PRELIMINARY Integrated Circuit Systems, Inc. ICS843002-31 700MHZ FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR GENERAL DESCRIPTION FEATURES The ICS843002-31 is a member of the HiperClockS™ family of high performance clock HiPerClockS™ solutions from ICS. This monolithic device is a high-performance, PLL-based synchronous clock generator and jitter attenuation circuit. The ICS843002-31 contains two clock multiplication stages that are cascaded in series. The first stage is a VCXO-based PLL that is optimized to provide reference clock jitter attenuation, to be jitter tolerant, and to provide a stable reference clock for the second multiplication stage. The second stage is the proprietary ICS FemtoClock™circuit which is a high-frequency, sub-picosecond clock multiplier. • Outputs: • Two high frequency differential LVPECL outputs Output frequency: up to 700MHz The VCXO PLL has an on-chip VCXO circuit that uses an external, inexpensive pullable crystal in the 17.5 to 25MHz range. The PLL includes 13 bit reference and feedback dividers supporting complex PLL multiplication ratios and input reference clock rates as low as 2.3kHz. External loop filter components are used (two resistors and two capacitors) to achieve the low loop bandwidth needed for jitter attenuation of a recovered data clock. • FemtoClock frequency multiplier supports rate of: 560MHz - 700MHz ICS • One LVCMOS/LVTTL VCXO PLL output with output enable • One Reference clock output with output enable • One LOCK detect output • Input mux supports 3 selectable inputs: one differential input pair and two LVCMOS/LVTTL input clocks • 13-bit VCXO PLL feedback and reference dividers provide wide range of frequency translation ratio options • ‘Lock Detect’ output reports lock status of VCXO PLL • VCXO PLL circuit provides jitter attenuation with loop bandwidth of 250Hz and below (user adjustable) • RMS phase jitter, random at 12kHz to 20MHz: <1ps (design target) • 3.3V supply voltage The FemtoClock circuit can multiply the VCXO crystal frequency by a factor of 28 or 32 (selectable) and provide a clock output of up to 700MHz. • 0°C to 70°C ambient operating temperature • Industrial temperature information available upon request • Available in both standard and lead-free RoHS-compliant packages Clock Input/Output Configuration: • Clock Inputs - one differential pair, two singled ended (mux selected) • Differential input pair can support LVPECL, LVDS, LVHSTL, SSTL, HCSL or single-ended LVCMOS or LVTTL levels • Singled ended inputs can support LVCMOS or LVTTL levels • Clock Outputs, FemtoClockS two LVPECL pairs (selectable output dividers) LF1 LF0 ISET VEE NV1 NV0 V CC MR CLK0 nCLK0 OE_REF CLK1 V CC SEL1 SEL0 CLK2 • Clock Output, VCXO – one single ended output (at VCXO crystal frequency) • Clock Output, other – VCXO reference clock Example Applications: • SONET/SDH line card clock generator (up to 622.08MHz for OC-48) using 8kHz frame clock as input reference • Jitter attenuation of a recovered communications clock • Complex-ratio clock frequency translation between various communication protocols, such as: • For telecom, OC-12 to E3 rate conversion, 622.08MHz to 34.368MHz, PLL ratio of 179/32 XOFB12 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 1 48 2 47 3 46 4 45 5 44 6 43 7 42 64-Lead TQFP, EPAD 8 41 10mm x 10mm x 1.0mm 9 40 package body 10 39 Y package 11 38 Top View 12 37 13 36 14 35 15 34 16 33 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ICS843002-31 VEE REF_CLK VCLK LOCK VCCO_CMOS nQB QB VEE nQA QA VCCO_PECL MP NPB0 NPB1 NPB2 VCCA XOIN12 XOIN11 XOIN10 XOIN9 XOIN8 XOIN7 XOIN6 XOIN5 XOIN4 XOIN3 XOIN2 XOIN1 XOIN0 NPA2 NPA1 NPA0 • For digital video, ITU-R601 to SMPTE 252M/59.94, 27MHz to 74.17582MHz, PLL ratio of 250/91 XOFB0 XOFB1 XOFB2 XOFB3 XOFB4 XOFB5 XOFB6 XOFB7 XOFB8 XOFB9 XOFB10 XOFB11 VCCA_XO XTAL_IN XTAL_OUT PIN ASSIGNMENT The Preliminary Information presented herein represents a product in prototyping or pre-production. The noted characteristics are based on initial product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice. 843002CY-31 www.icst.com/products/hiperclocks.html 1 REV. B NOVEMBER 22, 2005 PRELIMINARY Integrated Circuit Systems, Inc. ICS843002-31 700MHZ FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR BLOCK DIAGRAM - NOMINAL SYSTEM CONFIGURATION 3 NPB[2:0] 3 NPA[2:0] 2 NV[1:0] VCXO PLL Output Divider NV[1:0] ISET Charge Pump Current External Loop Filter Connection 17.5 - 25MHz LF0 LF1 XTAL_OUT CLK1 00 01 QA Output Divider NPA[2:0] FemtoClock™ Frequency Multiplier Input Divider CLK2 XOIN[12:0] ÷1 to ÷8191 10 VCXO PLL 0: x32 1: x28 11 Bypass VCXO PLL Feedback Divider XOIN[12:0] XOFB[12:0] 13 000: 001: 010: 011: 100: 101: 110: 111: ÷1 ÷2 ÷4 ÷8 ÷12 ÷14 ÷16 Disabled Drive Low QA nQA QB Output Divider NPB[2:0] 000: 001: 010: 011: 100: 101: 110: 111: XOFB[12:0] ÷1 to ÷8191 SEL1 SEL0 VCLK ÷1 ÷12 ÷16 Disabled Drive Low XTAL_IN CLK0 nCLK0 00: 01: 10: 11: >1 1 13 QA ÷1 QA ÷2 QA ÷4 QA ÷8 XOIN Output OFB Output MP Output Disabled Drive Low QB nQB MP REF_CLK OE_REF LOCK LOCK Detect NOTE 1: For application configuration (non-test/bypass modes). NOTE 2: Bold lines are primary clock paths (non-control/non-feedback lines). Not all control lines and signal paths are shown in this simplified block diagram. 843002CY-31 www.icst.com/products/hiperclocks.html 2 REV. B NOVEMBER 22, 2005 PRELIMINARY Integrated Circuit Systems, Inc. ICS843002-31 700MHZ FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR SIMPLIFIED BLOCK DIAGRAM - CLOCK SIGNAL PATHS External Loop Filter Connection 17.5 - 25MHz CLK1 QA Output Divider NPA[2:0] XTAL_IN XTAL_OUT VCLK ÷1 ÷12 ÷16 Disabled Drive Low LF0 LF1 01 Input Divider XOIN[12:0] ÷1 to ÷8191 CLK2 00: 01: 10: 11: 1 1 Bypass nCLK0 BYPASS MODE VCXO PLL Output Divider NV[1:0] ISET Charge Pump Current CLK0 IN FemtoClock™ Frequency Multiplier VCXO PLL NPA[2:0] 000: ÷1 001: ÷2 010: ÷4 011: ÷8 100: ÷12 101: ÷14 110: ÷16 111: Disabled Drive Low QA nQA 10 000: ÷1 001: ÷2 010: ÷4 QB nQB 011: ÷8 111: Disabled SEL1 = 1 SEL0 = 1 FemtoClock™ Feedback Divider VCXO PLL Feedback Divider XOFB[12:0] MP 0: ÷32 1: ÷28 ÷1 to ÷8191 110: MP 101: XOFB 100: XOIN NPB2 NPB1 NPB0 NOTE 1: Setting SEL1:SEL0 = 11 enables bypass mode. Only clock signals on the CLK0/nCLK0 input pair are routed to the device in bypass mode. NOTE 2: Bold lines show clock bypass paths. Not all control lines and signal paths are shown in this simplified block diagram. 843002CY-31 www.icst.com/products/hiperclocks.html 3 REV. B NOVEMBER 22, 2005 PRELIMINARY Integrated Circuit Systems, Inc. ICS843002-31 700MHZ FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR TABLE 1. PIN DESCRIPTIONS (CONTINUED ON NEXT PAGE) Number Name Type Analog Input/Output Analog Input/Output Power 1, 2 LF1, LF0 3 ISET 4, 41, 48 VEE 5, 6 NV1, NV0 Input 7, 13 VCC Power 8 MR Input 9 CLK0 Input 10 nCLK0 Input 11 OE_REF Input 12 CLK1 Input Pullup/ Inver ting differential clock input. Pulldown VCC/2 bias voltage when left floating. Output enable control for reference clock output. When logic LOW, Pulldown the reference clock output is in high impedance. When logic HIGH, the output is enabled. LVCMOS/LVTTL interface levels. Pulldown Clock input. LVCMOS/LVTTL interface levels. 14, 15 SEL1, SEL0 Input Pulldown Input clock select. LVCMOS/LVTTL interface levels. 16 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 CLK2 Input Pulldown Clock input. LVCMOS/LVTTL interface levels. XOIN12:XOIN1 Input Pulldown 29 XOIN0 Input 30, 31, 32 33 34, 35, 36 NPA2, NPA1, NPA0 VCCA NPB2, NPB1, NPB0 Power 37 MP Input 38, VCCO_PECL Power Input Input Description Loop filter connection pins. Charge pump current setting pin. Negative supply pins. Normally connected to ground. VCXO PLL output divider control pins. Pullup LVCMOS/LVTTL interface levels. Core power supply pins. Master Reset. When HIGH, resets all internal dividers and Pulldown LVCMOS outputs are in high impedance. LVCMOS / LVTTL interface levels. Pulldown Non-inver ting differential clock input. VCXO PLL input divider control input. LVCMOS/LVTTL interface levels. VCXO PLL input divider control input. LVCMOS/LVTTL interface levels. LVPECL output divider control for QA/nQA outputs. Pulldown LVCMOS/LVTTL interface levels. Analog supply pin. LVPECL output divider control for QB/nQB outputs. Pulldown LVCMOS/LVTTL interface levels. FemtoClock™ circuit clock multiplication control input. Pulldown When HIGH, selects 28. When LOW, selects 32. LVCMOS/LVTTL interface levels. Output power supply pin for LVPECL clock outputs. Pullup 39, 40 QA, nQA Output Differential clock output pair. LVPECL interface levels. 42, 43 QB, nQB Output Differential clock output pair. LVPECL interface levels. 44 VCCO_CMOS Power Output power supply pin for LVCMOS outputs. 45 LOCK Output Lock detect output. LVCMOS/LVTTL interface levels. 46 VCLK Output VCXO PLL clock output. LVCMOS/LVTTL interface levels. 47 REF_CLK Output Reference clock output. LVCMOS/LVTTL interface levels. NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values. 843002CY-31 www.icst.com/products/hiperclocks.html 4 REV. B NOVEMBER 22, 2005 PRELIMINARY Integrated Circuit Systems, Inc. 700MHZ FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR TABLE 1. PIN DESCRIPTIONS (CONTINUED Number 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59. 60 ICS843002-31 Name FROM PREVIOUS PAGE) Type Description XOFB12:XOFB1 Input Pulldown 61 XOFB0 Input Pullup 62, 63 XTAL_OUT, XTAL_IN Input 64 VCCA_XO Power VCXO feedback divider control input. LVCMOS/LVTTL interface levels. VCXO feedback divider control input. LVCMOS/LVTTL interface levels. VCXO crystal oscillator interface. XTAL_IN is the input. XTAL_OUT is the output. Analog power supply pin for VCXO. NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values. TABLE 2. PIN CHARACTERISTICS Symbol Parameter Test Conditions CIN Input Capacitance CPD Power Dissipation Capacitance (per LVCMOS output) RPULLUP Minimum Typical Maximum Units 4 pF TBD pF Input Pullup Resistor 51 kΩ RPULLDOWN Input Pulldown Resistor 51 kΩ ROUT Output Impedance 7 Ω 843002CY-31 VCC, VCCA, VCCA_XO, VCCO_CMOS, VCCO_PECL = 3.465V www.icst.com/products/hiperclocks.html 5 REV. B NOVEMBER 22, 2005 PRELIMINARY Integrated Circuit Systems, Inc. ICS843002-31 700MHZ FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR SECTION 1. FREQUENCY TRANSLATION ➥ Set the QB/nQB output divider control pins, NPB[2:0] = 010 for divide by 4. This sets the QB/nQB LVPECL output pair for 155.52MHz. The ICS843002-31 is a two stage device, a VCXO PLL stage followed by a low phase noise FemtoClock multiplier stage. The VCXO uses a pullable crystal to lock to the reference clock and can provide an output frequency up to 25MHz on the single-ended VCLK output. For higher frequencies, the low phase noise FemtoClock can multiply the VCXO PLL output clock up to 700MHz on 2 differential LVPECL output pairs (QA/nQA, QB/nQB). 2. T1 to T3. (1.544MHz to two 44.736MHz outputs) Since 44.736MHz is slightly higher than the maximum VCXO output frequency, the FemtoClock circuit will have to be used. ➥ Using a pullable 22.368MHz on XTAL_IN/XTAL_OUT, set the VCXO PLL feedback divider pins, XOFB[12:0] to 2796 and the input divider pins, XOIN[12:0] to 193. This multiplies the 1.544MHz reference to 22.368MHz (1.544MHz * 2796/193 = 22.368MHz). The VCXO PLL stage has a 13-bit input divider and a 13-bit feedback divider to generate large integer ratios needed for some frequency translation applications. When configuring the device is to use pullable crystals in the 17.5MHz – 25MHz range on the VCXO PLL stage, and ensure that the FemtoClock PLL is kept within its range of 560MHz to 700MHz. ➥ Set the FemtoClock multiplication control pin, MP, to 28 which sets the VCO at 626.304MHz. Below are 3 examples: ➥ Set the QA/nQA output divider control pins, NPA[2:0] = 101 for divide by 14. This sets the QA/nQA LVPECL output pair for 44.736MHz. 1. 8kHz to 622.08MHz and 155.52MHz This frequency translation requires use of both the VCXO PLL and the FemtoClock circuit. The VCXO PLL can be used to multiply up to 19.44MHz for use as a reference clock for the FemtoClock which will do the multiplication from 19.44MHz to 622.08MHz. ➥ Set the QB/nQB output divider control pins, NPB[2:0] = 000 for divide by 1. This sets the QB/nQB LVPECL output pair for 44.736MHz 3. T1 to E1. (1.544MHz to two 2.048MHz outputs) ➥ Using a 19.44MHz pullable crystal on XTAL_IN/ XTAL_OUT, set the VCXO PLL feedback divider pins, XOFB[12:0], to 2430. This multiplies the 8kHz reference clock to 19.44MHz. The 2.048MHz output frequency requirement is low enough that the FemtoClock circuit is not required. Only the VCXO stage is used for this frequency translation. ➥ Using a pullable 24.576MHz on XTAL_IN/XTAL_OUT, set the VCXO PLL feedback divider pins, XOFB[12:0] to 3072 and the input divider pins, XOIN[12:0] to 193. This multiplies the 1.544MHz reference to 2.048MHz (1.544MHz * 3072/193 = 24.576MHz). ➥ Set the FemtoClock multiplication control pin, MP, to 0 which sets the multiplication factor to 32. This sets the FemtoClock VCO to 622.08MHz. ➥ Set the QA/nQA output divider control pins, NPA[2:0] = 000 for divide by 1. This sets the QA/nQA LVPECL output pair for 622.08MHz. ➥ Set the VCXO PLL Output Divider control pins, NV[1:0] = 01 for /12. This divides the 24.576MHz VCXO PLL frequency down to 2.048MHz. SECTION 2. FREQUENCY CONFIGURATION of 28 or 32, this means there are 2 viable VCXO PLL crystal choices which fall within its 17.5MHz – 15MHz range: 22.217143MHz (/28 feedback divider) or 19.44MHz (/32 feedback divider). Use of the /28 feedback divider for the FemtoClock multiplier will give slightly better phase noise, but in this case 22.217143/1.544 cannot be exactly achieved with the 13-bit input and feedback VCXO PLL dividers. Using the x32 setting of the FemtoClock allows a ratio of 19.44/1.544 = 2430/193 which is easily achievable. So the FemtoClock would be set for x32 and a 19.44MHz crystal would be used. The VCXO PLL input divider would be set for 193 and the VCXO PLL feedback divider would be set for 2430. To double check the solution, perform the following calculation: 1.544 * 2430 * 32/193 = 622.08MHz. The Frequency Configuration Table Examples (see the following pages) are intended to show the most common frequency translation requirements. It is sorted in order of descending input frequency. It is not intended to be an exhaustive configuration table because that would be impractical with almost 3 billion possible configurations. As far as configuration is concerned, frequencies <= 25MHz can be generated with the VCXO PLL while frequencies > 25MHz require the use of the downstream FemtoClock which can multiply the VCXO PLL output up to 700MHz. Complex integer ratios are handled with the VCXO PLL stage and the FemtoClock circuit can be configured to multiply the VCXO PLL output by 32 or 28. The following example will illustrate the configuration process. Assume you have a 1.544MHz T1 clock which needs to be multiplied up to 622.08MHz (OC12). Obviously, the FemtoClock multiplier will be needed to achieve 622.08MHz. Since the FemtoClock has a selectable multiplication factor 843002CY-31 The 2nd FemtoClock multiplier output, QB/nQB, can be set to equal the QA/nQA output frequency or a fraction of its frequency. The following fractional values are available: /1, /2, /4, /8. www.icst.com/products/hiperclocks.html 6 REV. B NOVEMBER 22, 2005 843002CY-31 FemtoClock Output VCXO Output 311.04 155.52 77.76 51.84 38.88 19.44 44.736 34.368 32.064 2.048 1.544 311.04 155.52 77.76 51.84 38.88 19.44 622.08 622.08 622.08 622.08 622.08 622.08 622.08 622.08 622.08 622.08 622.08 311.04 311.04 311.04 311.04 311.04 7 311.04 www.icst.com/products/hiperclocks.html 77.76 38.88 19.44 311.04 155.52 155.52 155.52 155.52 155.52 51.84 1.544 155.52 2.048 311.04 311.04 155.52 34.368 32.064 311.04 311.04 FemtoClock Output VCXO Output FemtoClock Output FemtoClock Output FemtoClock Output FemtoClock Output VCXO Output VCXO Output VCXO Output VCXO Output FemtoClock Output 44.736 311.04 405 19.44 19.44 19.44 19.44 19.44 19.44 8 8 8 8 8 8 2430 24.576 24.704 1620 1620 3240 16 16 16 32.064 34.368 22.368 19.44 19.44 FemtoClock Output FemtoClock Output 622.08 622.08 311.04 311.04 19.44 16 16 19.44 16 16 16 19.44 19.44 19.44 VCXO Output FemtoClock Output FemtoClock Output FemtoClock Output FemtoClock Output 19.44 405 4860 24.576 3240 3240 6480 32 24.704 32.064 34.368 22.368 19.44 32 32 19.44 19.44 32 32 32 32 VCXO Input Divider 19.44 19.44 19.44 19.44 Required VCXO Crystal Frequency (MHz) 1 1 1 1 1 1 193 32 167 179 233 1 1 1 1 1 1 1 1 193 16 167 179 233 1 1 1 1 1 1 1 VCXO Feedback Divider N/A 32 1 32 32 32 32 N/A N/A N/A N/A 28 32 32 N/A 32 32 32 32 32 N/A N/A N/A N/A 28 N/A 32 32 32 32 32 32 FemtoClock ™ Multiplication Factor N /A N/A N/A N/A N/ A 16 12 1 1 1 1 1 1 N/A N/ A N/A N/A N/A 16 12 1 1 N/A 1 N/A N/A N/A N/A N/A N/A VCXO Output Divider CONTINUED ON NEXT PAGE 622.08 2 N/A 16 622.08 N/A 12 8 4 N/ A N/A N/A N/ A 14 1 1 N/ A 16 12 8 4 2 N/A 622.08 622.08 622.08 N/A N/A N/ A N/A 626.304 622.08 622.08 N/A 622.08 622.08 622.08 622.08 622.08 N/A N/A N/A N /A N/A N/A 14 N/A 16 12 8 4 2 1 FemtoClock Output Divider N/A 626.304 N/A 622.08 622.08 622.08 622.08 622.08 622.08 FemtoClock Output Frequency (MHz) 155.52 -> 311.04 (SONET) 155.52 -> 19.44 (SONET) 155.52 -> 38.88 (SONET) 155.52 -> 51.84 (OC3 to OC1) 155.52 -> 77.76 (SONET) 155.52 -> 155.52 (OC3) 311.04 -> 1.544 (SONET to T1/J1) 311.04 -> 2.048 (SONET to E1) 311.04 -> 32.064 (SONET to J3) 311.04 -> 34.368 (SONET to E3) 311.04 -> 44.736 (SONET to T3) 311.04 -> 622.08 (SONET) 311.04 -> 622.08 (SONET) 311.04 -> 19.44 (SONET) 311.04 -> 38.88 (SONET) 311.04 -> 51.84 (SONET) 311.04 -> 77.76 (SONET) 311.04 -> 155.52 (SONET) 311.04 -> 311.04 (SONET) 622.08 -> 1.544 (OC12 to T1/J1) 622.08 -> 2.048 (OC12 to E1) 622.08 -> 32.064 (OC12 to J3) 622.08 -> 34.368 (OC12 to E3) 622.08-> 44.736 (OC12 to T3) 622.08 -> 19.44 (SONET) 622.08 -> 38.88 (SONET) 622.08 -> 51.84 (OC12 to OC1) 622.08 -> 77.76 (SONET) 622.08 -> 155.52 (OC12 to OC3) 622.08 -> 311.04 (SONET) 622.08 -> 622.08 (OC12) Application Integrated Circuit Systems, Inc. FemtoClock Output VCXO Output VCXO Output VCXO Output VCXO Output FemtoClock Output FemtoClock Output FemtoClock Output FemtoClock Output FemtoClock Output FemtoClock Output 622.08 622.08 VCXO or FemtoClock Output Output Frequency (MHz) Input Frequency (MHz) TABLE 3A. FREQUENCY CONFIGURATION EXAMPLES, PRELIMINARY ICS843002-31 700MHZ FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR REV. B NOVEMBER 22, 2005 843002CY-31 www.icst.com/products/hiperclocks.html 8 32.064 2.048 1.544 51.84 38.88 19.44 77.76 77.76 77.76 51.84 51.84 51.84 622.08 44.736 34.368 32.064 2.048 1.544 44.736 51.84 51.84 51.84 51.84 51.84 51.84 44.736 311.04 34.368 51.84 44.736 77.76 77.76 77.76 622.08 155.52 311.04 77.76 77.76 51.84 VCXO Output 155.52 77.76 19.44 FemtoClock Output VCXO Output VCXO Output VCXO Output VCXO Output 22.368 24.704 24.576 32.064 34.368 22.368 FemtoClock Output FemtoClock Output 19.44 19.44 19.44 19.44 19.44 19.44 24.704 24.576 32.064 34.368 22.368 19.44 19.44 19.44 FemtoClock Output FemtoClock Output FemtoClock Output VCXO Output FemtoClock Output FemtoClock Output VCXO Output VCXO Output FemtoClock Output FemtoClock Output FemtoClock Output FemtoClock Output 19.44 19.44 19.44 19.44 24.704 2 405 135 270 270 540 8 8 8 8 8 8 8 1215 405 405 405 810 4 4 4 4 4 4 4 1215 810 405 32.064 810 1620 8 VCXO Input Divider 24.576 34.368 22.368 19.44 Required VCXO Crystal Frequency (MHz) 1 193 64 167 179 233 3 3 3 3 3 3 3 386 128 167 1 16 12 1 1 N/A N/ A N/A 28 N/A N/A N/A N/A 28 32 32 32 32 N/A N/A 32 32 N/A N/ A N/A N/A 28 32 32 32 N/A 32 32 32 N/A N/ A N/A N/A 28 32 FemtoClock ™ Multiplication Factor N /A 1 N/A N/A 16 12 1 1 N/A 233 179 N/A N/A N/A 1 N/A N/A N/A 16 12 1 1 N/A N/A VCXO Output Divider 1 1 1 1 1 1 1 193 64 167 179 233 1 VCXO Feedback Divider CONTINUED ON NEXT PAGE 14 N/A N/A 626.304 N/A N/A N/A 14 1 2 4 8 N/ A 16 12 N/A N/A N/A N/A 14 1 2 4 N/A 16 12 8 N/A N/A 44.736 -> 44.736 (T3) 51.84 -> 1.544 (OC1 to T1/J1) 51.84 -> 2.048 (OC1 to E1) 51.84 -> 32.064 (OC1 to J3) 51.84 -> 34.368 (OC1 to E3) 51.84 -> 44.736 (OC1 to T3) 51.84 -> 622.08 (OC1 to OC12) 51.84 -> 311.04 (SONET) 51.84 -> 155.52 (OC1 to OC3) 51.84 -> 77.76 (SONET) 51.84 -> 19.44 (SONET) 51.84 -> 38.88 (SONET) 51.84 -> 51.84 (SONET) 77.76 -> 1.544 (SONET to T1/E1) 77.76 -> 2.048 (SONET to E1) 77.76 -> 32.064 (SONET to J3) 77.76 -> 34.368 (SONET to E3) 77.76 -> 44.736 (SONET to T3) 77.76 -> 622.08 (SONET) 77.76 -> 311.04 (SONET) 77.76 -> 155.52 (SONET) 77.76 -> 19.44 (SONET) 77.76 -> 38.88 (SONET) 77.76 -> 51.84 (SONET) 77.76 -> 77.76 (SONET) 155.52 -> 1.544 (OC3 to T1/J1) 155.52 -> 2.048 (OC3 to E1) 155.52 -> 32.064 (OC3 to J3) 155.52 -> 34.368 (OC3 to E3) N/A N/A 155.52 -> 44.736 (OC3 to T3) 155.52 -> 622.08 (OC3 to OC12) Application 14 1 FemtoClock Output Divider N/A N/A N/A 626.304 622.08 622.08 622.08 622.08 N/A 622.08 622.08 N/A N/A N/A N/A 626.304 622.08 622.08 622.08 N/A 622.08 622.08 622.08 N/A N/A N/A N/A 626.304 622.08 FemtoClock Output Frequency (MHz) Integrated Circuit Systems, Inc. 51.84 VCXO Output 19.44 77.76 VCXO Output 38.88 77.76 FemtoClock Output FemtoClock Output 51.84 77.76 VCXO Output VCXO Output VCXO Output 2.048 155.52 FemtoClock Output 32.064 155.52 VCXO Output 1.544 34.368 155.52 FemtoClock Output 77.76 44.736 155.52 FemtoClock Output 77.76 622.08 155.52 VCXO or FemtoClock Output 155.52 Output Frequency (MHz) Input Frequency (MHz) TABLE 3A. FREQUENCY CONFIGURATION EXAMPLES, PRELIMINARY ICS843002-31 700MHZ FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR REV. B NOVEMBER 22, 2005 843002CY-31 9 VCXO Output VCXO Output 34.368 32.064 2.048 38.88 38.88 38.88 FemtoClock Output www.icst.com/products/hiperclocks.html 1.544 34.368 44.736 32.064 32.064 2.048 34.368 32.064 19.44 34.368 32.064 32.064 34.368 34.368 VCXO Output VCXO Output 44.736 34.368 FemtoClock Output VCXO Output VCXO Output VCXO Output VCXO Output FemtoClock Output VCXO Output 1.544 34.368 38.88 34.368 VCXO Output VCXO Output FemtoClock Output 622.08 44.736 FemtoClock Output 38.88 311.04 38.88 FemtoClock Output FemtoClock Output VCXO Output FemtoClock Output FemtoClock Output 38.88 77.76 19.44 38.88 155.52 38.88 38.88 38.88 622.08 44.736 FemtoClock Output FemtoClock Output FemtoClock Output 22.368 34.368 32.064 24.704 24.576 19.44 334 167 1 537 17 9 716 179 358 22.368 32.064 1 1215 405 405 405 40 5 2 2 2 2 2 2 932 233 179 1 386 128 405 167 233 1 772 256 334 358 233 1 1 1 1 1 1 405 405 405 932 405 405 405 179 167 405 128 386 VCXO Feedback Divider 932 932 932 932 233 233 932 233 699 VCXO Input Divider 34.368 24.704 24.576 32.064 34.368 22.368 19.44 19.44 19.44 19.44 19.44 19.44 19.44 19.44 19.44 19.44 19.44 19.44 FemtoClock Output 34.368 32.064 19.44 24.576 24.704 Required VCXO Crystal Frequency (MHz) FemtoClock Output VCXO Output VCXO Output VCXO Output VCXO Output VCXO Output VCXO or FemtoClock Output N/A 1 1 16 12 1 1 N/A 1 16 12 1 1 N/A N/A N/A N/A N/A 1 N/A N/A N/A N/A N/A N/A N/A 1 1 1 12 16 VCXO Output Divider CONTINUED ON NEXT PAGE 622.08 28 N/A N/A N/A N/A N/A N/A 28 N/A N/A N/A N/A N/ A N/A 14 N/A N/A N/A N/A N/A N/A 14 N/A N/A N/A N/A N/A 14 1 2 4 8 N/A 16 1 2 4 8 12 16 N/A N/A N/A N/A N/A FemtoClock Output Divider 626.304 N/A N/A N/A N/A N/A 626.304 N/A N/A N/A N/ A N/A 626.304 32 28 622.08 622.08 622.08 N/A 622.08 622.08 622.08 622.08 622.08 622.08 622.08 N/A N/A N/A N/A N/A FemtoClock Output Frequency (MHz) 32 32 32 N/A 32 32 32 32 32 32 32 N/A N/A N/A N/A N/A FemtoClock ™ Multiplication Factor 32.064 -> 44.736 (J3 to T3) 32.064 -> 34.368 (J3 to E3) 32.064 -> 32.064 (J3) 34.368 -> 1.544 (E3 to T1) 34.368 -> 2.048 (E3 to E1) 34.368 -> 19.44 (E3 to SONET) 34.368 -> 32.064 (E3 to J3) 34.368 > 44.736 (E3 to T3) 34.368 -> 34.368 (E3) 38.88 ->1.544 (SONET to DS1/J1) 38.88 -> 2.048 (SONET to E1) 38.88 -> 32.064 (SONET TO J3) 38.88 -> 34.368 (SONET to E3) 38.88 -> 44.736 (SONET to T3) 38.88 -> 622.08 (SONET to OC12) 38.88 -> 311.04 (SONET) 38.88 -> 155.52 (SONET to OC3) 38.88 -> 77.76 (SONET) 38.88 -> 19.44 (SONET) 38.88 -> 38.88 (SONET) 44.736 -> 622.08 (T3 to OC12) 44.736 -> 311.04 (T3 to SONET) 44.736 -> 155.52 (T3 to OC3) 44.736 -> 77.76 (T3 to SONET) 44.736 -> 51.84 (T3 to OC1) 44.736 -> 38.88 (T3 to SONET) 44.736 -> 34.368 (T3 to E3) 44.736 -> 32.064 (T3 to J3) 44.736 -> 19.44 (T3 to SONET) 44.736 -> 2.048 (T3 to E1) 44.736 -> 1.544 (T3 to T1/J1) Application Integrated Circuit Systems, Inc. 38.88 155.52 311.04 44.736 77.76 44.736 44.736 38.88 51.84 44.736 34.368 44.736 44.736 19.44 32.064 2.048 44.736 44.736 1.544 44.736 44.736 Output Frequency (MHz) Input Frequency (MHz) TABLE 3A. FREQUENCY CONFIGURATION EXAMPLES, PRELIMINARY ICS843002-31 700MHZ FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR REV. B NOVEMBER 22, 2005 843002CY-31 10 2.048 1.544 2.048 2.048 www.icst.com/products/hiperclocks.html 1.544 19.44 32.064 0.008 0.008 44.736 1.544 2.048 34.368 0.008 32.064 1.544 1.544 0.008 1.544 2.048 1.544 1.544 VCXO Output VCXO Output VCXO Output VCXO Output FemtoClock Output VCXO Output VCXO Output VCXO Output VCXO Output VCXO Output 32.064 19.44 24.576 24.704 22.368 34.368 32.064 24.576 24.704 22.368 32.064 34.368 24.704 24.576 VCXO Output VCXO Output 21.00508475 20.9164557 20.82857143 24.704 24.576 32.064 34.368 22.368 19.44 19.44 19.44 19.44 19.44 19.44 19.44 FemtoClock Output VCXO Output 672.1627119 19.44 FemtoClock Output FemtoClock Output FemtoClock Output 669.3265823 19.44 44.736 666.5142857 19.44 VCXO Output 2.048 1.544 19.44 VCXO Output VCXO Output 34.368 2.048 32.064 32.064 19.44 19.44 VCXO Output FemtoClock Output 2.048 34.368 FemtoClock Output FemtoClock Output FemtoClock Output FemtoClock Output FemtoClock Output FemtoClock Output 24.576 24.704 1 1 1 1 193 193 193 193 1 64 32 32 16 1 236 79 14 1215 405 405 405 405 1 1 1 1 1 1 1 501 167 VCXO Input Divider 4008 2430 3072 3088 2796 4296 4008 3072 16 699 501 537 193 12 255 85 15 1544 512 668 716 466 1 1 1 1 1 1 1 386 128 VCXO Feedback Divider 1 1 12 16 N/A 1 1 12 16 N/A 1 1 16 12 N/A N/A N/A 16 12 1 1 N/A N/A N/A N/A N/A N/A N/A 1 16 12 VCXO Output Divider N/A N/A N/A N/A 28 N/A N/A N/A N/A 28 N/A N/A N/A N/A 32 32 32 N/A N/A N/A N/A 28 32 32 32 32 32 32 N/A N/A N/A FemtoClock ™ Multiplication Factor N/A N/A N/A N/A 626.304 N/A N/A N/A N/A 626.304 N/A N/A N/A N/A 672.1627119 669.3265823 666.5142857 N/A N/A N/A N/A 626.304 622.08 622.08 622.08 622.08 622.08 622.08 N/A N/A N/A FemtoClock Output Frequency (MHz) N/A N/A N/ A N/A 14 N/A N/A N/A N/A 14 N/A N/A N/A N/A 1 1 1 N/A N/A N/A N/A 14 1 2 4 8 12 16 N/A N/A N/A FemtoClock Output Divider 8KHz -> 32.064MHz (Frame Clock to J3) 8KHz -> 19.44MHz (Frame Clock to SONET) 8KHz -> 2.048MHz (Frame Clock to E1) 8KHz -> 1.544MHz (Frame Clock to T1) 1.544 -> 44.736 (T1/J1 to T3) 1.544 -> 34.368 (T1/J1 to E3) 1.544 -> 32.064 (T1/J1 to J3) 1.544 -> 2.048 (T1 to E1) 1.544 -> 1.54 (T1/J1) 2.048 -> 44.736 (E1 to T3) 2.048 -> 32.064 (E1 to J3) 2.048 -> 34.368 (E1 to E3) 2.048 -> 1.544 (E1 toT1/J1) 2.048 -> 2.048 (E1) 19.44 -> 672.1627119 (255/236 FEC) 19.44 -> 669.3265823 (255/237 FEC) 19.44 -> 666.5142857 (255/238 FEC) 19.44 -> 1.544 (SONET to T1/J1) 19.44 -> 2.048 (SONET to E1) 19.44 -> 32.064 (SONET to J3) 19.44 -> 34.368 (SONET to E3) 19.44 -> 44.736 (SONET to T3) 19.44 -> 622.08 (SONET to OC12) 19.44 -> 311.04 (SONET) 19.44 -> 155.52 (SONET to OC3) 19.44 -> 77.76 (SONET) 19.44 -> 51.84 (SONET to OC1) 19.44 -> 38.88 (SONET) 19.44 -> 19.44 (SONET) 32.064 -> 1.544 (J3 to T1) 32.064 -> 2.048 (J3 to E1) Application Integrated Circuit Systems, Inc. 2.048 44.736 19.44 19.44 155.52 311.04 19.44 19.44 622.08 77.76 19.44 19.44 38.88 51.84 19.44 19.44 19.44 19.44 1.544 32.064 VCXO Output VCXO Output VCXO Output 2.048 32.064 VCXO or FemtoClock Output Output Frequency (MHz) Input Frequency (MHz) CONTINUED ON NEXT PAGE Required VCXO Crystal Frequency (MHz) TABLE 3A. FREQUENCY CONFIGURATION EXAMPLES, PRELIMINARY ICS843002-31 700MHZ FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR REV. B NOVEMBER 22, 2005 843002CY-31 77.76 155.52 311.04 622.08 0.008 0.008 0.008 38.88 0.008 0.008 34.368 44.736 0.008 0.008 Output Frequency (MHz) Input Frequency (MHz) FemtoClock Output FemtoClock Output FemtoClock Output FemtoClock Output FemtoClock Output FemtoClock Output VCXO Output VCXO or FemtoClock Output 19.44 19.44 19.44 19.44 19.44 22.368 34.368 Required VCXO Crystal Frequency (MHz) TABLE 3A. FREQUENCY CONFIGURATION EXAMPLES 1 1 1 1 1 1 1 VCXO Input Divider 2430 2430 2430 2430 2430 2796 4296 VCXO Feedback Divider N/A N/ A N/ A N/A N/ A 1 1 VCXO Output Divider 32 32 32 32 32 28 N/A FemtoClock ™ Multiplication Factor 622.08 622.08 622.08 622.08 622.08 626.304 N/A FemtoClock Output Frequency (MHz) 1 2 4 8 16 14 N/A FemtoClock Output Divider 8KHz -> 622.08MHz (Frame Clock to OC12) 8KHz -> 311.04MHz (Frame Clock to SONET) 8KHz ->155.52MHz (Frame Clock to OC3) 8KHz -> 77.76MHz (Frame Clock to SONET) 8KHz -> 38.88MHz (Frame Clock to SONET) 8KHz -> 44.736MHz (Frame Clock to T3) 8KHz -> 34.368MHz (Frame Clock to E3) Application PRELIMINARY Integrated Circuit Systems, Inc. www.icst.com/products/hiperclocks.html 11 ICS843002-31 700MHZ FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR REV. B NOVEMBER 22, 2005 PRELIMINARY Integrated Circuit Systems, Inc. ICS843002-31 700MHZ FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR ABSOLUTE MAXIMUM RATINGS Supply Voltage, VCC 4.6V Inputs, VI -0.5V to VCC + 0.5V Outputs, VO (LVCMOS) -0.5V to VCCO + 0.5V Outputs, IO (LVPECL) Continuous Current Surge Current 50mA 100mA Package Thermal Impedance, θJA 22.3°C/W (0 lfpm) Storage Temperature, TSTG -65°C to 150°C NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability. TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = VCCA_XO = VCCO_CMOS = VCCO_PECL = 3.3V±5%, TA = 0°C TO 70°C Symbol Parameter Minimum Typical Maximum Units VCC Core Supply Voltage Test Conditions 3.135 3.3 3.465 V VCCA, VCCA_XO Analog Supply Voltage 3.135 3.3 3.465 V VCCO_CMOS, VCCO_PECL Output Supply Voltage 3.135 3.3 3.465 V IEE Power Supply Current 395 mA ICCA Analog Supply Current 15 mA TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = VCCA = VCCA_XO = VCCO_CMOS = 3.3V±5%, TA = 0°C TO 70°C Symbol Parameter Test Conditions VIH Input High Voltage VIL Input Low Voltage MP, MR, OE_REF, SEL0, SEL1, XOIN[12:1], NPA[2:0], NPB[2:0], Input C LK1, CLK2, XOFB[12:1] High Current NV0, NV1, XOIN0, XOFB0 MP, MR, OE_REF, SEL0, SEL1, XOIN[12:1], NPA[2:0], NPB[2:0], Input CLK1, CLK2, XOFB[12:1] Low Current NV0, NV1, XOIN0, XOFB0 IIH IIL VOH Output High Voltage REF_CLK, VCLK, LOCK; NOTE 1 VOL Output Low Voltage REF_CLK, VCLK, LOCK; NOTE 1 Minimum Typical Maximum Units 2 VCC + 0.3 V -0.3 0.8 V VCC = VIN = 3.465V 150 µA VCC = VIN = 3.465V 5 µA VCC = 3.465V, VIN = 0V -5 µA VCC = 3.465V, VIN = 0V -150 µA 2.6 V 0.5 V NOTE 1: Outputs terminated with 50Ω to VCCO_CMOS/2. 843002CY-31 www.icst.com/products/hiperclocks.html 12 REV. B NOVEMBER 22, 2005 PRELIMINARY Integrated Circuit Systems, Inc. ICS843002-31 700MHZ FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VCC = VCCA = VCCA_XO = VCCO_CMOS = VCCO_PECL = 3.3V±5%, TA = 0°C TO 70°C Symbol Parameter IIH Input High Current Test Conditions CLK0 Minimum Typical VIN = VCC = 3.465V Maximum Units 150 µA nCLK0 VIN = VCC = 3.465V CLK0 VIN = 0V, VCC = 3.465V -150 µA nCLK0 VIN = 0V, VCC = 3.465V -5 µA IIL Input Low Current VPP Peak-to-Peak Input Voltage 5 0.15 VCMR Common Mode Input Voltage; NOTE 1, 2 VEE + 0.5 NOTE 1: Common mode voltage is defined as VIH. NOTE 2: For single ended applications, the maximum input voltage for CLK0, nCLK0 is VCC + 0.3V. µA 1.3 V VCC - 0.85 V TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = VCCA = VCCA_XO = VCCO_PECL = 3.3V±5%, TA = 0°C TO 70°C Symbol Parameter Maximum Units VOH Output High Voltage; NOTE 1 Test Conditions Minimum VCCO - 1.4 Typical VCCO - 0.9 V VOL Output Low Voltage; NOTE 1 VCCO - 2.0 VCCO - 1.7 VSWING Peak-to-Peak Output Voltage Swing 0.6 1.0 NOTE 1: Outputs terminated with 50 Ω to VCCO_PECL - 2V. See "Parameter Measurement Information" section, "3.3V Output Load Test Circuit". V V TABLE 5. CRYSTAL CHARACTERISTICS Symbol Parameter fN Nominal Frequency Test Conditions Minimum Typical Maximum 19.44 Units MHz fT Frequency Tolerance ±TBD ppm fS Frequency Stability ±TBD ppm CL Load Capacitance 12 pF CO Shunt Capacitance 4 pF CO/C1 Pullability Ratio ESR Equivalent Series Resistance Operating Temperature Range 0 70 220 Drive Level Mode of Operation 843002CY-31 °C 240 50 Ω 1 mW Fundamental www.icst.com/products/hiperclocks.html 13 REV. B NOVEMBER 22, 2005 PRELIMINARY Integrated Circuit Systems, Inc. ICS843002-31 700MHZ FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR TABLE 6. AC CHARACTERISTICS, VCC = VCCA = VCCA_XO = VCCO_CMOS = VCCO_PECL = 3.3V±5%, TA = 0°C TO 70°C Symbol Parameter Test Conditions Maximum Units 35 700 MHz QB/nQB 4.375 700 MHz VCLK 1.1875 25 MHz 200 MHz QA/nQA fOUT Output Frequency Minimum Typical REF_CLK OC-48 mask (12kHz - 20MHz) 19.44MHz input, into CLK0 622.08MHz output; NOTE 1, 2 OC-12 mask (250kHz - 5MHz) 19.44MHz input, into CLK0 155.52MHz output; NOTE 1, 3 t(J) Timing Jitter OC-48 mask (12kHz - 20MHz) 8kHz input, into CLK2 622.08MHz output; NOTE 1, 2 OC-12 mask (250kHz - 5MHz) 8kHz input, into CLK2 155.52MHz output; NOTE 1, 3 CLK0/nCLK0 to (QA or QB) CLK0/nCLK0 to VCLK t(IO) Input to Output Clock Skew (rising clock edge) CLK0/nCLK0 to REF_CLK CLK1 or CLK2 to QA or QB CLK1 or CLK2 to VCLK CLK1 or CLK2 to REF_CLK t R / tF Output Rise/Fall Time odc Output Duty Cycle Random jitter 1.3 ps Deterministic jitter 0.75 ps Total jitter Random jitter Deterministic jitter Total jitter Random jitter Deterministic jitter 1.5 ps 3.5 mUI 1 ps 0.5 ps 1.1 ps 0.7 mUI 1 ps 0.3 ps 1.1 ps 2.7 mUI Random jitter 0.9 ps Deterministic jitter 0.19 ps 0.9 ps 0.6 mUI 2 ns 2 ns 2.5 ns 1 ns 1.5 ns Total jitter Total jitter CLK0/nCLK0 = 19.44MHz QA/B = 77.76MHz VCLK = REF_CLK = 19.44MHz; NOTES 1, 2, 4 CLK1/2 = 8kHz QA/B = 77.76MHz VCLK = REF_CLK = 19.44MHz; NOTES 1, 3, 5 20% to 80% 3 200 ns 700 QA/QB @ 622.08MHz 50 VCLK, REF_CLK @ 19.44MHz 50 % % PLL Lock Time 100 tLOCK See Parameter Measurement Information section. NOTE 1: External crystal is 19.44MHz Eliptek ECX-5451. NOTE 2: Loop bandwidth (-3dB) = 180Hz; Loop Damping Factor = 5.3 (see Applications Section, Example Loop Filter Component Value, example case #4). NOTE 3: Loop bandwidth (-3dB) = 19Hz; Loop Damping Factor = 2.8 (see Applications Section, Example Loop Filter Component Value example case #2). NOTE 4: XOIN = XOFB = NPA = NPB = ÷8, MP = 0 (x32); NV = ÷1. NOTE 5: XOIN = 1; XOFB = 2430; NPA = NPB = ÷8, MP = 0 (x32); NV = ÷1. 843002CY-31 www.icst.com/products/hiperclocks.html 14 ps ms REV. B NOVEMBER 22, 2005 PRELIMINARY Integrated Circuit Systems, Inc. ICS843002-31 700MHZ FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR PARAMETER MEASUREMENT INFORMATION 2V 1.65V ± 5% V CC , VCCA, VCCA_XO, VCCO_PECL Qx SCOPE SCOPE VCC , VCCA, VCCA_XO, VCCO_CMOS LVPECL Qx LVCMOS nQx VEE VEE -1.3V ± 0.165V -1.65V ± 5% 3.3V LVCMOS OUTPUT LOAD AC TEST CIRCUIT 3.3V LVPECL OUTPUT LOAD AC TEST CIRCUIT nQA V DDO QA VCLK 2 nQB V DDO REF_CLK QB tsk(o) LVPECL OUTPUT SKEW 2 tsk(o) LVCMOS OUTPUT SKEW nQA, nQB V CCO_LVCMOS QA, QB VCLK, REF_CLK t PW t odc = t PERIOD t PW x 100% odc = t PERIOD PERIOD t PW x 100% t PERIOD LVPECL OUTPUT DUTY CYCLE/PULSE WIDTH/tPERIOD 843002CY-31 2 t PW LVCMOS OUTPUT DUTY CYCLE/PULSE WIDTH/tPERIOD www.icst.com/products/hiperclocks.html 15 REV. B NOVEMBER 22, 2005 PRELIMINARY Integrated Circuit Systems, Inc. ICS843002-31 700MHZ FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR Noise Power Phase Noise Plot 80% Phase Noise Mask 80% VSW I N G Clock Outputs f1 Offset Frequency 20% 20% f2 tR tF RMS Jitter = Area Under the Masked Phase Noise Plot LVPECL OUTPUT RISE/FALL TIME PHASE JITTER 80% Clock Outputs 80% 20% 20% tR tF LVCMOS OUTPUT RISE/FALL TIME 843002CY-31 www.icst.com/products/hiperclocks.html 16 REV. B NOVEMBER 22, 2005 PRELIMINARY Integrated Circuit Systems, Inc. ICS843002-31 700MHZ FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR APPLICATION INFORMATION DESCRIPTION OF THE PLL STAGES The ICS843002-31 is a two stage frequency multiplication device, a VCXO PLL followed by a low phase noise FemtoClock frequency multiplier. The VCXO uses an external pullable crystal which can be pulled ±100ppm by the VCXO PLL circuitry to phase lock it to the input reference frequency. The output frequency of the VCXO PLL is equal to that of the external pullable crystal, which is in the range of 17.5MHz to 25MHz. The loop bandwidth VCXO PLL is typically set in the range of 10-250Hz which provides attenuation of input reference clock jitter. Since the VCXO is a high-Q oscillator circuit, it has low intrinsic output jitter and phase noise. The VCXO PLL output clock is available from the VCLK pin. The above equation calculates the “normalized” loop bandwidth (denoted as “NBW”) which is approximately equal to the - 3dB bandwidth. NBW does not take into account the effects of damping factor or the second pole imposed by CP. It does, however, provide a useful approximation of filter performance. The FemtoClock frequency multiplier has an effective control bandwidth of about 800kHz which means it will track the VCXO PLL clock output. ƒ(Phase Detector) = Input Frequency ÷ XOIN To prevent jitter on VCLK due to modulation of the VCXO PLL by the phase detector frequency, the following general rule should be observed: NBW (VCXO PLL) ≤ ƒ (Phase Detector) 20 The PLL loop damping factor (DF) is determined by: VCXO PLL LOOP RESPONSE CONSIDERATIONS DF (VCLK) = Loop response characteristics of the VCXO PLL is affected by the setting of the VCXO feedback divider value (XOFB) and by the external loop filter components. A practical range of loop bandwidth for many applications is 25Hz to 1kHz. A bandwidth of less than 10Hz requires careful component selection and possible metal shielding to prevent clock output wander. A damping factor of 0.7 or greater should be used to ensure loop stability. When a passband peaking of <0.1dB is desired for SONET/SDH loop timing application, the damping factor should be 6 or higher. RS 2 x ICP x CS x KO XOFB Divider WHERE: CS = Value of capacitor CS in loop filter in farads optional A PC base PLL bandwidth calculator is also under development. For assistance with loop filter bandwidth and component selection suggestions, please contact your ICS sales representative. LFR LF CP SETTING THE VCXO PLL LOOP RESPONSE RS ISET 64 1 optional 63 62 2 3 CS The VCXO PLL loop response is determined both by fixed device characteristics and by other characteristics set by the user. This includes the values of RS, CS, CP and RSET as shown in the External VCXO PLL Components figure on this page. RSET The VCXO PLL loop bandwidth is approximated by: NBW (VCXO PLL) = FIGURE 1. EXTERNAL VCXO PLL COMPONENTS RS x ICP x KO 2π x XOFB Divider WHERE: RS = Value of resistor RS in loop filter in ohms ICP = Charge pump current in amps (see table on page 17) KO = VCXO Gain in Hz/V (see table on page 18) XOFB Divider = 1 to 8191 843002CY-31 www.icst.com/products/hiperclocks.html 17 REV. B NOVEMBER 22, 2005 PRELIMINARY Integrated Circuit Systems, Inc. ICS843002-31 700MHZ FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR NOTES ON SETTING THE VALUE OF CP NOTES ON EXTERNAL CRYSTAL LOAD CAPACITORS As another general rule, the following relationship should be maintained between components CS and CP in the loop filter: In the loop filter schematic diagram, capacitors are shown from pin 62 to ground and pin 63 to ground. These are optional crystal load capacitors which can be used to center tune the external pullable crystal (the crystal frequency can only be lowered by adding capacitance, it cannot be raised). Note that the addition of external load capacitors will decrease the crystal pull range and the Kvco value. CP = CS 20 CP establishes a second pole in the VCXO PLL loop filter. For higher damping factors (> 1), calculate the value of CP based on a CS value that would be used for a damping factor of 1. This will minimize baseband peaking and loop instability that can lead to output jitter. LOOP FILTER RESPONSE SOFTWARE Online tools to calculate loop filter response can be found at www.icst.com. CP also dampens VCXO PLL input voltage modulation by the charge pump correction pulses. A CP value that is too low will result in increased output phase noise at the phase detector frequency due to this. In extreme cases where input jitter is high, charge pump current is high, and CP is too small, the VCXO PLL input voltage can hit the supply or ground rail resulting in non-linear loop response. The best way to set the value of CP is to use the filter response software available from ICS (please refer to the following section). CP should be increased in value until it just starts affecting the passband peak. NOTES ON SETTING CHARGE PUMP CURRENT CHARGE PUMP CURRENT, EXAMPLE SETTINGS The recommended range for the charge pump current is 50μA to 500μA. Below 50μA, loop filter charge leakage, due to PCB or capacitor leakage, can become a problem. This loop filter leakage can cause locking problems, output clock cycle slips, or low frequency phase noise. As can be seen in the loop bandwidth and damping factor equations or by using the filter response software available from ICS, increasing charge pump current (ICP) increases both bandwidth and damping factor. RSET Charge Pump Current (ICP) 17.6K 62.5µA 8.8K 125µA 4.4K 250µA 2.2K 500µA ICP, Amps 1E-3 100E-6 10E-6 1k 10k RSET, Ω FIGURE 2. CHARGE PUMP CURRENT VS. VALUE (EXTERNAL RESISTOR) GRAPH 843002CY-31 www.icst.com/products/hiperclocks.html 18 100k OF RSET REV. B NOVEMBER 22, 2005 PRELIMINARY Integrated Circuit Systems, Inc. ICS843002-31 700MHZ FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR VCXO GAIN (KO) VS. XTAL FREQUENCY 9000 8000 K VCO 7000 (Hz/V) 6000 5000 4000 16 18 20 22 26 24 XTAL Frequency (MHz) EXAMPLE LOOP FILTER COMPONENT VALUE Example Case Number Device Configuration XTAL XOIN XOFB Frequency Divider Divider (MHz) 19.44 1 2430 Loop Filter Component Selection RSET RS CS CP Resistor Resistor Cap Cap (kΩ ) (kΩ ) (µF) (µF) 4.5 150 10 0.01 VCXO PLL Performance Loop BW Loop Passband (-3dB) Damping Peaking (MHz) Factor (dB) 18 5.8 0.1 1 Input Reference Clock 8kHz 2 8kHz 19.44 1 2430 0 4.5 150 2.2 0.01 19 2.8 0.3 3 19.44kHz 19.44 32 32 0 9.09 11 10 0.01 65 2.7 0.3 4 19.44MHz 19.44 8 8 0 9.09 11 10 0.01 180 5.3 0.1 843002CY-31 MP Divider 0 www.icst.com/products/hiperclocks.html 19 REV. B NOVEMBER 22, 2005 PRELIMINARY Integrated Circuit Systems, Inc. ICS843002-31 700MHZ FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR POWER SUPPLY FILTERING TECHNIQUES As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. The ICS843002-31 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. VCC, VCCA, VCCA_XO, and VCCO_X should be individually connected to the power supply plane through vias, and bypass capacitors should be used for each pin. To achieve optimum jitter performance, power supply isolation is required. Figure 3 illustrates how a 10Ω resistor along with a 10μF and a .01μF bypass capacitor should be connected to each VCCA pin. 3.3V VCC .01μF 10Ω V CCA .01μF 10μF FIGURE 3. POWER SUPPLY FILTERING DIFFERENTIAL CLOCK INPUT INTERFACE The CLK0 /nCLK0 accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both VSWING and VOH must meet the VPP and VCMR input requirements. Figures 4A to 4D show interface examples for the HiPerClockS CLK0/nCLK0 input driven by the most common driver types. The input interfaces suggested here are examples only. Please consult with the vendor of the driver component to confirm the driver termination requirements. For example in Figure 4A, the input termination applies for ICS HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation. 3.3V 3.3V 3.3V 1.8V Zo = 50 Ohm CLK Zo = 50 Ohm CLK Zo = 50 Ohm nCLK Zo = 50 Ohm LVPECL nCLK HiPerClockS Input LVHSTL ICS HiPerClockS LVHSTL Driver R1 50 R1 50 HiPerClockS Input R2 50 R2 50 R3 50 FIGURE 4A. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY ICS HIPERCLOCKS LVHSTL DRIVER FIGURE 4B. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER 3.3V 3.3V 3.3V 3.3V 3.3V R3 125 R4 125 Zo = 50 Ohm LVDS_Driv er Zo = 50 Ohm CLK CLK R1 100 Zo = 50 Ohm nCLK LVPECL R1 84 HiPerClockS Input Receiv er R2 84 FIGURE 4C. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER 843002CY-31 nCLK Zo = 50 Ohm FIGURE 4D. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY 3.3V LVDS DRIVER www.icst.com/products/hiperclocks.html 20 REV. B NOVEMBER 22, 2005 PRELIMINARY Integrated Circuit Systems, Inc. ICS843002-31 700MHZ FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR DIFFERENTIAL CLOCK INPUT CIRCUIT USING THE DIFFERENTIAL INTERFACE FOR SINGLE-ENDED CLOCKS The differential interface (CLK0/nCLK0) can be used as a third single-ended input to support an LVCMOS or LVTTL clock driver. The clock input is connected to the CLK0 input pin, and the nCLK0 pin is left unconnected. To help reduce interference with the internal VCO circuits, an external resistor can be placed in series with the clock signal near Series Termination Optional Series Filter Resistor the CLK0 input pint. Combined with the input pin capacitance, this resistor acts as a low pass signal filter. The typical value of this optional series filter resistor is 100Ω. This will lower both the amplitude and edge rate of the clock input signal. In the case of a very short clock trace a series termination register may not be needed. 3.3V 3.3V CLK0 CLK LVTTL or LVCMOS Logic Output 51k nCLK0 nCLK (no connection) 51k External Circuitry 51k Differential Input Stage Internal Device Circuitry FIGURE 5. SINGLE-ENDED CLOCK INPUT INTERFACE RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS INPUTS: OUTPUTS: CRYSTAL INPUT: For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a 1kΩ resistor can be tied from XTAL_IN to ground. LVCMOS OUTPUT: All unused LVCMOS output can be left floating. We recommend that there is no trace attached. LVPECL OUTPUT All unused LVPECL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated. CLK INPUT: For applications not requiring the use of a clock input, it can be left floating. Though not required, but for additional protection, a 1kΩ resistor can be tied from the CLK input to ground. CLK/nCLK INPUT: For applications not requiring the use of the differential input, both CLK and nCLK can be left floating. Though not required, but for additional protection, a 1kΩ resistor can be tied from CLK to ground. LVCMOS CONTROL PINS: All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A 1kΩ resistor can be used. 843002CY-31 www.icst.com/products/hiperclocks.html 21 REV. B NOVEMBER 22, 2005 PRELIMINARY Integrated Circuit Systems, Inc. ICS843002-31 700MHZ FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR THERMAL RELEASE PATH PCB is contacted through solder as shown in Figure 6. For further information, please refer to the Application Note on Surface Mount Assembly of Amkor’s Thermally /Electrically Enhance Leadframe Base Package, Amkor Technology. The exposed metal pad provides heat transfer from the device to the P.C. board. The exposed metal pad is ground pad connected to ground plane through thermal via. The exposed pad on the device to the exposed metal pad on the EXPOSED PAD SOLDER M ASK SOLDER SIGNAL TRACE SIGNAL TRACE GROUND PLANE Expose Metal Pad THERM AL VIA (GROUND PAD) FIGURE 6. P.C. BOARD FOR EXPOSED PAD THERMAL RELEASE PATH EXAMPLE TERMINATION FOR LVPECL OUTPUTS The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines. designed to drive 50Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. Figures 7A and 7B show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations. FOUT and nFOUT are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are 3.3V Zo = 50Ω 125Ω FOUT 125Ω FIN Zo = 50Ω Zo = 50Ω FOUT 50Ω RTT = 1 Z ((VOH + VOL) / (VCC – 2)) – 2 o Zo = 50Ω VCC - 2V RTT 84Ω FIGURE 7A. LVPECL OUTPUT TERMINATION 843002CY-31 FIN 50Ω 84Ω FIGURE 7B. LVPECL OUTPUT TERMINATION www.icst.com/products/hiperclocks.html 22 REV. B NOVEMBER 22, 2005 PRELIMINARY Integrated Circuit Systems, Inc. ICS843002-31 700MHZ FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR POWER CONSIDERATIONS This section provides information on power dissipation and junction temperature for the ICS843002-31. Equations and example calculations are also provided. 1. Power Dissipation. The total power dissipation for the ICS843002-31 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results. NOTE: Please refer to Section 3 for details on calculating power dissipated in the load. • • Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 395mA = 1368.67mW Power (outputs)MAX = 30mW/Loaded Output pair If all outputs are loaded, the total power is 2 * 30mW = 60mW Total Power_MAX (3.465V, with all outputs switching) = 1368.67mW + 60mW = 1428.67mW 2. Junction Temperature. Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockSTM devices is 125°C. The equation for Tj is as follows: Tj = θJA * Pd_total + TA Tj = Junction Temperature θJA = Junction-to-Ambient Thermal Resistance Pd_total = Total Device Power Dissipation (example calculation is in section 1 above) TA = Ambient Temperature In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 17.2°C/W per Table 7 below. Therefore, Tj for an ambient temperature of 70°C with all outputs switching is: 70°C + 1.429W * 17.2°C/W = 94.6°C. This is well below the limit of 125°C. This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer). TABLE 7. THERMAL RESISTANCE θJA FOR 64-PIN TQFP, FORCED CONVECTION θJA by Velocity (Linear Feet per Minute) Multi-Layer PCB, JEDEC Standard Test Boards 843002CY-31 0 200 500 22.3°C/W 17.2°C/W 15.1°C/W www.icst.com/products/hiperclocks.html 23 REV. B NOVEMBER 22, 2005 PRELIMINARY Integrated Circuit Systems, Inc. ICS843002-31 700MHZ FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR 3. Calculations and Equations. The purpose of this section is to derive the power dissipated into the load. LVPECL output driver circuit and termination are shown in Figure 8. VCCO Q1 VOUT RL 50 VCCO - 2V FIGURE 8. LVPECL DRIVER CIRCUIT AND TERMINATION To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of V - 2V. CCO • For logic high, VOUT = V OH_MAX (V CCO_MAX • -V OH_MAX OL_MAX CCO_MAX -V OL_MAX CCO_MAX – 0.9V ) = 0.9V For logic low, VOUT = V (V =V =V CCO_MAX – 1.7V ) = 1.7V Pd_H is power dissipation when the output drives high. Pd_L is the power dissipation when the output drives low. Pd_H = [(V OH_MAX – (V CCO_MAX - 2V))/R ] * (V CCO_MAX L -V OH_MAX ) = [(2V - (V CCO_MAX -V OH_MAX ))/R ] * (V CCO_MAX L -V OH_MAX )= [(2V - 0.9V)/50Ω) * 0.9V = 19.8mW Pd_L = [(V OL_MAX – (V CCO_MAX - 2V))/R ] * (V L CCO_MAX -V OL_MAX ) = [(2V - (V CCO_MAX -V OL_MAX ))/R ] * (V L CCO_MAX -V OL_MAX )= [(2V - 1.7V)/50Ω) * 1.7V = 10.2mW Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW 843002CY-31 www.icst.com/products/hiperclocks.html 24 REV. B NOVEMBER 22, 2005 PRELIMINARY Integrated Circuit Systems, Inc. ICS843002-31 700MHZ FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR RELIABILITY INFORMATION TABLE 8. θJAVS. AIR FLOW TABLE FOR 64 LEAD TQFP, EPAD θJA by Velocity (Linear Feet per Minute) Multi-Layer PCB, JEDEC Standard Test Boards 0 200 500 22.3°C/W 17.2°C/W 15.1°C/W TRANSISTOR COUNT The transistor count for ICS843002-31 is: 10,095 843002CY-31 www.icst.com/products/hiperclocks.html 25 REV. B NOVEMBER 22, 2005 PRELIMINARY Integrated Circuit Systems, Inc. ICS843002-31 700MHZ FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR PACKAGE OUTLINE - Y SUFFIX FOR 64 LEAD TQFP, EPAD (32 pin package depicted to define Table 9 dimension symbols) TABLE 9. PACKAGE DIMENSIONS FOR 64 LEAD TQFP, EPAD JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS SYMBOL BCD MINIMUM NOMINAL MAXIMUM 64 N A -- -- 1.20 A1 0.05 -- 0.15 A2 .95 1.0 1.05 b 0.17 0.22 0.27 c 0.09 -- 0.20 D 12.00 BASIC D1 10.00 BASIC D2 5.00 Ref. E 12.00 BASIC E1 10.00 BASIC E2 5.00 Ref. e 0.50 BASIC 0.60 0.75 L 0.45 θ 0° -- 7° ccc -- -- 0.08 Reference Document: JEDEC Publication 95, MS-026 843002CY-31 www.icst.com/products/hiperclocks.html 26 REV. B NOVEMBER 22, 2005 PRELIMINARY Integrated Circuit Systems, Inc. ICS843002-31 700MHZ FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR TABLE 10. ORDERING INFORMATION Part/Order Number Marking Package Shipping Packaging Temperature ICS843002CY-31 ICS843002CY31 64 Lead TQFP, EPAD tray 0°C to 70°C ICS843002CY-31T ICS843002CY31 64 Lead TQFP, EPAD 500 tape & reel 0°C to 70°C ICS843002CY-31LF TBD 64 Lead "Lead-Free" TQFP, EPAD tray 0°C to 70°C ICS843002CY-31LFT TBD 64 Lead "Lead-Free" TQFP, EPAD 500 tape & reel 0°C to 70°C NOTE: Par ts that are ordered with an "LF" suffix to the par t number are the Pb-Free configuration and are RoHS compliant. The aforementioned trademarks, HiPerClockS and FEMTOCLOCKS are trademarks of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries. While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments. 843002CY-31 www.icst.com/products/hiperclocks.html 27 REV. B NOVEMBER 22, 2005