 0B
0 0 0 0 0 1 0 1B
(W)
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 0B
(W)
− − − 0 0 1 1 1B
(R/W)
0 − − 0 0 0 0 0B
(R/W)
0 0 0 0 0 0 0 0B
(R/W)
0 − − 0 0 0 0 0B
(R/W)
0 − − 0 0 0 0 0B
(R/W)
0 0 0 0 0 0 0 0B
(W)
− − X X X X X XB
0 0 − − − 0 0 0B
(R/W)
− − − 1 1 0 0 0B
− 1 1 1 1 1 1 1B
(W)
1 1 1 1 1 1 1 1B
(W)
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 −B
(R/W)
0 0 0 0 0 0 0 0B
0 0 0 0 0 0 0 −B
(R/W)
− − − − − 0 0 0B
(W)
X X X X X X X XB
(W)
R/W : Readable and writable
 : Unused
MB91121
■ ELECTRICAL CHARACTERISTICS
1. Absolute Maximum Ratings
Parameter
(VSS = AVSS = 0.0 V)
Symbol
Value
Min.
Max.
Unit
Remarks
Power supply voltage
VCC
VSS − 0.3
VSS + 3.6
V
Analog supply voltage
AVCC
VSS − 0.3
VSS + 3.6
V
*1
Analog reference voltage
AVRH
VSS − 0.3
VSS + 3.6
V
*1
Input voltage
VI
VSS − 0.3
VCC + 0.3
V
Analog pin input voltage
VIA
VSS − 0.3
AVCC + 0.3
V
Output voltage
VO
VSS − 0.3
VCC + 0.3
V
“L” level maximum output current
IOL

10
mA
*2
“L” level average output current
IOLAV

4
mA
*3
“L” level maximum total output current
ΣIOL

100
mA
ΣIOLAV

50
mA
*4
IOH

−10
mA
*2
“H” level average output current
IOHAV

−4
mA
*3
“H” level maximum total output current
ΣIOH

−50
mA
ΣIOHAV

−20
mA
Power consumption
PD

600
mW
Operating temperature
TA
0
+70
°C
Tstg
−55
+150
°C
“L” level average total output current
“H” level maximum output current
“H” level average total output current
Storage temperature
*4
*1 : Care must be taken that AVCC and AVRH do not exceed VCC + 0.3 V, such as when turning on the device.
Also, care must be taken that AVRH does not exceed AVCC.
*2 : Maximum output current is a peak current value measured at a corresponding pin.
*3 : Average output current is an average current for a 100 ms period at a corresponding pin.
*4 : Average total output current is an average current for a 100 ms period for all corresponding pins.
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
61
MB91121
2. Recommended Operating Conditions
Parameter
Symbol
(VSS = AVSS = 0.0 V)
Value
Min.
Max.
Unit
Power supply voltage
VCC
3.0
3.6
V
Analog supply voltage
AVCC
VSS + 0.3
VSS + 3.6
V
Analog reference voltage
AVRH
AVSS
AVCC
V
TA
0
+70
°C
Operating temperature
Remarks
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the
semiconductor device. All of the device’s electrical characteristics are warranted when the device is
operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation
outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on
the data sheet. Users considering application outside the listed conditions are advised to contact their
FUJITSU representatives beforehand.
62
MB91121
3. DC Characteristics
Parameter
(VCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0 °C to + 70 °C)
Symbol Pin name
Condition
Value
Min.
Typ.
Max.
Unit
Remarks
VIH
Input pin
except for
hysteresis
input

0.65 × VCC

VCC + 0.3
V
*2
VIHS
*1

0.8 × VCC

VCC + 0.3
V
Hysteresis
input*2
VIL
Input pin
except for
hysteresis
input

VSS − 0.3

0.25 × VCC
V
*2
VILS
*1

VSS − 0.3

0.2 × VCC
V
Hysteresis
input*2
“H” level
output voltage
VOH
D16 to D31
VCC = 3.0 V
A00 to A24
IOH = −4.0 mA
P6 to PF
VCC − 0.5


V
“L” level
output voltage
VOL
D16 to D31
VCC = 3.0 V
A00 to A24
IOL = 4.0 mA
P6 to PF


0.4
V
D00 to D31
VCC = 3.6 V
A00 to A23
0.45 V< VI < VCC
P8 to PF
−5

+5
µA
25
50
100
kΩ
“H” level
input voltage
“L” level
input voltage
Input leakage
current
(Hi-Z output
leakage current)
Pull-up
resistance
ILI
RPULL
RST
FC = 12.5 MHz
VCC = 3.3 V

130
180
(4 multiplication)
mA
Operation at
50 MHz
ICCS
FC = 12.5 MHz
VCC = 3.3 V

85
120
mA Sleep mode
ICCH
TA = +25 °C
VCC = 3.3 V

15
150
µA Stop mode

10

ICC
Power supply
current
Input
capacitance
VCC = 3.6 V
VI = 0.45 V
VCC
CIN
Except for
VCC, AVCC,
AVSS, VSS

pF
*1 : Hysteresis input pin : NMI, RST, P60 to P67, PA1 to PA6, PB0 to PB7, PE0 to PE7, PF0 to PF7, PG0 to PG7,
PI0, PI1
*2 : VCC3 = 3.3 ± 0.2 V (internal regulator output voltage) when using 5 V power supply, VCC3 = power supply voltage
when using 3V power supply (internal regulator unused)
63
MB91121
4. AC Characteristics
(1) Measurement Conditions
The following conditions apply to AC characteristics unless otherwise specified.
• Measurement conditions for AC standards
VCC : 3.0 V to 3.6 V
Input
Output
VCC
0V
HIH
VOH
VIL
VOL
VIH
VOH
1/2 ∗ VCC
VIL
1/2 ∗ VCC
VOL
1/2 ∗ VCC
(The input rise/fall time is 10 ns or less.)
• Load condition
Output pin
C = 50 pF
(VCC : 3.0 V to 3.6 V)
64
1/2 ∗ VCC
MB91121
(2) Clock Timing Rating
(VCC = 3.0 V to 3.6 V, VSS = AVSS = 0 .0V, TA = 0 °C to + 70 °C)
Parameter
Value
Symbol Pin name Condition
Unit
Min.
Max.
10
12.5
MHz
80
100
ns

5
%
Remarks
Clock frequency (1)
FC
X0, X1
Clock cycle time
tC
X0, X1
Frequency shift ratio*1
(when locked)
∆f
Clock frequency (2)
FC
X0, X1
10
25
MHz
Self-oscillation
(divide-by-2 input)
Clock frequency (3)
FC
X0, X1
10
25
MHz
External clock
(divide-by-2 input)
Clock cycle time
tC
X0, X1
40
100
ns
PWH, PWL
X0, X1
25

ns
Input to X0 only
10

ns
Input to X0, X1
tCR, tCF
X0, X1

8
ns
(tCR + tCF)
fCP
0.625*2
50
MHz
CPU system
fCPB
0.625*2
25*3
MHz
Bus system
fCPP
2
MHz
Peripheral system
Input clock pulse width
Input clock rising/falling time
Internal operating clock
frequency

0.625*

25
When using PLL
20
1600*
2
ns
CPU system
tCPB
40*3
1600*2
ns
Bus system
tCPP
40
1600*2
ns
Peripheral system
tCP
Internal operating clock
cycle time

*1 : Frequency shift ratio stands for deviation ratio of the operating clock from the center frequency in the clock
multiplication system.
+
∆f =
|α|
× 100 (%)
f0
+α
Center frequency f0
−α
−
*2 : These values are for a minimum clock of 10 MHz input to X0, a divide-by-2 system of the source oscillation and
a 1/8 gear.
*3 : Values when using the doublure and CPU operation at 50 MHz.
65
MB91121
• Clock timing rating measurement conditions
tC
0.8 VCC
0.2 VCC
PWH
PWL
tCR
tCF
• Guaranteed operating range
Guaranteed operating range (T A = 0 °C to +70 °C)
f CPP falls within the shaded range.
Power supply
VCC (V)
3.6
3.0
3.3 V ± 0.3 V
0
0.625
25
50
fCP / fCPP
[MHz]
Internal clock
Internal clock setting upper limit
• External/internal clock setting range
fCP
fCPP
50
40
CPU
25
20
Peripheral
PLL system
(4 multiplication)
Divide-by-2 system
12.5
5
0
0
10 12.5
25
50
FC
[MHz]
External clock
Internal oscillation
Oscillation input clock
Note : 1.If the PLL is used, the external clock input should be 10.0 MHz to 12.5 MHz.
2.The PLL oscillation settling time must be longer than 300 µs.
3.The internal clock gear setting must fall within the above range.
66
MB91121
(3) Clock Output Timing
Parameter
Symbol
(VCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0 °C to + 70 °C)
Pin
name
Value
Condition
Min.
Max.
tCP
—
tCPB
—
Cycle time
tCYC
CLK
CLK ↑ → CLK ↓
tCHCL
CLK
1 / 2 × tCYC − 10
CLK ↓ → CLK ↑
tCLCH
CLK
1 / 2 × tCYC − 10

Unit
Remarks
*1
ns
Using the
doublure
1 / 2 × tCYC + 10
ns
*2
1 / 2 × tCYC + 10
ns
*3
tCYC
tCHCL
CLK
tCLCH
VOH
VOH
VOL
*1 : tCYC is a frequency for 1 clock cycle including a gear cycle.
Use the doublure when CPU frequency is above 25 MHz.
*2 : Rating at a gear cycle of × 1.
When a gear cycle of 1/2, 1/4, 1/8 is selected, substitute “n” in the following equations with 1/2, 1/4, 1/8,
respectively.
Min. : (1 − n / 2) × tCYC − 10
Max. : (1 − n / 2) × tCYC + 10
Select a gear cycle of × 1 when using the doublure.
*3 : Rating at a gear cycle of × 1.
When a gear cycle of 1/2, 1/4, 1/8 is selected, substitute “n” in the following equations with 1/2, 1/4, 1/8,
respectively.
Min. : n / 2 × tCYC − 10
Max. : n / 2 × tCYC + 10
Select a gear cycle of × 1 when using the doublure.
67
MB91121
The relation between source oscillation input and CLK pin for configured by CHC/CCK1/CCK0 settings of GCR
(gear control register) is as follows:
However, in this chart source oscillation input means X0 input clock.
Source oscillation input
(when using the doublure)
(1) PLL system
(CHC bit of GCR set to “0”)
(a) Gear × 1 CLK pin
CCK1/0: “00”
tCYC
tCYC
Source oscillation input
(2) 2 dividing system
(CHC bit of GCR set to “1”)
(a) Gear × 1 CLK pin
CCK1/0: “00”
(b) Gear × 1/2 CLK pin
CCK1/0: “01”
(c) Gear × 1/4 CLK pin
CCK1/0: “10”
(d) Gear × 1/8 CLK pin
CCK1/0: “11”
68
tCYC
tCYC
tCYC
tCYC
MB91121
• Ceramc oscillator applications
Recommended circuit (2 contacts)
X0
Recommended circuit (3 contacts)
X0
X1
X1
*
*
C1
C1
C2
C2
C1, C2 internally
connected.
* : Murata Mfg. Co., Ltd.
• Discrete type
Oscillation frequency
[MHz]
10.00 to 13.00
13.01 to 15.99
16.00 to 19.99
20.00 to 25.00
Model name
Circuit constants
C1[pF]
C1[pF]
Rf[Ω]*1
Rd[Ω]*2
Pin type
CSA
MTZ
30
30

0
Two-pin
CST
MTW
(30)
(30)

0
Three-pin
CSA
MXZ040
15
15

0
Two-pin
CST
MXW0C3
(15)
(15)

0
Three-pin
CSA
MXZ040
(10)
(10)

0
Two-pin
∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗
∗∗∗∗
∗∗∗∗
∗∗∗∗
Three-pin
CSA
None
None

0
Two-pin
∗∗∗∗
∗∗∗∗
∗∗∗∗
∗∗∗∗
Three-pin
MXZ004
∗∗∗∗∗∗∗∗∗∗∗
*1 : Feedback resistor Rf is built in the LSI.
*2 : No dumping resistor is required.
( ) : C1 and C2 integrated
69
MB91121
• SMD type
Oscillation frequency
[MHz]
10.00 to 13.00
13.01 to 15.99
16.00 to 19.99
20.00 to 25.00
Model name
C1[pF]
C1[pF]
Rf[Ω]*1
Rd[Ω]*2
Pin type
CSACS
MT
30
30

0
Two-pin
CSTCS
MT
(30)
(30)

0
Three-pin
CSACS
MX040
15
15

0
Two-pin
CSTCS
MX0C3
(15)
(15)

0
Three-pin
CSACS
MX040
10
10

0
Two-pin
CSTCS
MX0C2
(10)
(10)

0
Three-pin
CSACS
MX040
None
None

0
Two-pin
∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗
∗∗∗∗
∗∗∗∗
∗∗∗∗
Three-pin
*1 : Feedback resistor Rf is built in the LSI.
*2 : No dumping resistor is required.
( ) : C1 and C2 integrated
70
Circuit constants
MB91121
(4) Reset input ratings
Parameter
Reset input time
(VCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0 °C to + 70 °C)
Symbol
Pin
name
Condition
tRSTL
RST

Value
Min.
Max.
tCP × 5

Unit
Remarks
ns
tRSTL, tHSTL
RST
0.2 VCC
71
MB91121
(5) Power-on Reset
Parameter
Power supply rising time
Power supply shut off time
(VCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0 °C to + 70 °C)
Symbol
Pin
name
Condition
Value
Min.
Max.
Unit
Remarks
tR
VCC
VCC = 3.3 V
50 µs
18
ms
VCC < 0.2 V
before the
power supply
rising
tOFF
VCC

1

ms
Repeated
operations
tR
VCC
0.9 × VCC
0.2 V
tOFF
Note: Sudden change in supply voltage during operation may initiate a power-on sequence.
To change supply voltage during operation, it is recommended to smoothly raise the voltage to avoid rapid
fluctuations in the supply voltage.
VCC
A voltage rising rate of 50 mV/ms or
less is recommended.
VSS
Note: Set RST pin to ÒLÓ level when turning on the device, at least the described above duration after the
supply voltage reaches Vcc is necessary before turning the RST to ÒHÓ level.
VCC
RST
tRSTL
72
MB91121
(6) Normal Bus Access Read/write Operation
Parameter
CS0 to CS5 delay time
Symbol
tCHCSL
tCHCSH
Pin name
(VCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0 °C to + 70 °C)
Condition
CLK
CS0 to CS5
Value
Unit Remarks
Min.
Max.

15
ns

15
ns
Address delay time
tCHAV
CLK
A24 to A00

15
ns
Data delay time
tCHDV
CLK
D31 to D16

15
ns

10
ns

10
ns

10
ns

10
ns

3 / 2 × tCYC − 40
ns
*1
*2

tCYC − 25
ns
*1
25

ns
0

ns
RD delay time
WR0, WR1 delay time
tCLRL
tCLRH
tCLWL
tCLWH
Valid address →
valid data input time
tAVDV
RD ↓→
valid data input time
tRLDV
Data set up →
RD ↑ time
tDSRH
RD ↑→
data hold time
tRHDX
CLK
RD
CLK
WR0, WR1
A24 to A00
D31 to D16
RD
D31 to D16

*1 : When bus timing is delayed by automatic wait insertion or RDY input, add (tCYC × extended cycle number for
delay) to this rating.
*2 : Rating at a gear cycle of × 1.
When a gear cycle of 1/2, 1/4, 1/8 is selected, substitute “n” in the following equation with 1/2, 1/4, 1/8, respectively.
Equation : (2 − n / 2) × tCYC − 40
73
MB91121
tCYC
BA2
BA1
CLK
VOH
VOH
VOL
VOH
VOL
tCHCSH
tCHCSL
CS0 to CS5
VOL
A24 to A00
VOH
VOL
VOH
tCHAV
VOH
VOL
tCLRL
tCLRH
RD
VOH
VOL
tRLDV
tRHDX
tAVDV
VIH
VIL
D31 to D16
VIH
VIL
Read
tDSRH
tCLWL
tCLWH
WR0 , WR1
VOH
VOL
tCHDV
D31 to D16
74
VOH
VOL
Write
VOH
VOL
MB91121
(7) Ready Input Timing
Parameter
RDY set up time → CLK ↓
CLK ↓ → RDY hold time
(VCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0 °C to + 70 °C)
Symbol
Pin
name
tRDYS
RDY
CLK
tRDYH
CLK
RDY
Condition
Value
Unit
Min.
Max.
20

ns
0

ns
Remarks

tCYC
CLK
VOH
VOH
VOL
VOL
tRDYH
tRDYH
tRDYS
RDY
When wait(s)
is inserted.
RDY
When no wait
is inserted.
VIL
VIH
tRDYS
VIH
VIL
75
MB91121
(8) Hold Timing
(VCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0 °C to + 70 °C)
Parameter
Symbol
tCHBGL
BGRNT delay time
tCHBGH
Pin floating → BGRNT ↓ time
tXHAL
BGRNT ↑→ pin valid time
tHAHV
Pin
name
Condition
CLK
BGRNT

BGRNT
Value
Max.

10
ns

10
ns
tCYC − 10
tCYC + 10
ns
tCYC − 10
tCYC + 10
ns
Note : There is a delay time of more than 1 cycle from BRQ input to BGRNT change.
tCYC
CLK
VOH
VOH
VOH
VOH
BRQ
tCHBGH
tCHBGL
BGRNT
VOH
VOL
tXHAL
tHAHV
Each pin
High impedance
76
Unit
Min.
Remarks
MB91121
(9) Normal DRAM Mode Read/Write Cycle
Parameter
RAS delay time
CAS delay time
Symbol
tCLRAH
tCHRAL
tCLCASL
tCLCASH
ROW address delay time
tCHRAV
COLUMN address delay time
tCHCAV
DW delay time
tCHDWL
tCHDWH
(VCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0 °C to + 70 °C)
Pin name
Condition
CLK
RAS
CLK
CAS
CLK
A24 to A00
CLK
DW

Value
Unit
Min.
Max.

10
ns

10
ns

10
ns

10
ns

15
ns

15
ns

15
ns

15
ns
Remarks
Output data delay time
tCHDV1
CLK
D31 to D16

15
ns
RAS ↓ → valid data input time
tRLDV
RAS
D31 to D16

5 / 2 × tCYC
− 20
ns
*1
*2
CAS ↓ → valid data input time
tCLDV

tCYC − 17
ns
*1
CAS ↑ → data hold time
tCADH
0

ns
CAS
D31 to D16
*1 : When Q1 cycle or Q4 cycle is extended for 1 cycle, add tCYC time to this rating.
*2 : Rating at a gear cycle of × 1.
When a gear cycle of 1/2, 1/4, 1/8 is selected, substitute “n” in the following equation with 1/2, 1/4, 1/8,
respectively.
Equation : (3 − n / 2) × tCYC − 20
77
MB91121
tCYC
Q1
CLK
Q2
Q3
Q4
VOH
Q5
VOH
VOH
VOL
VOL
VOH
RAS
VOL
VOL
tCHRAL
tCLRAH
tCLCASH
tCLCASL
CAS
VOH
VOL
tCHCAV
tCHRAV
VOH
VOL
A24 to A00
ROW address
VOH
VOL
VOH
VOL
COLUMN address
VOH
VOL
tRLDV
tCLDV
VIH
VIL
D31 to D16
tCADH
VIH
VIL
Read
VOH
DW
VOL
tCHDWH
tCHDWL
D31 to D16
VOH
VOL
tCHDV1
78
Write
VOH
VOL
MB91121
(10) Normal DRAM Mode Fast Page Read/Write Cycle
(VCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0 °C to + 70 °C)
Parameter
RAS delay time
CAS delay time
Symbol
Pin name
tCLRAH
CLK, RAS
tCLCASL
CLK
CAS
tCLCASH
COLUMN address delay time
tCHCAV
CLK
A24 to A00
DW delay time
tCHDWH
CLK, DW
Output data delay time
tCHDV1
CLK
D31 to D16
CAS ↓→ valid data input time
tCLDV
CAS ↑→ data hold time
tCADH
Condition

CAS
D31 to D16
Value
Unit
Min.
Max.

10
ns

10
ns

10
ns

15
ns

15
ns

15
ns

tCYC − 17
ns
0

ns
Remarks
*
* : When Q4 cycle is extended for 1 cycle, add tCYC time to this rating.
79
MB91121
Q5
Q4
VOH
CLK
Q5
VOL
Q4
Q5
VOH
VOL
VOL
tCLRAH
VOH
RAS
tCLCASL
tCLCASH
VOH
CAS
VOL
tCHCAV
A24 to A00
COLUMN address
VOH
VOL
VOH
VOL
COLUMN address
tCADH
tCLDV
D31 to D16
VIH
VIL
Read
COLUMN address
Read
VIH
VIL
Read
tCHDWH
VOH
DW
tCHDV1
D31 to D16
80
VOH
VOL
Write
VOH
VOL
VOH
VOL
Write
MB91121
(11) Single DRAM Timing
Parameter
(VCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0 °C to + 70 °C)
Symbol
Pin name
Condition
Value
Unit
Min.
Max.

10
ns

10
ns
tCHCASL2 CLK
CAS
tCHCASH2

n / 2 × tCYC
+8
ns

10
ns
ROW address delay time
tCHRAV2

15
ns
COLUMN address delay time
tCHCAV2

15
ns

15
ns

15
ns

15
ns

(1 − n / 2) ×
tCYC − 17
ns
0
—
ns
RAS delay time
CAS delay time
DW delay time
tCLRAH2
tCHRAL2
tCHDWL2
tCHDWH2
Output data delay time
tCHDV2
CAS ↓ → Valid data input time
tCLDV2
CAS ↑ → data hold time
tCADH2
CLK
RAS
CLK
A24 to A00
CLK
DW
CLK
D31 to D16
CAS
D31 to D16

Remarks
81
MB91121
tCYC
Q1
VOH
CLK
Q2
VOH
VOL
VOH
RAS
*1
Q4S
Q3
Q4S
VOH
Q4S
VOH
VOH
VOL
tCHRAL2
tCLRAH2
tCHCASL2
tCHCASH2
VOH
CAS
VOH
VOL
VOH
VOL
A24 to A00
ROW address
tCHRAV2
VOH
VOL
VOL
VOHCOLUMN-0
VOL
COLUMN-1
COLUMN-2
tCHCAV2
tCADH2
tCLDV2
D31 to D16
Read-0
DW
VIH
VIL
Read-1
D31 to D16
VOH
VOL
Write-0
tCHDV2
VOH
*2
VOH
VOL
tCHDWH2
VOH
VOL
Write-1
VOH
VOH
VOL
VOL
tCHDV2
*1 : Q4S indicates Q4SR (Read) of Single DRAM cycle or Q4SW (Write) cycle.
82
Read-2
VOL
tCHDWL2
*2 :
VIH
VIL
indicates the timing when the bus cycle begins from the high speed page mode.
Write-2
MB91121
(12) Hyper DRAM Timing
Parameter
RAS delay time
(VCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0 °C to + 70 °C)
Symbol
tCLRAH3
tCHRAL3
Pin name
Condition
CLK
RAS
Value
Unit Remarks
Min.
Max.

10
ns

10
ns
CAS delay time
tCHCASL3 CLK
tCHCASH3 CAS

n / 2 × tCYC + 8
ns

10
ns
ROW address delay time
tCHRAV3

15
ns
COLUMN address delay time
tCHCAV3

15
ns

15
ns

15
ns

15
ns

15
ns

15
ns

15
ns

tCYC − 20
ns
0

ns
CLK
A24 to A00
tCHRL3
RD delay time
tCHRH3
CLK
RD
tCLRL3
DW delay time
tCHDWL3
tCHDWH3
Output data delay time
tCHDV3
CAS ↓→ valid data input time
tCLDV3
CAS ↓→ data hold time
tCADH3
CLK
DW
CLK
D31 to D16
CAS
D31 to D16

83
MB91121
tCYC
Q1
Q2
VOH
CLK
VOH
VOL
VOH
RAS
*1
Q4H
Q3
Q4H
VOH
Q4H
VOH
VOL
VOH
VOL
tCHRAL3
tCLRAH3
tCHCASL3
tCHCASH3
VOH
CAS
VOL
VOH
VOL
A24 to A00
ROW address
tCHRAV3
VOH
VOL
VOHCOLUMN-0
VOL
VOL
VOL
COLUMN-1
COLUMN-2
tCHCAV3
*2
VOL
RD
VOH
VOL
tCHRL3
tCHRH3
tCLRL3
tCLDV3
D31 to D16
tCADH3
Read-0
DW
VIH
VIL
VOH
VOL
tCHDWL3
tCHDWH3
*2
D31 to D16
VOH
VOL
Write-0
tCHDV3
VOH
VOL
VOH
VOL
Write-1
VOH
VOH
VOL
VOL
tCHDV3
*1 : Q4H indicates Q4HR (Read) of Hyper DRAM cycle or Q4HW (Write) cycle.
*2 :
84
VIH
Read-1
VIL
indicates the timing when the bus cycle begins from the high speed page mode.
Write-2
MB91121
(13) CBR Refresh
Parameter
RAS delay time
CAS delay time
(VCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0 °C to + 70 °C)
Symbol
Pin name
tCLRAH
CLK
RAS
tCHRAL
tCLCASL

CLK
CAS
tCLCASH
tCYC
R1
CLK
RAS
R2
Unit
Min.
Max.

10
ns

10
ns

10
ns

10
ns
R3
VOH
Remarks
R4
VOH
VOL
VOL
VOL
VOH
VOL
tCLRAH
CAS
Value
Condition
tCHRAL
VOH
VOL
tCLCASL
tCLCASH
DW
85
MB91121
(14) Self Refresh
(VCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0 °C to + 70 °C)
Parameter
Symbol
tCLRAH
RAS delay time
tCHRAL
tCLCASL
CAS delay time
tCLCASH
tCYC
SR1
CLK
VOH
Pin name
Condition
CLK
RAS

CLK
CAS
SR2
SR3
VOH
VOL
Max.

10
ns

10
ns

10
ns

10
ns
Remarks
SR3
VOL
RAS
VOL
tCLRAH
VOH
VOH
VOL
tCHCASL
86
Unit
Min.
VOH
tCHRAL
CAS
Value
tCLCASH
MB91121
(15) UART Timing
(VCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0 °C to + 70 °C)
Parameter
Symbol
Pin name
Serial clock cycle time
tSCYC
SCLK ↓ → SOUT delay time
tSLOV
Valid SIN → SCLK ↑
tIVSH
SCLK ↑ → valid SIN hold time
tSHIX
Serial clock “H” pulse width
Value
Condition
Unit
Min.
Max.
SC0 to SC2
8tCYCP

ns
SC0 to SC2
SO0 to SO2
−80
80
ns
100

ns
SC0 to SC2
SI0 to SI2
60

ns
tSHSL
SC0 to SC2
4tCYCP

ns
Serial clock “L” pulse width
tSLSH
SC0 to SC2
4tCYCP

ns
SCLK ↓ → SOUT delay time
tSLOV
SC0 to SC2
SO0 to SO2

150
ns
Valid SIN → SCLK ↑
tIVSH
60

ns
SCLK ↑ → valid SIN hold time
tSHIX
60

ns
Internal
SC0 to SC2 shift clock
mode
SI0 to SI2
External
shift clock
SC0 to SC2
mode
SI0 to SI2
SC0 to SC2
SI0 to SI2
Remarks
Note : This rating is for AC characteristics in CLK synchronous mode.
tCYCP is a cycle time of peripheral system clock
• Internal shift clock mode
tSCYC
VOH
SCLK
VOL
VOL
tSLOV
VOH
VOL
SOUT
tSHIX
tIVSH
VIH
VIL
SIN
VIH
VIL
• External shift clock mode
tSLSH
tSHSL
VIH
VIH
SCLK
VIL
VIL
tSLOV
SOUT
VOH
VOL
tIVSH
SIN
VIH
VIL
tSHIX
VIH
VIL
87
MB91121
(16) Trigger System Input Timing
Parameter
A/D start trigger input time
External interrupt input time
(VCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0 °C to + 70 °C)
Symbol
tTRGH
tTRGL
Pin name
Condition
ATG
TRG0 to TRG3

Value
Min.
Max.
5tCYCP

Unit
ns
Note : tCYCP is a cycle time of peripheral system clock
tTRGH
ATG
TRG0
to TRG3
88
VIH
tTRGL
VIH
VIL
VIL
Remarks
MB91121
(17) DMA Controller Timing
(VCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0 °C to + 70 °C)
Parameter
Symbol
Pin name
DREQ input pulse width
tDRWH
DREQ0 to DREQ2
DACK delay time
(Normal bus)
(Normal DRAM)
tCLDL
EOP delay time
(Normal bus)
(Normal DRAM)
DACK delay time
(Single DRAM)
(Hyper DRAM)
EOP delay time
(Single DRAM)
(Hyper DRAM)
tCLDH
tCLEL
tCLEH
tCHDL
tCHDH
tCHEL
tCHEH
Condition
CLK
DACK0 to DACK2
CLK
EOP0 to EOP2

CLK
DACK0 to DACK2
CLK
EOP0 to EOP2
Value
Unit
Min.
Max.
2tCYC

ns

6
ns

6
ns

6
ns

6
ns

n / 2 × tCYC
ns

6
ns

n / 2 × tCYC
ns

6
ns
Remarks
tCYC
CLK
VOH
VOH
VOL
VOL
tCLDL
tCLEL
DACK0 to DACK2
EOP0 to EOP2
(Normal bus)
(Normal DRAM)
tCLDH
tCLEH
VOH
VOL
DACK0 to DACK2
EOP0 to EOP2
(Single DRAM)
(Hyper DRAM)
VOH
VOL
tCHDL
tCHEL
tCHDH
tDRWH
DREQ0 to DREQ2
VIH
VIH
89
MB91121
5. A/D Converter Block Electrical Characteristics
(VCC = AVCC = AVRH = 3.3 V, AVSS = 0.0 V, TA = 0 °C to + 70 °C)
Parameter
Symbol
Pin name
Resolution

Total error
Value
Unit
Min.
Typ.
Max.


10
10
BIT




±5.0
LSB
Linearity error




±3.5
LSB
Differentiation linearity error




±2.0
LSB
Zero transition voltage
VOT
AN0 to AN7
−1.5
+0.5
+2.5
LSB
Full-scale transition voltage
VFST
AN0 to AN7 AVRH − 4.5 AVRH − 1.5 AVRH + 0.5 LSB
Conversion time


5.6*1


µs
Analog port input current
IAIN
AN0 to AN7

0.1
10
µA
Analog input voltage
VAIN
AN0 to AN7
AVSS

AVRH
V

AVRH
AVSS

AVCC
V

4

mA


2
5*
µA

200

µA


5*2
µA


5
LSB
Reference voltage
IA
Power supply current
IAH
IR
Reference voltage supply current
IRH
Conversion variance between channels

AVCC
AVRH
AN0 to AN7
*1 : Machine clock = 25 MHz
*2 : Current value for A/D converters not in operation, CPU stop mode (VCC = AVCC = AVRH = 3.3 V)
Note : • As the absolute value of AVRH decreases, relative error increases.
• Output impedance of external circuit of analog input under following conditions;
Output impedance of external circuit < 5 kΩ
If output impedance of external circuit is too high, analog voltage sampling time may be too short for
accurate sampling.
Analog input circuit example
Sample-and-hold circuit
Analog input
C0
Comparator
RON1
RON2
RON3
RON4
C1
RON1 : 0. 2 kΩ
RON2 : 1. 4 kΩ
RON3 : 1. 4 kΩ
RON4 : 0. 2 kΩ
C0 : 16.6 pF
C1 : 4.0 pF
Note : These values are given for reference purposes.
90
MB91121
6. A/D Converter Glossary
• Resolution
The smallest change in analog voltage detected by A/D converter.
• Linearity error
A deviation of actual conversion characteristic from a line connecting the zero-traction point (between “00 0000
0000” ↔ “00 0000 0001”) to the full-scale transition point (between “11 1111 1110” ↔ “11 1111 1111”) .
• Differential linearity error
A deviation of a step voltage for changing the LSB of output code from ideal input voltage.
Linearity error
3FF
Differential linearity error
Ideal characteristic
Actual conversion
characteristic
N+1
3FE
{1 LSB × (N − 1) + VOT}
Actual conversion
characteristic
Digital output
Digital output
3FD
VFST
(measured
value)
004
VNT
(measured value)
003
N
N−1
Actual conversion
characteristic
V(N + 1)T
VNT (measured value)
(measured value)
002
Ideal characteristic
N−2
001
VOT (measured value)
AVRL
Actual conversion characteristic
Linearity error of digital output N =
Differential linearity error
of digital output N =
1 LSB =
AVRL
AVRH
Analog input
VNT − {1 LSB × (N − 1) + VOT}
1 LSB
V(N + 1)T − VNT
1 LSB
VFST − VOT
1022
−1
Analog input
AVRH
[LSB]
[LSB]
[V]
VOT: A voltage for causing transition of digital output from (000)H to (001)H
VFST: A voltage for causing transition of digital output from (3FE)H to (3FF)H
VNT: A voltage for causing transition of digital output from (N − 1)H to N
91
MB91121
• Total error
A difference between actual value and theoretical value. The overall error includes zero-transition error, fullscale transition error and linearity error.
Total error
3FF
1.5 LSB
3FE
Actual conversion
characteristic
Digital output
3FD
{1 LSB × (N − 1) + 0.5 LSB}
004
VNT
(measured value)
003
Actual conversion
characteristic
002
Ideal characteristic
001
0.5 LSB
AVRL
Total error of digital output N =
1 LSB (ideal value) =
AVRH
Analog input
VNT − {1 LSB × (N − 1) + 0.5 LSB}
AVRH − AVRL
1024
1 LSB
[V]
VOT
(ideal value) = AVRL + 0.5 LSB [V]
VFST
(ideal value) = AVRL − 1.5 LSB [V]
VNT: A voltage for causing transition of digital output from (N − 1) to N
92
[LSB]
MB91121
■ EXAMPLE CHARACTERISTICS
(1) Power Supply Current
Power supply current-Power supply voltage
Power supply current (sleeping) -Power supply voltage
120
160
140
100
120
ICC (mA)
25 MHz
50 MHz
80
60
ICCS (mA)
80
100
25 MHz
50 MHz
60
40
40
20
20
0
2.7
3
3.3
3.6
0
2.7
3.9
3
100
100
90
90
80
80
70
70
60
60
50
50 MHz
40
3.9
50
30
30
20
10
10
0
0
-10
2.7
-10
2.7
3.6
3.9
50 MHz
40
20
3.3
VCC (V)
3.6
A/D power supply current-Power supply voltage
IA (mA)
ICCH (mA)
Power supply current (stopping) -Power supply voltage
3
3.3
VCC (V)
VCC (V)
3
3.3
VCC (V)
3.6
3.9
A/D reference power supply current
-Power supply voltage
180
160
140
IR (mA)
120
100
50 MHz
80
60
40
20
0
2.7
3
3.3
3.6
3.9
VCC (V)
93
MB91121
(2) Output Voltage
“H” output voltage-Power supply voltage
“L” output voltage-Power supply voltage
100
4
3.8
3.6
90
3.2
VOL (mV)
VOH (V)
3.4
3
2.8
2.6
80
70
2.4
2.2
2
2.7
3
3.3
3.6
3.9
(3) Pull-up Resistance
Pull-up resistance-Power supply voltage
R (kΩ)
100
10
3
3.3
VCC (V)
94
3
3.3
VCC (V)
VCC (V)
2.7
60
2.7
3.6
3.9
3.6
3.9
MB91121
■ ORDERING INFORMATION
Part number
MB91121PFV
Package
Remarks
120-pin Plastic LQFP
(FPT-120P-M21)
95
MB91121
■ PACKAGE DIMENSION
120-pin plastic LQFP
(FPT-120P-M21)
18.00±0.20(.709±.008)SQ
16.00±0.10(.630±.004)SQ
90
61
91
60
0.08(.003)
Details of "A" part
+0.20
1.50 –0.10
+.008
(Mounting height)
.059 –.004
INDEX
0~8°
120
LEAD No.
1
30
0.50(.020)
C
96
"A"
31
2001 FUJITSU LIMITED F120033S-c-3-3
0.22±0.05
(.009±.002)
+0.05
0.08(.003)
M
0.145 –0.03
+.002
.006 –.001
0.60±0.15
(.024±.006)
0.10±0.05
(.004±.002)
(Stand off)
0.25(.010)
Dimensions in mm (inches)
MB91121
FUJITSU LIMITED
All Rights Reserved.
The contents of this document are subject to change without notice.
Customers are advised to consult with FUJITSU sales
representatives before ordering.
The information and circuit diagrams in this document are
presented as examples of semiconductor device applications, and
are not intended to be incorporated in devices for actual use. Also,
FUJITSU is unable to assume responsibility for infringement of
any patent rights or other rights of third parties arising from the use
of this information or circuit diagrams.
The products described in this document are designed, developed
and manufactured as contemplated for general use, including
without limitation, ordinary industrial use, general office use,
personal use, and household use, but are not designed, developed
and manufactured as contemplated (1) for use accompanying fatal
risks or dangers that, unless extremely high safety is secured, could
have a serious effect to the public, and could lead directly to death,
personal injury, severe physical damage or other loss (i.e., nuclear
reaction control in nuclear facility, aircraft flight control, air traffic
control, mass transport control, medical life support system, missile
launch control in weapon system), or (2) for use requiring
extremely high reliability (i.e., submersible repeater and artificial
satellite).
Please note that Fujitsu will not be liable against you and/or any
third party for any claims or damages arising in connection with
above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You
must protect against injury, damage or loss from such failures by
incorporating safety design measures into your facility and
equipment such as redundancy, fire protection, and prevention of
over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or
technologies subject to certain restrictions on export under the
Foreign Exchange and Foreign Trade Law of Japan, the prior
authorization by Japanese government will be required for export
of those products from Japan.
F0111
 FUJITSU LIMITED Printed in Japan