NEC UPD160083

PRELIMINARY PRODUCT INFORMATION
MOS INTEGRATED CIRCUIT
µPD160083
480-OUTPUT TFT-LCD SOURCE DRIVER
(COMPATIBLE WITH 256-GRAY SCALES)
DESCRIPTION
The µ PD160083 is a source driver for TFT-LCDs capable of dealing with displays with 256-gray scales. Data input
is based on digital input configured as 8 bits by 3 dots (1 pixel) with double clock edge, which can realize a full-color
display of 16,777,216 colors by output of 256 values γ -corrected by an internal D/A converter and 9-by-2 external
power modules. Because the output dynamic range is as large as VSS2 + 0.1 V to VDD2 – 0.1 V, level inversion
operation of the LCD’s common electrode is rendered unnecessary. Also, to be able to deal with dot-line inversion,
n-line inversion and column line inversion when mounted on a single side, this source driver is equipped with a builtin 8-bit D/A converter circuit whose odd output pins and even output pins respectively output gray scale voltages of
differing polarity. Assuring a clock frequency of 85 MHz when driving at 3.0 V, this driver is applicable to UXGAstandard (1600×1200), SXGA-standard (1280×1024) TFT-LCD panels.
FEATURES
• RSDSTM (Reduced Swing Differential Signaling) interface
• 480 outputs
• Input of 8 bits (gradation data) by 3 dots with double clock edge sampling
• Capable of outputting 256 values by means of 9-by-2 external power modules (18 units) and a D/A converter
• Logic power supply voltage (VDD1): 2.7 to 3.6 V
• Driver power supply voltage (VDD2): 10.5 to 13.5 V
• Output dynamic range: VSS2 + 0.1 V to VDD2 – 0.1 V
• High-speed data transfer: fCLK = 85MHz MAX. (Internal data transfer speed when operating at VDD1 = 3.0 V)
• Apply for dot-line inversion, n-line inversion and column line inversion
• Output Voltage polarity inversion function (POL)
• Input data inversion function (INV)
• ControIable output short function (MODE1 to MODE3)
Remark RSDSTM is a trademark of National Semiconductor Corporation.
ORDERING INFORMATION
Part Number
Package
µ PD160083N-xxx
TCP (TAB package)
µ PD160083NL-xxx
COF (COF package)
Remark The TCP/COF’s external shape is customized. To order the required shape, so please contact one of our
sales representatives
The information contained in this document is being issued in advance of the production cycle for the
product. The parameters for the product may change before final production or NEC Electronics
Corporation, at its own discretion, may withdraw the product prior to its production.
Not all products and/or types are availabe in every country. Please check with an NEC Electronics
sales representative for availability and additional information.
Document S16450EJ1V0PM00
Date Published May 2003 CP(K)
Printed in Japan
2002
µ PD160083
1. BLOCK DIAGRAM
STHR
R,/L
CLKP, CLKN
STB
STHL
VDD1A
VSS1A
VDD1D
VSS1D
80-bit bidirectional shift register x 2
D00P-D03P, D00N-D03N
D10P-D13P, D10N-D13N
D20P-D23P, D20N-D23N
Data register
INV
Latch
POL
VDD2
Level shifter
VSS2
V0-V17
D/A converter
Voltage follower output
MODE1
MODE2
MODE3
LPC
S1
S2
S3
S480
(Input pin)
TEST
RPI1
RPI2
Line repair Amp.
Remark /xxx indicates active low signal.
2
Preliminary Product Information S16450EJ1V0PM00
RPO1
RPO2
µ PD160083
2. PIN CONFIGURATION (µPD160083N-×××
×××:
××× TCP) (Copper foil surface, face-up)
RPI2
RPO2
VSS2
V17
V16
V15
V14
V13
V12
V11
V10
V9
VDD2
(VSS1A)
D23P
D23N
(VSS1A)
D22P
D22N
(VSS1A)
D21P
D21N
(VSS1A)
D20P
D20N
(VSS1A)
D13P
D13N
(VSS1A)
D12P
D12N
(VSS1A)
D11P
D11N
(VSS1A)
D10P
D10N
(VSS1A)
R,/L
POL
INV
VDD1A
VDD1D
LPC
STHL
STHR
VSS1D
VSS1A
MODE 1
MODE 2
MODE 3
(VSS1A)
CLKP
CLKN
(VSS1A)
STB
(VSS1A)
D03P
D03N
(VSS1A)
D02P
D02N
(VSS1A)
D01P
D01N
(VSS1A)
D00P
D00N
(VSS1A)
VDD2
V8
V7
V6
V5
V4
V3
V2
V1
V0
VSS2
RPO1
RPI1
S480
S479
S478
S477
Copper foil
surface
S3
S2
S1
Remark 1. This figure does not specify the TCP package.
2. (VSS1A) is recommended to connect to analog GND on PCB for the return current of transmission line.
And please don’t use these pins for power supply terminal with dynamic current.
Preliminary Product Information S16450EJ1V0PM00
3
µ PD160083
3. PIN FUNCTIONS
(1/2)
Pin Symbol
Pin Name
S1 to S480
Driver
D00P to D03P,
Display
D00N to D03N
(RSDS)
I/O
Description
Output The D/A converted 256-gray-scale analog voltage is output.
data
Input
The display data is input with a width of 12 bits by double edge, viz., the gray scale
data (8 bits) by 3 dots (1 pixel).
D10P to D13P,
D10N to D13N
D20P to D23P,
D20N to D23N
R,/L
Shift direction
(CMOS)
control
Input
These refer to the start pulse input/output pins when driver ICs are connected in
cascade. The shift directions of the shift registers are as follows.
R,/L = H (VDD1 level): STHR input, S1 → S480, STHL output
R,/L = L (VSS1 level): STHL input, S480→ S1, STHR output
STHR
Right shift start
(CMOS)
pulse
STHL
Left shift start
I/O
R,/L = L (VSS1 level): Becomes the start pulse output pin.
I/O
(CMOS)
CLKP,
R,/L = H (VDD1 level): Becomes the start pulse input pin.
R,/L = H (VDD1 level): Becomes the start pulse output pin.
R,/L = L (VSS1 level): Becomes the start pulse input pin.
Shift clock
Input
Refers to the shift register’s shift clock input. The display data is incorporated into
CLKN
the data register at both of rising and falling edge.
(RSDS)
At the falling edge of the 160th clock after the start pulse input, the start pulse
output reaches the high level, thus becoming the start pulse of the next-level driver.
STB
Latch
Input
(CMOS)
The contents of the data register are transferred to the latch circuit at the rising
edge. And the output timing and output short function are controlled by MODE1 to
MODE3. Please refer to 8. RELATIONSHIP BETWEEN STB, POL, MODE1 to
MODE3 AND OUTPUT WAVEFORM for more detail. It is necessary to ensure
input of one pulse per horizontal period.
POL
Polarity
Input
POL = H (VDD1 level): The S2n–1 output uses V0-V8 as the reference supply.
(CMOS)
The S2n output uses V9-V17 as the reference supply.
POL = L (VSS1 level): The S2n–1 output uses V9-V17 as the reference supply.
The S2n output uses V0-V8 as the reference supply.
S2n-1 indicates the odd output: and S2n indicates the even output. Input of the POL
signal is allowed the setup time (tPOL-STB) with respect to STB’s rising edge.
INV
Data inversion
Input
Data inversion can invert when display data is loaded.
INV = H (VDD1 level): Data inversion loads display data after inverting it.
(CMOS)
INV = L (VSS1 level): Data inversion does not invert input data.
Please input DC signal. For details, refer to 6. DATA INVERSION.
LPC
Low power control
Input
LPC = L or open: Normal mode (default)
LPC = H: Low power mode (35% lower than noamal mode)
This pin is pulled down to the VSS1D inside the IC.
MODE1 to
MODE3
Output short contro
Input
This pin controls the output short function.
MODE1
MODE2
MODE3
H or open
X
X
L
H or open
X
L
H or open
L
Output Short
Remark
Non-active
Output short circuit OFF
Active
During STB = H
H or open
During 34 CLK after STB falling
L
During 68 CLK after STB falling
Remark X: H or L
Output short function works only when POL signal is changed from previous line.
This pin is pulled up to VDD1D inside the IC.
4
Preliminary Product Information S16450EJ1V0PM00
µ PD160083
(2/2)
Pin Symbol
RPI1, RPI2
Pin Name
Line-repair Amp.
I/O
Description
Input
The driver-ability of the line-repair amp is around twice of the normal analog output
S1 to S480.
Output
RPO1, RPO2
And these outputs are changed at the rising edge of STB and don’t have Hi-Z
(High impedance) period.
RPI1 (RPI2) → impedance changed → RPO1 (RPO2)
TEST
Test
V0-V17
γ -corrected power
Input
TEST = H or open: Normal operation mode
TEST = L: Test mode
−
supplies
Input the γ -corrected power supplies from outside by using operational amplifier.
Make sure to maintain the following relationships. During the gray scale voltage
output, be sure to keep the gray scale level power supply at a constant level.
VDD2 – 0.1 V ≥ V0 > V1 > V2 > V3 > V4 > V5 > V6 > V7 > V8 ≥ 0.5 VDD2
0.5 VDD2 ≥ V9 > V10 > V11 >V12 > V13 > V14 >V5 > V16 > V17 ≥ VSS2 + 0.1 V
VDD1D/A
Logic power supply
−
2.7 to 3.6 V
VDD2
Driver power supply
−
10.5 to 13.5 V
VSS1D/A
Logic ground
−
Grounding
VSS2
Driver ground
−
Grounding
Cautions 1. The power on sequence must be VDD1D, VDD1A, logic input, and VDD2 and V0-V17 in that order.
Reverse this sequence to shut down (Simultaneous power application to VDD2 and V0-V17 is
possible.).
2. To stabilize the supply voltage, please be sure to insert a 0.1 µ F bypass capacitor between
VDD1D, VDD1A-VSS1D, VDD1A and VDD2-VSS2. Furthermore, for increased precision of the D/A
converter, insertion of a bypass capacitor of about 0.01 µF is also advised between the γ corrected power supply pins (V0, V1, V2, ···, V17) and VSS2.
3. Because of the large power consumption of this driver IC, it is necessary to pay attention to the
driver IC's temperature for the Junction Temperature. So, it should be considered to use the
suitable mechanical design for the heat spreading and use the LPC function and the output
reset function for the power reduction. Especially, it is recommended to measure the
temperature of the driver IC surface.
Preliminary Product Information S16450EJ1V0PM00
5
µ PD160083
4. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE
The µPD160083 incorporates a 8-bit D/A converter whose odd output pins and even output pins output respectively
gray scale voltages of differing polarity with respect to the LCD’s counter electrode (common electrode) voltage. The
D/A converter consists of ladder resistors and switches. The ladder resistors (r0 to r255) are designed so that the ratio
of LCD panel γ -compensated voltages to V0’-V255’ and V0”-V255” is almost equivalent, therefore, each resistance value
indicates figure 4−2. For the 2 sets of 9 γ -compensated power supplies, V0-V8 and V9-V17, respectively, input gray
scale voltages of the same polarity with respect to the common voltage
Figure 4−1 shows the relationship between the driving voltages such as liquid-crystal driving voltages VDD2, VSS2 and
0.5 VDD2, and γ -corrected voltages V0-V17 and the input data. Be sure to maintain the voltage relationships below.
VDD2 – 0.1 V ≥ V0 >V1 >V2 >V3 >V4 >V5 >V6 >V7 >V8 ≥ 0.5 VDD2
0.5 VDD2 ≥ V9 >V10 >V11 >V12 >V13 >V14 >V15 >V16 >V17 ≥ VSS2 + 0.1 V
Figures 4−2 shows γ -corrected voltages and ladder resistors ratio and figure 4−3 shows relationship between the
input data and the output voltage.
Figure 4−
−1. Relationship Between Input Data and γ -corrected Power Supply
VDD2
0.1 V
V0
1
V1
31
V2
32
V3
64
V4
V5
V6
64
32
30
1
V7
V8
0.5 VDD2
V9
V10
1
30
V11
V12
V13
32
64
64
V14
32
V15
31
V16
1
0.1 V
V17
VSS2
00 01
20
40
80
C0
Input data (HEX.)
6
Preliminary Product Information S16450EJ1V0PM00
E0
FE FF
µ PD160083
Figure 4−
−2. γ -corrected Voltages and Ladder Resistors Ratio
V0
V0’
V9
r0
V1
V255’’
r255
V1’
r1
V2’
r2
r254
V10
r253
V254’’
V253’’
V3’
r252
r3
V252’’
r251
r30
V31’
r31
V2
V32’
r32
r225
V33’
V225’’
r33
r224
V11
V224’’
r223
V223’’
r222
r222
V223’
r223
V6
r224
V224’
r33
V225’
r32
V33’’
V32’’
V15
r31
V31’’
r30
r251
V252’
r252
V253’
r253
V7
r2
V254’
V2’’
r1
r254
V16
r255
V8
rn
Ratio
Value
r0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11
r12
r13
r14
r15
r16
r17
r18
r19
r20
r21
r22
r23
r24
r25
r26
r27
r28
r29
r30
r31
r32
r33
r34
r35
r36
r37
r38
r39
r40
r41
r42
r43
r44
r45
r46
r47
r48
r49
r50
r51
r52
r53
r54
r55
r56
r57
r58
r59
r60
r61
r62
r63
31.50
27.50
24.00
21.50
19.00
17.50
16.50
15.00
14.00
13.00
12.00
11.00
10.00
9.50
9.50
9.00
8.50
8.00
7.50
7.50
7.00
6.50
6.50
6.00
6.00
5.50
5.50
5.50
5.00
5.00
5.00
4.50
4.50
4.50
4.00
4.00
4.00
4.00
3.75
3.75
3.50
3.50
3.50
3.50
3.25
3.25
3.00
3.00
3.00
3.00
3.00
3.00
2.75
2.75
2.75
2.75
2.50
2.50
2.50
2.50
2.50
2.50
2.25
2.25
630
550
480
430
380
350
330
300
280
260
240
220
200
190
190
180
170
160
150
150
140
130
130
120
120
110
110
110
100
100
100
90
90
90
80
80
80
80
75
75
70
70
70
70
65
65
60
60
60
60
60
60
55
55
55
55
50
50
50
50
50
50
45
45
rn
Ratio
Value
r64
r65
r66
r67
r68
r69
r70
r71
r72
r73
r74
r75
r76
r77
r78
r79
r80
r81
r82
r83
r84
r85
r86
r87
r88
r89
r90
r91
r92
r93
r94
r95
r96
r97
r98
r99
r100
r101
r102
r103
r104
r105
r106
r107
r108
r109
r110
r111
r112
r113
r114
r115
r116
r117
r118
r119
r120
r121
r122
r123
r124
r125
r126
r127
2.25
2.25
2.25
2.25
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
1.75
1.75
1.75
1.75
1.75
1.75
1.75
1.75
1.75
1.75
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.00
1.00
45
45
45
45
40
40
40
40
40
40
40
40
35
35
35
35
35
35
35
35
35
35
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
20
20
rn
Ratio
Value
r128
r129
r130
r131
r132
r133
r134
r135
r136
r137
r138
r139
r140
r141
r142
r143
r144
r145
r146
r147
r148
r149
r150
r151
r152
r153
r154
r155
r156
r157
r158
r159
r160
r161
r162
r163
r164
r165
r166
r167
r168
r169
r170
r171
r172
r173
r174
r175
r176
r177
r178
r179
r180
r181
r182
r183
r184
r185
r186
r187
r188
r189
r190
r191
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
rn
Ratio
Value
r192
r193
r194
r195
r196
r197
r198
r199
r200
r201
r202
r203
r204
r205
r206
r207
r208
r209
r210
r211
r212
r213
r214
r215
r216
r217
r218
r219
r220
r221
r222
r223
r224
r225
r226
r227
r228
r229
r230
r231
r232
r233
r234
r235
r236
r237
r238
r239
r240
r241
r242
r243
r244
r245
r246
r247
r248
r249
r250
r251
r252
r253
r254
r255
1.00
1.00
1.00
1.00
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.50
1.50
1.50
1.50
1.50
1.50
1.50
2.00
2.00
2.00
2.00
2.00
2.50
2.50
2.50
3.00
3.00
3.00
3.50
3.50
4.00
4.00
4.50
5.00
5.00
5.50
6.00
6.50
7.00
7.50
8.00
8.50
9.00
9.50
10.50
11.50
12.50
25.00
20
20
20
20
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
30
30
30
30
30
30
30
40
40
40
40
40
50
50
50
60
60
60
70
70
80
80
90
100
100
110
120
130
140
150
160
170
180
190
210
230
250
500
V1’’
r0
V255’
V17
V0’’
Caution There is no connection between V8 and V9 pin inside the IC.
Preliminary Product Information S16450EJ1V0PM00
7
µ PD160083
Figure 4−
−3. Relationship between Input Data and Output Voltage (1/2)
(Output voltage 1) VDD2 – 0.1 V ≥ V0 > V1 > V2 > V3 > V4 > V5 > V6 > V7 > V8 ≥ 0.5 VDD2
Data
00H
01H
02H
03H
04H
05H
06H
07H
08H
09H
0AH
0BH
0CH
0DH
0EH
0FH
10H
11H
12H
13H
14H
15H
16H
17H
18H
19H
1AH
1BH
1CH
1DH
1EH
1FH
20H
21H
22H
23H
24H
25H
26H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH
30H
31H
32H
33H
34H
35H
36H
37H
38H
39H
3AH
3BH
3CH
3DH
3EH
3FH
8
Output Voltage
V0'
V1'
V2'
V3'
V3'
V5'
V6'
V7'
V8'
V9'
V10'
V11'
V12'
V13'
V14'
V15'
V16'
V17'
V18'
V19'
V20'
V21'
V22'
V23'
V24'
V25'
V26'
V27'
V28'
V29'
V30'
V31'
V32'
V33'
V34'
V35'
V36'
V37'
V38'
V39'
V30'
V41'
V42'
V43'
V44'
V45'
V46'
V47'
V48'
V49'
V50'
V51'
V52'
V53'
V54'
V55'
V56'
V57'
V58'
V59'
V60'
V61'
V62'
V63'
V0
V1
V1+(V2-V1) X
V1+(V2-V1) X
V1+(V2-V1) X
V1+(V2-V1) X
V1+(V2-V1) X
V1+(V2-V1) X
V1+(V2-V1) X
V1+(V2-V1) X
V1+(V2-V1) X
V1+(V2-V1) X
V1+(V2-V1) X
V1+(V2-V1) X
V1+(V2-V1) X
V1+(V2-V1) X
V1+(V2-V1) X
V1+(V2-V1) X
V1+(V2-V1) X
V1+(V2-V1) X
V1+(V2-V1) X
V1+(V2-V1) X
V1+(V2-V1) X
V1+(V2-V1) X
V1+(V2-V1) X
V1+(V2-V1) X
V1+(V2-V1) X
V1+(V2-V1) X
V1+(V2-V1) X
V1+(V2-V1) X
V1+(V2-V1) X
V1+(V2-V1) X
V2
V2+(V3-V2) X
V2+(V3-V2) X
V2+(V3-V2) X
V2+(V3-V2) X
V2+(V3-V2) X
V2+(V3-V2) X
V2+(V3-V2) X
V2+(V3-V2) X
V2+(V3-V2) X
V2+(V3-V2) X
V2+(V3-V2) X
V2+(V3-V2) X
V2+(V3-V2) X
V2+(V3-V2) X
V2+(V3-V2) X
V2+(V3-V2) X
V2+(V3-V2) X
V2+(V3-V2) X
V2+(V3-V2) X
V2+(V3-V2) X
V2+(V3-V2) X
V2+(V3-V2) X
V2+(V3-V2) X
V2+(V3-V2) X
V2+(V3-V2) X
V2+(V3-V2) X
V2+(V3-V2) X
V2+(V3-V2) X
V2+(V3-V2) X
V2+(V3-V2) X
V2+(V3-V2) X
550
1030
1460
1840
2190
2520
2820
3100
3360
3600
3820
4020
4210
4400
4580
4750
4910
5060
5210
5350
5480
5610
5730
5850
5960
6070
6180
6280
6380
6480
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
90
180
260
340
420
500
575
650
720
790
860
930
995
1060
1120
1180
1240
1300
1360
1420
1475
1530
1585
1640
1690
1740
1790
1840
1890
1940
1985
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
Data
40H
41H
42H
43H
44H
45H
46H
47H
48H
49H
4AH
4BH
4CH
4DH
4EH
4FH
50H
51H
52H
53H
54H
55H
56H
57H
58H
59H
5AH
5BH
5CH
5DH
5EH
5FH
60H
61H
62H
63H
64H
65H
66H
67H
68H
69H
6AH
6BH
6CH
6DH
6EH
6FH
70H
71H
72H
73H
74H
75H
76H
77H
78H
79H
7AH
7BH
7CH
7DH
7EH
7FH
Output Voltage
V64'
V65'
V66'
V67'
V68'
V69'
V70'
V71'
V72'
V73'
V74'
V75'
V76'
V77'
V78'
V79'
V80'
V81'
V82'
V83'
V84'
V85'
V86'
V87'
V88'
V89'
V90'
V91'
V92'
V93'
V94'
V95'
V96'
V97'
V98'
V99'
V100'
V101'
V102'
V103'
V104'
V105'
V106'
V107'
V108'
V109'
V110'
V111'
V112'
V113'
V114'
V115'
V116'
V117'
V118'
V119'
V120'
V121'
V122'
V123'
V124'
V125'
V126'
V127'
V3
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
V3+(V4-V3) X
45
90
135
180
220
260
300
340
380
420
460
500
535
570
605
640
675
710
745
780
815
850
880
910
940
970
1000
1030
1060
1090
1120
1150
1180
1210
1240
1270
1300
1330
1360
1390
1420
1450
1480
1510
1540
1570
1595
1620
1645
1670
1695
1720
1745
1770
1795
1820
1845
1870
1895
1920
1945
1970
1990
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
Data
80H
81H
82H
83H
84H
85H
86H
87H
88H
89H
8AH
8BH
8CH
8DH
8EH
8FH
90H
91H
92H
93H
94H
95H
96H
97H
98H
99H
9AH
9BH
9CH
9DH
9EH
9FH
A0H
A1H
A2H
A3H
A4H
A5H
A6H
A7H
A8H
A9H
AAH
ABH
ACH
ADH
AEH
AFH
B0H
B1H
B2H
B3H
B4H
B5H
B6H
B7H
B8H
B9H
BAH
BBH
BCH
BDH
BEH
BFH
Output Voltage
V128'
V129'
V130'
V131'
V132'
V133'
V134'
V135'
V136'
V137'
V138'
V139'
V140'
V141'
V142'
V143'
V144'
V145'
V146'
V147'
V148'
V149'
V150'
V151'
V152'
V153'
V154'
V155'
V156'
V157'
V158'
V159'
V160'
V161'
V162'
V163'
V164'
V165'
V166'
V167'
V168'
V169'
V170'
V171'
V172'
V173'
V174'
V175'
V176'
V177'
V178'
V179'
V180'
V181'
V182'
V183'
V184'
V185'
V186'
V187'
V188'
V189'
V190'
V191'
V4
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
V4+(V5-V4) X
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500
520
540
560
580
600
620
640
660
680
700
720
740
760
780
800
820
840
860
880
900
920
940
960
980
1000
1020
1040
1060
1080
1100
1120
1140
1160
1180
1200
1220
1240
1260
Preliminary Product Information S16450EJ1V0PM00
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
Data
C0H
C1H
C2H
C3H
C4H
C5H
C6H
C7H
C8H
C9H
CAH
CBH
CCH
CDH
CEH
CFH
D0H
D1H
D2H
D3H
D4H
D5H
D6H
D7H
D8H
D9H
DAH
DBH
DCH
DDH
DEH
DFH
E0H
E1H
E2H
E3H
E4H
E5H
E6H
E7H
E8H
E9H
EAH
EBH
ECH
EDH
EEH
EFH
F0H
F1H
F2H
F3H
F4H
F5H
F6H
F7H
F8H
F9H
FAH
FBH
FCH
FDH
FEH
FFH
Output Voltage
V192'
V193'
V194'
V195'
V196'
V197'
V198'
V199'
V200'
V201'
V202'
V203'
V204'
V205'
V206'
V207'
V208'
V209'
V210'
V211'
V212'
V213'
V214'
V215'
V216'
V217'
V218'
V219'
V220'
V221'
V222'
V223'
V224'
V225'
V226'
V227'
V228'
V229'
V230'
V231'
V232'
V233'
V234'
V235'
V236'
V237'
V238'
V239'
V240'
V241'
V242'
V243'
V244'
V245'
V246'
V247'
V248'
V249'
V250'
V251'
V252'
V253'
V254'
V255'
V5
V5+(V6-V5) X
V5+(V6-V5) X
V5+(V6-V5) X
V5+(V6-V5) X
V5+(V6-V5) X
V5+(V6-V5) X
V5+(V6-V5) X
V5+(V6-V5) X
V5+(V6-V5) X
V5+(V6-V5) X
V5+(V6-V5) X
V5+(V6-V5) X
V5+(V6-V5) X
V5+(V6-V5) X
V5+(V6-V5) X
V5+(V6-V5) X
V5+(V6-V5) X
V5+(V6-V5) X
V5+(V6-V5) X
V5+(V6-V5) X
V5+(V6-V5) X
V5+(V6-V5) X
V5+(V6-V5) X
V5+(V6-V5) X
V5+(V6-V5) X
V5+(V6-V5) X
V5+(V6-V5) X
V5+(V6-V5) X
V5+(V6-V5) X
V5+(V6-V5) X
V5+(V6-V5) X
V6
V6+(V7-V6) X
V6+(V7-V6) X
V6+(V7-V6) X
V6+(V7-V6) X
V6+(V7-V6) X
V6+(V7-V6) X
V6+(V7-V6) X
V6+(V7-V6) X
V6+(V7-V6) X
V6+(V7-V6) X
V6+(V7-V6) X
V6+(V7-V6) X
V6+(V7-V6) X
V6+(V7-V6) X
V6+(V7-V6) X
V6+(V7-V6) X
V6+(V7-V6) X
V6+(V7-V6) X
V6+(V7-V6) X
V6+(V7-V6) X
V6+(V7-V6) X
V6+(V7-V6) X
V6+(V7-V6) X
V6+(V7-V6) X
V6+(V7-V6) X
V6+(V7-V6) X
V6+(V7-V6) X
V6+(V7-V6) X
V6+(V7-V6) X
V7
V8
20
40
60
80
105
130
155
180
205
230
255
280
305
330
355
380
405
430
455
480
505
530
555
580
605
630
660
690
720
750
780
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
30
70
110
150
190
230
280
330
380
440
500
560
630
700
780
860
950
1050
1150
1260
1380
1510
1650
1800
1960
2130
2310
2500
2710
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
µ PD160083
Figure 4−
−3. Relationship between Input Data and Output Voltage (2/2)
(Output voltage 2) 0.5 VDD2 ≥ V9 > V10 > V11 > V12 > V13 > V14 > V15 > V16 > V17 ≥ VSS2 + 0.1 V
Output Voltage
Data
00H
01H
02H
03H
04H
05H
06H
07H
08H
09H
0AH
0BH
0CH
0DH
0EH
0FH
10H
11H
12H
13H
14H
15H
16H
17H
18H
19H
1AH
1BH
1CH
1DH
1EH
1FH
20H
21H
22H
23H
24H
25H
26H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH
30H
31H
32H
33H
34H
35H
36H
37H
38H
39H
3AH
3BH
3CH
3DH
3EH
V0"
V1"
V2"
V3"
V4"
V5"
V6"
V7"
V8"
V9"
V10"
V11"
V12"
V13"
V14"
V15"
V16"
V17"
V18"
V19"
V20"
V21"
V22"
V23"
V24"
V25"
V26"
V27"
V28"
V29"
V30"
V31"
V32"
V33"
V34"
V35"
V36"
V37"
V38"
V39"
V40"
V41"
V42"
V43"
V44"
V45"
V46"
V47"
V48"
V49"
V50"
V51"
V52"
V53"
V54"
V55"
V56"
V57"
V58"
V59"
V60"
V61"
V62"
V17
V16
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V16+(V15-V16) X
V15
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
V15+(V14-V15) X
3FH V63" V15+(V14-V15) X
Output Voltage
Data
550
1030
1460
1840
2190
2520
2820
3100
3360
3600
3820
4020
4210
4400
4580
4750
4910
5060
5210
5350
5480
5610
5730
5850
5960
6070
6180
6280
6380
6480
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
6570
90
180
260
340
420
500
575
650
720
790
860
930
995
1060
1120
1180
1240
1300
1360
1420
1475
1530
1585
1640
1690
1740
1790
1840
1890
1940
1985
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
2030
40H
41H
42H
43H
44H
45H
46H
47H
48H
49H
4AH
4BH
4CH
4DH
4EH
4FH
50H
51H
52H
53H
54H
55H
56H
57H
58H
59H
5AH
5BH
5CH
5DH
5EH
5FH
60H
61H
62H
63H
64H
65H
66H
67H
68H
69H
6AH
6BH
6CH
6DH
6EH
6FH
70H
71H
72H
73H
74H
75H
76H
77H
78H
79H
7AH
7BH
7CH
7DH
7EH
V64"
V65"
V66"
V67"
V68"
V69"
V70"
V71"
V72"
V73"
V74"
V75"
V76"
V77"
V78"
V79"
V80"
V81"
V82"
V83"
V84"
V85"
V86"
V87"
V88"
V89"
V90"
V91"
V92"
V93"
V94"
V95"
V96"
V97"
V98"
V99"
V100"
V101"
V102"
V103"
V104"
V105"
V106"
V107"
V108"
V109"
V110"
V111"
V112"
V113"
V114"
V115"
V116"
V117"
V118"
V119"
V120"
V121"
V122"
V123"
V124"
V125"
V126"
V14
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
V14+(V13-V14) X
7FH V127" V14+(V13-V14) X
45
90
135
180
220
260
300
340
380
420
460
500
535
570
605
640
675
710
745
780
815
850
880
910
940
970
1000
1030
1060
1090
1120
1150
1180
1210
1240
1270
1300
1330
1360
1390
1420
1450
1480
1510
1540
1570
1595
1620
1645
1670
1695
1720
1745
1770
1795
1820
1845
1870
1895
1920
1945
1970
1990
Output Voltage
Data
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
2010
80H
81H
82H
83H
84H
85H
86H
87H
88H
89H
8AH
8BH
8CH
8DH
8EH
8FH
90H
91H
92H
93H
94H
95H
96H
97H
98H
99H
9AH
9BH
9CH
9DH
9EH
9FH
A0H
A1H
A2H
A3H
A4H
A5H
A6H
A7H
A8H
A9H
AAH
ABH
ACH
ADH
AEH
AFH
B0H
B1H
B2H
B3H
B4H
B5H
B6H
B7H
B8H
B9H
BAH
BBH
BCH
BDH
BEH
V128"
V129"
V130"
V131"
V132"
V133"
V134"
V135"
V136"
V137"
V138"
V139"
V140"
V141"
V142"
V143"
V144"
V145"
V146"
V147"
V148"
V149"
V150"
V151"
V152"
V153"
V154"
V155"
V156"
V157"
V158"
V159"
V160"
V161"
V162"
V163"
V164"
V165"
V166"
V167"
V168"
V169"
V170"
V171"
V172"
V173"
V174"
V175"
V176"
V177"
V178"
V179"
V180"
V181"
V182"
V183"
V184"
V185"
V186"
V187"
V188"
V189"
V190"
V13
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
V13+(V12-V13) X
BFH V191" V13+(V12-V13) X
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500
520
540
560
580
600
620
640
660
680
700
720
740
760
780
800
820
840
860
880
900
920
940
960
980
1000
1020
1040
1060
1080
1100
1120
1140
1160
1180
1200
1220
1240
1260
Preliminary Product Information S16450EJ1V0PM00
Output Voltage
Data
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
1280
C0H
C1H
C2H
C3H
C4H
C5H
C6H
C7H
C8H
C9H
CAH
CBH
CCH
CDH
CEH
CFH
D0H
D1H
D2H
D3H
D4H
D5H
D6H
D7H
D8H
D9H
DAH
DBH
DCH
DDH
DEH
DFH
E0H
E1H
E2H
E3H
E4H
E5H
E6H
E7H
E8H
E9H
EAH
EBH
ECH
EDH
EEH
EFH
F0H
F1H
F2H
F3H
F4H
F5H
F6H
F7H
F8H
F9H
FAH
FBH
FCH
FDH
FEH
V192"
V193"
V194"
V195"
V196"
V197"
V198"
V199"
V200"
V201"
V202"
V203"
V204"
V205"
V206"
V207"
V208"
V209"
V210"
V211"
V212"
V213"
V214"
V215"
V216"
V217"
V218"
V219"
V220"
V221"
V222"
V223"
V224"
V225"
V226"
V227"
V228"
V229"
V230"
V231"
V232"
V233"
V234"
V235"
V236"
V237"
V238"
V239"
V240"
V241"
V242"
V243"
V244"
V245"
V246"
V247"
V248"
V249"
V250"
V251"
V252"
V253"
V254"
V12
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V12+(V11-V12) X
V11
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V11+(V10-V11) X
V10
FFH V255" V9
20
40
60
80
105
130
155
180
205
230
255
280
305
330
355
380
405
430
455
480
505
530
555
580
605
630
660
690
720
750
780
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
810
30
70
110
150
190
230
280
330
380
440
500
560
630
700
780
860
950
1050
1150
1260
1380
1510
1650
1800
1960
2130
2310
2500
2710
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
2940
9
µ PD160083
5. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT PIN
Data format: 8 bits × 1 RGB (3 dots)
Input width: 12 bits x double edge (1-pixel data)
(1) R,/L = H (Right shift)
Output
S1
S2
S3
S4
!!!
S479
S480
Data
D00P-D03P,
D10P-D13P,
D20P-D23P,
D00P-D03P,
!!!
D10P-D13P,
D20P-D23P,
D00N-D03N
D10N-D13N
D20N-D23N
D00N-D03N
D10N-D13N
D20N-D23N
(2) R,/L = L (Left shift)
Output
S1
S2
S3
S4
!!!
S479
S480
Data
D00P-D03P,
D10P-D13P,
D20P-D23P,
D00P-D03P,
!!!
D10P-D13P,
D20P-D23P,
D00N-D03N
D10N-D13N
D20N-D23N
D00N-D03N
D10N-D13N
D20N-D23N
POL
S2n–1Note
S2nNote
H
V0-V8
V9-V17
L
V9-V17
V0-V8
Note S2n-1 (Odd output), S2n (Even output) , n = 1, 2, … 240
6. DATA INVERSION (INV)
INV controls the internal data inversion. When INV = H, the internal data is inverted and CLK is not inverted (See the
figure as below). Using the INV pin, the RSDS data bus interface can be changed.
D00P
D00N
D23P
D23N
CLKP
CLKP
CLKN
CLKN
INV = H
10
Preliminary Product Information S16450EJ1V0PM00
INV = L
Data register
µPD160083
RSDS receiver
D23P
D23N
Data register
D00P
D00N
RSDS receiver
µPD160083
µ PD160083
7. TIMING CHART AND RELATIONSHIP BETWEEN 8-BIT DATA AND DATA BUS LINE
tHOLD2
tSETUP2
tHOLD1
tHOLD1
tSETUP1
tSETUP1
CLK
(Differential)
STHR
D00
(Differential)
S1
(0)
S1
(1)
S4
(0)
S4
(1)
S7
(0)
S7
(1)
D01
(Differential)
S1
(2)
S1
(3)
S4
(2)
S4
(3)
S7
(2)
S7
(3)
D02
(Differential)
S1
(4)
S1
(5)
S4
(4)
S4
(5)
S7
(4)
S7
(5)
D03
(Differential)
S1
(6)
S1
(7)
S4
(6)
S4
(7)
S7
(6)
S7
(7)
D10
(Differential)
S2
(0)
S2
(1)
S5
(0)
S5
(1)
S8
(0)
S8
(1)
D11
(Differential)
S2
(2)
S2
(3)
S5
(2)
S5
(3)
S8
(2)
S8
(3)
D12
(Differential)
S2
(4)
S2
(5)
S5
(4)
S5
(5)
S8
(4)
S8
(5)
D13
(Differential)
S2
(6)
S2
(7)
S5
(6)
S5
(7)
S8
(6)
S8
(7)
D20
(Differential)
S3
(0)
S3
(1)
S6
(0)
S6
(1)
S9
(0)
S9
(1)
D21
(Differential)
S3
(2)
S3
(3)
S6
(2)
S6
(3)
S9
(2)
S9
(3)
D22
(Differential)
S3
(4)
S3
(5)
S6
(4)
S6
(5)
S9
(4)
S9
(5)
D23
(Differential)
S3
(6)
S3
(7)
S6
(6)
S6
(7)
S9
(6)
S9
(7)
Remark Sn(0): LSB, Sn(7): MSB
Preliminary Product Information S16450EJ1V0PM00
11
µ PD160083
8. RELATIONSHIP BETWEEN MODE, STB, POL, MODE1 to MODE3 AND OUTPUT WAVEFORM
The µPD160083 has a various kind of output short function that can be controlled by MODE1 to MODE3. Please
refer to the following description of each function and decide MODE1 to MODE3 after considering the suitable driving
method.
MODE1
MODE2
H or open
X
L
MODE3
Charge
Sharing
Description of Output Short
X
Non-active
Output short doesn’t work
H or open
X
Active
During STB = H
L
H or open
Active
During 34 CLKs after falling edge of STB
L
Active
During 68 CLKs after falling edge of STB
Remark X: H or L
(1) MODE1 = H or open
All outputs always become Hi-Z condition during STB = H at this mode. And output short function doesn’t work and
all output always start at the falling edge of STB (See figure 8−1).
Figure 8−
−1. MODE1 = H or open
STB
POL
V0 -V8
V9 -V17
V9 -V17
V9 -V17
V0 -V8
V0 -V8
VOUT
(Odd)
VOUT
(Even)
Hi-Z
Remark
12
Hi-Z
: Repair Amp. output
Preliminary Product Information S16450EJ1V0PM00
Hi-Z
µ PD160083
(2) MODE1 = L, MODE2 = H or open
Output short function works during STB = H at this mode. So all outputs are started at the falling edge of STB (See
figure 8−2). But output short function works only when POL signal is changed. So All output become Hi-Z condition
during STB = H without any change of POL signal (See figure 8−2).
Figure 8−
−2. MODE1 = L, MODE2 = H or open
STB
POL
V0 - V8
V9 - V17
V9 - V17
V9 - V17
V0 - V8
V0 - V8
VOUT
(Odd)
VOUT
(Even)
Output
reset
Remark
Output
reset
Hi-Z
: Repair Amp. output
Preliminary Product Information S16450EJ1V0PM00
13
µ PD160083
(3) MODE1 = L, MODE2 = L
All output always become Hi-Z condition during STB = H in this mode. And output short function works at the falling
edge of STB during requested period by MODE3. At MODE3 = H, the driver IC counts 34 CLKs of output short period
by itsself, and count 68 CLKs at MODE = L. After finishing the output short period, the gray-scale voltage to the LCD
panel is started. When POL signal is not changed, the gray-scale voltage to the LCD panel is started at the falling edge
of STB without any change of POL signal (See figure 8−3).
MODE3
Output Short Period
H or open
34 CLKs
L
68 CLKs
Remark MODE1 = L, MODE2 = L
Figure 8−
−3. MODE1 = L, MODE2 = L
STB
POL
V0 - V8
V9 - V17
V9 - V17
VOUT
(Odd)
V9 - V17
V0 - V8
V0 - V8
VOUT
(Even)
Hi-Z Output reset
(34/68_CLKs)
Remark
14
Hi-Z Output reset
(34/68_CLKs)
: Repair Amp. output
Preliminary Product Information S16450EJ1V0PM00
Hi-Z
µ PD160083
9. ELECTRICAL SPECIFICATIONS
Absolute Maximum Ratings (TA = +25 °C, VSS1D, VSS1A = VSS2 = 0 V)
Parameter
Symbol
Ratings
Unit
Logic Part Supply Voltage
VDD1D, VDD1A
–0.5 to +4.0
V
Driver Part Supply Voltage
VDD2
–0.5 to +14.0
V
Logic Part Input Voltage
VI1
–0.5 to VDD1 + 0.5
V
Driver Part Input Voltage
VI2
–0.3 to VDD2 + 0.3
V
Logic Part Output Voltage
VO1
–0.5 to VDD1 + 0.5
V
Driver Part Output Voltage
VO2
–0.5 to VDD2 + 0.5
V
Operating Ambient Temperature
TA
–10 to +75
°C
Storage Temperature
Tstg
–55 to +125
°C
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any
parameter. That is, the absolute maximum ratings are rated values at which the product is on the
verge of suffering physical damage, and therefore the product must be used under conditions that
ensure that the absolute maximum ratings are not exceeded.
Recommended Operating Range (TA = –10 to +75 °C, VSS1D, VSS1A = VSS2 = 0 V)
Parameter
Symbol
Logic Part Supply Voltage
Conditions
VDD1D,
MIN.
TYP.
MAX.
Unit
2.7
3.3
3.6
V
12.0
13.5
V
V
VDD1A
Driver Part Supply Voltage
VDD2
10.5
High-Level Input Voltage 1
VIH1
0.7 VDD1
VDD1
Low-Level Input Voltage 1
VIL1
0
0.3 VDD1
High-Level Input Voltage 2
VIH2
(Differential :VRSDSP-VRSDSN)
Low-Level Input Voltage 2
VCM = 1.2 V Note
CLK, Dxy
+100
+200
V
mV
(x = 0 to 2)
(y = 0 to 3)
VIL2
–200
–100
mV
1.2
1.4
V
0.1
VDD2 − 0.1
V
V
(Differential :VRSDSP-VRSDSN)
Common Mode Input
VOFF = 200 mVp-p Note
VCM
0.5
Voltage
Driver Part Output Voltage
VO
S1 to S480, RPO1, RPO2
γ -Corrected Voltage
VNv
V0-V8
0.5 VDD2
VDD2 – 0.1
V9-V17
0.1
0.5 VDD2
V
VDD1 = 2.7 V
70
MHz
VDD1 = 3.0 V
85
MHz
Clock Frequency
fCLK
Note
VRSDSN
(CLKN, DxxN)
VCMRSDS
VRSDSP
(CLKP, DxxP)
VIH2 = +100 mV MIN.
0V
VRSDSP-VRSDSN
(Internal CLK, DATA)
Internal Logic
VIL2 = −100 mV MAX.
L
H
L
H
Remark VCM = (VCLKP + VCLKN) /2 or = (VDxxP + VDxxN) /2 (x = 0, 1, 2)
VDIFF = (VCLKP − VCLKN) /2 or = (VDxxP − VDxxN) /2 (x = 0, 1, 2)
Preliminary Product Information S16450EJ1V0PM00
15
µ PD160083
Electrical Characteristics (TA = –10 to +75 °C, VDD1 = 2.7 to 3.6V, VDD2 = 10.5 to 13.5 V , VSS1 = VSS2 = 0 V)
Parameter
Input Leak Current
Symbol
Condition
MIN.
TYP.
IIL
MAX.
Unit
± 1.0
µA
High-Level Output Voltage VOH
STHR (STHL), IOH = 0 mA
VDD1 − 0.4
VDD1
V
Low-Level Output Voltage
VOL
STHR (STHL), IOL = 0 mA
VSS1
VSS1 + 0.4
V
γ -Corrected Resistance
Rγ
VDD2 = 12.0 V, TA = 25°C,
11.91
17.02
22.13
kΩ
80
200
500
kΩ
−70
µA
V0-V8 = V9-V17 = 5.0 V
Pull-up/pull-down
RPU
VDD1 = 3.3 V, MODE1 to MODE3, LPC, TEST
IVOH
S1 to S480, RPO1, RPO2, VX = 11 V,
Resistance
Driver Output Current
VDD2 = 12 V
VOUT = 10.5 V Note1
VX = 1.0 V,
IVOL
µA
70
VOUT = 1.5 V Note1
Output Voltage Deviation
∆VO
(DVO)
VO = 1.5 V to VDD2 – 1.5 V.
± 12
± 20
mV
VO = 0.1 to 1.5 V,
± 40
± 50
mV
VO = 1.5 V to VDD2 – 1.5 V
±6
± 10
mV
VO = 0.1 to 1.5 V,
± 30
± 50
mV
VO = VDD2 – 1.5 V to VDD2 – 0.1 V
Output Swing Voltage
∆Vp–p1
Difference Deviation
∆Vp–p2
(DVRMS)
VO = VDD2 – 1.5 V to VDD2 – 0.1 V
Output Swing Voltage
AVO
Input data: 80H
±1
± 7.5
mV
IDD11
VDD1 Note1 to note3
2.5 Note2
6.0 Note3
mA
IDD12
VDD1, Note1 to note3
2.0 Note4
6.0 Note5
mA
IDD2
VDD2 , with no load,
15.0 Note6
45.0 Note7
mA
Average Deviation
Logic Part Dynamic
Current Consumption 1
Logic Part Dynamic
Current Consumption 2
Driver Part Dynamic
Current Consumption
RPI1, RPI2 are not floating
Notes 1. VX refers to the otuput voltage of analog output pins S1 to S384.
VOUT refers to the voltage applied to analog output pins S1 to S384.
2. fCLKP, fCLKN = 67.5 MHz, fSTB = 80.0 kHz, test pattern = dot inversion, TA = 25°C, VDD1 = 3.0 V
3. fCLKP, fCLKN = 67.5 MHz, fSTB = 80.0 kHz, test pattern = dot inversion, VDD1 = 3.6 V
4. fCLKP, fCLKN = 54.0 MHz, fSTB = 64.9 kHz, test pattern = dot inversion, TA = 25°C, VDD1 = 3.0V
5. fCLKP, fCLKN = 54.0 MHz, fSTB = 64.9 kHz, test pattern = dot inversion, VDD1 = 3.6 V
6. fCLKP, fCLKN = 67.5 MHz, fSTB = 80.0 kHz, test pattern = dot inversion, TA = 25°C, VDD2 = 12.0 V
7. fCLKP, fCLKN = 67.5 MHz, fSTB = 80.0 kHz, test pattern = dot inversion, VDD2 = 13.5 V
16
Preliminary Product Information S16450EJ1V0PM00
µ PD160083
Switching Characteristics (TA = –10 to +75 °C, VDD1 = 2.7 to 3.6V, VDD2 = 10.5 to 13.5 V, VSS1 = VSS2 = 0 V)
Parameter
Start Pulse Delay Time
Driver Output Delay Time
Symbol
tPLH1
CL = 15 pF
MIN.
TYP.
MAX.
Unit
VDD1 < 3.0 V
4
12.5
ns
VDD1 ≥ 3.0 V
4
10.0
ns
tPLH2 Note1
VDD2 = 12.0 V, RPO1, RPO2,
4
5
µs
tPLH3 Note2
S1 to S480, RL = 9 kΩ, CL = 80 pF
5
8
µs
Note1
4
5
µs
tPHL3 Note2
5
8
µs
tPLH4 Note1
4
5
µs
tPLH5 Note2
5
8
µs
tPHL4 Note1
4
5
µs
tPHL2
tPHL5
Input Capacitance
Condition
Note2
5
CI1
Logic input besides STHR (STHL),
8
µs
10
pF
15
pF
TA = 25°C
STHR (STHL),TA = 25°C
CI2
Notes 1. The value is specified when the drive voltage valuw reaches the target output voltage level of ±10%.
2. The value is specified when the drive voltage valuw reaches the target output voltage level of ±0.02 V
(Condition: VO = 3.0 V ↔12.0 V).
<Test condition>
RL2
RL1
RL3
RL4
Measurement
point
RL5
Output
RL1 = 2.6 kΩ
CL1
CL2
CL3
CL4
CL5
RL2 to RL5 = 1.6 kΩ
CLn = 16 pF
VCOM = 0.5 VDD2
Preliminary Product Information S16450EJ1V0PM00
17
µ PD160083
Timing Requirement (TA = –10 to +75°C, VDD1 = 2.7 to 3.6V, VSS1 = 0 V, tr = tf = 3.0 ns (CMOS),
tr = tf = 1.0 ns (RSDS))
Parameter
Clock Period
Symbol
PWCLK
Condition
MIN.
TYP.
MAX.
Unit
VDD1 = 2.7 V
14.3
ns
VDD1 = 3.0 V
11.8
ns
ns
Clock Pulse High Period
PWCLK(H)
5
Clock Pulse Low Period
PWCLK(L)
5
ns
Data Setup Time
tSETUP1
VDD1 = 2.7 V
3
ns
VDD1 = 3.0 V
2
ns
Data Hold Time
tHOLD1
VDD1 = 2.7 V
1
ns
VDD1 = 3.0 V
0
ns
Start Pulse Setup Time
tSETUP2
1
ns
Start Pulse Hold Time
tHOLD2
3
ns
Start Pulse “H” Width
PWSTH
1
STB Pulse “H” Width
PWSTB
1
us
Last Data Timing
tLDT
1
CLKP
2
CLKP
STB-CLK Time
tSTB-CLK
STB ↑ → CLKP, CLKN ↓
3
ns
Time Between STB and Start
tSTB-STH
STB ↑ → STHR (STHL) ↑
5
CLKP
POL-STB Time
tPOL-STB
POL ↑ or ↓ → STB ↑
14
ns
STB-POL Time
tSTB-POL
STB ↓ → POL ↓ or ↑
10
ns
Pulse
Remark tr, tf are defined 10 to 90% of each signal amplitude.
18
Preliminary Product Information S16450EJ1V0PM00
0V
0V
2
0V
0V
3
0V
160
0V
161
0V
0V
10%
1
tHOLD2
tr
2
0V
10%
tf
VDD1
STHR
(1st Dr.)
0.7 V DD1
10%
PWSTH
VSS1
tSTB-STH
<D472 to D474>
Invalid
10%
tSTB-CLK
tSETUP1 tHOLD1
Dn0 to Dn3
(Differential)
90%
0.3 VDD1
0.7 V DD1
0V
Even
Odd
Even
Odd
<D475 to D477>
Even
Odd
Last
Data
Invalid
0V
<D1 to D3 >
tPLH1
tPHL1
Preliminary Product Information S16450EJ1V0PM00
VDD1
STHL
(1st Dr.)
0.7 V DD1
0.7 VDD1
VSS1
PWSTB
tLDT
STB
VDD1
0.7 VDD1
0.3 VDD1
0.7 VDD1
0.3 VDD1
VSS1
t STB- POL
tPOL-STB
VDD1
POL
0.7 V DD1
0.3 V DD1
0.7 VDD1
0.3 VDD1
VSS1
tPLH3
Hi-Z
tPLH2
S1 to S480
tPHL2
tPHL3
RPO1,
RPO2
tPHL4
tPHL5
19
µ PD160083
tPLH5
tPLH4
Switching Characteristics Waveform (R,/L = H)
90%
1
tSETUP2
Unless otherwise specified, the input level is defined to be VIH = 0.7 VDD1, VIL = 0.3 VDD1 at CMOS signal and 0 V at
tf
differential signal (RSDS).
CLK
(Differential)
tr
PWCLK
<MODE1 = H>
PWCLK(L) PWCLK(H)
CLK
(Differential)
tr
PWCLK
90%
0V0V
1
tSETUP2
2
0V
0V
0V
160
3
0V
161
0V
0V
1
0V
10%
tHOLD2
0.7 VDD1
0.7 VDD1
10%
<D472 to D 474>
0V
Even
10%
VDD1
VSS1
tSTB-STH
tSETUP1 tHOLD1
Invalid
tf
90%
0.3 VDD1
tSTB-CLK
PWSTH
Dn0P to Dn2P
(Differential)
2
10%
tr
STHR
(1st Dr.)
tf
Odd
Even
Odd
<MODE1 = L, MODE2 = H>
20
PWCLK(L) PWCLK(H)
<D475 to D477>
Even
Odd
Last
da ta
Invalid
0V
Preliminary Product Information S16450EJ1V0PM00
<D1 to D3 >
tPHL1
tPLH1
STHL
(1st Dr.)
0.7 VDD1
VDD1
0.7 VDD1
VSS1
PWSTB
t LDT
STB
VDD1
0.7 V DD1
0.3 VDD1
0.7 V DD1
0.3 VDD1
VSS1
tSTB- POL
tPO L- STB
VDD1
POL
0.7 V DD1
0.3 V DD1
0.7 VDD1
0.3 VDD1
Output
reset
VSS1
tPLH3
tPLH2
S1 to S480
tPHL2
tPHL3
tPLH5
tPLH4
tPHL4
tPHL5
µ PD160083
RPO1,
RPO2
µ PD160083
10. RECOMMENDED MOUNTING CONDITIONS
The following conditions must be met for mounting conditions of the µPD160010.
For more details, refer to the
[Semiconductor Device Mount Manual] (http://www.necel.com/pkg/en/mount/index.html)
Please consult with our sales offices in case other mounting process is used, or in case the mounting is done under
different conditions.
µPD160083N-xxx: TCP (TAB Package)
Mounting Condition
Thermocompression
Mounting Method
Soldering
Condition
Heating tool 300 to 350°C, heating for 2 to 3 sec, pressure 100g (per
solder).
ACF
Temporary bonding 70 to 100°C, pressure 3 to 8 kg/cm2, time 3 to 5 sec.
(Adhesive Conductive
Real bonding 165 to 180°C pressure 25 to 45 kg/cm2, time 30 to 40 sec.
Film)
(When using the anisotropy conductive film SUMIZAC1003 of Sumitomo
Bakelite, Ltd.)
Caution To find out the detailed conditions for mounting the ACF part, please contact the ACF
manufacturing company. Be sure to avoid using two or more mounting methods at a time.
Preliminary Product Information S16450EJ1V0PM00
21
µ PD160083
NOTES FOR CMOS DEVICES
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS
Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using
insulators that easily build static electricity. Semiconductor devices must be stored and transported
in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work bench and floor should be grounded. The operator should be grounded using
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need
to be taken for PW boards with semiconductor devices on it.
2
HANDLING OF UNUSED INPUT PINS FOR CMOS
Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused
pin should be connected to V DD or GND with a resistor, if it is considered to have a possibility of
being an output pin. All handling related to the unused pins must be judged device by device and
related specifications governing the devices.
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES
Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS
does not define the initial operation status of the device. Immediately after the power source is
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the
reset signal is received. Reset operation must be executed immediately after power-on for devices
having reset function.
22
Preliminary Product Information S16450EJ1V0PM00