SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 D Controlled Baseline D D D D D D D D UBT (Universal Bus Transceiver) − One Assembly/Test Site, One Fabrication Site Enhanced Diminishing Manufacturing Sources (DMS) Support Enhanced Product-Change Notification Qualification Pedigree† Members of the Texas Instruments SCOPE Family of Testability Products Members of the Texas Instruments Widebus Family State-of-the-Art 3.3-V ABT Design Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V VCC) Support Unregulated Battery Operation Down to 2.7 V D D D D † Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits. Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode Bus Hold on Data Inputs Eliminates the Need for External Pullup Resistors B-Port Outputs of SN74LVTH182502A Device Have Equivalent 25-Ω Series Resistors, So No External Resistors Are Required Compatible With the IEEE Standard 1149.1-1990 (JTAG) Test Access Port and Boundary-Scan Architecture SCOPE Instruction Set − IEEE Standard 1149.1-1990 Required Instructions and Optional CLAMP and HIGHZ − Parallel-Signature Analysis at Inputs − Pseudorandom Pattern Generation From Outputs − Sample Inputs/Toggle Outputs − Binary Count From Outputs − Device Identification − Even-Parity Opcodes description/ordering information The SN74LVTH18502A and SN74LVTH182502A scan test devices, with 18-bit universal bus transceivers, are members of the Texas Instruments SCOPE testability integrated-circuit family. This family of devices supports IEEE Standard 1149.1-1990 boundary scan to facilitate testing of complex circuit-board assemblies. Scan access to the test circuitry is accomplished via the 4-wire test access port (TAP) interface. Additionally, these devices are designed specifically for low-voltage (3.3-V) VCC operation, but with the capability to provide a TTL interface to a 5-V system environment. In the normal mode, these devices are 18-bit universal bus transceivers that combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, or clocked modes. They can be used either as two 9-bit transceivers or one 18-bit transceiver. The test circuitry can be activated by the TAP to take snapshot samples of the data appearing at the device pins or to perform a self test on the boundary-test cells. Activating the TAP in the normal mode does not affect the functional operation of the SCOPE universal bus transceivers. ORDERING INFORMATION −40°C to 85°C ORDERABLE PART NUMBER PACKAGE‡ TA LQFP − PM Tape and reel 8V18502AIPMREP LQFP − PM Tape and reel 8V182502AIPMREP§ TOP-SIDE MARKING LH18502AEP ‡ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. § Product Preview Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. SCOPE, Widebus, and UBT are trademarks of Texas Instruments. Copyright 2004, Texas Instruments Incorporated ! "#$%&'( $#()(! (*#+&)#( $%++'( )! #* ,%-.$)#( ")' +#"%$! $#(*#+& # !,'$*$)#(! ,'+ ' '+&! #* '/)! (!+%&'(! !)(")+" 0)++)(1 +#"%$#( ,+#$'!!(2 "#'! (# ('$'!!)+.1 ($.%"' '!(2 #* ).. ,)+)&''+! POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 description/ordering information (continued) Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A-bus data is latched while CLKAB is held at a static low or high logic level. Otherwise, if LEAB is low, A-bus data is stored on a low-to-high transition of CLKAB. When OEAB is low, the B outputs are active. When OEAB is high, the B outputs are in the high-impedance state. B-to-A data flow is similar to A-to-B data flow, but uses the OEBA, LEBA, and CLKBA inputs. In the test mode, the normal operation of the SCOPE universal bus transceivers is inhibited, and the test circuitry is enabled to observe and control the I/O boundary of the device. When enabled, the test circuitry performs boundary-scan test operations according to the protocol described in IEEE Standard 1149.1-1990. Four dedicated test pins are used to observe and control the operation of the test circuitry: test data input (TDI), test data output (TDO), test mode select (TMS), and test clock (TCK). Additionally, the test circuitry performs other testing functions such as parallel-signature analysis (PSA) on data inputs and pseudorandom pattern generation (PRPG) from data outputs. All testing and scan operations are synchronized to the TAP interface. Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level. The B-port outputs of SN74LVTH182502A, which are designed to source or sink up to 12 mA, include 25-Ω series resistors to reduce overshoot and undershoot. 1A2 1A1 1OEAB GND 1LEAB 1CLKAB TDO V CC TMS 1CLKBA 1LEBA 1OEBA GND 1B1 1B2 1B3 PM PACKAGE (TOP VIEW) 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 1A3 1A4 1A5 GND 1A6 1A7 1A8 1A9 VCC 2A1 2A2 2A3 GND 2A4 2A5 2A6 1 48 2 47 3 46 4 45 5 44 6 43 7 42 8 41 9 40 10 39 11 38 12 37 13 36 14 35 15 34 16 33 2A7 2A8 2A9 GND 2OEAB 2LEAB 2CLKAB TDI VCC TCK 2CLKBA 2LEBA GND 2OEBA 2B9 2B8 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1B4 1B5 1B6 GND 1B7 1B8 1B9 VCC 2B1 2B2 2B3 2B4 GND 2B5 2B6 2B7 SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 FUNCTION TABLE† (normal mode, each register) INPUTS OUTPUT B OEAB LEAB CLKAB A L L L X L L ↑ L B0‡ L L L ↑ H H L H X L L L H X H H H X X X Z † A-to-B data flow is shown. B-to-A data flow is similar, but uses OEBA, LEBA, and CLKBA. ‡ Output level before the indicated steady-state input conditions are established POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 functional block diagram Boundary-Scan Register 60 1LEAB 1CLKAB 1OEAB 1LEBA 1CLKBA 1OEBA 1A1 59 VCC 62 54 55 VCC 53 C1 C1 1D 1D 63 51 C1 1D 1B1 C1 1D One of Nine Channels 2LEAB 2CLKAB 2OEAB 2LEBA 2CLKBA 2OEBA 2A1 22 23 VCC 21 28 27 VCC 30 C1 C1 1D 1D 40 10 C1 1D 2B1 C1 1D One of Nine Channels Bypass Register Boundary-Control Register Identification Register TDI TMS TCK 4 VCC 24 VCC 56 26 58 Instruction Register TAP Controller POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TDO SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 Terminal Functions TERMINAL NAME DESCRIPTION 1A1−1A9, 2A1−2A9 Normal-function A-bus I/O ports. See function table for normal-mode logic. 1B1−1B9, 2B1−2B9 Normal-function B-bus I/O ports. See function table for normal-mode logic. 1CLKAB, 1CLKBA, 2CLKAB, 2CLKBA GND Normal-function clock inputs. See function table for normal-mode logic. Ground 1LEAB, 1LEBA, 2LEAB, 2LEBA Normal-function latch enables. See function table for normal-mode logic. 1OEAB, 1OEBA, 2OEAB, 2OEBA Normal-function output enables. See function table for normal-mode logic. An internal pullup at each terminal forces the terminal to a high level if left unconnected. TCK Test clock. One of four terminals required by IEEE Standard 1149.1-1990. Test operations of the device are synchronous to TCK. Data is captured on the rising edge of TCK, and outputs change on the falling edge of TCK. TDI Test data input. One of four terminals required by IEEE Standard 1149.1-1990. TDI is the serial input for shifting data through the instruction register or selected data register. An internal pullup forces TDI to a high level if left unconnected. TDO Test data output. One of four terminals required by IEEE Standard 1149.1-1990. TDO is the serial output for shifting data through the instruction register or selected data register. TMS Test mode select. One of four terminals required by IEEE Standard 1149.1-1990. TMS directs the device through its TAP controller states. An internal pullup forces TMS to a high level if left unconnected. VCC Supply voltage POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 test architecture Serial-test information is conveyed by means of a 4-wire test bus or TAP that conforms to IEEE Standard 1149.1-1990. Test instructions, test data, and test control signals all are passed along this serial-test bus. The TAP controller monitors two signals from the test bus, TCK and TMS. The TAP controller extracts the synchronization (TCK) and state control (TMS) signals from the test bus and generates the appropriate on-chip control signals for the test structures in the device. Figure 1 shows the TAP-controller state diagram. The TAP controller is fully synchronous to the TCK signal. Input data is captured on the rising edge of TCK and output data changes on the falling edge of TCK. This scheme ensures that the data to be captured is valid for fully one-half of the TCK cycle. The functional block diagram shows the IEEE Standard 1149.1-1990 4-wire test bus and boundary-scan architecture and the relationship among the test bus, the TAP controller, and the test registers. As shown, the device contains an 8-bit instruction register and four test-data registers: a 48-bit boundary-scan register, a 3-bit boundary-control register, a 1-bit bypass register, and a 32-bit device identification register. Test-Logic-Reset TMS = H TMS = L TMS = H TMS = H TMS = H Run-Test/Idle Select-DR-Scan Select-IR-Scan TMS = L TMS = L TMS = L TMS = H TMS = H Capture-DR Capture-IR TMS = L TMS = L Shift-DR Shift-IR TMS = L TMS = L TMS = H TMS = H TMS = H TMS = H Exit1-DR Exit1-IR TMS = L TMS = L Pause-DR Pause-IR TMS = L TMS = L TMS = H TMS = H TMS = L Exit2-DR TMS = L Exit2-IR TMS = H Update-DR TMS = H TMS = L Figure 1. TAP-Controller State Diagram 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TMS = H Update-IR TMS = H TMS = L SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 state diagram description The TAP controller is a synchronous finite-state machine that provides test control signals throughout the device. The state diagram shown in Figure 1 is in accordance with IEEE Standard 1149.1-1990. The TAP controller proceeds through its states, based on the level of TMS at the rising edge of TCK. As shown, the TAP controller consists of 16 states. There are six stable states (indicated by a looping arrow in the state diagram) and ten unstable states. A stable state is a state the TAP controller can retain for consecutive TCK cycles. Any state that does not meet this criterion is an unstable state. There are two main paths through the state diagram: one to access and control the selected data register and one to access and control the instruction register. Only one register can be accessed at a time. Test-Logic-Reset The device powers up in the Test-Logic-Reset state. In the stable Test-Logic-Reset state, the test logic is reset and is disabled so that the normal logic function of the device is performed. The instruction register is reset to an opcode that selects the optional IDCODE instruction, if supported, or the BYPASS instruction. Certain data registers also can be reset to their power-up values. The state machine is constructed such that the TAP controller returns to the Test-Logic-Reset state in no more than five TCK cycles if TMS is left high. The TMS pin has an internal pullup resistor that forces it high if left unconnected or if a board defect causes it to be open circuited. For the SN74LVTH18502A and SN74LVTH182502A, the instruction register is reset to the binary value 10000001, which selects the IDCODE instruction. Bits 47−44 in the boundary-scan register are reset to logic 1, ensuring that these cells, which control A-port and B-port outputs, are set to benign values (i.e., if test mode were invoked, the outputs would be at the high-impedance state). Reset values of other bits in the boundary-scan register should be considered indeterminate. The boundary-control register is reset to the binary value 010, which selects the PSA test operation. Run-Test/Idle The TAP controller must pass through the Run-Test /Idle state (from Test-Logic-Reset) before executing any test operations. The Run-Test /Idle state also can be entered following data-register or instruction-register scans. Run-Test/Idle is a stable state in which the test logic actively can be running a test or can be idle. The test operations selected by the boundary-control register are performed while the TAP controller is in the Run-Test /Idle state. Select-DR-Scan, Select-lR-Scan No specific function is performed in the Select-DR-Scan and Select-lR-Scan states, and the TAP controller exits either of these states on the next TCK cycle. These states allow the selection of either data-register scan or instruction-register scan. Capture-DR When a data-register scan is selected, the TAP controller must pass through the Capture-DR state. In the Capture-DR state, the selected data register can capture a data value as specified by the current instruction. Such capture operations occur on the rising edge of TCK, upon which the TAP controller exits the Capture-DR state. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 Shift-DR Upon entry to the Shift-DR state, the data register is placed in the scan path between TDI and TDO and, on the first falling edge of TCK, TDO goes from the high-impedance state to an active state. TDO enables to the logic level present in the least-significant bit of the selected data register. While in the stable Shift-DR state, data is shifted serially through the selected data register on each TCK cycle. The first shift occurs on the first rising edge of TCK after entry to the Shift-DR state (i.e., no shifting occurs during the TCK cycle in which the TAP controller changes from Capture-DR to Shift-DR or from Exit2-DR to Shift-DR). The last shift occurs on the rising edge of TCK, upon which the TAP controller exits the Shift-DR state. Exit1-DR, Exit2-DR The Exit1-DR and Exit2-DR states are temporary states that end a data-register scan. It is possible to return to the Shift-DR state from either Exit1-DR or Exit2-DR without recapturing the data register. On the first falling edge of TCK after entry to Exit1-DR, TDO goes from the active state to the high-impedance state. Pause-DR No specific function is performed in the stable Pause-DR state, in which the TAP controller can remain indefinitely. The Pause-DR state suspends and resumes data-register scan operations without loss of data. Update-DR If the current instruction calls for the selected data register to be updated with current data, such update occurs on the falling edge of TCK, following entry to the Update-DR state. Capture-IR When an instruction-register scan is selected, the TAP controller must pass through the Capture-IR state. In the Capture-IR state, the instruction register captures its current status value. This capture operation occurs on the rising edge of TCK, upon which the TAP controller exits the Capture-IR state. For the SN74LVTH18502A and SN74LVTH182502A, the status value loaded in the Capture-IR state is the fixed binary value 10000001. Shift-IR Upon entry to the Shift-IR state, the instruction register is placed in the scan path between TDI and TDO. On the first falling edge of TCK, TDO goes from the high-impedance state to the active state. TDO enables to the logic level present in the least-significant bit of the instruction register. While in the stable Shift-IR state, instruction data is shifted serially through the instruction register on each TCK cycle. The first shift occurs on the first rising edge of TCK after entry to the Shift-IR state (i.e., no shifting occurs during the TCK cycle in which the TAP controller changes from Capture-IR to Shift-IR or from Exit2-IR to Shift-IR). The last shift occurs on the rising edge of TCK, upon which the TAP controller exits the Shift-IR state. Exit1-IR, Exit2-IR The Exit1-IR and Exit2-IR states are temporary states that end an instruction-register scan. It is possible to return to the Shift-IR state from either Exit1-IR or Exit2-IR without recapturing the instruction register. On the first falling edge of TCK after entry to Exit1-IR, TDO goes from the active state to the high-impedance state. Pause-IR No specific function is performed in the stable Pause-IR state, in which the TAP controller can remain indefinitely. The Pause-IR state suspends and resumes instruction-register scan operations without loss of data. Update-IR The current instruction is updated and takes effect on the falling edge of TCK, following entry to the Update-IR state. 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 register overview With the exception of the bypass and device-identification registers, any test register can be thought of as a serial shift register with a shadow latch on each bit. The bypass and device-identification registers differ in that they contain only a shift register. During the appropriate capture state (Capture-IR for instruction register, Capture-DR for data registers), the shift register can be parallel loaded from a source specified by the current instruction. During the appropriate shift state (Shift-IR or Shift-DR), the contents of the shift register are shifted out from TDO while new contents are shifted in at TDI. During the appropriate update state (Update-IR or Update-DR), the shadow latches are updated from the shift register. instruction register description The instruction register (IR) is eight bits long and tells the device what instruction is to be executed. Information contained in the instruction includes the mode of operation (either normal mode, in which the device performs its normal logic function, or test mode, in which the normal logic function is inhibited or altered), the test operation to be performed, which of the four data registers is to be selected for inclusion in the scan path during data-register scans, and the source of data to be captured into the selected data register during Capture-DR. Table 3 lists the instructions supported by the SN74LVTH18502A and SN74LVTH182502A. The even-parity feature specified for SCOPE devices is supported in this device. Bit 7 of the instruction opcode is the parity bit. Any instructions that are defined for SCOPE devices, but are not supported by this device, default to BYPASS. During Capture-IR, the IR captures the binary value 10000001. As an instruction is shifted in, this value is shifted out via TDO and can be inspected as verification that the IR is in the scan path. During Update-IR, the value that has been shifted into the IR is loaded into shadow latches. At this time, the current instruction is updated, and any specified mode change takes effect. At power up or in the Test-Logic-Reset state, the IR is reset to the binary value 10000001, which selects the IDCODE instruction. The IR order of scan is shown in Figure 2. TDI Bit 7 Parity (MSB) Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 (LSB) TDO Figure 2. Instruction Register Order of Scan POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 data register description boundary-scan register The boundary-scan register (BSR) is 48 bits long. It contains one boundary-scan cell (BSC) for each normal-function input pin and one BSC for each normal-function I/O pin (one single cell for both input data and output data). The BSR is used 1) to store test data that is to be applied externally to the device output pins, and/or 2) to capture data that appears internally at the outputs of the normal on-chip logic and/or externally at the device input pins. The source of data to be captured into the BSR during Capture-DR is determined by the current instruction. The contents of the BSR can change during Run-Test /Idle, as determined by the current instruction. At power up or in Test-Logic-Reset, BSCs 47−44 are reset to logic 1, ensuring that these cells, which control A-port and B-port outputs, are set to benign values (i.e., if test mode were invoked, the outputs would be at the high-impedance state). Reset values of other BSCs should be considered indeterminate. The BSR order of scan is from TDI through bits 47−0 to TDO. Table 1 shows the BSR bits and their associated device pin signals. Table 1. Boundary-Scan Register Configuration 10 BSR BIT NUMBER DEVICE SIGNAL BSR BIT NUMBER DEVICE SIGNAL BSR BIT NUMBER DEVICE SIGNAL 47 2OEAB 35 2A9-I/O 17 2B9-I/O 46 1OEAB 34 2A8-I/O 16 2B8-I/O 45 2OEBA 33 2A7-I/O 15 2B7-I/O 44 1OEBA 32 2A6-I/O 14 2B6-I/O 43 2CLKAB 31 2A5-I/O 13 2B5-I/O 42 1CLKAB 30 2A4-I/O 12 2B4-I/O 41 2CLKBA 29 2A3-I/O 11 2B3-I/O 40 1CLKBA 28 2A2-I/O 10 2B2-I/O 39 2LEAB 27 2A1-I/O 9 2B1-I/O 38 1LEAB 26 1A9-I/O 8 1B9-I/O 37 2LEBA 25 1A8-I/O 7 1B8-I/O 36 1LEBA 24 1A7-I/O 6 1B7-I/O −− −− 23 1A6-I/O 5 1B6-I/O −− −− 22 1A5-I/O 4 1B5-I/O −− −− 21 1A4-I/O 3 1B4-I/O −− −− 20 1A3-I/O 2 1B3-I/O −− −− 19 1A2-I/O 1 1B2-I/O −− −− 18 1A1-I/O 0 1B1-I/O POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 boundary-control register The boundary-control register (BCR) is three bits long. The BCR is used in the context of the boundary-run test (RUNT) instruction to implement additional test operations not included in the basic SCOPE instruction set. Such operations include PRPG, PSA, and binary count up (COUNT). Table 4 shows the test operations that are decoded by the BCR. During Capture-DR, the contents of the BCR are not changed. At power up or in Test-Logic-Reset, the BCR is reset to the binary value 010, which selects the PSA test operation. The BCR order of scan is shown in Figure 3. TDI Bit 2 (MSB) Bit 1 Bit 0 (LSB) TDO Figure 3. Boundary-Control Register Order of Scan bypass register The bypass register is a 1-bit scan path that can be selected to shorten the length of the system scan path, reducing the number of bits per test pattern that must be applied to complete a test operation. During Capture-DR, the bypass register captures a logic 0. The bypass register order of scan is shown in Figure 4. TDI Bit 0 TDO Figure 4. Bypass Register Order of Scan POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 device-identification register The device-identification register (IDR) is 32 bits long. It can be selected and read to identify the manufacturer, part number, and version of this device. For the SN74LVTH18502A, the binary value 00110000000000011100000000101111 (3001C02F, hex) is captured (during Capture-DR state) in the IDR to identify this device as Texas Instruments SN74LVTH18502A. For the SN74LVTH182502A, the binary value 00110000000000100001000000101111 (3002102F, hex) is captured (during Capture-DR state) in the device-identification register to identify this device as Texas Instruments SN74LVTH182502A. The IDR order of scan is from TDI through bits 31−0 to TDO. Table 2 shows the IDR bits and their significance. Table 2. Device-Identification Register Configuration IDR BIT NUMBER IDENTIFICATION SIGNIFICANCE IDR BIT NUMBER IDENTIFICATION SIGNIFICANCE IDR BIT NUMBER IDENTIFICATION SIGNIFICANCE 31 VERSION3 27 PARTNUMBER15 11 30 VERSION2 26 PARTNUMBER14 10 MANUFACTURER10† MANUFACTURER09† 29 VERSION1 25 PARTNUMBER13 9 28 VERSION0 24 PARTNUMBER12 8 −− −− 23 PARTNUMBER11 7 −− −− 22 PARTNUMBER10 6 −− −− 21 PARTNUMBER09 5 −− −− 20 PARTNUMBER08 4 −− −− 19 PARTNUMBER07 3 −− −− 18 PARTNUMBER06 2 −− −− 17 PARTNUMBER05 1 −− −− 16 PARTNUMBER04 0 MANUFACTURER00† LOGIC1† −− −− 15 PARTNUMBER03 −− −− −− −− 14 PARTNUMBER02 −− −− −− −− 13 PARTNUMBER01 −− −− MANUFACTURER08† MANUFACTURER07† MANUFACTURER06† MANUFACTURER05† MANUFACTURER04† MANUFACTURER03† MANUFACTURER02† MANUFACTURER01† −− −− 12 PARTNUMBER00 −− −− † Note that, for TI products, bits 11−0 of the device-identification register always contain the binary value 000000101111 (02F, hex). 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 instruction-register opcode description The instruction-register opcodes are shown in Table 3. The following descriptions detail the operation of each instruction. Table 3. Instruction-Register Opcodes BINARY CODE† BIT 7 → BIT 0 MSB → LSB SCOPE OPCODE DESCRIPTION SELECTED DATA REGISTER MODE 00000000 EXTEST Boundary scan Boundary scan Test 10000001 IDCODE Identification read Device identification Normal 10000010 SAMPLE/PRELOAD BYPASS‡ Sample boundary Boundary scan Normal Bypass scan Bypass Normal Bypass scan Bypass Normal 00000101 BYPASS‡ BYPASS‡ Bypass scan Bypass Normal 00000110 HIGHZ Control boundary to high impedance Bypass Modified test 10000111 CLAMP BYPASS‡ Control boundary to 1/0 Bypass Test Bypass scan Bypass Normal 00001001 RUNT Boundary-run test Bypass Test 00001010 READBN Boundary read Boundary scan Normal 10001011 READBT Boundary read Boundary scan Test 00001100 CELLTST Boundary self test Boundary scan Normal 10001101 TOPHIP Boundary toggle outputs Bypass Test 10001110 SCANCN Boundary-control register scan Boundary control Normal 00001111 SCANCT Boundary-control register scan Boundary control Test All others BYPASS Bypass scan Bypass Normal 00000011 10000100 10001000 † Bit 7 is used to maintain even parity in the 8-bit instruction. ‡ The BYPASS instruction is executed in lieu of a SCOPE instruction that is not supported in the SN74LVTH18502A or SN74LVTH182502A. boundary scan This instruction conforms to the IEEE Standard 1149.1-1990 EXTEST instruction. The BSR is selected in the scan path. Data appearing at the device input and I/O pins is captured in the associated BSCs. Data that has been scanned into the I/O BSCs for pins in the output mode is applied to the device I/O pins. Data present at the device pins, except for output enables, is passed through the BSCs to the normal on-chip logic. For I/O pins, the operation of a pin as input or output is determined by the contents of the output-enable BSCs (bits 47−44 of the BSR). When a given output enable is active (logic 0), the associated I/O pins operate in the output mode. Otherwise, the I/O pins operate in the input mode. The device operates in the test mode. identification read This instruction conforms to the IEEE Standard 1149.1-1990 IDCODE instruction. The IDR is selected in the scan path. The device operates in the normal mode. sample boundary This instruction conforms to the IEEE Standard 1149.1-1990 SAMPLE/PRELOAD instruction. The BSR is selected in the scan path. Data appearing at the device input pins and I/O pins in the input mode is captured in the associated BSCs, while data appearing at the outputs of the normal on-chip logic is captured in the BSCs associated with I/O pins in the output mode. The device operates in the normal mode. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 bypass scan This instruction conforms to the IEEE Standard 1149.1-1990 BYPASS instruction. The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. The device operates in the normal mode. control boundary to high impedance This instruction conforms to the IEEE Standard 1149.1a-1993 HIGHZ instruction. The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. The device operates in a modified test mode in which all device I/O pins are placed in the high-impedance state, the device input pins remain operational, and the normal on-chip logic function is performed. control boundary to 1/0 This instruction conforms to the IEEE Standard 1149.1a-1993 CLAMP instruction. The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. Data in the I/O BSCs for pins in the output mode is applied to the device I/O pins. The device operates in the test mode. boundary-run test The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. The device operates in the test mode. The test operation specified in the BCR is executed during Run-Test /Idle. The five test operations decoded by the BCR are: sample inputs/toggle outputs (TOPSIP), PRPG, PSA, simultaneous PSA and PRPG (PSA/PRPG), and simultaneous PSA and binary count up (PSA/COUNT). boundary read The BSR is selected in the scan path. The value in the BSR remains unchanged during Capture-DR. This instruction is useful for inspecting data after a PSA operation. boundary self test The BSR is selected in the scan path. All BSCs capture the inverse of their current values during Capture-DR. In this way, the contents of the shadow latches can be read out to verify the integrity of both shift-register and shadow-latch elements of the BSR. The device operates in the normal mode. boundary toggle outputs The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. Data in the shift-register elements of the selected output-mode BSCs is toggled on each rising edge of TCK in Run-Test /Idle and then is updated in the shadow latches and applied to the associated device I/O pins on each falling edge of TCK in Run-Test /Idle. Data in the input-mode BSCs remains constant. Data appearing at the device input or I/O pins is not captured in the input-mode BSCs. The device operates in the test mode. boundary-control-register scan The BCR is selected in the scan path. The value in the BCR remains unchanged during Capture-DR. This operation must be performed before a boundary-run test operation to specify which test operation is to be executed. 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 boundary-control-register opcode description The BCR opcodes are decoded from BCR bits 2−0, as shown in Table 4. The selected test operation is performed while the RUNT instruction is executed in the Run-Test /Idle state. The following descriptions detail the operation of each BCR instruction and illustrate the associated PSA and PRPG algorithms. Table 4. Boundary-Control Register Opcodes BINARY CODE BIT 2 → BIT 0 MSB → LSB DESCRIPTION X00 Sample inputs/toggle outputs (TOPSIP) X01 Pseudorandom pattern generation/36-bit mode (PRPG) X10 Parallel-signature analysis/36-bit mode (PSA) 011 Simultaneous PSA and PRPG/18-bit mode (PSA/PRPG) 111 Simultaneous PSA and binary count up/18-bit mode (PSA/COUNT) While the control input BSCs (bits 47−36) are not included in the toggle, PSA, PRPG, or COUNT algorithms, the output-enable BSCs (bits 47−44 of the BSR) control the drive state (active or high impedance) of the selected device output pins. These BCR instructions are valid only when both bytes of the device are operating in one direction of data flow (i.e., 1OEAB ≠ 1OEBA and 2OEAB ≠ 2OEBA) and in the same direction of data flow (i.e., 1OEAB = 2OEAB and 1OEBA = 2OEBA). Otherwise, the bypass instruction is operated. sample inputs/toggle outputs (TOPSIP) Data appearing at the selected device input-mode I/O pins is captured in the shift-register elements of the associated BSCs on each rising edge of TCK. Data in the shift-register elements of the selected output-mode BSCs is toggled on each rising edge of TCK, updated in the shadow latches, and applied to the associated device I/O pins on each falling edge of TCK. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 pseudorandom pattern generation (PRPG) A pseudorandom pattern is generated in the shift-register elements of the selected BSCs on each rising edge of TCK, updated in the shadow latches, and applied to the associated device output-mode I/O pins on each falling edge of TCK. Figures 5 and 6 show the 36-bit linear-feedback shift-register algorithms through which the patterns are generated. An initial seed value should be scanned into the BSR before performing this operation. A seed value of all zeroes does not produce additional patterns. 2A9-I/O 2A8-I/O 2A7-I/O 2A6-I/O 2A5-I/O 2A4-I/O 2A3-I/O 2A2-I/O 2A1-I/O 1A9-I/O 1A8-I/O 1A7-I/O 1A6-I/O 1A5-I/O 1A4-I/O 1A3-I/O 1A2-I/O 1A1-I/O 2B9-I/O 2B8-I/O 2B7-I/O 2B6-I/O 2B5-I/O 2B4-I/O 2B3-I/O 2B2-I/O 2B1-I/O 1B9-I/O 1B8-I/O 1B7-I/O 1B6-I/O 1B5-I/O 1B4-I/O 1B3-I/O 1B2-I/O 1B1-I/O = Figure 5. 36-Bit PRPG Configuration (1OEAB = 2OEAB = 0, 1OEBA = 2OEBA = 1) 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 2B9-I/O 2B8-I/O 2B7-I/O 2B6-I/O 2B5-I/O 2B4-I/O 2B3-I/O 2B2-I/O 2B1-I/O 1B9-I/O 1B8-I/O 1B7-I/O 1B6-I/O 1B5-I/O 1B4-I/O 1B3-I/O 1B2-I/O 1B1-I/O 2A9-I/O 2A8-I/O 2A7-I/O 2A6-I/O 2A5-I/O 2A4-I/O 2A3-I/O 2A2-I/O 2A1-I/O 1A9-I/O 1A8-I/O 1A7-I/O 1A6-I/O 1A5-I/O 1A4-I/O 1A3-I/O 1A2-I/O 1A1-I/O = Figure 6. 36-Bit PRPG Configuration (1OEAB = 2OEAB = 1, 1OEBA = 2OEBA = 0) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 parallel-signature analysis (PSA) Data appearing at the selected device input-mode I/O pins is compressed into a 36-bit parallel signature in the shift-register elements of the selected BSCs on each rising edge of TCK. Data in the shadow latches of the selected output-mode BSCs remains constant and is applied to the associated device I/O pins. Figures 7 and 8 show the 36-bit linear-feedback shift-register algorithms through which the signature is generated. An initial seed value should be scanned into the BSR before performing this operation. 2A9-I/O 2A8-I/O 2A7-I/O 2A6-I/O 2A5-I/O 2A4-I/O 2A3-I/O 2A2-I/O 2A1-I/O 1A9-I/O 1A8-I/O 1A7-I/O 1A6-I/O 1A5-I/O 1A4-I/O 1A3-I/O 1A2-I/O 1A1-I/O 2B9-I/O 2B8-I/O 2B7-I/O 2B6-I/O 2B5-I/O 2B4-I/O 2B3-I/O 2B2-I/O 2B1-I/O 1B9-I/O 1B8-I/O 1B7-I/O 1B6-I/O 1B5-I/O 1B4-I/O 1B3-I/O 1B2-I/O 1B1-I/O = = Figure 7. 36-Bit PSA Configuration (1OEAB = 2OEAB = 0, 1OEBA = 2OEBA = 1) 18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 2B9-I/O 2B8-I/O 2B7-I/O 2B6-I/O 2B5-I/O 2B4-I/O 2B3-I/O 2B2-I/O 2B1-I/O 1B9-I/O 1B8-I/O 1B7-I/O 1B6-I/O 1B5-I/O 1B4-I/O 1B3-I/O 1B2-I/O 1B1-I/O 2A9-I/O 2A8-I/O 2A7-I/O 2A6-I/O 2A5-I/O 2A4-I/O 2A3-I/O 2A2-I/O 2A1-I/O 1A9-I/O 1A8-I/O 1A7-I/O 1A6-I/O 1A5-I/O 1A4-I/O 1A3-I/O 1A2-I/O 1A1-I/O = = Figure 8. 36-Bit PSA Configuration (1OEAB = 2OEAB = 1, 1OEBA = 2OEBA = 0) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 simultaneous PSA and PRPG (PSA/PRPG) Data appearing at the selected device input-mode I/O pins is compressed into an 18-bit parallel signature in the shift-register elements of the selected input-mode BSCs on each rising edge of TCK. At the same time, an 18-bit pseudorandom pattern is generated in the shift-register elements of the selected output-mode BSCs on each rising edge of TCK, updated in the shadow latches, and applied to the associated device I/O pins on each falling edge of TCK. Figures 9 and 10 show the 18-bit linear-feedback shift-register algorithms through which the signature and patterns are generated. An initial seed value should be scanned into the BSR before performing this operation. A seed value of all zeroes does not produce additional patterns. 2A9-I/O 2A8-I/O 2A7-I/O 2A6-I/O 2A5-I/O 2A4-I/O 2A3-I/O 2A2-I/O 2A1-I/O 1A9-I/O 1A8-I/O 1A7-I/O 1A6-I/O 1A5-I/O 1A4-I/O 1A3-I/O 1A2-I/O 1A1-I/O 2B9-I/O 2B8-I/O 2B7-I/O 2B6-I/O 2B5-I/O 2B4-I/O 2B3-I/O 2B2-I/O 2B1-I/O 1B9-I/O 1B8-I/O 1B7-I/O 1B6-I/O 1B5-I/O 1B4-I/O 1B3-I/O 1B2-I/O 1B1-I/O = = Figure 9. 18-Bit PSA/PRPG Configuration (1OEAB = 2OEAB = 0, 1OEBA = 2OEBA = 1) 20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 2B9-I/O 2B8-I/O 2B7-I/O 2B6-I/O 2B5-I/O 2B4-I/O 2B3-I/O 2B2-I/O 2B1-I/O 1B9-I/O 1B8-I/O 1B7-I/O 1B6-I/O 1B5-I/O 1B4-I/O 1B3-I/O 1B2-I/O 1B1-I/O 2A9-I/O 2A8-I/O 2A7-I/O 2A6-I/O 2A5-I/O 2A4-I/O 2A3-I/O 2A2-I/O 2A1-I/O 1A9-I/O 1A8-I/O 1A7-I/O 1A6-I/O 1A5-I/O 1A4-I/O 1A3-I/O 1A2-I/O 1A1-I/O = = Figure 10. 18-Bit PSA/PRPG Configuration (1OEAB = 2OEAB = 1, 1OEBA = 2OEBA = 0) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21 SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 simultaneous PSA and binary count up (PSA/COUNT) Data appearing at the selected device input-mode I/O pins is compressed into an 18-bit parallel signature in the shift-register elements of the selected input-mode BSCs on each rising edge of TCK. At the same time, an 18-bit binary count-up pattern is generated in the shift-register elements of the selected output-mode BSCs on each rising edge of TCK, updated in the shadow latches, and applied to the associated device I/O pins on each falling edge of TCK. Figures 11 and 12 show the 18-bit linear-feedback shift-register algorithms through which the signature is generated. An initial seed value should be scanned into the BSR before performing this operation. 2A9-I/O 2A8-I/O 2A7-I/O 2A6-I/O 2A5-I/O 2A4-I/O 2A3-I/O 2A2-I/O 2A1-I/O 1A9-I/O 1A8-I/O 1A7-I/O 1A6-I/O 1A5-I/O 1A4-I/O 1A3-I/O 1A2-I/O 1A1-I/O 2B8-I/O 2B7-I/O 2B6-I/O 2B5-I/O 2B4-I/O 2B3-I/O 2B2-I/O 2B1-I/O MSB 2B9-I/O LSB = = 1B9-I/O 1B8-I/O 1B7-I/O 1B6-I/O 1B5-I/O 1B4-I/O 1B3-I/O 1B2-I/O 1B1-I/O Figure 11. 18-Bit PSA/COUNT Configuration (1OEAB = 2OEAB = 0, 1OEBA = 2OEBA = 1) 22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 2B9-I/O 2B8-I/O 2B7-I/O 2B6-I/O 2B5-I/O 2B4-I/O 2B3-I/O 2B2-I/O 2B1-I/O 1B9-I/O 1B8-I/O 1B7-I/O 1B6-I/O 1B5-I/O 1B4-I/O 1B3-I/O 1B2-I/O 1B1-I/O 2A8-I/O 2A7-I/O 2A6-I/O 2A5-I/O 2A4-I/O 2A3-I/O 2A2-I/O 2A1-I/O MSB 2A9-I/O LSB = = 1A9-I/O 1A8-I/O 1A7-I/O 1A6-I/O 1A5-I/O 1A4-I/O 1A3-I/O 1A2-I/O 1A1-I/O Figure 12. 18-Bit PSA/COUNT Configuration (1OEAB = 2OEAB = 1, 1OEBA = 2OEBA = 0) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23 SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 timing description All test operations of the SN74LVTH18502A and SN74LVTH182502A are synchronous to the TCK signal. Data on the TDI, TMS, and normal-function inputs is captured on the rising edge of TCK. Data appears on the TDO and normal-function output pins on the falling edge of TCK. The TAP controller is advanced through its states (as shown in Figure 1) by changing the value of TMS on the falling edge of TCK and then applying a rising edge to TCK. A simple timing example is shown in Figure 13. In this example, the TAP controller begins in the Test-Logic-Reset state and is advanced through its states, as necessary, to perform one instruction-register scan and one data-register scan. While in the Shift-IR and Shift-DR states, TDI is used to input serial data, and TDO is used to output serial data. The TAP controller then is returned to the Test-Logic-Reset state. Table 5 details the operation of the test circuitry during each TCK cycle. Table 5. Explanation of Timing Example TCK CYCLE(S) TAP STATE AFTER TCK DESCRIPTION 1 Test-Logic-Reset TMS is changed to a logic 0 value on the falling edge of TCK to begin advancing the TAP controller toward the desired state. 2 Run-Test/Idle 3 Select-DR-Scan 4 Select-IR-Scan 5 Capture-IR The IR captures the 8-bit binary value 10000001 on the rising edge of TCK as the TAP controller exits the Capture-IR state. 6 Shift-IR TDO becomes active and TDI is made valid on the falling edge of TCK. The first bit is shifted into the TAP on the rising edge of TCK as the TAP controller advances to the next state. 7−13 Shift-IR One bit is shifted into the IR on each TCK rising edge. With TDI held at a logic 1 value, the 8-bit binary value 11111111 is serially scanned into the IR. At the same time, the 8-bit binary value 10000001 is serially scanned out of the IR via TDO. In TCK cycle 13, TMS is changed to a logic 1 value to end the IR scan on the next TCK cycle. The last bit of the instruction is shifted as the TAP controller advances from Shift-IR to Exit1-IR. 14 Exit1-IR TDO becomes inactive (goes to the high-impedance state) on the falling edge of TCK. 24 15 Update-IR 16 Select-DR-Scan 17 Capture-DR The bypass register captures a logic 0 value on the rising edge of TCK as the TAP controller exits the Capture-DR state. 18 Shift-DR TDO becomes active and TDI is made valid on the falling edge of TCK. The first bit is shifted into the TAP on the rising edge of TCK as the TAP controller advances to the next state. 19−20 Shift-DR The binary value 101 is shifted in via TDI, while the binary value 010 is shifted out via TDO. 21 Exit1-DR TDO becomes inactive (goes to the high-impedance state) on the falling edge of TCK. 22 Update-DR 23 Select-DR-Scan 24 Select-IR-Scan 25 Test-Logic-Reset The IR is updated with the new instruction (BYPASS) on the falling edge of TCK. The selected data register is updated with the new data on the falling edge of TCK. Test operation completed POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Test-Logic-Reset Select-IR-Scan Select-DR-Scan Update-DR ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ Exit1-DR Capture-DR Update-IR Select-DR-Scan ÎÎ ÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ Exit1-IR Shift-IR Capture-IR Select-IR-Scan TAP Controller State Select-DR-Scan TDO ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ Run-Test/Idle TDI Test-Logic-Reset TMS Shift-DR TCK 3-State (TDO) or Don’t Care (TDI) Figure 13. Timing Example absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V Voltage range applied to any output in the high state or power-off state, VO (see Note 1) . . . . −0.5 V to 7 V Current into any output in the low state, IO: SN74LVTH18502A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 mA SN74LVTH182502A (A port or TDO) . . . . . . . . . . . . . . . . 128 mA SN74LVTH182502A (B port) . . . . . . . . . . . . . . . . . . . . . . . . 30 mA Current into any output in the high state, IO (see Note 2): SN74LVTH18502A . . . . . . . . . . . . . . . . . . . . 64 mA SN74LVTH182502A (A port or TDO) . . . . 64 mA SN74LVTH182502A (B port) . . . . . . . . . . . 30 mA Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA Package thermal impedance, θJA (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67°C/W Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. 2. This current flows only when the output is in the high state and VO > VCC. 3. The package thermal impedance is calculated in accordance with JESD 51. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25 SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 recommended operating conditions (see Note 4) SN74LVTH18502A-EP MIN MAX 2.7 3.6 UNIT VCC VIH Supply voltage VIL VI Low-level input voltage 0.8 Input voltage 5.5 V IOH IOL IOL† High-level output current −32 mA Low-level output current 32 mA Low-level output current 64 mA ∆t/∆v Input transition rise or fall rate 10 ns/V High-level input voltage 2 Outputs enabled V V V TA Operating free-air temperature −40 85 °C † Current duty cycle ≤50%, f ≥ 1 kHz NOTE 4: All unused CLK, LE, or TCK inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER VIK VOH VCC = 2.7 V, VCC = 2.7 V to 3.6 V, II = −18 mA IOH = −100 µA VCC = 2.7 V, IOH = −3 mA IOH = −8 mA VCC = 3 V IOH = −32 mA IOL = 100 µA VCC = 2.7 V II A or B ports‡ Ioff II(hold)§ A or B ports IOZH IOZL TDO IOZPU IOZPD TDO TDO TDO VCC = 3.6 V, VCC = 0 or 3.6 V, VI = VCC or GND VI = 5.5 V VCC = 3.6 V VI = 5.5 V VI = VCC VI = 0 VI = 5.5 V VCC = 3.6 V VI = VCC VI = 0 VCC = 0, VI or VO = 0 to 4.5 V VI = 0.8 V VCC = 3 V VI = 2 V VO = 3 V VCC = 3.6 V, VCC = 3.6 V, 2 0.2 0.5 0.4 0.5 ±1 10 5 1 −25 −100 1 −5 ± 100 75 150 500 −75 −150 −500 −1 µA ±50 µA ±50 µA 2 18 24 Outputs disabled 0.6 VCC = 3 V to 3.6 V, One input at VCC − 0.6 V, Other inputs at VCC or GND Ci VI = 3 V or 0 VO = 3 V or 0 µA A µA 0.6 ∆ICC¶ µA 1 Outputs low VCC = 3.6 V, IO = 0, VI = VCC or GND µA A 20 VO = 0.5 V or 3 V Outputs high ICC V 0.55 VO = 0.5 V VO = 0.5 V or 3 V VCC = 0 to 1.5 V, VCC = 1.5 V to 0, V V 2.4 IOL = 32 mA IOL = 64 mA VCC = 3 V OE, TDI, TMS −1.2 UNIT VCC−0.2 2.4 IOL = 24 mA IOL = 16 mA VOL CLK, LE, TCK SN74LVTH18502A-EP MIN TYP† MAX TEST CONDITIONS mA 2 0.5 mA 4 pF 10 pF Co VO = 3 V or 0 8 † All typical values are at VCC = 3.3 V, TA = 25°C. ‡ Unused pins at VCC or GND § The parameter II(hold) includes the off-state output leakage current. ¶ This is the increase in supply current for each input that is at the specified TTL voltage level, rather than VCC or GND. pF Cio POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 27 SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 timing requirements over recommended operating free-air temperature range (unless otherwise noted) (normal mode) (see Figure 14) SN74LVTH18502A-EP VCC = 3.3 V ± 0.3 V fclock Clock frequency CLKAB or CLKBA CLKAB or CLKBA high or low tw Pulse duration tsu Setup time LEAB or LEBA high A before CLKAB↑ or B before CLKBA↑ th Hold time MIN MAX 0 100 VCC = 2.7 V MIN MAX 0 80 4.4 5.6 3 3 2.8 3 CLK high 1.5 0.7 CLK low 1.6 1.6 A after CLKAB↑ or B after CLKBA↑ 1.4 1.1 A after LEAB↓ or B after LEBA↓ 3.1 3.5 A before LEAB↓ or B before LEBA↓ UNIT MHz ns ns ns timing requirements over recommended operating free-air temperature range (unless otherwise noted) (test mode) (see Figure 14) SN74LVTH18502A-EP VCC = 3.3 V ± 0.3 V fclock tw tsu th td tr 28 MIN MAX 0 50 VCC = 2.7 V MIN MAX 0 40 Clock frequency TCK Pulse duration TCK high or low 9.5 10.5 A, B, CLK, LE, or OE before TCK↑ 6.5 7 UNIT MHz ns TDI before TCK↑ 2.5 3.5 TMS before TCK↑ 2.5 3.5 A, B, CLK, LE, or OE after TCK↑ 1.5 1 TDI after TCK↑ 1.5 1 TMS after TCK↑ 1.5 1 Delay time Power up to TCK↑ 50 50 ns Rise time VCC power up 1 1 µs Setup time Hold time POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 ns ns SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (normal mode) (see Figure 14) SN74LVTH18502A-EP PARAMETER FROM (INPUT) TO (OUTPUT) VCC = 3.3 V ± 0.3 V MIN fmax tPLH tPHL tPLH tPHL tPLH tPHL tPZH tPZL tPHZ tPLZ CLKAB or CLKBA MAX 100 A or B B or A CLKAB or CLKBA B or A LEAB or LEBA B or A OEAB or OEBA B or A OEAB or OEBA B or A VCC = 2.7 V MIN UNIT MAX 80 MHz 1.5 4.9 5.6 1.5 4.9 5.6 1.5 5.8 6.8 1.5 5.8 6.8 1.5 7.4 8.4 1.5 5.7 6.4 1.5 7.1 8.3 1.5 7.1 8.3 2.5 7.8 8.4 2.5 7.8 8.4 ns ns ns ns ns switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (test mode) (see Figure 14) SN74LVTH18502A-EP PARAMETER FROM (INPUT) TO (OUTPUT) VCC = 3.3 V ± 0.3 V MIN fmax tPLH tPHL tPLH tPHL tPZH tPZL tPZH tPZL tPHZ tPLZ tPHZ tPLZ TCK MAX 50 TCK↓ A or B TCK↓ TDO TCK↓ A or B TCK↓ TDO TCK↓ A or B TCK↓ TDO POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VCC = 2.7 V MIN UNIT MAX 40 MHz 2.5 14 17 2.5 14 17 1 5.5 6.5 1.5 6.5 7.5 4 17 20 4 17 20 1 5.5 6.5 1.5 5.5 6.5 4 18 20 4 17 18.5 1.5 7 8.5 1.5 7 8 ns ns ns ns ns ns 29 SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 recommended operating conditions (see Note 4) SN74LVTH182502A-EP MIN MAX 2.7 3.6 UNIT VCC VIH Supply voltage VIL VI Low-level input voltage 0.8 V Input voltage 5.5 V High-level input voltage IOH High-level output current IOL Low-level output current IOL† ∆t/∆v 2 V V A port, TDO −32 B port −12 mA A port, TDO 32 B port 12 Low-level output current A port, TDO 64 mA Input transition rise or fall rate Outputs enabled 10 ns/V mA TA Operating free-air temperature −40 85 °C † Current duty cycle ≤50%, f ≥ 1 kHz NOTE 1: All unused CLK, LE, or TCK inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. (*#+&)#( $#($'+(! ,+#"%$! ( ' *#+&)3' #+ "'!2( ,)!' #* "'3'.#,&'( )+)$'+!$ ")) )(" #'+ !,'$*$)#(! )+' "'!2( 2#).! '/)! (!+%&'(! +'!'+3'! ' +2 # $)(2' #+ "!$#((%' '!' ,+#"%$! 0#% (#$' 30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER VIK A, B, TDO VOH A port, TDO B port A, B, TDO VOL A port, TDO B port VCC = 2.7 V, IOH = −3 mA IOH = −8 mA VCC = 3 V IOH = −32 mA IOH = −12 mA VCC = 3 V, VCC = 2.7 V, 0.4 IOL = 64 mA IOL = 12 mA 0.55 VCC = 3.6 V VI = VCC VI = 0 VCC = 0, VI or VO = 0 to 4.5 V VI = 0.8 V IOZPU IOZPD TDO TDO 2 IOL = 16 mA IOL = 32 mA A or B ports‡ TDO V VCC = 3 V VCC = 3 V, VCC = 3.6 V, VI = 0 VI = 5.5 V VCC = 3 V VI = 2 V VO = 3 V VCC = 3.6 V, VCC = 3.6 V, 0.5 0.5 VCC = 3.6 V, IO = 0, VI = VCC or GND ±1 10 5 1 −25 −100 1 −5 ±100 75 150 500 −75 −150 −500 µA µA ±50 µA ±50 µA 2 18 24 Outputs disabled 0.6 2 VI = 3 V or 0 VO = 3 V or 0 µA A 1 0.6 Ci µA −1 Outputs low VCC = 3 V to 3.6 V, One input at VCC − 0.6 V, Other inputs at VCC or GND µA A 20 VO = 0.5 V or 3 V Outputs high ∆ICC¶ V 0.8 VO = 0.5 V VO = 0.5 V or 3 V VCC = 0 to 1.5 V, VCC = 1.5 V to 0, V 2 0.2 VI = 5.5 V VI = VCC TDO 2.4 IOL = 100 µA IOL = 24 mA VCC = 3.6 V A or B ports −1.2 UNIT VCC−0.2 2.4 VCC = 2.7 V, OE, TDI, TMS IOZH IOZL ICC II = −18 mA IOH = −100 µA VCC = 0 or 3.6 V, Ioff II(hold)§ VCC = 2.7 V, VCC = 2.7 V to 3.6 V, VI = VCC or GND VI = 5.5 V CLK, LE, TCK II SN74LVTH182502A-EP MIN TYP† MAX TEST CONDITIONS 0.5 mA mA 4 pF 10 pF Co VO = 3 V or 0 8 † All typical values are at VCC = 3.3 V, TA = 25°C. ‡ Unused pins at VCC or GND § The parameter II(hold) includes the off-state output leakage current. ¶ This is the increase in supply current for each input that is at the specified TTL voltage level, rather than VCC or GND. pF Cio (*#+&)#( $#($'+(! ,+#"%$! ( ' *#+&)3' #+ "'!2( ,)!' #* "'3'.#,&'( )+)$'+!$ ")) )(" #'+ !,'$*$)#(! )+' "'!2( 2#).! '/)! (!+%&'(! +'!'+3'! ' +2 # $)(2' #+ "!$#((%' '!' ,+#"%$! 0#% (#$' POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 31 SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 timing requirements over recommended operating free-air temperature range (unless otherwise noted) (normal mode) (see Figure 14) SN74LVTH182502A-EP VCC = 3.3 V ± 0.3 V fclock Clock frequency CLKAB or CLKBA CLKAB or CLKBA high or low tw Pulse duration tsu Setup time LEAB or LEBA high A before CLKAB↑ or B before CLKBA↑ th Hold time MIN MAX 0 100 VCC = 2.7 V MIN MAX 0 80 4.4 5.6 3 3 2.8 3 CLK high 1.5 0.7 CLK low 1.6 1.6 A after CLKAB↑ or B after CLKBA↑ 1.4 1.1 A after LEAB↓ or B after LEBA↓ 3.1 3.5 A before LEAB↓ or B before LEBA↓ UNIT MHz ns ns ns timing requirements over recommended operating free-air temperature range (unless otherwise noted) (test mode) (see Figure 14) SN74LVTH182502A-EP VCC = 3.3 V ± 0.3 V fclock tw tsu th td tr MAX 0 50 MIN MAX 0 40 Clock frequency TCK Pulse duration TCK high or low 9.5 10.5 A, B, CLK, LE, or OE before TCK↑ 6.5 7 UNIT MHz ns TDI before TCK↑ 2.5 3.5 TMS before TCK↑ 2.5 3.5 A, B, CLK, LE, or OE after TCK↑ 1.5 1 TDI after TCK↑ 1.5 1 TMS after TCK↑ 1.5 1 Delay time Power up to TCK↑ 50 50 ns Rise time VCC power up 1 1 µs Setup time Hold time (*#+&)#( $#($'+(! ,+#"%$! ( ' *#+&)3' #+ "'!2( ,)!' #* "'3'.#,&'( )+)$'+!$ ")) )(" #'+ !,'$*$)#(! )+' "'!2( 2#).! '/)! (!+%&'(! +'!'+3'! ' +2 # $)(2' #+ "!$#((%' '!' ,+#"%$! 0#% (#$' 32 MIN VCC = 2.7 V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 ns ns SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (normal mode) (see Figure 14) SN74LVTH182502A-EP PARAMETER FROM (INPUT) TO (OUTPUT) VCC = 3.3 V ± 0.3 V MIN fmax tPLH tPHL tPLH tPHL tPLH tPHL tPLH tPHL tPLH tPHL tPLH tPHL tPZH tPZL tPHZ tPLZ CLKAB or CLKBA MAX 100 A B B A CLKAB B CLKBA A LEAB B LEBA A OEAB or OEBA B or A OEAB or OEBA B or A VCC = 2.7 V MIN UNIT MAX 80 MHz 1.5 5.7 6.4 1.5 5.7 6.4 1.5 4.9 5.6 1.5 4.9 5.6 1.5 6.7 7.7 1.5 6.7 7.7 1.5 5.8 6.8 1.5 5.8 6.8 1.5 8.2 9.2 1.5 6.2 6.7 1.5 7.4 8.4 1.5 5.7 6.4 1.5 7.9 8.7 1.5 7.9 8.7 2.5 8.4 8.9 2.5 8.4 8.9 ns ns ns ns ns ns ns ns switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (test mode) (see Figure 14) SN74LVTH182502A-EP PARAMETER FROM (INPUT) TO (OUTPUT) VCC = 3.3 V ± 0.3 V MIN fmax tPLH tPHL tPLH tPHL tPZH tPZL tPZH tPZL tPHZ tPLZ tPHZ tPLZ TCK MAX 50 TCK↓ A or B TCK↓ TDO TCK↓ A or B TCK↓ TDO TCK↓ A or B TCK↓ TDO VCC = 2.7 V MIN UNIT MAX 40 MHz 2.5 14 17 2.5 14 17 1 5.5 6.5 1.5 6.5 7.5 4 17 20 4 17 20 1 5.5 6.5 1.5 5.5 6.5 4 18 20 4 17 18.5 1.5 7 8.5 1.5 7 8 ns ns ns ns ns ns (*#+&)#( $#($'+(! ,+#"%$! ( ' *#+&)3' #+ "'!2( ,)!' #* "'3'.#,&'( )+)$'+!$ ")) )(" #'+ !,'$*$)#(! )+' "'!2( 2#).! '/)! (!+%&'(! +'!'+3'! ' +2 # $)(2' #+ "!$#((%' '!' ,+#"%$! 0#% (#$' POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 33 SCAS744A − DECEMBER 2003 − REVISED JUNE 2004 PARAMETER MEASUREMENT INFORMATION 6V S1 500 Ω From Output Under Test Open GND CL = 50 pF (see Note A) 500 Ω TEST S1 tPLH/tPHL tPLZ/tPZL tPHZ/tPZH Open 6V GND LOAD CIRCUIT 2.7 V 1.5 V Timing Input 0V tw tsu 2.7 V 1.5 V Input 1.5 V th 2.7 V 1.5 V Data Input 1.5 V 0V 0V VOLTAGE WAVEFORMS PULSE DURATION VOLTAGE WAVEFORMS SETUP AND HOLD TIMES 2.7 V Input 1.5 V 1.5 V 0V tPLH tPHL VOH 1.5 V Output 1.5 V VOL tPHL tPLH VOH Output 1.5 V 1.5 V VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS 2.7 V Output Control Output Waveform 1 S1 at 6 V (see Note B) Output Waveform 2 S1 at GND (see Note B) 1.5 V 1.5 V 0V tPZL tPLZ 3V 1.5 V tPZH VOL + 0.3 V VOL tPHZ 1.5 V VOH − 0.3 V VOH ≈0 V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns. D. The outputs are measured one at a time, with one transition per measurement. Figure 14. Load Circuit and Voltage Waveforms 34 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PACKAGE OPTION ADDENDUM www.ti.com 18-Sep-2008 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty 8V18502AIPMREP ACTIVE LQFP PM 64 1000 TBD CU NIPDAU Level-3-220C-168 HR V62/04729-01XE ACTIVE LQFP PM 64 1000 TBD CU NIPDAU Level-3-220C-168 HR Lead/Ball Finish MSL Peak Temp (3) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF SN74LVTH18502A-EP : SN74LVTH18502A • Catalog: • Military: SN54LVTH18502A NOTE: Qualified Version Definitions: - TI's standard catalog product • Catalog • Military - QML certified for Military and Defense Applications Addendum-Page 1 MECHANICAL DATA MTQF008A – JANUARY 1995 – REVISED DECEMBER 1996 PM (S-PQFP-G64) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 0,08 M 33 48 49 32 64 17 0,13 NOM 1 16 7,50 TYP Gage Plane 10,20 SQ 9,80 12,20 SQ 11,80 0,25 0,05 MIN 0°– 7° 0,75 0,45 1,45 1,35 Seating Plane 0,08 1,60 MAX 4040152 / C 11/96 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Falls within JEDEC MS-026 May also be thermally enhanced plastic with leads connected to the die pads. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 PACKAGE OPTION ADDENDUM www.ti.com 18-Sep-2008 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty 8V18502AIPMREP ACTIVE LQFP PM 64 1000 TBD CU NIPDAU Level-3-220C-168 HR V62/04729-01XE ACTIVE LQFP PM 64 1000 TBD CU NIPDAU Level-3-220C-168 HR Lead/Ball Finish MSL Peak Temp (3) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF SN74LVTH18502A-EP : SN74LVTH18502A • Catalog: • Military: SN54LVTH18502A NOTE: Qualified Version Definitions: - TI's standard catalog product • Catalog • Military - QML certified for Military and Defense Applications Addendum-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 14-Jul-2012 TAPE AND REEL INFORMATION *All dimensions are nominal Device 8V18502AIPMREP Package Package Pins Type Drawing LQFP PM 64 SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) 1000 330.0 24.4 Pack Materials-Page 1 13.0 B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant 13.0 2.1 16.0 24.0 Q2 PACKAGE MATERIALS INFORMATION www.ti.com 14-Jul-2012 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) 8V18502AIPMREP LQFP PM 64 1000 367.0 367.0 45.0 Pack Materials-Page 2 MECHANICAL DATA MTQF008A – JANUARY 1995 – REVISED DECEMBER 1996 PM (S-PQFP-G64) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 0,08 M 33 48 49 32 64 17 0,13 NOM 1 16 7,50 TYP Gage Plane 10,20 SQ 9,80 12,20 SQ 11,80 0,25 0,05 MIN 0°– 7° 0,75 0,45 1,45 1,35 Seating Plane 0,08 1,60 MAX 4040152 / C 11/96 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Falls within JEDEC MS-026 May also be thermally enhanced plastic with leads connected to the die pads. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated