DATA SHEET MOS INTEGRATED CIRCUIT µ PD16715A 384-OUTPUT TFT-LCD SOURCE DRIVER (COMPATIBLE WITH 64-GRAY SCALES) DESCRIPTION The µPD16715A is a source driver for TFT-LCDs capable of dealing with displays with 64-gray scales. Data input is based on digital input configured as 6 bits by 6 dots (2 pixels), which can realize a full-color display of 260,000 colors by output of 64 values γ-corrected by an internal D/A converter and 5-by-2 external power modules. Because the output dynamic range is as large as VSS2 + 0.1 V to VDD2 – 0.1 V, level inversion operation of the LCD’s common electrode is rendered unnecessary. Also, to be able to deal with dot-line inversion when mounted on a single side, this source driver is equipped with a built-in 6-bit D/A converter circuit whose odd output pins and even output pins respectively output gray scale voltages of differing polarity. Assuring a maximum clock frequency of 55 MHz when driving at 3.0 V, this driver is applicable to XGA/SXGA-standard TFT-LCD panels. FEATURES • CMOS level input • 384 outputs • Input of 6 bits (gradation data) by 6 dots • Capable of outputting 64 values by means of 5-by-2 external power modules (10 units) and a D/A converter Logic power supply (VDD1): 3.3 V ± 0.3 V +2.5 V • Driver power supply (VDD2): 11.0 V – 2.0 • High-speed data transfer: f CLK = 55 MHz (internal data transfer speed when operating at 3.0 V) • • Output dynamic range VSS2 + 0.1 V to VDD2 – 0.1 V • Apply for only dot-line inversion • Single bank arrangement is possible (POL) • Display data inversion function (POL2) • • Low power control function (LPC) • Single-sided mounting (Slim TCP) ORDERING INFORMATION Part Number Package µPD16715AN- xxx Remark TCP (TAB package) The TCP’s external shape is customized. To order your TCP’s external shape, please contact an NEC salesperson. The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information. Document No. S13944EJ2V0DS00 (2nd edition) Date Published December 1999 NS CP(K) Printed in Japan The mark • shows major revised points. © 1998,1999 µ PD16715A 1. BLOCK DIAGRAM STHR R,/L CLK STB STHL VDD1 VSS1 64-bit bidirectional shift register C1 C2 C63 C64 D00 to D05 D10 to D15 D20 to D25 D30 to D35 D40 to D45 D50 to D55 Data register POL2 Latch POL VDD2 Level shifter VSS2 V0 to V9 D/A converter Voltage follower output LPC S1 S2 S3 S384 Remark /xxx indicates active low signal. 2. RELATIONSHIP BETWEEN OUTPUT CIRCUIT AND D/A CONVERTER S1 V4 Multiplexer 6-bit D/A converter 5 ····· V5 S383 5 ····· V0 S2 V9 POL 2 Data Sheet S13944EJ2V0DS00 S384 µ PD16715A 3. PIN CONFIGURATION (µPD16715AN-××× ×××) ××× VSS2 VDD2 R,/L POL STB D55 D54 D53 D52 D51 D50 D45 D44 D43 D42 D41 D40 D35 D34 D33 D32 D31 D30 STHL V9 V8 V7 V6 V5 V4 V3 V2 V1 V0 VDD1 CLK VSS1 POL2 STHR D25 D24 D23 D22 D21 D20 D15 D14 D13 D12 D11 D10 D05 D04 D03 D02 D01 D00 LPC TEST VDD2 VSS2 S384 S383 S382 S381 Copper Foil Surface S4 S3 S2 S1 Remark This figure does not specify the TCP package. Data Sheet S13944EJ2V0DS00 3 µ PD16715A 4. PIN FUNCTIONS (1/2) Pin Symbol Pin Name Description S1 to S384 Driver output The D/A converted 64-gray scale analog voltage is output. D00 to D05 Display data input The display data is input with a width of 36 bits, viz., the gray scale data (6 bits) by 6 dots (2 pixels). DX0 : LSB, DX5: MSB R,/L Shift direction control input These refer to the start pulse input/output pins when driver ICs are connected in cascade. The shift directions of the shift registers are as follows. R,/L = H: STHR input, S1 → S384, STHL output R,/L = L : STHL input, S384 → S1, STHR output STHR Right shift start pulse input/output R,/L = H: Becomes the start pulse input pin. R,/L = L : Becomes the start pulse output pin. STHL Left shift start pulse input/output R,/L = H: Becomes the start pulse output pin. R,/L = L : Becomes the start pulse input pin. CLK Shift clock input Refers to the shift register’s shift clock input. The display data is incorporated into the data register at the rising edge. At the rising edge of the 64th clock after the start pulse input, the start pulse output reaches the high level, thus becoming the start pulse of the next-level driver. The initial-level driver’s 64th clock becomes valid as the next-level driver’s start pulse is input. If 66 clock pulses are input after input of the start pulse, input of display data is halted automatically. The contents of the shift register are cleared at the STB’s rising edge. STB Latch input The contents of the data register are transferred to the latch circuit at the rising edge. And, at the falling edge, the gray scale voltage is supplied to the driver. It is necessary to ensure input of one pulse per horizontal period. POL Polarity input POL = L: The S2n–1 output uses V0 to V4 as the reference supply ; D10 to D15 D20 to D25 D30 to D35 D40 to D45 D50 to D55 The S2n output uses V5 to V9 as the reference supply. POL = H : The S2n–1 output uses V5 to V9 as the reference supply ; The S2n output uses V0 to V4 as the reference supply. S2n-1 indicates the odd output: and S2n indicates the even output. Input of the POL signal is allowed the setup time (tPOL-STB) with respect to STB’s rising edge. POL2 Data inversion POL2 = H : Display data is inverted. POL2 = L : Display data is not inverted LPC Driver voltage selection The output buffer constant current source is blocked, reducing current consumption. Low power mode (LPC = ‘H’: DC-level input possible). The condition that low power mode can be used is that the load constant is at least 10 kΩ + 50 pF. 4 V0 to V9 γ -corrected power supplies Input the γ -corrected power supplies from outside by using operational amplifier. Make sure to maintain the following relationships. During the gray scale voltage output, be sure to keep the gray scale level power supply at a constant level. VDD2 – 0.1 V > V0 > V1 > V2 > V3 > V4 > V5 > V6 > V7 > V8 > V9 > VSS2 + 0.1 V TEST Test pin Test pin. Please input H or Open. VDD1 Logic power supply 3.3 V ± 0.3 V VDD2 Driver power supply VSS1 Logic ground Grounding VSS2 Driver ground Grounding 11.0 V + 2.5 − 2.0 V Data Sheet S13944EJ2V0DS00 µ PD16715A Cautions 1. The power start sequence must be VDD1, logic input, and VDD2 & V0 to V9 in that order. Reverse this sequence to shut down. (Simultaneous power application to VDD2 and V0 to V9 is possible.) 2. To stabilize the supply voltage, please be sure to insert a 0.47 µF bypass capacitor between VDD1-VSS1 and VDD2-VSS2. Furthermore, for increased precision of the D/A converter, insertion of a bypass capacitor of about 0.01 µF is also advised between the γ -corrected power supply terminals (V0, V1, V2, ···, V9) and VSS2. 5. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE The µPD16715A incorporates a 6-bit D/A converter whose odd output pins and even output pins output respectively gray scale voltages of differing polarity with respect to the LCD's counter electrode (common electrode) voltage. The D/A converter consists of ladder resistors and switches. The ladder resistors r0 to r62 are so designed that the ratios between the LCD panel's γ - corrected voltages and V0' to V63' and V0" to V63" are roughly equal; and their respective resistance values are as shown on next page. Among the 5-by-2 γ -corrected voltages, input gray scale voltages of the same polarity with respect to the common voltage, for the respective five γ -corrected voltages of V0 to V4 and V5 to V9 Figure 5-1 shows the relationship between the driving voltages such as liquid-crystal driving voltages VDD2 and VSS2, common electrode potential VCOM, and γ - corrected voltages V0 to V9 and the input data. Be sure to maintain the voltage relationships of VDD2 – 0.1 V > V0 > V1 > V2 > V3 > V4 > V5 > V6 > V7 > V8 > V9 > VSS2 + 0.1 V. Figures 5-2 and 5-3 show the relationship between the input data and the output voltage. Therefore, please do not use it for γ - corrected power supply level inversion in double-sided mounting. −1. Relationship Between Input Data and γ - corrected Power Supply Figure 5− VDD2 0.1 V V0 8 V1 24 V2 24 V3 7 V4 VCOM Split interval V5 7 V6 24 V7 24 V8 8 V9 0.1 V VSS2 00 08 20 38 3F Input Data (HEX) Data Sheet S13944EJ2V0DS00 5 µ PD16715A −2. Relationship between Input Data and Output Voltage (1/2) Figure 5− VDD2 – 0.1 V > V0 > V1 > V2 > V3 > V4 V0 V0’ r0 V1’ r1 V2’ r2 V3’ r3 V4’ r4 V5’ r5 V6’ r6 V7’ r7 V1 V8’ r8 V9’ r9 r30 V31’ r31 V2 V32’ r32 V33’ r33 r54 V55’ r55 V3 V56’ r56 V57’ r57 V58’ r58 V59’ r59 V60’ r60 V61’ r61 V62’ r62 V4 V63’ V5 V63’’ r62 V62’’ r61 V61’’ r60 6 Data 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH DX5 DX4 DX3 DX2 DX1 DX0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 V0' V1' V2' V3' V4' V5' V6' V7' V8' V9' V10' V11' V12' V13' V14' V15' V16' V17' V18' V19' V20' V21' V22' V23' V24' V25' V26' V27' V28' V29' V30' V31' V32' V33' V34' V35' V36' V37' V38' V39' V40' V41' V42' V43' V44' V45' V46' V47' V48' V49' V50' V51' V52' V53' V54' V55' V56' V57' V58' V59' V60' V61' V62' V63' Output Voltage V0 V1+(V0-V1)× 4300 V1+(V0-V1)× 3550 V1+(V0-V1)× 2850 V1+(V0-V1)× 2200 V1+(V0-V1)× 1600 V1+(V0-V1)× 1050 V1+(V0-V1)× 500 V1 V1+(V0-V1)× 5200 V1+(V0-V1)× 4800 V1+(V0-V1)× 4400 V1+(V0-V1)× 4050 V1+(V0-V1)× 3700 V1+(V0-V1)× 3350 V1+(V0-V1)× 3050 V1+(V0-V1)× 2750 V2+(V1-V2)× 2450 V2+(V1-V2)× 2200 V2+(V1-V2)× 1950 V2+(V1-V2)× 1700 V2+(V1-V2)× 1500 V2+(V1-V2)× 1300 V2+(V1-V2)× 1100 V2+(V1-V2)× 950 V2+(V1-V2)× 800 V2+(V1-V2)× 650 V2+(V1-V2)× 500 V2+(V1-V2)× 400 V2+(V1-V2)× 300 V2+(V1-V2)× 200 V2+(V1-V2)× 100 V2 V3+(V2-V3)× 2450 V3+(V2-V3)× 2350 V3+(V2-V3)× 2250 V3+(V2-V3)× 2150 V3+(V2-V3)× 2050 V3+(V2-V3)× 1950 V3+(V2-V3)× 1850 V3+(V2-V3)× 1750 V3+(V2-V3)× 1650 V3+(V2-V3)× 1550 V3+(V2-V3)× 1450 V3+(V2-V3)× 1350 V3+(V2-V3)× 1250 V3+(V2-V3)× 1150 V3+(V2-V3)× 1050 V3+(V2-V3)× 950 V4+(V3-V4)× 850 V4+(V3-V4)× 750 V4+(V3-V4)× 650 V4+(V3-V4)× 550 V4+(V3-V4)× 450 V4+(V3-V4)× 300 V4+(V3-V4)× 150 V3 V4+(V3-V4)× 2300 V4+(V3-V4)× 2100 V4+(V3-V4)× 1850 V4+(V3-V4)× 1600 V4+(V3-V4)× 1300 V4+(V3-V4)× 800 V4 Data Sheet S13944EJ2V0DS00 / / / / / / / 5100 5100 5100 5100 5100 5100 5100 / / / / / / / / / / / / / / / / / / / / / / / 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 / / / / / / / / / / / / / / / / / / / / / / / 2550 2550 2550 2550 2550 2550 2550 2550 2550 2550 2550 2550 2550 2550 2550 2550 2550 2550 2550 2550 2550 2550 2550 / / / / / / 2500 2500 2500 2500 2500 2500 r n(Ω) r0 800 r1 750 r2 700 r3 650 r4 600 r5 550 r6 550 r7 500 r8 500 r9 400 r10 400 r11 350 r12 350 r13 350 r14 300 r15 300 r16 300 r17 250 r18 250 r19 250 r20 200 r21 200 r22 200 r23 150 r24 150 r25 150 r26 150 r27 100 r28 100 r29 100 r30 100 r31 100 r32 100 r33 100 r34 100 r35 100 r36 100 r37 100 r38 100 r39 100 r40 100 r41 100 r42 100 r43 100 r44 100 r45 100 r46 100 r47 100 r48 100 r49 100 r50 100 r51 100 r52 100 r53 150 r54 150 r55 150 r56 200 r57 200 r58 250 r59 250 r60 300 r61 500 r62 800 rtotal 15850 µ PD16715A −3. Relationship between Input Data and Output Voltage (2/2) Figure 5− V5 > V6 > V7 > V8 > V9 > VSS2 + 0.1 V r60 V61’ r61 V62’ r62 V4 V63’ V5 V63’’ r62 V62’’ r61 V61’’ r60 V60’’ r59 V59’’ r58 V58’’ r57 V57’’ r56 V56’’ V6 r55 V55’’ r54 r33 V33’’ r32 V32’’ V7 r31 V31’’ r30 r9 V9’’ r8 V8’’ V8 r7 V7’’ r6 V6’’ r5 V5’’ r4 V4’’ r3 V3’’ r2 V2’’ r1 V1’’ r0 V9 V0’’ Data 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH DX5 DX4 DX3 DX2 DX1 DX0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 V0'' V1'' V2'' V3'' V4'' V5'' V6'' V7'' V8'' V9'' V10'' V11'' V12'' V13'' V14'' V15'' V16'' V17'' V18'' V19'' V20'' V21'' V22'' V23'' V24'' V25'' V26'' V27'' V28'' V29'' V30'' V31'' V32'' V33'' V34'' V35'' V36'' V37'' V38'' V39'' V40'' V41'' V42'' V43'' V44'' V45'' V46'' V47'' V48'' V49'' V50'' V51'' V52'' V53'' V54'' V55'' V56'' V57'' V58'' V59'' V60'' V61'' V62'' V63'' Output Voltage V9 V9+(V8-V9)× 800 V9+(V8-V9)× 1550 V9+(V8-V9)× 2250 V9+(V8-V9)× 2900 V9+(V8-V9)× 3500 V9+(V8-V9)× 4050 V9+(V8-V9)× 4600 V8 V9+(V8-V9)× 500 V9+(V8-V9)× 900 V9+(V8-V9)× 1300 V9+(V8-V9)× 1650 V9+(V8-V9)× 2000 V9+(V8-V9)× 2350 V9+(V8-V9)× 2650 V9+(V8-V9)× 2950 V8+(V7-V8)× 3250 V8+(V7-V8)× 3500 V8+(V7-V8)× 3750 V8+(V7-V8)× 4000 V8+(V7-V8)× 4200 V8+(V7-V8)× 4400 V8+(V7-V8)× 4600 V8+(V7-V8)× 4750 V8+(V7-V8)× 4900 V8+(V7-V8)× 5050 V8+(V7-V8)× 5200 V8+(V7-V8)× 5300 V8+(V7-V8)× 5400 V8+(V7-V8)× 5500 V8+(V7-V8)× 5600 V7 V7+(V6-V7)× 100 V7+(V6-V7)× 200 V7+(V6-V7)× 300 V7+(V6-V7)× 400 V7+(V6-V7)× 500 V7+(V6-V7)× 600 V7+(V6-V7)× 700 V7+(V6-V7)× 800 V7+(V6-V7)× 900 V7+(V6-V7)× 1000 V7+(V6-V7)× 1100 V7+(V6-V7)× 1200 V7+(V6-V7)× 1300 V7+(V6-V7)× 1400 V7+(V6-V7)× 1500 V7+(V6-V7)× 1600 V6+(V5-V6)× 1700 V6+(V5-V6)× 1800 V6+(V5-V6)× 1900 V6+(V5-V6)× 2000 V6+(V5-V6)× 2100 V6+(V5-V6)× 2250 V6+(V5-V6)× 2400 V6 V6+(V5-V6)× 200 V6+(V5-V6)× 400 V6+(V5-V6)× 650 V6+(V5-V6)× 900 V6+(V5-V6)× 1200 V6+(V5-V6)× 1700 V5 Data Sheet S13944EJ2V0DS00 / / / / / / / 5100 5100 5100 5100 5100 5100 5100 / / / / / / / / / / / / / / / / / / / / / / / 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 / / / / / / / / / / / / / / / / / / / / / / / 2550 2550 2550 2550 2550 2550 2550 2550 2550 2550 2550 2550 2550 2550 2550 2550 2550 2550 2550 2550 2550 2550 2550 / / / / / / 2500 2500 2500 2500 2500 2500 rn(Ω) r0 800 r1 750 r2 700 r3 650 r4 600 r5 550 r6 550 r7 500 r8 500 r9 400 r10 400 r11 350 r12 350 r13 350 r14 300 r15 300 r16 300 r17 250 r18 250 r19 250 r20 200 r21 200 r22 200 r23 150 r24 150 r25 150 r26 150 r27 100 r28 100 r29 100 r30 100 r31 100 r32 100 r33 100 r34 100 r35 100 r36 100 r37 100 r38 100 r39 100 r40 100 r41 100 r42 100 r43 100 r44 100 r45 100 r46 100 r47 100 r48 100 r49 100 r50 100 r51 100 r52 100 r53 150 r54 150 r55 150 r56 200 r57 200 r58 250 r59 250 r60 300 r61 500 r62 800 rtotal 15850 7 µ PD16715A 6. RELATIONSHIP BETWEEN OUTPUT DATA AND D/A CONVERTER Data format : 6 bits × 2 RGBs (6 dots) Input width : 36 bits (2-pixel data) R,/L = H (Right shift) Output S1 S2 S3 S4 xxx S383 S384 Data D00 to D05 D10 to D15 D20 to D25 D30 to D35 xxx D40 to D45 D50 to D55 R,/L = L (Left shift) Output S1 S2 S3 S4 xxx S383 S384 Data D00 to D05 D10 to D15 D20 to D25 D30 to D35 xxx D40 to D45 D50 to D55 POL S2n–1 Note Note S2n L V0 to V4 V5 to V9 H V5 to V9 V0 to V4 Note S2n-1 (Odd output), S2n (Even output), n = 1,2,⋅⋅⋅,192 7. RELATIONSHIP BETWEEN STB, POL, AND OUTPUT WAVEFORM The output voltage is written to the LCD panel synchronized with the STB falling edge. STB POL S2n–1 Selected voltage of V0 to V4 Selected voltage of V0 to V4 Selected Voltage of V5 to V9 S2n Selected Voltage of V5 to V9 Hi-Z 8 Selected voltage of V0 to V4 Hi-Z Data Sheet S13944EJ2V0DS00 Selected Voltage of V5 to V9 Hi-Z µ PD16715A 8. RELATIONSHIP BETWEEN OUTPUT DATA AND D/A CONVERTER The µPD16715A is a dot inversion and inverts dots by alternately using a charging output buffer and a discharging output buffer. Therefore, the output voltage of the first line may not be correctly written because the last line’s output polarity of frame n (n + 1) and the first line’s output polarity are the same (refer to Figure 8-1). Consequently, polarity inversion and write operation must be performed between frames (vertical blanking period) in order to invert (clear) the polarity of the wiring level of the liquid crystal panel by using the last line output of the previous frame (refer to Figure 8-2). Figure 8-1. Incase of the output voltage may not be correctly written ,,, ,,, ,,, ,,, ,,, ,,, Vertical blanking period Last line of frame n STB First line of frame (n + 1) Second line of frame (n + 1) Charging output buffer Discharging output buffer POL S2N Hi-Z VCOM Hi-Z Hi-Z If the write voltage of the first line of the last (n + 1) frame is greater than the write voltage of the last line of frame n, the targeted voltage cannot be correctly written with the Figure 8-2. Polarity inversion and write operation ,,, ,,, ,,, ,,, ,,, ,,, ,,, Vertical blanking period Last line of frame n STB POL S2N Hi-Z Hi-Z First line of frame (n + 1) Hi-Z Second line of frame (n + 1) VCOM Hi-Z Because data of negative polarity is to be written on the first line of frame (n + 1), Data Sheet S13944EJ2V0DS00 9 µ PD16715A 5. ELECTRICAL SPECIFICATIONS Absolute Maximum Ratings (TA = 25 °C, VSS1 = VSS2 = 0 V) Parameter Symbol Ratings Unit Logic Part Supply Voltage VDD1 –0.3 to + 6.5 V Driver Part Supply Voltage VDD2 –0.5 to + 15.0 V Logic Part Input Voltage VI1 –0.3 to VDD1 + 0.3 V Driver Part Input Voltage VI2 –0.3 to VDD2 + 0.3 V Logic Part Output Voltage VO1 –0.3 to VDD1 + 0.3 V Driver Part Output Voltage VO2 –0.3 to VDD2 + 0.3 V Operating Ambient Temperature TA –10 to +75 °C Storage Temperature Tstg –55 to +125 °C Caution If the absolute maximum rating of even one of the above parameters is exceeded even momentarily, the quality of the product may be degraded. Absolute maximum ratings, therefore, specify the values exceeding which the product may be physically damaged. Be sure to use the product within the range of the absolute maximum ratings. Recommended Operating Range (TA = –10 to +75 °C, VSS1 = VSS2 = 0 V) Parameter Symbol MIN. TYP. MAX. Unit Logic Supply Voltage VDD1 3.0 3.3 3.6 V Driver Supply Voltage VDD2 9.0 11.0 13.5 V High-Level Input Voltage VIH 0.7 VDD1 VDD1 V Low-Level Input Voltage VIL 0 0.3 VDD1 V V0 to V9 VSS2 + 0.1 VDD2 − 0.1 V Driver Part Output Voltage VO VSS2 + 0.1 VDD2 − 0.1 V Clock Frequency fCLK 55 MHz γ -Corrected Voltage 10 Data Sheet S13944EJ2V0DS00 µ PD16715A +2.5 –2.0 V, Electrical Characteristics (TA = –10 to +75 °C, VDD1 = 3.3 V ± 0.3 V, VDD2 = 11.0 V Parameter Input Leak Current • Symbol Condition VOH STHR (STHL), IOH = 0 mA Low-Level Output Voltage VOL STHR (STHL), IOL = 0 mA Driver Output Current TYP. IIL High-Level Output Voltage γ -Corrected Supply Current VSS1 = VSS2 = 0 V) MIN. Iγ VDD1 − 0.1 VDD2 = 13 V, V0 pin, V5 pin V0 to V4 = V5 to V9 = 6.0 V V4 pin, V9 pin 0.31 –0.8 MAX. Unit ±1.0 µA VDD1 V 0.1 V 0.8 mA –0.31 mA IVOH VX = 8.0 V, VOUT = 6.0 V –0.25 IVOL VX = 1.0 V, VOUT = 3.0 V Output Voltage Deviation ∆VO Input data Average Output Voltage Variation ∆VAV Input data Output Voltage Range VO Input data Logic Part Dynamic Current Consumption IDD1 VDD1 = 3.6 V, TA = 25°C 1.5 8 mA Driver Part Dynamic Current Consumption IDD2 VDD1 = 3.0 V, VDD2 = 13.5 V, No loads, 3.5 8 mA 0.25 mA mA ±20 ±10 VDD2 +0.1 mV mV VDD2 – 0.1 V TA = 25°C Cautions 1. The output voltage deviation refers to the voltage difference between adjoining output pins when the display data is the same (within the chip). 2. The average output voltage variation refers to the average output voltage difference between chips. The average output voltage refers to the average voltage between chips when the display data is the same. 3. The STB cycle is defined to be 20 µ s at fCLK = 33 MHz. 4. The TYP. values refer to an all black or all white input pattern. The MAX. value refers to the measured values in the dot checkerboard input pattern. 5. Refers to the current consumption per driver when cascades are connected under the assumption of XGA single-sided mounting (8 units). Switching Characteristics (TA = –10 to +75 °C, VDD1 = 3.3 V ± 0.3 V, VDD2 = 11.0 V Parameter Symbol Condition +2.5 –2.0 V, MIN. VSS1 = VSS2 = 0 V) TYP. MAX. Unit Start Pulse Delay Time tPLH1 CL = 25 pF 9.1 14 ns Driver Output Delay Time tPLH2 CL = 50 pF, RL = 50 kΩ 5.2 11 µs tPLH3 9.9 17 µs tPHL2 5.3 11 µs tPHL3 10.4 17 µs Input Capacitance CI1 STHR (STHL) excluded, TA = 25°C 5.8 15 pF CI2 STHR (STHL),TA = 25°C 5.7 15 pF Data Sheet S13944EJ2V0DS00 11 µ PD16715A Timing Requirement (TA = –10 to +75 °C, VDD1 = 3.3 V ± 0.3 V, VSS1 = VSS2 = 0 V, tr = tf = 8.0 ns) Parameter Clock Pulse Width Symbol Condition MIN. TYP. MAX. Unit PWCLK 18 ns Clock Pulse High Period PWCLK(H) 5 ns Clock Pulse Low Period PWCLK(L) 5 ns Data Setup Time tSETUP1 0 ns Data Hold Time tHOLD1 8 ns Start Pulse Setup Time tSETUP2 4 ns Start Pulse Hold Time tHOLD2 5 ns POL2 Setup Time tSETUP3 0 ns POL2 Hold Time tHOLD3 8 ns STB Pulse Width PWSTB 500 ns Data Invalid Period tINV 1 CLK Last Data Timing tLDT 2 CLK CLK-STB Time tCLK-STB CLK ↑ → STB ↑ 5 ns STB-CLK Time tSTB-CLK STB ↑ → CLK ↑ 5 ns Time Between STB and Start Pulse tSTB-STH STB ↑ → STHR(STHL) ↑ 50 ns POL-STB Time tPOL-STB POL ↑ or ↓ → STB ↑ –7 ns STB-POL Time tSTB-POL STB ↓ → POL ↓ or ↑ 9 ns 12 Data Sheet S13944EJ2V0DS00 • tr 2 1 CLK t SETUP2 2 3 64 65 66 1025 1026 10% t CLK-STB t HOLD2 t STB-CLK VSS1 t SETUP1 INVALID D1 - D6 t HOLD1 D7 - D12 t SETUP3 POL2 VSS1 VDD1 STHR (1st Dr.) Dn0 - Dn5 tf VDD1 90% t STB-STH D373 D378 D379 D384 D385 D390 VDD1 D3067 D3072 INVALID D1 - D6 D7 - D12 VSS1 t HOLD3 VDD1 INVALID INVALID Data Sheet S13944EJ2V0DS00 VSS1 t PLH1 VDD1 STHL (1st Dr.) VSS1 t LDT t INV PWSTB VDD1 STB VSS1 t POL-STB t STB-POL VDD1 POL VSS1 Hi-Z (Unless otherwise specified, the input level is defined to be VIH =0.5 VDD1.) 1 9. SWITCHING CHARACTERISTICS WAVEFORM (R,/L = H) PWCLK(L) PWCLK PWCLK(H) t PLH3 t PLH2 t PHL2 t PHL3 13 µ PD16715A Target Voltage ±0.1VDD2 6-bit accuracy V out µ PD16715A 7. RECOMMENDED SOLDERING CONDITIONS The following conditions must be met for soldering conditions of the µPD16715A. For more details, refer to the Semiconductor Device Mounting Technology Manual (C10535E). Please consult with our sales offices in case other soldering process is used, or in case the soldering is done under different conditions. Type of Surface Mount Device ××× : TCP (TAB package) µPD16715AN-××× Mounting Condition Thermocompression Mounting Method Soldering Condition Heating tool 300 to 350°C, heating for 2 to 3 seconds: pressure 100g (per solder) ACF (Adhesive Conductive Film) 2 Temporary bonding 70 to 100°C: pressure 3 to 8 kg/cm : time 3 to 5 seconds. 2 Real bonding 165 to 180°C: pressure 25 to 45 kg/cm : time 30 to 40 seconds. (When using the anisotropy conductive film SUMIZAC1003 of Sumitomo Bakelite, Ltd.) Caution To find out the detailed conditions for packaging the ACF part, please contact the ACF manufacturing company. Be sure to avoid using two or more packaging methods at a time. 14 Data Sheet S13944EJ2V0DS00 µ PD16715A NOTES FOR CMOS DEVICES 1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it. 2 HANDLING OF UNUSED INPUT PINS FOR CMOS Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to V DD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices. 3 STATUS BEFORE INITIALIZATION OF MOS DEVICES Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function. Data Sheet S13944EJ2V0DS00 15 µ PD16715A Reference Documents NEC Semiconductor Device Reliability / Quality Control System (C10983E) Quality Grades to NEC’s Semiconductor Devices (C11531E) • The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. • No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. • NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. • Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information. • While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. • NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. M7 98. 8