LESHAN RADIO COMPANY, LTD. Low Noise Transistor PNP Silicon LMBT5087LT1 • Pb−Free Package May be Available. The G−Suffix Denotes a Pb−Free Lead Finish 3 ORDERING INFORMATION 1 Device LMBT5087LT1 Package Shipping SOT–23 3000/Tape & Reel LMBT5087LT1G SOT–23 3000/Tape & Reel 2 SOT– 23 (TO–236AB) MAXIMUM RATINGS Rating Collector–Emitter Voltage Collector–Base Voltage Emitter–Base Voltage Collector Current — Continuous Symbol V CEO V CBO V EBO IC Value – 50 – 50 – 3.0 – 50 Unit Vdc Vdc Vdc mAdc 3 COLLECTOR 1 BASE DEVICE MARKING 2 EMITTER LMBT5087LT1=2Q THERMAL CHARACTERISTICS Characteristic Total Device Dissipation RF-5 Board (1) T A =25 °C Derate above 25°C Symbol PD Max 225 Unit mW 1.8 mW/°C Thermal Resistance, Junction to Ambient R θJA 556 °C/W Total Device Dissipation Alumina Substrate, (2) T A = 25°C Derate above 25°C Thermal Resistance, Junction to Ambient Junction and Storage Temperature PD 300 mW R θJA T J , T stg 2.4 417 –55to+150 mW/°C °C/W °C ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted) Characteristic Symbol Min Max Unit V (BR)CEO – 50 — Vdc V (BR)CBO – 50 — Vdc — — –10 –50 OFF CHARACTERISTICS Collector–Emitter Breakdown Voltage (I C = –1.0 mAdc, I B = 0) Collector–Base Breakdown Voltage (I C = –100 µAdc, I E = 0) Collector Cutoff Current (V CB = –10 Vdc, I E= 0) (V CB = –35 Vdc, I E= 0) 1. FR–5 = 1.0 x 0.75 x 0.062 in. 2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina. I CBO n Adc M17–1/6 LESHAN RADIO COMPANY, LTD. LMBT5087LT1 ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted) (Continued) Characteristic Symbol Min Max Unit 250 250 250 800 –– –– V CE(sat) –– – 0.3 Vdc V BE(sat) –– – 0.85 Vdc 40 — MHz C obo — 4.0 pF h fe 250 900 — (I C = –20 mAdc, V CE= –5.0 Vdc,Rs=10kΩ, f = 1.0 kHz) — 2.0 (I C = –100µAdc, V — 2.0 ON CHARACTERISTICS DC Current Gain (I C = –100µAdc, V CE = –5.0 Vdc) (I C = –1.0 mAdc, V CE = –5.0 Vdc) (I C = –10 mAdc, V CE = –5.0 Vdc) Collector–Emitter Saturation Voltage (I C = –10 mAdc, I B = –1.0 mAdc) Base–Emitter Saturation Voltage h FE –– (I C = –10 mAdc, I B = –1.0 mAdc) SMALL–SIGNAL CHARACTERISTICS Current–Gain — Bandwidth Product (I C = –500 µAdc, V CE= –5.0 Vdc, f = 20 MHz) Output Capacitance (V CB= –5.0 Vdc, I E = 0, f = 1.0 MHz) Small–Signal Current Gain (I C= –1.0mAdc, V CE = –5.0Vdc, f = 1.0 kHz) Noise Figure = –5.0 Vdc,Rs=3.0kΩ, f = 1.0 kHz) CE f T NF dB M17–2/6 LESHAN RADIO COMPANY, LTD. LMBT5087LT1 TYPICAL NOISE CHARACTERISTICS (V CE = – 5.0 Vdc, T A = 25°C) 10 10.0 BANDWIDTH = 1.0 Hz R~ ~0 5.0 30µA 100µA 300µA 1.0mA 2.0 8 5.0 IC=10 µA 3.0 BANDWIDTH = 1.0 Hz R ~ ~ 7.0 S I n , NOISE CURRENT (pA) e n , NOISE VOLTAGE (nV) 7.0 S IC=1.0mA 3.0 2.0 300µA 1.0 0.7 100µA 0.5 0.3 30µA 0.2 10µA 1.0 0.1 10 20 50 100 200 500 1.0k 2.0k 5.0k 10 10k 20 50 100 200 500 1.0k 2.0k f, FREQUENCY (Hz) f, FREQUENCY (Hz) Figure 1. Noise Voltage Figure 2. Noise Current 5.0k 10k NOISE FIGURE CONTOURS (V CE = – 5.0 Vdc, T A = 25°C) 1.0M 1.0M BANDWIDTH = 1.0 Hz 200k 100k 50k 20k 10k 0.5dB 5.0k 1.0dB 2.0k 1.0k 2.0dB 500 3.0dB 200 100 10 5.0dB 500k R S , SOURCE RESISTANCE ( Ω ) R S , SOURCE RESISTANCE ( Ω ) 500k BANDWIDTH = 1.0 Hz 200k 100k 50k 20k 10k 0.5dB 5.0k 2.0k 1.0dB 1.0k 2.0dB 3.0dB 500 200 5.0dB 100 20 30 50 70 100 200 300 500 700 1.0K 10 20 30 50 70 100 200 300 500 I C , COLLECTOR CURRENT (µA) I C , COLLECTOR CURRENT (µA) Figure 3. Narrow Band, 100 Hz Figure 4. Narrow Band, 1.0 kHz 700 1.0K 1.0M R S , SOURCE RESISTANCE ( Ω ) 500k 10 Hz to 15.7kHz 200k 100k Noise Figure is Defined as: 50k 20k NF = 20 log 10 10k 0.5dB 5.0k 2.0k 2.0dB 3.0 dB 5.0dB 500 200 20 30 50 70 100 200 300 1/ 2 S e n = Noise Voltage of the Transistor referred to the input. (Figure 3) I n = Noise Current of the Transistor referred to the input. (Figure 4) 1.0dB 1.0k 100 10 e n 2 + 4KTRS + I n2 R S2 ( –––––––––––––––) 4KTR 500 K = Boltzman’s Constant (1.38 x 10 –23 j/°K) T = Temperature of the Source Resistance (°K) R s = Source Resistance ( Ω ) 700 1.0K I C , COLLECTOR CURRENT (µA) Figure 5. Wideband M17–3/6 LESHAN RADIO COMPANY, LTD. LMBT5087LT1 TYPICAL STATIC CHARACTERISTICS 100 I C , COLLECTOR CURRENT (mA) TA=25°C 0.8 50mA 10 mA I C= 1.0 mA 0.6 100 mA 0.4 0.2 350µA 250µA 300µA 200µA 60 150µA 40 100µA 50µA 20 0 0 0.002 0.0050.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 5.0 15 20 25 30 35 40 V CE , COLLECTOR–EMITTER VOLTAGE (VOLTS) Figure 6. Collector Saturation Region Figure 7. Collector Characteristics 1.2 1.0 V BE(sat) @ I C /I B = 10 0.6 1.6 *APPLIES for I C / I B< h FE / 2 0.8 ∗ θ VC for V CE(sat) 25°Cto125°C 0 –55°Cto25°C –0.8 V BE(on)@ V CE= 1.0 V 0.4 25°Cto125°C –1.6 0.2 10 I B , BASE CURRENT (mA) T J=25°C 0.8 0 20 1.4 V, VOLTAGE (VOLTS) I B= 400 µA T A = 25°C PULSE WIDTH =300 µs DUTY CYCLE<2.0% 80 θ V , TEMPERATURE COEFFICIENTS (mV/°C) VCE,COLLECTOR–EMITTERVOLTAGE(VOLTS) 1.0 V CE(sat) @ I C /I B = 10 θ VB for V BE –55°Cto25°C –2.4 0 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 I C , COLLECTOR CURRENT (mA) I C , COLLECTOR CURRENT (mA) Figure 10. “On” Voltages Figure 11. Temperature Coefficients M17–4/6 LESHAN RADIO COMPANY, LTD. LMBT5087LT1 TYPICAL DYNAMIC CHARACTERISTICS 500 1000 V CC= 3.0 V IC /I B= 10 T J= 25°C 300 200 500 t, TIME (ns) t, TIME (ns) 70 50 tr 20 200 100 70 50 tf 30 td @ V BE(off)= 0.5 V 10 ts 300 100 30 VCC=–3.0V IC /I B= 10 IB1=IB2 T J= 25°C 700 20 7.0 10 2.0 3.0 5.0 7.0 10 20 30 50 70 –1.0 100 –2.0 –3.0 –5.0 –7.0 –10 –20 –30 –50 I C , COLLECTOR CURRENT (mA) I C , COLLECTOR CURRENT (mA) Figure 10. Turn–On Time Figure 11. Turn–Off Time –70 –100 10.0 500 T J= 25°C T J = 25°C 7.0 =20 V C ib CE C, CAPACITANCE (pF) V 300 5.0 V 200 100 70 50 0.5 r ( t ) TRANSIENT THERMAL RESISTANCE(NORMALIZED) f T, CURRENT– GAIN — BANDWIDTH PRODUCT (MHz) 5.0 1.0 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 5.0 3.0 C ob 2.0 1.0 0.05 50 0.1 0.2 0.5 1.0 2.0 5.0 10 I C , COLLECTOR CURRENT (mA) V R , REVERSE VOLTAGE (VOLTS) Figure 12. Current–Gain — Bandwidth Product Figure 13. Capacitance 1.0 0.7 0.5 20 50 D = 0.5 0.3 0.2 0.2 0.1 0.1 FIGURE 16 DUTY CYCLE, D = t 1 / t 2 D CURVES APPLY FOR POWER 0.05 0.07 0.05 P(pk) PULSE TRAIN SHOWN READ TIME AT t 1 (SEE AN–569) 0.02 0.03 t 0.01 1 SINGLE PULSE 0.02 t Z θJA(t) = r(t) • RθJA T J(pk) – T A = P (pk) Z θJA(t) 2 0.01 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 200 500 1.0k 2.0k 5.0k 10k 20k 50k 100k t, TIME (ms) Figure 14. Thermal Response M17–5/6 LESHAN RADIO COMPANY, LTD. LMBT5087LT1 104 DESIGN NOTE: USE OF THERMAL RESPONSE DATA I C , COLLECTOR CURRENT (nA) V CC = 30 V 3 10 I CEO 102 101 I CBO AND I CEX @ V BE(off) = 3.0 V 100 10–1 10–2 –4 –2 0 +20 +40 +60 +80 +100 +120 +140 T J , JUNCTION TEMPERATURE (°C) Figure 15. Typical Collector Leakage Current +160 A train of periodical power pulses can be represented by the model as shown in Figure 16. Using the model and the device thermal response the normalized effective transient thermal resistance of Figure 14 was calculated for various duty cycles. To find Z θJA(t) , multiply the value obtained from Figure 14 by the steady state value R θJA . Example: Dissipating 2.0 watts peak under the following conditions: t 1 = 1.0 ms, t 2 = 5.0 ms. (D = 0.2) Using Figure 16 at a pulse width of 1.0 ms and D = 0.2, the reading of r(t) is 0.22. The peak rise in junction temperature is therefore ∆T = r(t) x P (pk) x R θJA = 0.22 x 2.0 x 200 = 88°C. For more information, see AN–569. M17–6/6