NEC UPD161830P

PRELIMINARY PRODUCT INFORMARTION
MOS INTEGRATED CIRCUIT
µ PD161830
240-OUTPUT TFT-LCD SOURCE DRIVER
(COMPATIBLE WITH 64-GRAY SCALES)
DESCRIPTION
The µ PD161830 is a source driver for TFT-LCDs supporting 64 gray-scale display and can operate with a supply
voltage of 2.5 V for the logic block and 5.0 V for the driver block. Data input as 6-bit x 3-dot digital data is output as
64 γ -corrected values using an internal D/A converter and 5 external power modules, thus achieving a 260,000-color
(full-color) display.
FEATURES
• CMOS level input
• 240 outputs
• Input of 6 bits (gray-scale data) by 3 dots
• Capable of outputting 64 values by means of 5 external power modules and a D/A converter
• Output dynamic range: VSS2 to VDD2
• High-speed data transfer: fCLK = 15 MHz MAX. (internal data transfer speed when operating at VDD1 = 2.5 V)
• Level inversion γ -correction power supply is possible
• Logic power supply voltage (VDD1): 2.2 to 3.6 V
• Driver power supply voltage (VDD2): 4.5 to 5.5 V
ORDERING INFORMATION
Part Number
Package
µ PD161830P
Chip
Remark Purchasing the above chip entail the exchange of documents such as a separate memorandum or product
quality, so please contact one of our sales representatives.
The information contained in this document is being issued in advance of the production cycle for the
device. The parameters for the device may change before final production or NEC Corporation, at its own
discretion, may withdraw the device prior to its production.
Not all devices/types available in every country. Please check with local NEC representative for
availability and additional information.
Document No. S16240EJ2V0PM00 (2nd edition)
Date Published July 2002 NS CP (K)
Printed in Japan
The mark ★ shows major revised points.
©
2002
µPD161830
1. BLOCK DIAGRAM
STHR
R,/L
STHL
VDD1(2.5 V)
VSS1
80-bit bidirectional shift register
C1
CLK
INV
D00 to D05
D10 to D15
D20 to D25
C2
C79
C80
INBUF
Data register
CM
STB
Mode
control
POL
AP
Latch
MODE
VCsel
VCOM
BUF
VCOM
V0 to V4
GAM
Level shifter
γ
control
D/A converter
BIAS
control
Output buffer
VDD2 (5.0 V)
VSS2
VDD1
TESTIN
TESTO1
TESTO2
BA
S1
Remark
2
S2
S3
/xxx indicates active low signal.
Preliminary Product Information S16240EJ2V0PM
S240
µPD161830
2. PIN CONFIGURATION (Pad Layout)
Chip size: 15.84 x 1.11 mm
2
Bump size (Input/VCOM/test/dummy): 80 x 86 µm
Bump size (Output): 29 x 103 µm
2
2
Alignment Mark (µm)
X: 7716.45
Y: 347.04
X: –7716.45 Y: 347.04
1
241
332
242
331
Y
X
246
327
247
326
89.52
29.04
Alignment mark shape (unit: µm)
29.04
89.52
Preliminary Product Information S16240EJ1V0PM
3
µPD161830
Table 2–1. Pad Layout (1/2)
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
4
Name
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
S12
S13
S14
S15
S16
S17
S18
S19
S20
S21
S22
S23
S24
S25
S26
S27
S28
S29
S30
S31
S32
S33
S34
S35
S36
S37
S38
S39
S40
S41
S42
S43
S44
S45
S46
S47
S48
S49
S50
S51
S52
S53
S54
S55
S56
S57
S58
S59
S60
X [µ m]
7170.000
7110.000
7050.000
6990.000
6930.000
6870.000
6810.000
6750.000
6690.000
6630.000
6570.000
6510.000
6450.000
6390.000
6330.000
6270.000
6210.000
6150.000
6090.000
6030.000
5970.000
5910.000
5850.000
5790.000
5730.000
5670.000
5610.000
5550.000
5490.000
5430.000
5370.000
5310.000
5250.000
5190.000
5130.000
5070.000
5010.000
4950.000
4890.000
4830.000
4770.000
4710.000
4650.000
4590.000
4530.000
4470.000
4410.000
4350.000
4290.000
4230.000
4170.000
4110.000
4050.000
3990.000
3930.000
3870.000
3810.000
3750.000
3690.000
3630.000
Y [µ m]
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
No.
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
Name
S61
S62
S63
S64
S65
S66
S67
S68
S69
S70
S71
S72
S73
S74
S75
S76
S77
S78
S79
S80
S81
S82
S83
S84
S85
S86
S87
S88
S89
S90
S91
S92
S93
S94
S95
S96
S97
S98
S99
S100
S101
S102
S103
S104
S105
S106
S107
S108
S109
S110
S111
S112
S113
S114
S115
S116
S117
S118
S119
S120
X [µ m]
3570.000
3510.000
3450.000
3390.000
3330.000
3270.000
3210.000
3150.000
3090.000
3030.000
2970.000
2910.000
2850.000
2790.000
2730.000
2670.000
2610.000
2550.000
2490.000
2430.000
2370.000
2310.000
2250.000
2190.000
2130.000
2070.000
2010.000
1950.000
1890.000
1830.000
1770.000
1710.000
1650.000
1590.000
1530.000
1470.000
1410.000
1350.000
1290.000
1230.000
1170.000
1110.000
1050.000
990.000
930.000
870.000
810.000
750.000
690.000
630.000
570.000
510.000
450.000
390.000
330.000
270.000
210.000
150.000
90.000
30.000
Y [µ m]
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
Preliminary Product Information S16240EJ2V0PM
No.
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
Name
S121
S122
S123
S124
S125
S126
S127
S128
S129
S130
S131
S132
S133
S134
S135
S136
S137
S138
S139
S140
S141
S142
S143
S144
S145
S146
S147
S148
S149
S150
S151
S152
S153
S154
S155
S156
S157
S158
S159
S160
S161
S162
S163
S164
S165
S166
S167
S168
S169
S170
S171
S172
S173
S174
S175
S176
S177
S178
S179
S180
X [µ m]
-30.000
-90.000
-150.000
-210.000
-270.000
-330.000
-390.000
-450.000
-510.000
-570.000
-630.000
-690.000
-750.000
-810.000
-870.000
-930.000
-990.000
-1050.000
-1110.000
-1170.000
-1230.000
-1290.000
-1350.000
-1410.000
-1470.000
-1530.000
-1590.000
-1650.000
-1710.000
-1770.000
-1830.000
-1890.000
-1950.000
-2010.000
-2070.000
-2130.000
-2190.000
-2250.000
-2310.000
-2370.000
-2430.000
-2490.000
-2550.000
-2610.000
-2670.000
-2730.000
-2790.000
-2850.000
-2910.000
-2970.000
-3030.000
-3090.000
-3150.000
-3210.000
-3270.000
-3330.000
-3390.000
-3450.000
-3510.000
-3570.000
Y [µ m]
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
µPD161830
Table 2–1. Pad Layout (2/2)
No.
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
Name
S181
S182
S183
S184
S185
S186
S187
S188
S189
S190
S191
S192
S193
S194
S195
S196
S197
S198
S199
S200
S201
S202
S203
S204
S205
S206
S207
S208
S209
S210
S211
S212
S213
S214
S215
S216
S217
S218
S219
S220
S221
S222
S223
S224
S225
S226
S227
S228
S229
S230
S231
S232
S233
S234
S235
S236
S237
S238
S239
S240
X [µ m]
-3630.000
-3690.000
-3750.000
-3810.000
-3870.000
-3930.000
-3990.000
-4050.000
-4110.000
-4170.000
-4230.000
-4290.000
-4350.000
-4410.000
-4470.000
-4530.000
-4590.000
-4650.000
-4710.000
-4770.000
-4830.000
-4890.000
-4950.000
-5010.000
-5070.000
-5130.000
-5190.000
-5250.000
-5310.000
-5370.000
-5430.000
-5490.000
-5550.000
-5610.000
-5670.000
-5730.000
-5790.000
-5850.000
-5910.000
-5970.000
-6030.000
-6090.000
-6150.000
-6210.000
-6270.000
-6330.000
-6390.000
-6450.000
-6510.000
-6570.000
-6630.000
-6690.000
-6750.000
-6810.000
-6870.000
-6930.000
-6990.000
-7050.000
-7110.000
-7170.000
Y [µ m]
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
396.480
No.
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
Name
DUMMY1
DUMMY2
DUMMY3
DUMMY4
DUMMY5
DUMMY6
DUMMY7
VCOM
STHL
DUMMY8
VDD2
VDD2
VDD2
VDD1
VDD1
VDD1
VSS1
VSS1
VSS1
VSS2
VSS2
VSS2
VCSEL
R,/L
MODE
BA
GAM
CM
POL
AP
STB
D25
D24
D23
D22
D21
D20
CLK
DUMMY9
V4
V4
V4
V3
V3
V3
V2
V2
V2
V1
V1
V1
V0
V0
V0
DUMMY10
INV
D15
D14
D13
D12
X [µ m]
-7311.420
-7772.010
-7772.010
-7772.010
-7772.010
-7772.010
-7654.530
-7479.510
-7229.490
-7054.440
-6793.050
-6693.090
-6593.130
-6331.710
-6231.750
-6131.790
-5878.440
-5778.480
-5678.520
-5428.500
-5328.540
-5228.580
-4975.260
-4725.240
-4475.220
-4225.200
-3975.180
-3725.160
-3475.140
-3225.120
-2975.100
-2725.080
-2475.060
-2225.040
-1975.020
-1725.000
-1474.980
-1224.960
-1049.910
-874.860
-774.900
-674.940
-424.920
-324.960
-225.000
25.080
125.040
225.000
475.020
574.980
674.940
925.020
1024.980
1124.940
1299.990
1475.010
1725.030
1975.050
2225.070
2475.090
Y [µ m]
407.010
164.880
64.860
-35.160
-135.180
-235.200
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
Preliminary Product Information S16240EJ1V0PM
No.
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
Name
D11
D10
D05
D04
D03
D02
D01
D00
TESTO1
TESTO2
TESTIN
VDD1
VDD1
VDD1
VSS1
VSS1
VSS1
VSS2
VSS2
VSS2
VDD2
VDD2
VDD2
DUMMY11
STHR
DUMMY12
DUMMY13
DUMMY14
DUMMY15
DUMMY16
DUMMY17
DUMMY18
X [µ m]
2725.110
2975.130
3225.150
3475.170
3725.190
3975.210
4225.230
4475.250
4725.270
4975.290
5225.310
5475.360
5575.320
5675.280
5853.630
5953.590
6053.550
6303.570
6403.530
6503.490
6843.180
6943.140
7043.100
7304.490
7479.540
7654.560
7772.010
7772.010
7772.010
7772.010
7772.010
7311.420
Y [µ m]
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-407.010
-235.200
-135.180
-35.160
64.860
164.880
407.010
5
µPD161830
3. PIN FUNCTIONS
(1/2)
Pin Symbol
Pin Name
Pad No.
I/O
Description
S1 to S240
Driver output
1 to 240 Output The D/A converted 64-gray-scale analog voltage is output.
D00 to D05
Display data input
308 to 303
D10 to D15
Input
The display data is input with a width of 18 bits, viz., the gray scale data (6 bits) by 3
dots (1 pixels).
DX0: LSB, DX5: MSB
Input
These refer to the shift direction control input.
The shift directions of the shift registers are as follows.
R,/L = L (left shift): STHL (input), S240 → S1 → STHR (output)
R,/L = H (right shift) : STHR (input), S1 → S240 → STHL (output)
302 to 297
D20 to D25
277 to 272
R,/L
Shift direction
control input
STHR
Right shift start
325
pulse input/output
I/O
STHL
Left shift start
249
pulse input/output
I/O
CLK
Shift clock input
278
Input
This pin is the shift clock input of the shift register.
Display data is captured into the data register at the rising edge.
The start pulse output enters high level at the rising edge of the 80 th clock following
the start pulse input, and becomes the start pulse of the next level driver. The 81th
clock of the first driver becomes the start pulse input of the next driver
STB
Latch input
271
Input
A timing signal that latches the contents of the data register. When an H level is read
at the rising edge of CLK, the contents of the data register are latched and transferred
to the D/A converter, and analog voltage corresponding to the display data is output.
Also, because the internal operation via CLK continues even after the STB latch, do
not stop CLK. The contents of the shift register are cleared at the rising edge of STB.
Following a 1-pulse input at startup, this IC will operate normally. Note that the output
switch is turned off at the rising edge of STB.
For the STB input timing, refer to Switching Characteristics Waveform.
POL
Polarity inversion
signal
269
Input
This pin inverts the output polarity. The polarity inversion signal data is captured at the
rising edge of STB. The γ -resistor is switched in accordance with the positive/negative
polarity.
POL = L: Negative polarity
POL = H: Positive polarity
INV
Data inversion
296
Input
This pin inverts the input data. Input data in synchronization with the shift clock.
INV = L: Normal input
INV = H: Data inversion input
VCOM
COM amplitude
output
248
VCsel
COM amplitude
263
output fixing signal
Input
The VCOM output is fixed to L. When the VCOM output is not used, VCsel needs to be
fixed to L.
VCsel = L: VCOM output fixed to L
VCsel = H: VCOM signal output in correspondence with POL signal
CM
8-color display
mode switching
Input
The operating mode is switched to 8-color mode. Input data MSB leads display data.
In this mode, turn off the γ -resistor, amplifier, and BIAS circuit. However, when the γ correction power supply is input externally, the γ -circuit current will flow continuously.
CM = L: Normal display mode
CM = H: 8-color display mode
6
264
268
These refer to the start pulse I/O pins when driver ICs are connected in cascade.
Fetching of display data starts when H is read at the rising edge of CLK.
R,/L = L (left shift): STHL input, STHR output
R,/L = H (right shift): STHR input, STHL output
Output This pin inverts the signal input from the POL pin and outputs it following conversion to
the VDD2 potential at the rising edge of STB. When the VCOM output is not used, VCsel
must be fixed to L.
Preliminary Product Information S16240EJ2V0PM
µPD161830
(2/2)
Pin Symbol
AP
Pin Name
Output SW
ON/OFF
Pad No.
270
I/O
Description
Input
MODE = L
This pin turns ON/OFF the BIAS circuit and turns on the output SW and amplifier.
When AP is H, the amplifier is set and the LCD is driving.
The amplifier output and output SW are turned on at the rising edge of AP,
starting the LCD drive. Note that the output SW is turned off at the rising edge of
STB and the output becomes Hi-Z (Hi-Z: High impedance). For details, refer to 4.1
Drive Timing by MODE and AP Signal.
For the AP input timing, refer to Switching Characteristics Waveform.
MODE = H
A sauce driver output circuit is changed to an amplifier output by grand fixation.
For details, refer to 4.1 Drive Timing by MODE and AP Signal.
GAM
External γ -usage
selection
267
Input
When the γ -correction power supply is input externally, switch GAM to H. If two or
more chips are used, be sure to input the γ -correction power supply externally.
Figure 4–4 shows an input example of the γ -correction power supply.
GAM = L: External γ -correction power supply not input (open)
GAM = H: External γ -correction power supply input
MODE
Driver output
265
functional change
Input
The drive mode of the sauce driver output by AP pin is set up as follows.
For details, please refer to 4.1 Drive Timing by MODE and AP Signal.
MODE = L: Normal drive mode
MODE = H: Grand output drive mode
V0 to V4
γ -corrected power 294 to 280
supplies
BA
BIAS current
adjustment
function
266
TESTIN
TEST input pin
311
TESTO1,
TESTO2
TEST output pin
309,
310
VDD1
Logic power
supply
254 to 256,
312 to 314
−
2.2 to 3.6 V
VDD2
Driver power
supply
251 to 253,
321 to 323
−
4.5 to 5.5 V
VSS1
Logic ground
257 to 259,
315 to 317
−
Ground
VSS2
Driver ground
260 to 262,
318 to 320
−
Ground
−
This pin is dummy.
Dummy1 to Dummy
dummy18
−
These pins input the γ -corrected power supplies from outside, the relationship
below must be observed. Also, be sure to stabilize the gray-scale-level power
supply during gray-scale voltage output.
VSS2 ≤ V4 ≤ V3 ≤ V2 ≤ V1 ≤ V0 ≤ VDD2
Input
This pin adjusts the BIAS current and through rate of amplifier inside IC.
Select either the high power mode or low power mode.
In addition, as compared with the time of the low power mode, twice about as
many bias current as this flows at the time of high power mode.
BA = L: Low power mode
BA = H: high power mode
Input
Set to H or leave open
Output Leave open.
241 to 247, 250,
279, 295, 324,
326 to 332
Caution
To avoid latchup failure, the sequence when turning on the power must be VDD1 → logic input →
VDD2 →gray-scale power supply (V0 to V4), and the reverse sequence when turning off the power.
Follow this sequence during shift periods as well.
Preliminary Product Information S16240EJ1V0PM
7
µPD161830
4. DISPLAY DRIVING CIRCUIT
The display driving circuit of µPD161830 consists of γ-resistance and γ-selection switch (SW) which are shown
below, a D/A converter, and an output stage.
The function of each block is as follows.
γ-resistance
: It is string resistance for γ-curve.
γ-selection switch (SW): Change γ-curve at the time of a positive and a negative drive.
D/A converter
: Choose an output voltage level from display data.
Output stage
: It consists of amplifier for a drive and a switch for a voltage maintenance drive, and an
inverter for 8 color displays.
Figure 4–1. Output Circuit Image
V0
γ -selection SW
Positive Negative
DAC SW
OUT
AMP
Output for 8-color display
V10
8
Preliminary Product Information S16240EJ2V0PM
µPD161830
4.1 Drive Timing by MODE and AP Signal
·MODE = L
Normal drive is selected when a MODE pin is set as L.
Based on output stage construction, AP pin, STB pin, CLK pin signal, and the relation of Sn (sauce output) state are
shown in the next figure.
From 1 clock of a CLK signal to 4 clock is used for the output stage after a STB standup, it carries out decoding to
the latch output voltage level of display data, and transmits to an output circuit.
The output circuit's having prevented from Sn pin output compulsorily the output of the level which is not decided as
a Hi-Z state from the standup of a STB signal to the standup of a CLK signal 4 clock.
When AP pin is L input after 4 clock rises, as for Sn pin output, Hi-Z state is maintained, and an output circuit
changes from the standup of AP pin input to an AMP drive state. Moreover, Sn pin outputs that the notes 1 which pull
up to the voltage (display data) level which requires the potential of a TFT drain line, or are reduced
Note1
.
When low power consumption is required, AMP pin is switched from H to L, after a voltage level attain to
requirement voltage level L, output circuit stage operation is changed into SW drive
Note2
, and it stabilizes a voltage
level.
Since liquid crystal load is driven only by SW drive of γ-resistance direct file when referred to as AP = L before
attainment of the level to demand, most time is needed for level attainment.
Since this timing (AP = H period) is dependent on the load conditions of liquid crystal, it is a real use TFT panel and
fully needs to be evaluated.
Notes 1. When it is always set as AP = H, Sn pin starts an AMP drive automatically after the standup of 4 clock.
2. At the time of SW drive, stop the bias current of an output stage amplifier circuit, and stop the consumption
current of the output stage.
Preliminary Product Information S16240EJ1V0PM
9
µPD161830
Figure 4–2. Output Stage Operation Image
V0
γ selection SW + DAC SW
OUT
AMP
Hi-Z state
OFF
AMP drive
OFF
SW drive
OFF
ON
AMP
OFF
AMP
AMP
V10
Hi-Z state
AMP drive
SW drive
AP
STB
CLK
4 CLK
Hi-Z minimum period
Sn
10
ON
Preliminary Product Information S16240EJ2V0PM
µPD161830
Examples of the input/output timing of each signal during white and black display in normal mode are shown below.
Figure 4–3. Timing Chart
STB
AP
POL
DATA
DATA = 111111
DATA = 000000
VCOM
260,000-color display mode (CM = L)
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Undefined
OUT
Black level
Black level
White level
White level
Black level
Black level
White level
White level
8-color display mode
OUT
LSB
MSB
MSB used in 8-color
display mode
Preliminary Product Information S16240EJ1V0PM
11
µPD161830
·MODE = H (GND output driving)
When a MODE pin is set as H, the output change function by AP pin is changed as follows.
AP Pin
Sn Pin (source output) Drive
L
GND output (VSS fixed)
H
Normal AMP operation
As for sauce output, output is fixed to ground (VSS) in falling of AP signal at the time of GND output drive (MODE =
H). Moreover, the return to an APM drive usually returns from the next STB = H period which latched AP = H by the
rising edge of STB signal. The relationship of the CLK signal at the time of a GND output drive, a STB signal, AP
signal, and Sn state is shown as follows.
STH
CLK
STB
AP
Latch AP = H
MODE "H"
SAMPLING DATA
SAMPLING
SAMPLING DATA
SAMPLING DATA
POL
Data
S1 to S240
ALL = 0
Hi-Z
AMP driving
GND
Hi-Z
AMP driving
The next STB = H output start
which latched AP = H.
12
Preliminary Product Information S16240EJ2V0PM
µPD161830
4.2 γ-Correction Power Supply Connection Example
The µ PD161830 enables customization of the γ -correction power supply on both the positive and negative polarity
sides (refer to 6. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE). Consequently, a γ correction power supply does not have to be input externally when a single source-driver chip is being used in the
panel.
Multiple chips can also be used without having to input a γ -correction power supply externally because the error
between the chips can be absorbed by shorting the γ -correction power supply pins, as shown in Figure 4–4.
Figure 4–4. γ -Correction Power-Supply Connection Example
·Single chip
<Example 1 (GAM = L)>
Open
External power supply input
VDD2 VSS2
V0 V1 V2 V3 V4
VSS2 VDD2
V0 V1 V2 V3 V4
VSS2 VDD2
<Example 2 (GAM = H)>
External power supply input
External power supply input
VDD2 VSS2
·Multiple chips
<Example 1 (GAM = L)>
Vn - Vn short
External power supply input
VDD2 VSS2
V0 V1 V2 V3 V4
VSS2 VDD2
VDD2 VSS2
V0 V1 V2 V3 V4
VSS2 VDD2
V0 V1 V2 V3 V4
VSS2 VDD2
VDD2 VSS2
V0 V1 V2 V3 V4
VSS2 VDD2
<Example 2 (GAM = H)>
External power supply input
External power supply input
VDD2 VSS2
Preliminary Product Information S16240EJ1V0PM
13
µPD161830
4.3 CLK Signal Input
Input at least 4 clocks of the CLK signal after the rising of the STB signal.
STB
2
1
3
4 /1
2
3
D1 to D3
D4 to D6
4
5
6
7
8
CLK
STH
★
Invalid
D7 to D9 D10 to D12 D13 to D15 D16 to D18 D19 to D21
Drive timing
Internal latch
signal1 Note
Internal latch
signal2 Note
Internal latch
signal3 Note
Note Internal latch signal : It is the signal that do latch the display data put in data register in output latch circuit.
5. MODE EXPLANATION
Normal Mode/ 8-clor Display Mode
CM
H
L
POL
Driver Output Status
8-color mode
Driver Output (in normally white)
H
MSB = H
MSB = L
Black level display
L
MSB = H
White level display
MSB = L
Black level display
H
L
14
Data
All bit = H
260,000-color mode
White level display
White level display
All bit = L
Black level display
All bit = H
White level display
All bit = L
Black level display
Preliminary Product Information S16240EJ2V0PM
µPD161830
6. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE
The relationship between input data and output voltage are shown in Table 6−2.
Any 3 major points V1 to V3 from the LCD panel γ-characteristics curve can be used as the external power supplies.
The relationship V0 to V4 external power supplies and γ-correction resistance is shown in Table 6−1, Figure 6−1.
Table 6–1. Relationship between External Power Supply Pins and γ-correction Resistance
Pin Name
Voltage (V)
Resistance (Ω)
V0
5.0
0
V1
3.5
7,500
V2
2.5
12,500
V3
1.5
17,500
V4
0
25,000
Figure 6–1. Relationship between External Power Supply Pins and γ-correction Resistance
VDD2
V0
7500 Ω
V1
5000 Ω
V2
5000 Ω
V3
7500 Ω
V4
VSS2
This external power supply pins (V0 to V4) can customize the γ-correction voltage by selecting the desired voltage
from one of 250 divisions of the string resistor between VSS2 and VDD2, which generated γ-correction voltage. Note
that the voltage can be selected individually for both positive and negative polarity.
Preliminary Product Information S16240EJ1V0PM
15
µPD161830
Table 6−
−2. Relationship of Input Data and Output Voltage in the µPD161830
T.B.D.
Remark T.B.D. (To be determined.)
16
Preliminary Product Information S16240EJ2V0PM
µPD161830
6.1 Connection between γ-correction Resistance, Power Supply, and GND Pin
Connection of γ- compensation resistance power supply (V0 to V4) and a power supply pin (VDD2 and VSS2) is
indicated below to be γ- compensation resistance of µPD161830.
By setup of a GAM pin, as for γ-compensation resistance, connection changes the highest minimum potential
between VDD2 to VSS2 or among V0 to V4.
Figure 6−
−2. GAM Pin Function
VDD2
γ -selectionSW
Positive Negative
polarity polarity
GAM
SW1
V0
GAM = L
SW1
SW2
V1
V2
GAM = H
V3
SW1
SW2
V4
SW2
GAM
VSS2
Preliminary Product Information S16240EJ1V0PM
17
µPD161830
7. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT PIN
Data format: 6 bits x RGBs (3 dots)
Input width: 18 bits (1-pixel data)
R,/L = H (Right shift)
Output
S1
S2
S3
S4
...
S239
S240
Data
D00 to D05
D10 to D15
D20 to D25
D00 to D05
...
D10 to D15
D20 to D25
R,/L = L (Left shift)
18
Output
S1
S2
S3
S4
...
S239
S240
Data
D00 to D05
D10 to D15
D20 to D25
D00 to D05
...
D10 to D15
D20 to D25
Preliminary Product Information S16240EJ2V0PM
µPD161830
8. ELECTRICAL SPECIFICATIONS
Absolute Maximum Ratings (TA = 25°°C, VSS1 = VSS2 = 0 V)
Parameter
Symbol
Rating
Unit
–0.3 to +4.5
V
–0.3 to +6.0
V
–0.3 to VDD1,2 + 0.3
V
Logic Part Supply Voltage
VDD1
Driver Part Supply Voltage
VDD2
Input Voltage
VI
Output Voltage
VO
–0.3 to VDD1,2 + 0.3
V
Operating Ambient Temperature
TA
–20 to +75
°C
Storage Temperature
Tstg
–55 to +125
°C
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any
parameter. That is, the absolute maximum ratings are rated values at which the product is on the
verge of suffering physical damage, and therefore the product must be used under conditions that
ensure that the absolute maximum ratings are not exceeded.
Recommended Operating Range (TA = –20 to +75°C, VSS1 = VSS2 = 0 V)
Parameter
Symbol
Condition
MIN.
TYP.
MAX.
Unit
3.6
V
5.0
5.5
V
Logic Part Supply Voltage
VDD1
2.2
Driver Part Supply Voltage
VDD2
4.5
High-Level Input Voltage
VIH
0.7 VDD1
VDD1
V
Low-Level Input Voltage
VIL
0
0.3 VDD1
V
γ -Corrected Voltage
V0 to V4
VSS2
VDD2
V
Clock Frequency
fCLK
15
MHz
Preliminary Product Information S16240EJ1V0PM
19
µPD161830
Electrical Characteristics (TA = –20 to +75°C, VDD1 = 2.2 to 3.6 V, VDD2 = 5.0 V ± 0.5 V, VSS1 = VSS2 = 0 V)
Parameter
Input Leak Current
Symbol
IIL
Condition
MIN.
TYP.
D00-D05, D10-D15, D20-D25, R,/L, STB, CLK,
MAX.
Unit
±1.0
µA
200
µA
STHR(L), INV, CM, AP, BA, POL, GAM,
VCsel
Input Current
IIL2
TESTIN
High-Level Output Voltage
VOH
STHR (STHL), IOH = –1.0 mA
10
Low-Level Output Voltage
VOL
STHR (STHL), IOL = +1.0 mA
VCOM Output Voltage
VOH2
VDD2 = 5.0 V, IO = –1.0 mA
VOL2
VDD2 = 5.0 V, IO = +1.0 mA
0.5
V0 = 5.0 V, V4 = 0 V
Static Current Consumption
(when in γ -correction power mode)
IVOH1
(AMP drive)
100
VDD2 = 5.0 V, VOUT = VX – 1.0 V
V
VDD2 – 0.5
γ -Correction Power-supply Iγ
Driver Output Current
40
VDD1 – 0.5
Note1
V
V
0.5
V
200
400
µA
−0.5
−0.15
mA
Input data: 1FH
IVOL1
VDD2 = 5.0 V, VOUT = VX + 1.0 V
Note1
0.15
0.50
mA
Input data: 20H
Driver Output Current
IVOH2
(Switch drive)
VDD2 = 5.0 V, VOUT = VX – 1.0 V
Note1
−50
−15
µA
Input data: 1FH
IVOL2
VDD2 = 5.0 V, VOUT = VX + 1.0 V
Note1
15
µA
40
Input data: 20H
Driver Output Current
VVOH3
VDD2 = 5.0 V, IO = –50 µA
(8-color display mode)
VVOL3
VDD2 = 5.0 V, IO = +50 µA
Output Voltage Deviation
∆VO
VDD1 = 2.5 V, VDD2 = 5.0 V,
VOUT = 2.5 V
Output Voltage Range
VO
Logic Part Dynamic Current IDD1
VDD2 – 0.5
±10
0.5
V
±20
mV
Note1
Input data: 00H to 3FH
With no load
V
VSS2 + 0.05
Note2
VDD2 – 0.05
V
0.4
0.8
mA
0.9
1.5
mA
Consumption
Driver Part Dynamic
IDD2
VDD = 5.0 V, with no load
Note2
Current Consumption
Notes 1. VX refers to the output voltage of analog output pins S1 to S240.
VOUT refers to the voltage applied to analog output pins S1 to S240.
2. fCLK = 15 MHz, STB cycle = 60 µs, AP pulse width = 15 µs, BA=L (low power mode)
20
Preliminary Product Information S16240EJ2V0PM
µPD161830
Switching Characteristics (TA = –20 to +75°C, VDD1 = 2.2 to 3.6 V, VDD2 = 5.0 V ± 0.5 V, VSS1 = VSS2 = 0 V)
Parameter
Start Pulse Delay Time
Symbol
tPLH1
Condition
MIN.
TYP.
CL = 15 pF
tPHL1
MAX.
Unit
25
ns
25
ns
Driver Output Delay Time
tPLH2H
CL = 30 pF
12
µs
(High power mode)
tPHL2H
AP↑ →VOUT – 100 mV or VOUT + 100 mV
12
µs
Driver Output Delay Time
tPLH2L
CL = 30 pF
15
µs
tPHL2L
AP↑ →VOUT – 100 mV or VOUT + 100 mV
15
µs
CI1
V0 to V4, TA = 25°C
5
15
pF
CI2
Excluded V0 to V4, TA = 25°C
10
15
pF
TYP.
MAX.
Unit
(Low power mode)
Input Capacitance
Timing Requirements (TA = –20 to +75°°C, VDD1 = 2.2 to 3.6 V, VSS1 = 0 V, tr = tf = 10 ns)
Parameter
Symbol
Condition
MIN.
Clock Pulse Width
PW CLK
65
ns
Clock Pulse High Period
PW CLK(H)
20
ns
Clock Pulse Low Period
PW CLK(L)
20
ns
Data Setup Time
tSETUP1
20
ns
Data Hold Time
tHOLD1
20
ns
Start Pulse Setup Time
tSETUP2
20
ns
Start Pulse Hold Time
tHOLD2
20
ns
Start Pulse Low Period
tSPL
3
CLK
Last Data Timing
tLDT
2
CLK
CLK-STB Time
tCLK-STB
20
ns
STB Pulse Width
PW STB
40
ns
Start Pulse Rising Time
tSTB-STH
3
CLK
INV Set-up Time
tSETUP3
20
ns
INV Hold Time
tHOLD3
20
ns
STB Set-up Time
tSETUP4
20
ns
STB Hold Time
tHOLD4
20
ns
POL-STB Time
tPOL-STB
0
ns
STB-POL Time
tSTB-POL
40
ns
CM-STB Time
tCM-STB
0
ns
STB-CM Time
tSTB-CM
40
ns
STB-AP Time
tSTB-AP
20
µs
AP Pulse Width (High power mode)
PW APH
12
µs
AP Pulse Width (Low power mode)
PW APL
STB cycle 40µs, CL = 30 pF
15
µs
AP Set-up Time
tSETUP5
STB↑, MODE = H
0
ns
AP Hold Time
tHOLD5
STB↑, MODE = H
40
ns
CLK↑ →STB↑
STB↑ →STH↑
STB↑ →AP↓
Preliminary Product Information S16240EJ1V0PM
21
2
3
tr
80
81
10%
tSETUP2 tHOLD2
tSPL
STHR
(1st Dr.)
tSETUP1
DATA
D1 to D3
INVALID
tHOLD1
D4 to D6
INVALID
Last Data
Preliminary Product Information S16240EJ2V0PM
tPLH1
tPHL1
STHL
(1st Dr.)
tLDT
tSETUP4
tCLK-STB
tHOLD4
PWSTB
STB
tSTB-STH
tSETUP3 tHOLD3
INV
tPOL-STB tSTB-POL
POL
tCM-STB tSTB-CM
CM
tSTB-AP
PWAB
AP
tPLH2
VOUT
tf
90%
Hi-Z
★ Switching Characteristic Waveform (R,/L= H)
1
CLK
PWCLK(H)
PWCLK(L)
Unless otherwise specified, the input level is defined to be VIH = 0.7 VDD1, VIL = 0.3 VDD1.
22
PWCLK
Hi-Z
tPHL2
µPD161830
µPD161830
NOTES FOR CMOS DEVICES
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS
Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using
insulators that easily build static electricity. Semiconductor devices must be stored and transported
in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work bench and floor should be grounded. The operator should be grounded using
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need
to be taken for PW boards with semiconductor devices on it.
2
HANDLING OF UNUSED INPUT PINS FOR CMOS
Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused
pin should be connected to V DD or GND with a resistor, if it is considered to have a possibility of
being an output pin. All handling related to the unused pins must be judged device by device and
related specifications governing the devices.
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES
Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS
does not define the initial operation status of the device. Immediately after the power source is
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the
reset signal is received. Reset operation must be executed immediately after power-on for devices
having reset function.
Preliminary Product Information S16240EJ1V0PM
23