DATA SHEET MOS INTEGRATED CIRCUIT µPD16635 240-OUTPUT TFT-LCD SOURCE DRIVER (COMPATIBLE WITH 64 GRAY SCALES) The µPD16635 is a source driver for TFT-LCDs capable of dealing with displays with 64 gray scales. Data input is based on digital input configured as 6 bits by 6 dots (2 pixels), which can realize a full-color display of 260,000 colors by output of 64 values γ -corrected by an internal D/A converter and 5-by-2 external power modules. Because the output dynamic range is as large as 11.5 VP-P, level inversion operation of the LCD’s common electrode is rendered unnecessary. Also, to be able to deal with full-dot inversion when mounted on a single side, this source driver is equipped with a built-in 6-bit D/A converter circuit whose odd output pins and even output pins respectively output gray scale voltages of differing polarity. Assuring a maximum clock frequency of 33 MHz when driving at 3.0 V, this driver is applicable to SVGA-standard TFT-LCD panels. FEATURES • Capable of outputting 64 values by means of 5-by-2 external power modules (10 units) and a D/A converter • Output dynamic range 11.5 VP-P min. (@ VDD2 = 13.5 V) • CMOS level input • Input of 6 bits (gradation data) by 6 dots • High-speed data transfer: fmax. = 33 MHz (internal data transfer speed when operating at 3.0 V) • 240 outputs • Dedicaded full-dot inversion driver • Single-sided mounting possible (loaded with slim TCP) ORDERING INFORMATION Part Number µPD16635N-××× Package TCP (TAB package) The TCP’s external shape is customized. To order your TCP’s external shape, please contact a NEC salesperson. Document No. S11420EJ1V0DS00 (1st edition) Date Published September 1996 P Printed in Japan © 1996 µPD16635 1. BLOCK DIAGRAM STHR R/L CLK STB STHL VDD1 VSS1 40-bit bidirectional shift register C1 C 2 C39 C40 D00 - 05 D10 - 15 D20 - 25 D30 - 35 D40 - 45 D50 - 55 Data register POL Latch VDD2 Level shifter VSS2 V0 - V 9 D/A converter Voltage follower output S1 2 S2 S3 S240 µPD16635 RELATIONSHIP BETWEEN OUTPUT CIRCUIT AND D/A CONVERTER S1 S239 S240 5 ····· V0 S2 V4 Multiplexer V5 6-bit D/A converter 5 ····· 2. V9 POL POL S2n–1 S2n L V0 to V4 V5 to V9 H V5 to V9 V0 to V4 S 2n–1 (odd output), S2n (even output) n = 1, 2, ·····, 120 3 µPD16635 3. PIN CONFIGURATION (µPD16635N-×××) VSS2 VDD2 VSS1 R/L POL STB D55 D54 D53 D52 D51 D50 D45 D44 D43 D42 D41 D40 D35 D34 D33 D32 D31 STHL V9 V8 V7 V6 V5 V4 V3 V2 V1 V0 CLK STHR D30 D25 D24 D23 D22 D21 D20 D15 D14 D13 D12 D11 D10 D05 D04 D03 D02 D01 D00 TEST VDD1 VDD2 VSS2 This figure shows the pin connection, not a TCP package. 4 S240 S239 S238 S237 S4 S3 S2 S1 µPD16635 4. PIN FUNCTIONS Pin Symbol Pin Name Description S1 to S240 Driver output The D/A converted 64-gray-scale analog voltage is output. D00 to D05 Display data input The display data is input with a width of 36 bits, viz., the gray scale data (6 bits) by 6 dots (2 pixels). DX0: LSB, DX5: MSB R/L Shift direction switching input These refer to the start pulse input/output pins when cascades are connected. The shift directions of the shift registers are as follows. R/L = H: STHR input, S1 → S240, STHL output R/L = L : STHL input, S240 → S1, STHR output STHR Right shift start pulse input/output R/L = H: Becomes the start pulse input pin. R/L = L : Becomes the start pulse output pin. STHL Left shift start pulse input/output R/L = H: Becomes the start pulse output pin. R/L = L : Becomes the start pulse input pin. CLK Shift clock input Refers to the shift register’s shift clock input. The display data is incorporated into the data register at the rising edge. At the rising edge of the 40th clock after the start pulse input, the start pulse output reaches the high level, thus becoming the start pulse of the next-stage driver. The initial-stage driver’s 40th clock becomes valid as the next-stage driver’s start pulse is input. If 42 clock pulses are input after input of the start pulse, input of display data is halted automatically. The contents of the shift register are cleared at the STB’s rising edge. STB Latch input The contents of the data register are transferred to the latch at the rising edge. And, at the falling edge, the gray scale voltage is supplied to the driver. It is necessary to ensure input of one pulse per horizontal period. POL Polarity input POL = L; The S2n–1 output uses V0 to V4 as the reference supply; and the S2n output uses V5 to V9 as the reference supply. POL = H; The S2n–1 output uses V5 to V9 as the reference supply; and the S2n output uses V0 to V4 as the reference supply. S2n – 1 indicates the odd output; and S2n indicates the even output. Input of the POL signal is allowed the setup time (tPOL-STB) with respect to STB’s rising edge. V0 to V9 γ -corrected power supplies Input the γ -corrected power supplies from outside. Make sure to maintain the following relationships. During the gray scale voltage output, be sure to keep the gray scale level power supply at a constant level. VDD2 > V0 > V1 > V2 > V3 > V4 > V5 > V6 > V7 > V8 > V9 > VSS2 TEST Test pin Set it to “OPEN”. VDD1 Logic power supply 3.3 V ± 0.3 V VDD2 Driver power supply 11.0 V to 13.5 V VSS1 Logic ground Grounding VSS2 Driver ground Grounding D10 to D15 D20 to D25 D31 to D35 D40 to D45 D50 to D55 Cautions 1. The power start sequence must be VDD1, logic input, and VDD2 & V0 to V9 in that order. Reverse this sequence to shut down. (Simultaneous power application to VDD2 and V0 to V9 is possible.) 2. To stabilize the supply voltage, please be sure to insert a 0.1 µF bypass capacitor between VDD1-VSS1 and VDD2-VSS2. Furthermore, for increased precision of the D/A converter, insertion of a bypass capacitor of about 0.01 µF is also advised between the γ -corrected power supply terminals (V0, V1, V2, ···, V9) and VSS2. 5 µPD16635 5. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE This product incorporates a 6-bit D/A converter whose odd output pins and even output pins output respectively gray scale voltages of differing polarity with respect to the LCD’s counter electrode (common electrode) voltage. The D/A converter consists of ladder resistors and switches. The ladder resistors r0 to r 62 are so designed that the ratios between the LCD panel’s γ -corrected voltages and V 0’ to V 63’ and V0” to V 63” are roughly equal; and their respective resistance values are as shown on page 9. Among the 5-by-2 γ -corrected voltages, input gray scale voltages of the same polarity with respect to the common voltage, for the respective five γ -corrected voltages of V 0 to V 4 and V5 to V 9. If fine gray scale voltage precision is not necessary, the voltage follower circuit supplied to the γ -corrected power supplies V 1 to V3 and V 6 to V 8 can be deleted. Figure 1 shows the relationship between the driving voltages such as liquid-crystal driving voltages VDD2 and V SS2, common electrode potential VCOM, and γ -corrected voltages V 0 to V 9 and the input data. Be sure to maintain the voltage relationships of V DD2 > V 0 > V 1 > V2 > V 3 > V 4 > V5 > V 6 > V7 > V 8 > V 9 > VSS2. Figures 2-1 and 22 show the relationship between the input data and the output data. Table 1 shows the resistance values of the resistor strings. This driver IC is designed for single-sided dot inversion mounting. Therefore, it cannot be used in doublesided mounting. Figure 1. Relationship Between Input Data and Output Voltage 0.2 V VDD2 Split interval V0 8 V1 24 V2 24 V3 7 V4 VCOM V5 7 V6 24 V7 24 V8 8 V9 0.2 V VSS2 00 08 10 18 20 28 30 38 3F Input data (HEX) 6 µPD16635 Resistor Strings Figure 2-1. Relationship Between Input Data and Output Voltage: VDD2 > V0 > V1 > V2 > V3 > V4 > V5 V0 V0’ Data V1’ 00H 01H 02H 03H 04H 05H 06H 07H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 V0’ V1’ V2’ V3’ V4’ V5’ V6’ V7’ V0 V1 + (V0 – V1) × 4500/5300 V1 + (V0 – V1) × 3700/5300 V1 + (V0 – V1) × 2900/5300 V1 + (V0 – V1) × 2200/5300 V1 + (V0 – V1) × 1500/5300 V1 + (V0 – V1) × 900/5300 V1 + (V0 – V1) × 400/5300 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 V8’ V9’ V10’ V11’ V12’ V13’ V14’ V15’ V1 V2 + (V1 – V2) × 3600/4000 V2 + (V1 – V2) × 3300/4000 V2 + (V1 – V2) × 3000/4000 V2 + (V1 – V2) × 2700/4000 V2 + (V1 – V2) × 2400/4000 V2 + (V1 – V2) × 2200/4000 V2 + (V1 – V2) × 2000/4000 10H 11H 12H 13H 14H 15H 16H 17H 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 V16’ V17’ V18’ V19’ V20’ V21’ V22’ V23’ V2 + (V1 – V2) × 1800/4000 V2 + (V1 – V2) × 1600/4000 V2 + (V1 – V2) × 1400/4000 V2 + (V1 – V2) × 1300/4000 V2 + (V1 – V2) × 1200/4000 V2 + (V1 – V2) × 1100/4000 V2 + (V1 – V2) × 1000/4000 V2 + (V1 – V2) × 900/4000 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 V24’ V25’ V26’ V27’ V28’ V29’ V30’ V31’ V2 + (V1 – V2) × V2 + (V1 – V2) × V2 + (V1 – V2) × V2 + (V1 – V2) × V2 + (V1 – V2) × V2 + (V1 – V2) × V2 + (V1 – V2) × V2 + (V1 – V2) × 20H 21H 22H 23H 24H 25H 26H 27H 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 V32’ V33’ V34’ V35’ V36’ V37’ V38’ V39’ V2 V3 + (V2 – V3) × 2600/2700 V3 + (V2 – V3) × 2500/2700 V3 + (V2 – V3) × 2400/2700 V3 + (V2 – V3) × 2300/2700 V3 + (V2 – V3) × 2200/2700 V3 + (V2 – V3) × 2100/2700 V3 + (V2 – V3) × 2000/2700 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 V40’ V41’ V42’ V43’ V44’ V45’ V46’ V47’ V3 + (V2 – V3) × 1900/2700 V3 + (V2 – V3) × 1800/2700 V3 + (V2 – V3) × 1700/2700 V3 + (V2 – V3) × 1600/2700 V3 + (V2 – V3) × 1500/2700 V3 + (V2 – V3) × 1400/2700 V3 + (V2 – V3) × 1300/2700 V3 + (V2 – V3) × 1200/2700 30H 31H 32H 33H 34H 35H 36H 37H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 V48’ V49’ V50’ V51’ V52’ V53’ V54’ V55’ V3 + (V2 – V3) × 1100/2700 V3 + (V2 – V3) × 1000/2700 V3 + (V2 – V3) × 900/2700 V3 + (V2 – V3) × 800/2700 V3 + (V2 – V3) × 700/2700 V3 + (V2 – V3) × 600/2700 V3 + (V2 – V3) × 400/2700 V3 + (V2 – V3) × 200/2700 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 V56’ V57’ V58’ V59’ V60’ V61’ V62’ V63’ V3 V4 + (V3 – V4) × 2300/2500 V4 + (V3 – V4) × 2100/2500 V4 + (V3 – V4) × 1800/2500 V4 + (V3 – V4) × 1500/2500 V4 + (V3 – V4) × 1200/2500 V4 + (V3 – V4) × 800/2500 V4 r0 r1 V2’ r2 V3’ r3 V4’ r4 V5’ r5 V6’ r6 V7’ r7 V8’ V1 r8 V9’ r9 r30 V31’ r31 V32’ V2 r32 V33’ r33 r54 V55’ r55 V56’ V3 r56 V57’ r57 V58’ r58 V59’ r59 V60’ r60 V61’ r61 V62’ r62 V63’ V4 r4–5 V5 Caution 9 kΩ V63’’ DX5 DX4 DX3 DX2 DX1 DX0 Output Voltage 800/4000 700/4000 600/4000 500/4000 400/4000 300/4000 200/4000 100/4000 V4 and V5 are interconnected inside the IC by resistors r4-5 (9 kΩ). 7 µPD16635 Resistor Strings Figure 2-1. Relationship Between Input Data and Output Voltage: V4 > V5 > V6 > V7 > V8 > V9 > VSS2 Data V4 V63’ r4–5 9 kΩ V63’’ V5 r62 V62’’ r61 V61’’ r60 V60’’ r59 V59’’ r58 V58’’ r57 V57’’ r56 V56’’ V6 r55 V55’’ r54 r33 V33’’ r32 V32’’ V7 r31 V31’’ r30 r9 V9’’ r8 V8’’ V8 r7 V7’’ r6 V6’’ r5 V5’’ r4 V4’’ r3 V3’’ r2 V2’’ r1 V1’’ r0 V9 Caution 8 V0’’ DX5 DX4 DX3 DX2 DX1 DX0 Output Voltage 00H 01H 02H 03H 04H 05H 06H 07H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 V0’’ V1’’ V2’’ V3’’ V4’’ V5’’ V6’’ V7’’ V9 V9 + (V8 – V9) × 800/5300 V9 + (V8 – V9) × 1600/5300 V9 + (V8 – V9) × 2400/5300 V9 + (V8 – V9) × 3100/5300 V9 + (V8 – V9) × 3800/5300 V9 + (V8 – V9) × 4400/5300 V9 + (V8 – V9) × 4900/5300 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 V8’’ V9’’ V10’’ V11’’ V12’’ V13’’ V14’’ V15’’ V8 V8 + (V7 – V8) × 400/4000 V8 + (V7 – V8) × 700/4000 V8 + (V7 – V8) × 1000/4000 V8 + (V7 – V8) × 1300/4000 V8 + (V7 – V8) × 1600/4000 V8 + (V7 – V8) × 1800/4000 V8 + (V7 – V8) × 2000/4000 10H 11H 12H 13H 14H 15H 16H 17H 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 V16’’ V17’’ V18’’ V19’’ V20’’ V21’’ V22’’ V23’’ V8 + (V7 – V8) × 2200/4000 V8 + (V7 – V8) × 2400/4000 V8 + (V7 – V8) × 2600/4000 V8 + (V7 – V8) × 2700/4000 V8 + (V7 – V8) × 2800/4000 V8 + (V7 – V8) × 2900/4000 V8 + (V7 – V8) × 3000/4000 V8 + (V7 – V8) × 3100/4000 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 V24’’ V25’’ V26’’ V27’’ V28’’ V29’’ V30’’ V31’’ V8 + (V7 – V8) × 3200/4000 V8 + (V7 – V8) × 3300/4000 V8 + (V7 – V8) × 3400/4000 V8 + (V7 – V8) × 3500/4000 V8 + (V7 – V8) × 3600/4000 V8 + (V7 – V8) × 3700/4000 V8 + (V7 – V8) × 3800/4000 V8 + (V7 – V8) × 3900/4000 20H 21H 22H 23H 24H 25H 26H 27H 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 V32’’ V33’’ V34’’ V35’’ V36’’ V37’’ V38’’ V39’’ V7 V7 + (V6 – V7) × V7 + (V6 – V7) × V7 + (V6 – V7) × V7 + (V6 – V7) × V7 + (V6 – V7) × V7 + (V6 – V7) × V7 + (V6 – V7) × 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 V40’’ V41’’ V42’’ V43’’ V44’’ V45’’ V46’’ V47’’ V7 + (V6 – V7) × 800/2700 V7 + (V6 – V7) × 900/2700 V7 + (V6 – V7) × 1000/2700 V7 + (V6 – V7) × 1100/2700 V7 + (V6 – V7) × 1200/2700 V7 + (V6 – V7) × 1300/2700 V7 + (V6 – V7) × 1400/2700 V7 + (V6 – V7) × 1500/2700 30H 31H 32H 33H 34H 35H 36H 37H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 V48’’ V49’’ V50’’ V51’’ V52’’ V53’’ V54’’ V55’’ V7 + (V6 – V7) × 1600/2700 V7 + (V6 – V7) × 1700/2700 V7 + (V6 – V7) × 1800/2700 V7 + (V6 – V7) × 1900/2700 V7 + (V6 – V7) × 2000/2700 V7 + (V6 – V7) × 2100/2700 V7 + (V6 – V7) × 2300/2700 V7 + (V6 – V7) × 2500/2700 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 V56’’ V57’’ V58’’ V59’’ V60’’ V61’’ V62’’ V63’’ V6 V6 + (V5 – V6) × 200/2500 V6 + (V5 – V6) × 400/2500 V6 + (V5 – V6) × 700/2500 V6 + (V5 – V6) × 1000/2500 V6 + (V5 – V6) × 1300/2500 V6 + (V5 – V6) × 1700/2500 V5 V4 and V5 are interconnected inside the IC by resistors r4-5 (9 kΩ). 100/2700 200/2700 300/2700 400/2700 500/2700 600/2700 700/2700 µPD16635 Ladder Resistance Values (r0 to r62): Reference Value V0, V9 V1, V8 V2, V7 Resistor Name Resistance Value (Ω) Resistor Name Resistance Value (Ω) r0 800 r32 100 r1 800 r33 100 r2 800 r34 100 r3 700 r35 100 r4 700 r36 100 r5 600 r37 100 r6 500 r38 100 r7 400 r39 100 r8 400 r40 100 r9 300 r41 100 r10 300 r42 100 r11 300 r43 100 r12 300 r44 100 r13 200 r45 100 r14 200 r46 100 r15 200 r47 100 r16 200 r48 100 r17 200 r49 100 r18 100 r50 100 r19 100 r51 100 r20 100 r52 100 r21 100 r53 200 r22 100 r54 200 r23 100 r55 200 r24 100 r56 200 r25 100 r57 200 r26 100 r58 300 r27 100 r59 300 r28 100 r60 300 r29 100 r61 400 r30 100 r62 r31 100 Total 800 14500 V2 , V 7 V3 , V 6 V4 , V 5 9 µPD16635 6. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT PIN Data format : 6 bits × 2 RGBs (6 dots) Input width : 36 bits (2-pixel data) R/L = H (Right shift) Output Data S1 S2 S3 S4 S5 ··· S239 S240 D00 to D05 D10 to D15 D20 to D25 D30 to D35 D40 to D45 ··· D40 to D45 D50 to D55 S1 S2 S3 S4 S5 ··· S239 S240 D00 to D05 D10 to D15 D20 to D25 D30 to D35 D40 to D45 ··· D40 to D45 D50 to D55 R/L = L (Left shift) Output Data POL S2n–1 S2n L V0 to V4 V5 to V9 H V5 to V9 V0 to V4 S 2n–1 (Odd output), S 2n (Even output) n = 1, 2, ·····, 120 7. RELATIONSHIP BETWEEN STB, POL, AND OUTPUT WAVEFORM The output voltage is written to the LCD panel synchronized with the STB rising edge. STB POL S2n–1 Selected voltage of V0 to V4 Selected voltage of V5 to V9 Selected voltage of V0 to V4 S2n Selected voltage of V5 to V9 Hi-Z 10 Selected voltage of V0 to V4 Hi-Z Selected voltage of V5 to V9 Hi-Z µPD16635 Absolute Maximum Ratings (TA = 25 ˚C, V Parameter SS1 = VSS2 = 0 V) Symbol Rating Unit Logic Part Supply Voltage VDD1 –0.5 to +6.5 V Driver Part Supply Voltage VDD2 –0.5 to +15.0 V Logic Part Input Voltage VI1 –0.5 to VDD1 + 0.5 V Driver Part Input Voltage VI2 –0.5 to VDD2 + 0.5 V Logic Part Output Voltage VO1 –0.5 to VDD1 + 0.5 V Driver Part Output Voltage VO2 –0.5 to VDD2 + 0.5 V Operating Temperature Range TA –10 to +75 °C Storage Temperature Range Tstg. –55 to +125 °C Recommended Operating Range (TA = –10 to +75 ˚C, V Parameter SS1 = VSS2 = 0 V) Symbol MIN. TYP. MAX. Unit Logic Part Supply Voltage VDD1 3.0 3.3 3.6 V Driver Part Supply Voltage VDD2 11.0 13.0 13.5 V High-Level Input Voltage VIH 0.8 VDD1 VDD1 V Low-Level Input Voltage VIL 0 0.2 VDD1 V VSS2 + 0.1 VDD2 – 0.1 V VDD2 – 0.2 V γ -Corrected Voltage V0 to V9 Driver Part Output Voltage VO VSS2 + 0.2 Maximum Clock Frequency fmax. 33 MHz Electrical Specifications (TA = –10 to +75 °C, VDD1 = 3.3 V ±0.3 V, VDD2 = 13.0 V ±0.5 V, VSS1 = VSS2 = 0 V) Parameter Symbol Condition Input Leak Current IL High-Level Output Voltage VOH STHR (STHL), IO = 0 mA Low-level Output Voltage VOL STHR (STHL), IO = 0 mA γ -Corrected Supply Current Driver Output Current V0 – V9 = 10 V IVOH VX – VOUT = 6 V IVOL VX – VOUT = –6 V MIN. TYP. MAX. Unit ±1.0 µA VDD1 – 0.1 V0 , V9 V 0.3 0.3 0.1 V 0.6 mA –0.3 mA mA V X refers to the output voltage of analog output pins S1 to S 240 . V OUT refers to the voltage applied to analog output pins S1 to S 240 . 11 µPD16635 Electrical Specifications (TA = –10 to +75 °C, VDD1 = 3.3 V ±0.3 V, VDD2 = 13.0 V ±0.5 V, VSS1 = VSS2 = 0 V) Parameter Symbol Condition MIN. TYP. MAX. Unit ±20 mV ∆VO Input data: 00H to 3FH ±5 Average Output Voltage VariationNote 2 ∆VAV Input data: 00H to 3FH ±10 Output Voltage Range VO Input data: 00H to 3FH Output Voltage DeviationNote 1 loadNotes 3, 4 Logic Part Dynamic Current Consumption IDD1 VDD1; when with no Driver Part Dynamic Current Consumption IDD2 VDD2; when with no loadNotes 3, 4 0.2 mV VDD2 – 0.2 V 1.0 6.0 mA 3.5 9.0 mA Notes 1. The output voltage deviation refers to the voltage difference between adjoining output pins when the display data is the same (within the chip). 2. The average output voltage variation refers to the average output voltage difference between chips. The average output voltage refers to the average voltage between chips when the display data is the same. 3. The STB cycle is defined to be 30 µs at fCLK = 25 MHz. The TYP. values refer to an all black or all white input pattern. The MAX. value refers to the measured values in the dot checkerboard input pattern. 4. Refers to the current consumption per driver when cascades are connected under the assumption of SVGA single-sided mounting (10 units). Switching Characteristics (TA = –10 to +75 °C, VDD1 = 3.3 V ±0.3 V, VDD2 = 13.0 V ±0.5 V, VSS1 = VSS2 = 0 V) Parameter Symbol Condition MIN. TYP. MAX. Unit Start Pulse Delay Time tPLH1 CL = 25 pF 10 15 ns Driver Output Delay Time 1 tPHL2 CL = 50 pF, R = 50 kΩ 7 11 µs Driver Output Delay Time 2 tPHL3 CL = 50 pF, R = 50 kΩ 13 17 µs Driver Output Delay Time 3 tPLH2 CL = 50 pF, R = 50 kΩ 7 11 µs Driver Output Delay Time 4 tPLH3 CL = 50 pF, R = 50 kΩ 13 17 µs Input Capacitance 1 C1 STHR, STHL excluded 5 15 pF 5 15 pF TA = 25 °C Input Capacitance 2 12 C2 STHR, STHL TA = 25 °C µPD16635 Conditions Required for Timing (TA = –10 to +75 °C, VDD1 = 3.3 V ±0.3 V, VSS1 = VSS2 = 0 V, tr = tf = 8.0 ns) Parameter Symbol Condition MIN. TYP. MAX. Unit Clock Pulse Width PWCLK 30 ns Clock Pulse Low Period PWCLK(L) 6 ns Clock Pulse High Period PWCLK(H) 6 ns Data Setup Time tSETUP1 6 ns Data Hold Time tHOLD1 6 ns Start Pulse Setup Time tSETUP2 6 ns Start Pulse Hold Time tHOLD2 6 ns Start Pulse Low Period tSPL 6 ns STB Pulse Width PWSTB 1 µs Data Invalid Period tINV 1 CLK Final Data Timing tLDT 2 CLK CLK-STB Time tCLK-STB CLK ↑ → STB ↓ 6 ns STB-CLK Time tSTB-CLK STB ↓ → CLK ↑ 6 ns Time Between STB and Start Pulse tSTB-STH STB ↓ → STHR ↑ 60 ns POL-STB Time tPOL-STB POL ↑ or ↓ → STB ↑ –5 ns STB-POL Time tSTB-POL STB ↓ → POL ↑ or ↓ 6 ns 13 µPD16635 Switching Characteristics Waveform (R/L = H) In ( ): R/L = L Unless otherwise specified, the input level is defined to be 0.5 VDD1 . (1) Initial-Level Driver’s Input/Output Waveform PWCLK PWCLK (H) tf PWCLK (L) 1 CLK 2 tr 90 % 90 % VDD1 3 10 % 10 % tSETUP1 INVALID DXX INVALID VSS1 tHOLD1 1 VDD1 2 VSS1 tHOLD2 tSETUP2 tHOLD2 VDD1 STHR (IN) (STHL) VSS1 (2) Second- to Final-Level Drivers’s Input/Output Timing 40 41 1 1 CLK 2 3 40 41 VDD1 VSS1 VDD1 Dxx 39 40 1 2 39 40 VSS1 tPLH1 Initial-level output STHR (IN) (STHL) tSETUP2 VDD1 tPLH1 tSETUP2 VSS1 VDD1 STHL (OUT) (STHR) 14 VSS1 µPD16635 (3) Driver Output Timing VDD1 DXX 40 INVALID VSS1 tHOLD2 CLK 42 41 43 1 VDD1 VSS1 tINV tCLK-STB tSTB-CLK PWSTB tLDT VDD1 STB VSS1 tPOL-STB tSTB-POL VDD1 POL VSS1 tSTB-STH tSETUP2 tHOLD2 VDD1 STHR (IN) (STHL) VSS1 tSPL Hi-Z tPHL3 tPHL2 VDD2 Sn VX tPLH3 tPLH2 VX Sm Hi-Z VSS2 V X refers to the final output voltage. t PLH2 and tPHL2 refer to the time required to reach an output precision level of 10 % (0.1 V X); and t PLH3 and tPHL3 refer to the time required to reach an output precision level of 6 bits. 15 µPD16635 RECOMMENDED CONDITIONS FOR INSTALLATION This product should be installed under the following recommended conditions. Consult one of our sales representatives for installation under conditions other than those recommended. Installation condition Thermocompression bonding Caution Installation method Condition Soldering Heat with heating tool at 300 °C to 350 °C under pressure of 100 g (per pin) for 2 to 3 seconds ACF (sheet-type adhesive agent) Temporary adhesion at 70 °C to 100 °C under pressure of 3 to 8 kg/cm2 for 3 to 5 seconds Permanent adhesion at 165 °C to 180 °C under pressure of 25 to 45 kg/cm2 for 30 to 40 seconds (when aeolotropic conductive film SUMIZAC1003 from Sumitomo Bakelite Co., Ltd. is used) For installation conditions for the ACF part, contact the ACF manufacturer beforehand. Do not mix different installation methods. REFERENCE Document name Document No. NEC semiconductor device reliability/quality control system IEI-1212 Quality grade on NEC semiconductor devices C11531E Semiconductor device package manual IEI-1213 Guide to quality assurance for semiconductor devices MEI-1202 Semiconductor selection guide X10679E 16 µPD16635 [MEMO] 17 µPD16635 [MEMO] 18 µPD16635 [MEMO] 19