E2F0004-27-X1 ¡ Semiconductor MSM7660 ¡ Semiconductor This version: Jan. 1998 MSM7660 Previous version: Oct. 1997 Digital Video Decoder (NTSC/PAL Compatible) GENERAL DESCRIPTION The MSM7660 is a decoder which converts digitally sampled NTSC or PAL video signals to the format based on ITU-RBT601. The MSM7660 can accept composite video and S video signals. For composite signals, the MSM7660 converts signals to YUV data via a 2-dimensional Y/C separation circuit. For S video signals, the MSM7660 converts signals to YUV data by passing the 2-dimensional Y/C separation circuit. An internal AGC/ACC circuit makes decoding of images relatively easy. Video signals are internally synchronized, so a relatively wide range of video signals can be decoded without using an external VCO circuit. FEATURES • Accepts composite video and S video signals • Compatible with NTSC/PAL • 2-dimensional Y/C separation using adaptive comb filter (this filter is bypassed for S video signal input) NTSC: 3 lines/2 lines PAL: 2 lines • Sampling frequency 14.75 MHz (PAL Square Pixel) 14.31818 MHz (NTSC 4Fsc) 12.27 MHz (NTSC Square Pixel) 13.5 MHz (ITU-RS601) • Internal AGC/ACC circuit • 8-bit Y/C (CbCr) output (conforms to ITU-RBT601) YCbCr: 4:2:2 YCbCr: 4:1:1 • High impedance output possible, priority cascade control function • I2C-BUS interface • External terminal mode (default) or internal register mode can be selected for operation mode setting. • A frequency one or two times the sampling clock is supplied to LSI • Power consumption: 500 mW (Typ. 13.5 MHz) • Package: 80-pin plastic QFP (QFP80-P-1420-0.80-BK) (Product name: MSM7660GS-BK) 1/35 CLKO HDET X X_L CVBS[7:0] CS_L HCL HSY VS_L HS_L VVALID HVALID ODD OE_L Synchronization Block Y[7:0] Luminance Block (AGC+BPF) lum. Prologue Block ¡ Semiconductor CLKX2O CLKDIV BLOCK DIAGRAM CLKX2 Epilogue Block (2Dim. Y/C separate) CD[7:0] Line Memory (1Kb) ¥2 Chrominance Block (ACC+LPF) chr. MODE[3:0] C[7:0] IIC-bus Control Logic SDA RESET_L TE TI TO TEST1 TEST0 COEI COEO 2/35 MSM7660 SCL Output Formatter Test Control Logic ¡ Semiconductor MSM7660 66 VVALID 65 ODD 68 VSYNC_L 67 HVALID 70 CSYNC_L 69 HSYNC_L 72 HCL 71 HSY 74 VDD5 73 HDET 76 GND 75 VDD3 78 CLKO 77 CLKDIV 80 CLKX2 79 CLKX2O PIN CONFIGURATION (TOP VIEW) X 1 X_L 2 64 TEST1 63 TEST0 56 C[4] 55 C[5] CD[6] 11 CD[7] 12 54 C[6] 53 C[7] VDD5 13 GND 14 52 VDD5 51 GND CVBS[0] 15 CVBS[1] 16 50 Y[0] 49 Y[1] CVBS[2] 17 CVBS[3] 18 48 Y[2] 47 Y[3] CVBS[4] 19 CVBS[5] 20 46 Y[4] 45 Y[5] CVBS[6] 21 CVBS[7] 22 44 Y[6] 43 Y[7] VDD3 23 GND 24 42 VDD3 41 GND COEO 39 OE_L 40 CD[4] 9 CD[5] 10 TI 36 TO 37 COEI 38 58 C[2] 57 C[3] RESET_L 34 TE 35 CD[2] 7 CD[3] 8 MODE[2] 32 MODE[3] 33 60 C[0] 59 C[1] SDA 29 MODE[0] 30 MODE[1] 31 CD[0] 5 CD[1] 6 GND 27 SCL 28 62 VDD3 61 GND VDD5 25 VDD3 26 VDD3 3 GND 4 80-Pin Plastic QFP 3/35 ¡ Semiconductor MSM7660 PIN DESCRIPTIONS Pin Symbol I/O 1 X I Test pin. Normally, to "L" level. 2 X_L O Unused pin. 3 VDD3 4 GND 5 to 12 CD[0 to 7] Description Internal logic power supply (3.3 V typ.) I Chrominance signal input pin (valid only for S video input) Set to "L" level at composite signal input 13 VDD5 14 GND 15 to 22 CVBS[0 to 7] Peripheral I/O power supply (5 V typ.) I Composite digital data input pin Luminance signal is input for S video input. 23 VDD3 24 GND Internal logic power supply (3.3 V typ.) 25 VDD5 Peripheral I/O power supply (5 V typ.) 26 VDD3 Internal logic power supply (3.3 V typ.) 27 GND 28 SCL I I2C-bus clock pin 29 SDA I/O I2C-bus data pin 30 to 33 MODE[0 to 3] I Mode input pins. Dip switches can be used because these pins are internally pulled-up. MODE[3] 0: composite 1: S video MODE[2:0] 000: NTSC ITU-RS601 13.5MHz 001: NTSC Square Pixel 12.27 MHz 010: NTSC 4Fsc 14.32 MHz 100: PAL ITU-RS601 13.5 MHz 101: PAL Square Pixel 14.75 MH others: Undefined 34 RESET_L I System reset input pin (active at "L") 35 TE I Test pin. Normally, set to "L" level 36 TI I Test pin. Normally, set to "L" level 37 TO O Test pin 38 COEI I Cascade priority control input pin 39 COEO O 40 OE_L I 41 GND 42 VDD3 Connected to COEO of decoder with higher priority. Cascade priority control output pin Outputs "L" when COEI is "L" or when this LSI is in output enable status. Y/C/HSYNC-L/VSYNC-L output enable input pin (active at "L") OR condition with register setting Internal logic power supply (3.3 V typ.) 4/35 ¡ Semiconductor MSM7660 Pin Symbol I/O 43 to 50 Y[7 to 0] O 51 GND 52 VDD5 53 to 60 C[7 to 0] Description Luminance signal output pin Peripheral I/O power supply (5.0 V typ.) Chrominance signal output pin O 61 GND 62 VDD3 63 TEST0 I Input pin for testing. Normally use this pin at open state or "H" level. 64 TEST1 I Input pin for testing. Normally use this pin at open state or "H" level. 65 ODD O Field display output pin Internal logic power supply (3.3 V typ.) Outputs "H" for odd field. VVALID O Vertical valid line timing output pin 67 HVALID O Horizontal valid pixel timing output pin 68 VSYNC_L O V sync output pin 69 HSYNC_L O H sync output pin 70 CSYNC_L O Composite sync output pin 71 HSY O Sync chip timing output pin for AD converter 72 HCL O Clamp timing output pin for AD converter 73 HDET O HLOCK synchronization detection display output pin (Outputs "H" when H 66 synchronization is established.) 74 VDD5 Peripheral I/O power supply (5.0 V typ.) 75 VDD3 Internal logic power supply (3.3 V typ.) 76 GND 77 CLKDIV Clock select input pin I Inputs "H" when a half CLKX2 is used as the internal clock. 78 Clock output pin O CLKO Outputs internal clock. 79 CLKX2O Clock output pin O Bypasses clock input and outputs clock input. 80 CLKX2 Clock input pin (a clock one or two times the sampling clock is input) I [Clock supply method and handling] 1.Supplying double pixel clock from external supply source 2.Supplying pixel clock from external supply source CLKDIV CLKDIV CLKX2 Clock supply source X CLKX2 XL X XL Clock supply source 5/35 ¡ Semiconductor MSM7660 ABSOLUTE MAXIMUM RATINGS Parameter Symbol Condition Rating VDD5 Ta=25°C –0.3 to +7 VDD3 Ta=25°C –0.3 to +4.5 Input Voltage VI Ta=25°C –0.3 to VDD5 +0.3 V Power Consumption PW — 800 mW TSTG — –55 to +150 °C Power Supply Voltage Storage Temperature Unit V RECOMMENDED OPERATING CONDITIONS Parameter Symbol Condition Min. Typ. Max. Unit VDD5 Ta=25°C 4.5 5.0 5.5 VDD3 Ta=25°C 3.0 3.3 3.6 GND Ta=25°C — 0.0 — V High Level Input Voltage VIH1 — 2.2 — VDD5 V High Level Input Voltage VIH2 (*1) — 0.8VDD5 — VDD5 V Low Level Input Voltage VIL — 0.0 — 0.8 V Operating Temperature Range Ta — 0 — 70 °C Power Supply Voltage Power Supply Voltage *1: V CCKX2, CLKDIV, SDA 6/35 ¡ Semiconductor MSM7660 ELECTRICAL CHARACTERISTICS DC Characteristics (Ta=0 to 70°C, VDD3=3.3V±0.3V, VDD5=5V±10%) Parameter Symbol Min. Typ. Max. Unit 0.8VDD5 — VDD5 V 0 — 0.8 V –10 — 10 –250 — –20 –10 — 10 mA 3V system — 110 150 mA 5V system — 20 30 mA 3V system — 1 3 mA Condition IOH=–2mA (*1) High Level Output Voltage VOH IOH=–4mA (*2) IOH=–8mA (*3) IOL=2mA (*1) Low Level Output Voltage VOL IOL=4mA (*2) IOL=8mA (*3) VI=GND to VDD5 Input Leak Current II VI=GND to VDD5 Output Leak Current IO VI=GND to VDD5 PULL-UP=50k (*4) Power Supply Current (operating) Power Supply Current (standby) IDD IDDS CLK=15MHz mA 5V system — 50 200 mA SDA Output Voltage SDAVL — 0 — 0.4 V SDA Output Current SDAIO — 3 — *1: *2: *3: *4: mA TO HSYNC_L, VSYNC_L, HDET, COEO Y[7:0], C[7:0], HCL, HSY, HSY, CSYNC_L, HVALID, VVALID, ODD, CLKX2O, CLKO MODE[3:0], COEI, TEST0, TEST1 7/35 ¡ Semiconductor MSM7660 AC Characteristics (Ta=0 to 70°C, VDD3=3.3V±0.3V, VDD5=5V±0.5V) Parameter CLKX2 cycle time Symbol tCLKX2 Condition Min. Typ. Max. Unit PAL Square Pixel — 33.9 — ns NTSC 4Fsc — 34.9 — ns NTSC Square Pixel — 40.75 — ns ITU-RS601 — 37.05 — ns Input Data Setup Time tIS — 20 — — ns Input Data Hold TIme tIH — 0 — — ns Output Data Delay Time* tOD — 5 — 30 ns Output Data Set Time* tODS — 2 — 12 ns Output Data Disable Time* tODD — 2 — 13 ns Cascade Priority Signal Delay Time* tCPD — 2 — 14 ns Output Clock Delay Time* tCXD — 5 — 14 ns Output Clock Delay Time* (CLKDIV: Low) (Internal clock) (CLKDIV: High) tCD1 — 6 — 20 ns tCD2 — 8 — 22 ns Clock Cycle Time tC_SCL Rpull_up=4.7kW 200 — — MHz Clock Duty Cycle tD_SCL — — 50 — % Low level Cycle tL_SCL Rpull_up=4.7kW 100 — — ns (*output load 15pF) 8/35 ¡ Semiconductor MSM7660 Input and Output Timing , , CLKDIV : Low CLKX2 CLKX2O CLKO tCXD tCXD tCD1 tCD2 tIS tIH not valid CVBS CD CLKDIV : High not valid tOD HCL, HSY CSYNC_L HVALID, VVALID ODD, HDET Y,C HSYNC_L VSYNC_L OE_L COEI HI-Z tODS tCPD tODD tCPD COEO 9/35 ¡ Semiconductor MSM7660 BLOCK DESCRIPTION 1. Prologue Block The prologue Block performs Y/C separation using a 2-dimentional adaptive comb filter when composite signals (CVBS) are input. The following operation modes can be changed via the I2C-bus. The * mark indacates a default. The default is a state that is selected when reset. 1) Video input mode select Composite video input * S video input 2) Video input mode select NTSC system* PAL system 3) Operation mode select NTSC ITU recommendation BT.601 MTSC Square Pixel NTSC 4Fsc PAL ITU recommendation BT.601 PAL Square Pixel 13.5MHz* 12.27MHz 14.32 MHz 13.5MHz 14.75 MHz 4) Y/C separation mode select Adaptive comb filter is used. * Unadaptive comb filter is used. Comb filter is not used. The adaptive comb filter detects the correlation up to 3 lines between continuous lines. The Y/ C is separated by the comb filter according to the way of correlation if theses lines are correlated. The Y/C is separated by the trap filter if these lines are not correlated not correlated (only 2 lines in the case of PAL). In the unadaptive comb filter, the Y/C is always separated by removing the luminance component based on the average of preceding and following lines (when there is the correlation between 3 lines). If the comb filter is not used, the Y/C is separated by the trap filter. The Y/C separation circuit is bypassed by S video signal input. In adittion, the functions of this block work only when lines are valid as image information. The processing of CVBS signals is not made during V-blanking. 2. Luminance Block The luminance block removes synchronous signals from the signals containing luminance components after Y/C separation. The signals are corrected and output as luminance signals. This block can select the follwing operation modes. 1) Use of prefilter and sharp filter Used* Not used These filters are used for enhancing the edges of luminance component signals. 10/35 ¡ Semiconductor 2) AGC loop filter time constant select slow medium fast fixed MSM7660 Factor value 1/1024n 1/64n* 1/n 0 3) Parameter for AGC reference level fine adjustment 4) Parameter for sync separation level fine adjustment The luminance signals are synchronized by AGC correction values obtained by the above processings 5) Selection of aperture bandpass filter coefficient middle range* high range 6) Coring range select off* ±4LBS ±5LBS ±7LBS 7) Aperture weighting factor select 0* 0.25 0.75 1.5 The profile of these signals can be corrected by coring and aperture correction. 8) Use of pixel position correction circuit Used* Not used 3. Chrominance Block This is a chroma signal processing block. The following modes can be selected. 1) Use of color bandpass filter Used* Not used 2) AGC loop filter time constant select slow medium fast fixed Factor value 1/1024n 1/64n* 1/n 0 3) Parameter for burst level fine adjustment 11/35 ¡ Semiconductor MSM7660 4) The threshold level for valid chroma amplitude is selected base on a color burst ratio. 0.5 0.25* 0.125 5) Color killer mode select Auto color killer mode* Forcible color killer 6) Parameter for color subcarrier phase fine adjustment In this block, chroma signals pass through the chroma bandpass filter to cut an unnecessary band. To maintain a constant chroma level, UV demodulation is performed on these signals via the ACC correction circuit. (this filter can be bypassed.) If the demodulation result does not reach a specified level, color killer signals are generated to fix the ACC gain. This functions as an auto color killer control circuit. The UV demodulation result is output as chrominance signals via a low pass filter. 4. Synchronization Block This is a synchronizing signal processing block. Chip output synchronizing signals and synchronizing signals for internal use are generated by this block. Various signals are output in this block and the following operation modes can be selected. 1-1) Fine adjustment of HSY signal (start side) 1-2) Fine adjustment of HSY signal (stop side) 2-1) Fine adjustment of HCL signal (start side) 2-2) Fine adjustment of HCL signal (stop side) 3) HSY, HCL signal enable select High Level* Active These signal are used to sink chip and clamp timing to the A/D converter 4) Fine adjustment of HSYNC_L signal 5-1) Fine adjustment of HVALID signal (start side) 5-2) Fine adjustment of HVALID signal (stop side) 6-1) Fine adjustment of VVALID signal (start side) 6-2) Fine adjustment of VVALID signal (stop side) The data signals are transmitted or received at the rising edge of the HVALID signal. 7) TV, VTR mode select TV mode VTR mode* The TV mode or VTR mode in synchronizing mode is selected. The TV mode outputs a fixed pixel number per one line. The VTR mode outputs the results of decoding in accordance with the HSYNC signal regardless 12/35 ¡ Semiconductor MSM7660 of whether a jitter exists or not. Some VTR may disturb synchronization. 5. Epilogue Block The Epilogue Block outputs UV signals from the chrominance block and Y signals from the luminance block in the format based on the signal obtained by setting of the control register. In this block, the following modes can be selected. 1) Display of blue back when synchronization fails. OFF ON* 2) Output signal Y/CbCr format select YCbCr 4:1:1 YCbCr 4 : 2 : 2* The chrominance signal (U, V component) outputs Cb and Cr data to the C pin in an output format described later. 3) Selection of 8-bit chroma signal output format Offset binary* 2's Complement 4) Output pin enable select High impedance Output enable* The Epilogue Block has a high impedance priority cascade control function to enable the bus connection of output signals. The target tristate buses are Y, C, HSYNC_L and VSYNC_L, and this block makes an output enable instruction for these signals 5) Luminance signal phase adjustment normal* forward 1 clock backward 1 clock 6) Chrominance signal phase adjustment normal* forward 1 clock backward 1 clock 6. I2C Control Block This is the serial interface block based on the I2C standard of Phillips Corporation. This block functions only as a Slave-Receiver. The external control can set the internal registers (MRA, MRB, HSYT, etc.). 7. Test Control Block This block is used to test this LSI. Normally it is not used. 13/35 ¡ Semiconductor MSM7660 FUNCTIONAL DESCRIPTION Input Signal Level Input signal is 8-bit in a straight binary format. The recommended input range is shown below. 255 reserved 232 Iuminance chrominance +DC 128 60 Input black level sync 56 0 CVBS[7:0] input range 14/35 ¡ Semiconductor MSM7660 Output format The YCbCr 4:2:2 format and 4:1:1 format are shown below. The output format can be changed by register settings. OUTPUT PIXEL BYTE SEQUENCE Y7(MSB) Y6 Y5 Y4 Y3 Y2 Y1 Y0(LSB) Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 Y7(MSB) Y6 Y5 Y4 Y3 Y2 Y1 Y0(LSB) Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 C7(MSB) C6 C5 C4 C3 C2 C1 C0(LSB) Cb7 Cb6 Cb5 Cb4 Cb3 Cb2 Cb1 Cb0 Cr7 Cr6 Cr5 Cr4 Cr3 Cr2 Cr1 Cr0 Cb7 Cb6 Cb5 Cb4 Cb3 Cb2 Cb1 Cb0 Cr7 Cr6 Cr5 Cr4 Cr3 Cr2 Cr1 Cr0 Cb7 Cb6 Cb5 Cb4 Cb3 Cb2 Cb1 Cb0 Cr7 Cr6 Cr5 Cr4 Cr3 Cr2 Cr1 Cr0 C7(MSB) C6 C5 C4 C3 C2 C1 C0(LSB) Cb7 Cb6 Cr7 Cr6 0 0 0 0 Cb5 Cb4 Cr5 Cr4 0 0 0 0 Cb3 Cb2 Cr3 Cr2 0 0 0 0 Cb1 Cb0 Cr1 Cr0 0 0 0 0 Cb7 Cb6 Cr7 Cr6 0 0 0 0 Cb5 Cb4 Cr5 Cr4 0 0 0 0 Cb3 Cb2 Cr3 Cr2 0 0 0 0 Cb1 Cb0 Cr1 Cr0 0 0 0 0 0 1 2 3 4 0 1 2 3 4 5 6 7 Y point C point 0 2 YCbCr 4:2:2 format 5 4 OUTPUT Y point C point PIXEL BYTE SEQUENCE 0 4 YCbCr 4:1:1 format 15/35 ¡ Semiconductor MSM7660 Timing Description AD Converter Support Signal The timing wave form of HSY/HCL signals, which measure the sync chip and clamp timing for the AD converter, is as follows. CVBS COLOR BURST HSY HCL Horizontal sync Indication HSY and clamping HCL Line control signal The line control signal timing is as follows. CLK CLKO HVALID Y[7:0] Y0 Y1 Y2 Y3 Y(n) Y(n+1) C[7:0] Cb0 Cr0 Cb2 Cr2 Cb(n) Cr(n) Line Control Timing 16/35 ¡ Semiconductor MSM7660 Vertical Synchronizing 4.3 Signal The vertical synchronizing signal timing is as follows. 524 525 1 2 3 4 5 6 7 8 9 10 11 12 262 263 264 265 266 267 268 269 270 271 272 273 274 275 CVBS HVALID HSYNC_L CSYNC_L VSYNC_L VVALID ODD CVBS HVALID HSYNC_L CSYNC_L VSYNC_L VVALID ODD Vertical Timing (NTSC: 60Hz) 17/35 ¡ Semiconductor MSM7660 621 622 623 624 625 1 2 3 4 5 6 7 8 9 309 310 311 312 313 314 315 316 317 318 319 320 321 322 CVBS HVALID HSYNC_L CSYNC_L VSYNC_L VVALID ODD CVBS HVALID HSYNC_L CSYNC_L VSYNC_L VVALID ODD Vertical Timing (PAL: 50Hz) 18/35 ¡ Semiconductor MSM7660 Horizontal Synchronizing Signal The horizontal synchronizing signal timing is as follows. Y[7:0] HVALID HSYNC_L 60pixel Horizontal Timing I2C-bus Interface Input/Output Timing The basic input/output timing of the I2C-bus interface is as follows. SDA SCL MSB S 1 2 7 Start Condition 8 9 ACK 1 tC_SCL 2 3-8 9 ACK P Stop Condition Data Line Stable: Data Valid Change of Data Allowed I2C-bus Basic Input/Output Timing 19/35 ¡ Semiconductor MSM7660 I2C BUS FORMAT The I2C-bus interface input format is shown below. 1 cycle Slave Address S A Subaddress0 S A Data 0 Slave Address A A P Subaddress1 Symbol A Data 1 A P ..... Description S Start condition Slave Address Slave address 1000001, 8th bit is write signal. A Acknowledge. Generated by slave Subaddress Subaddress byte Data n Data to be written in address specified by subaddress P Stop condition It is required to input the above-mentioned format from the start condition to the stop condition each time of writing a subaddress For example, when writing the subaddresses 0 to 2, the format should be input three times. In case data of more than one byte are transfered, S Slave Address A Subaddress0 A Data 0 A P Data n A P The 4th byte data and following data each are written over the same subaddress. If one of the following matters occurs, the decoder will not return "A" (Acknowledge). • The slave address does not match. • A non-existent subaddress is specified. • The write attribute of a register does not match "X" (write control bit). The input timing is shown below. SDA 1 8 2 ACK 1 2 8 ACK 1 2 8 ACK SCL S Start Condition Slave Address Slave Address Data P Stop Condition 20/35 ¡ Semiconductor MSM7660 OPERATION MODE SETTING The video mode includes ; 1. Internal terminal mode to be directly set by a dedicated terminal 2. Register setting mode to be specified by setting the internal registers These modes can be changed by the mode register MRA [4]. The reset state (default) is the external terminal mode. The following registers can be set in the external terminal mode. MRA[3] input signal mode MRA[2 : 0] input mode *0: 1: *000: 001: 010: 100: 101: Composite video input S-video input NTSC ITU-R601 NTSC Square Pixel MTSC 4Fsc PAL ITU-R601 PAL Square Pixel 13.5MHz 12.27MHz 14.32MHz 13.5MHz 14.75MHz INTERNAL REGISTERS Register List Register List Subaddress Data byte D7 D6 D5 D4 D3 D2 D1 D0 Mode Register A (MRA) 0 MRA7 MRA6 MRA5 MRA4 MRA3 MRA2 MRA1 MRA0 Mode Register B (MRB) 1 MRB7 MRB6 MRB5 MRB4 MRB3 MRB2 MRB1 MRB0 Horizontal Sync Trimer (HSYT) 2 HSYT7 HSYT6 HSYT5 HSYT4 HSYT3 HSYT2 HSYT1 HSYT0 Horizontal Clamp Trimer (HCLT) 3 HCLT7 HCLT6 HCLT5 HCLT4 HCLT3 HCLT2 HCLT1 HCLT0 Horizontal Sync Delay (HSDL) 4 HSDL7 HSDL6 HSDL5 HSDL4 HSDL3 HSDL2 HSDL1 HSDL0 Horizontal Valid Trimer (HVALT) 5 HVALT7 HVALT6 HVALT5 HVALT4 HVALT3 HVALT2 HVALT1 HVALT0 Vertical Valid Trimer (VVALT) 6 VVALT7 VVALT6 VVALT5 VVALT4 VVALT3 VVALT2 VVALT1 VVALT0 Luminance Control (LUMC) 7 LUMC7 LUMC6 LUMC5 LUMC4 LUMC3 LUMC2 LUMC1 LUMC0 AGC Loop filter Control (AGCLF) 8 AGCLF7 AGCLF6 AGCLF5 AGCLF4 AGCLF3 AGCLF2 AGCLF1 AGCLF0 Sync separation level (SSEPL) 9 SSEPL6 SSEPL5 SSEPL4 SSEPL3 SSEPL2 SSEPL1 SSEPL0 Chrominance Control (CHRC) A CHRC7 ACC Loop filter Control (ACCCLF) B ACCLF7 ACCLF6 ACCLF5 ACCLF4 ACCLF3 ACCLF2 ACCLF1 ACCLF0 Hue Control (HUE) C HUE7 HUE6 HUE5 HUE4 HUE3 HUE2 HUE1 HUE0 Output enable Control (OEC) D OEC7 OEC6 OEC5 OEC4 OEC3 OEC2 OEC1 OEC0 Output Phase Control for Data Y E OPCY7 OPCY6 OPCY5 OPCY4 OPCY3 OPCY2 OPCY1 OPCY0 Output Phase Control for Data C F OPCC7 OPCC6 OPCC5 OPCC4 OPCC3 OPCC2 OPCC1 OPCC0 CHRC6 CHRC5 CHRC4 CHRC3 CHRC2 CHRC1 CHRC0 21/35 ¡ Semiconductor MSM7660 Register Description Registers controlled by I2C bus are shown below. A register setting value with an "*" indicates the default. Mode Register A (MRA) <default: 0x40> MRA[7] Undefined MRA[6] Synchronization mode 0: *1: TV mode VTR mode MRA[5] Chroma format *0: 1: Offset binary 2's Complement MRA[4] Override *0: 1: external terminal mode register mode MRA[3] Video Input mode *0: 1: composite video input S video input MRA[2:0] Video Input mode *000: 001: 010: 100: 101: NTSC CCIR601 NTSC Square Pixel NTSC 4Fsc PAL CCIR601 PAL Square Pixel 13.5MHz 12.27MHz 14.32MHz 13.5MHz 14.75MHz Mode Register B (MRB) <default: 0x14> MRB[7] Sub Pixel Alignment *0: 1: Sub Pixel Alignment is used. Sub Pixel Alignment is not used. MRB[6] Color killer mode *0: Auto color killer (Chrominance signal level becomes "0" when color burst level is below specified value.) *1: Forced color killer ON (Chrominance signal level is forced to be "0".) *0: (4:2:2) MRB[5] Pixel Sampling Ratio MRB[4] Blue Back 0: *1: 1: (4:1:1) OFF (Video signal is demodulated and output regardless detection of synchronization.) AUTO (Blue Back is output when synchronization is not detected.) 22/35 ¡ Semiconductor MSM7660 MRB[3] Sync enable, clamping pulse *0: 1: HCL, HSY outputs "HIGH" levle HCL, HSY outputs active MRB[2] Black level control Black level 7.5IRE Black level 0IRE (Valid only for NTSC input.) MRB[1:0] Y/C separation mode 0: *1: *00: adaptive comb filter (Operation mode is selected monitoring the correlation of 3 lines.) 01: nonadaptive comb filter (Operation mode is always fixed.) 10: Comb filter is not used. 11: undefined Horizontal Sync Trimer (HSYT) <default: 0x00> HSYT[7:4] HSY begin trimer (8/pixel) 0xC: –4 (–32) ~0xB: +11 (+88) HSYT[3:0] HSY stop trimer (8/pixel) 0xC: –4 (–32) ~0xB: +11 (+88) Horizontal Clamp Trimer (HCLT) <default: 0x00> HCLT[7:4] HCL begin trimer (8/pixel) 0x8: –8 (–64) ~0x7: +7 (+56) HCLT[3:0] HCL stop trimer (8/pixel) 0x8: –8 (–64) ~0x7: +7 (+56) 0x80: –128 (–512) ~0x7F: +127 (508) Horizontal Sync Delay (HSDL) <default: 0x00> HSDL[7:4] HSYNC_L delay trimer (4/pixel) Horizontal Valid Trimer (HVALT) <default: 0x00> HVALT[7:4] HVALID begin trimer (1/pixel) 0x4: –8 (–64) ~0x3: +7 (56) HVALT[3:0] HVALID stop trimer (1/pixel) 0x4: –8 (–64) ~0x3: +7 (56) Vertical Valid Trimer (VVALT) <default: 0x00> VVALT[7:4] VVALID begin trimer (/line) 0x8: –8 ~0x7: +7 VVALT[3:0] VVALID stop trimer (/line) 0x8: –8 ~0x7: +7 23/35 ¡ Semiconductor MSM7660 Luminance Control (LUMC) <default: 0x40> LUMC[7] Undefined LUMC[6] Use of Pre-filter LUMC[5:4] Aperture bandpass select 0: *1: Prefilter is not used. Prefilter is used. *00: 01: 10: 11: middle range *00: 01: 10: 11: coring off +/–3LSB +/–4LSB +/–6LSB LUMC[3:2] Coring range select LUMC[1:0] Aperture filter weighting factor *00: 01: 10: 11: high range 0 0.25 0.5 1 AGC Loop filter control (AGCLF) <default: 0x40> AGCLF[7:6] AGCLF[5:0] AGC loop filter time constant 00: *01: 10: 11: slow medium fast fixed AGC reference level –32 ~0xIF: +31 –64 ~0x3F: +63 0x20: Sync separation level (SSEPL) <default: 0x00> SSEPL[6:0] Sync separation level 0x40: 24/35 ¡ Semiconductor MSM7660 Chrominance Control (CHRC) <default: 0x1> CHRC[7:3] Undefined CHRC[2] Chroma bandpass filter CHRC[1:0] Color kill threshold factor 0: 00: *01: 10: 11: OFF *1: ON 0.5*color burst level 0.25*color burst level 0.125*color burst level Undefined ACC Loop filter control (ACCLF) <default: 0x20> ACCLF[7] Undefined ACCLF[6:5] ACC loop filter time constant 00: *01: 10: 11: slow medium fast fixed ACC reference level 0x10: –16 0x80: –180 degrees ACCLF[4:0] ~0x0F: +15 Hue control (HUE) <default: 0x00> HUE[7:0] Hue control ~0x7F: 178.6 degrees Output enable control (OEC) <default: 0xF> OEC[7:4] Undefined OEC[3] Output enable for data C 0: *1: Hi-impedance active OEC[2] Output enable for HSYNC_L 0: *1: Hi-impedance active OEC[1] Output enable for VSYNC_L 0: *1: Hi-impedance active OEC[0] Output enable for data Y Hi-impedance active 0: *1: 25/35 ¡ Semiconductor MSM7660 Output phase control for data Y (OPCY) <default: 0x00> OPCY[7:2] Undefined OPCY[1:0] Output phase control for data Y *0: 1: 2: 3: normal forward l clock Undefined backward l clock Output phase control for data C (OPCC) <default: 0x00> OPCCY[7:2] Undefined OPCC[1:0] Output phase control for data C *0: 1: 2: 3: normal forward l clock Undefined backward l clock 26/35 ¡ Semiconductor MSM7660 Relationship between Register Setting Value and Adjusted Value Horizontal Sync Timer Position adjustment of sync chip clamp timing signal HSYT [7:4] :Adjusting the starting position Register Setting Value (Ox) C F 0 1 Adjusted Value (Pixel) –32 –24 –16 –8 0 +8 +16 +24 +32 +40 +48 +56 +64 +72 +80 +88 HSYT [3:0] D E 2 3 4 5 6 7 8 9 A B :Adjusting the end position Register Setting Value (Ox) C D E F 0 1 2 3 4 5 6 7 8 9 A B Adjusted Value (Pixel) –32 –24 –16 –8 0 +8 +16 +24 +32 +40 +48 +56 +64 +72 +80 +88 Horizontal Clamp Timer Position adjustment of pedestal clamp timing signal HCLT [7:4] :Adjusting the starting position F 0 1 Adjusted Value (Pixel) –64 –56 –48 –40 –32 –24 –16 –8 0 +8 +16 +24 +32 +40 +48 +56 F 0 1 Adjusted Value (Pixel) –64 –56 –48 –40 –32 –24 –16 –8 0 +8 +16 +24 +32 +40 +48 +56 Register Setting Value (Ox) HCLT [3:0] Register Setting Value (Ox) 8 9 A B C D E 2 3 4 5 6 7 :Adjusting the end position 8 9 A B C D E 2 3 4 5 6 7 27/35 ¡ Semiconductor MSM7660 Horizontal Sync Delay Adjustment of the starting position of horizontal sync signal HSDL [7:0] MSB[7 : 4] 8 9 A B C D E F 0 1 2 3 4 5 6 7 0 –512 –448 –384 –320 –256 –192 –128 –64 0 +64 +128 +192 +256 +320 +384 +448 1 –508 –444 –380 –316 –252 –188 –124 –60 +4 +68 +132 +196 +260 +324 +388 +452 2 –504 –440 –376 –312 –248 –184 –120 –56 +8 +72 +136 +200 +264 +328 +392 +456 3 –500 –436 –372 –308 –244 –180 –116 –52 +12 +76 +140 +204 +268 +332 +396 +460 4 –496 –432 –368 –304 –240 –176 –112 –48 +16 +80 +144 +208 +272 +336 +400 +464 5 –492 –428 –364 –300 –236 –172 –108 –44 +20 +84 +148 +212 +276 +340 +404 +468 6 –488 –424 –360 –296 –232 –168 –104 –40 +24 +88 +152 +216 +280 +344 +408 +472 LSB 7 –484 –420 –356 –292 –228 –164 –100 –36 +28 +92 +156 +220 +284 +348 +412 +476 [3 : 0] 8 –480 –416 –352 v288 –224 –160 –96 –32 +32 +96 +160 +224 +288 +352 +416 +480 9 –476 –412 –348 –284 –220 –156 –92 –28 +36 +100 +164 +228 +292 +356 +420 +484 A –472 –408 –344 –280 –216 –152 –88 –24 +40 +104 +168 +232 +296 +360 +424 +488 B –468 –404 –340 –276 –212 –148 –84 –20 +44 +108 +172 +236 +300 +364 +428 +492 C –464 –400 –336 –272 –208 –144 –80 –16 +48 +112 +176 +240 +304 +368 +432 +496 D –460 –396 –332 –268 –204 –140 –76 –12 +52 +116 +180 +244 +308 +372 +436 +500 E –456 –392 –328 –264 –200 –136 –72 –8 +56 +120 +184 +248 +312 +376 +440 +504 F –452 –388 –324 –260 –196 –132 –68 –4 +60 +124 +188 +252 +316 +380 +444 +508 28/35 ¡ Semiconductor MSM7660 Horizontal Valid Timer Position adjustment of horizontal valid pixel timing signal HVALT [7:4] :Adjusting the starting position 8 9 A B C D E F 0 1 2 3 4 5 6 7 Adjusted Value (Pixel) –8 –7 –6 –5 –4 –3 –2 –1 0 +1 +2 +3 +4 +5 +6 +7 Register Setting Value (Ox) HVALT [3:0] :Adjusting the end position 8 9 A B C D E F 0 1 2 3 4 5 6 7 Adjusted Value (Pixel) –8 –7 –6 –5 –4 –3 –2 –1 0 +1 +2 +3 +4 +5 +6 +7 Register Setting Value (Ox) Vertical Valid Timer Position adjustment of vertical valid line timing signal VVALT [7:4] :Adjusting the starting position Register Setting Value (Ox) 8 9 A B C D E F 0 1 2 3 4 5 6 7 Adjusted Value (Line) –8 –7 –6 –5 –4 –3 –2 –1 0 +1 +2 +3 +4 +5 +6 +7 VVALT [3:0] :Adjusting the end position Register Setting Value (Ox) 8 9 A B C D E F 0 1 2 3 4 5 6 7 Adjusted Value (Line) –8 –7 –6 –5 –4 –3 –2 –1 0 +1 +2 +3 +4 +5 +6 +7 AGC Loop filter control AGCLF [5:0] Register Setting Value (Ox) :Adjusting sync level MSB [5 : 4] 2 3 0 1 0 –32 –16 0 +16 1 –31 –15 +1 +17 2 –30 –14 +2 +18 3 –29 –13 +3 +19 4 –28 –12 +4 +20 5 –27 –11 +5 +21 6 –26 –10 +6 +22 LSB 7 –25 –9 +7 +23 [3 : 0] 8 –24 –8 +8 +24 9 –23 –7 +9 +25 A –22 –6 +10 +26 B –21 –5 +11 +27 C –20 –4 +12 +28 D –19 –3 +13 +29 E –18 –2 +14 +30 F –17 –1 +15 +31 29/35 ¡ Semiconductor MSM7660 Sync separation lavel SSEPL [6:0] Register Setting Value (Ox) :Adjusting the blanking level MSB [6 : 4] 4 5 6 7 0 1 2 3 0 –64 –48 –32 –16 0 +16 +32 +48 1 –63 –47 –31 –15 +1 +17 +33 +49 2 –62 –46 –30 –14 +2 +18 +34 +50 3 –61 –45 –29 –13 +3 +19 +35 +51 4 –60 –44 –28 –12 +4 +20 +36 +52 +53 5 –59 –43 –27 –11 +5 +21 +37 6 –58 –42 –26 –10 +6 +22 +38 +54 LSB 7 –57 –41 –25 –9 +7 +23 +39 +55 [3 : 0] 8 –56 –40 –24 –8 +8 +24 +40 +56 9 –55 –39 –23 –7 +9 +25 +41 +57 A –54 –38 –22 –6 +10 +26 +42 +58 B –53 –37 –21 –5 +11 +27 +43 +59 C –52 –36 –20 –4 +12 +28 +44 +60 D –51 –35 –19 –3 +13 +29 +45 +61 E –50 –34 –18 –2 +14 +30 +46 +62 F –49 –33 –17 –1 +15 +31 +47 +63 ACC Loop filter control ACCLF [4:0] Register Setting Value (Ox) :Adjusting the color burst level MSB [4] 1 0 0 –16 0 1 –15 +1 2 –14 +2 3 –13 +3 4 –12 +4 5 –11 +5 6 –10 +6 LSB 7 –9 +7 [3 : 0] 8 –8 +8 9 –7 +9 A –6 +10 B –5 +11 C –4 +12 D –3 +13 E –2 +14 F –1 +15 30/35 ¡ Semiconductor MSM7660 Hue control Adjustment of color subcarrier phase HUE [7:0] Register Setting Value (Ox) MSB [7 : 4] 8 9 A B C D E F 0 1 2 3 4 5 6 7 0 –180.0 –157.5 –135.0 –112.5 –90.0 –67.5 –45.0 –22.5 +0.0 +22.5 +45.0 +67.5 +90.0 +112.5 +135.0 +157.5 1 –178.6 –156.1 –133.6 –111.1 –88.6 –66.1 –43.6 –21.1 +1.4 +23.9 +46.4 +68.9 +91.4 +113.9 +136.4 +158.9 2 –177.2 –154.7 –132.2 –109.7 –87.2 –64.7 –42.2 –19.7 +2.8 +25.3 +47.8 +70.3 +92.8 +115.3 +137.8 +160.3 3 –175.8 –153.3 –130.8 –108.3 –85.8 –63.3 –40.8 –18.3 +4.2 +26.7 +49.2 +71.7 +94.2 +116.7 +139.2 +161.7 4 –174.4 –151.9 –129.4 –106.9 –84.4 –61.9 –39.4 –16.9 +5.6 +28.1 +50.6 +73.1 +95.6 +118.1 +140.6 +163.1 5 –173.0 –150.5 –128.0 –105.5 –83.0 –60.5 –38.0 –15.5 +7.0 +29.5 +52.0 +74.5 +97.0 +119.5 +142.0 +164.5 6 –171.6 –149.1 –126.6 –104.1 –81.6 –59.1 –36.6 –14.1 +8.4 +30.9 +53.4 +75.9 +98.4 +120.9 +143.4 +165.9 LSB 7 –170.2 –147.7 –125.2 –102.7 –80.2 –57.7 –35.2 –12.7 +9.8 +32.3 +54.8 +77.3 +99.8 +122.3 +144.8 +167.3 [3 : 0] 8 –168.8 –146.3 –123.8 –101.3 –78.8 –56.3 –33.8 –11.3 +11.3 +33.8 +56.3 +78.8 +101.3 +123.8 +146.3 +168.8 9 –167.3 –144.8 –122.3 –99.8 –77.3 –54.8 –32.3 –9.8 +12.7 +35.2 +57.7 +80.2 +102.7 +125.2 +147.7 +170.2 A –165.9 –143.4 –120.9 –98.4 –75.9 –53.4 –30.9 –8.4 +14.1 +36.6 +59.1 +81.6 +104.1 +126.6 +149.1 +171.6 B –164.5 –142.0 –119.5 –97.0 –74.5 –52.0 –29.5 –7.0 +15.5 +38.0 +60.5 +83.0 +105.5 +128.0 +150.5 +173.0 C –163.1 –140.6 –118.1 –95.6 –73.1 –50.6 –28.1 –5.6 +16.9 +39.4 +61.9 +84.4 +106.9 +129.4 +151.9 +174.4 D –161.7. –139.2 –116.7 –94.2 –71.7 –49.2 –26.7 –4.2 +18.3 +40.8 +63.3 +85.8 +108.3 +130.8 +153.3 +175.8 E –160.3 –137.8 –115.3 –92.8 –70.3 –47.8 –25.3 –2.8 +19.7 +42.2 +64.7 +87.2 +109.7 +132.2 +154.7 +177.2 F –158.9 –136.4 –113.9 –91.4 –68.9 –46.4 –23.9 –1.4 +21.1 +43.6 +66.1 +88.6 +111.1 +133.6 +156.1 +178.6 31/35 ¡ Semiconductor MSM7660 APPLICATION CIRCUIT EXAMPLE Example of supplying the pixel clock from an external source 5V 5V RI 5V RI 5V 3.3V I2C Controller Sony CXD 1176Q Y0...Y7 CLKDIV VDD3 VDD5 COE1 RESTEL Frame memory or image LSI 470 m 10 m 100 k 75 ODD VVALID HVALID C0...C7 Chrominance signal A/D C 75 GND AGND RCA JACK MSM7660 X Sony CXD 1176Q OE-L MODE3 MODE2 MODE1 MODE0 470 m 10 m 100 k 75 CD0...CD7 A/D C 75 RCA JACK Composite siganal or luminance signal CVBS0...CVBS7 CLKO HCL HSY SCL SDA 74HCO4 AGND CLKX2 CLKX2O CSYNC-L HSYNC-L VSYNC-L Dip SW 32/35 ¡ Semiconductor MSM7660 CASCADE PRIORITY CONTROL The MSM7660 can set Y/C signal output to high impedance, and can be wired with another bus that can be set to high impedance output. Y/C output enable/disable is selected by the OE_L pin and register OEC. Cascade connection of COEI and COEO makes priority control possible. Priority is assigned to devices and when a device with higher priority is in enable status, devices with lower priority are automatically disabled. The priority control table is shown below. Register setting Input Output OEC[0] OEC[1] OEC[2] OEC[3] coei ce_l X X X X 0 X Y0..Y7 VSYNC_l HSYNC_l C0..C7 0 0 0 0 1 1 Z Z Z Z 1 1 0 0 1 1 1 enable Z Z enable 0 1 0 0 0 1 1 enable Z Z Z 0 0 0 0 1 1 1 Z Z Z enable 0 Z Z Z Z COEO 0 0 1 1 0 1 1 Z enable enable Z 1 X X X X 1 0 enable enable enable enable 0 Z : High impedance Cascade Priority Control Table 33/35 ¡ Semiconductor MSM7660 COEI CVBS7..0#1 CD7..0#1 oe_l#1 Y0..Y7 Frame memory C0..C7 Frame memory MSM7660 DECODER#1 HVALD VVALD OE_L COEO Controler CDD COEI CVBS7..0#2 CD7..0#2 oe_l#2 Y0..Y7 C0..C7 MSM7660 DECODER#2 HVALD VVALD OE_L COEO CDD COEI CVBS7..0#n CD7..0#n oe_l#n Y0..Y7 C0..C7 MSM7660 HVALD DECODER#n VVALD OE_L COEO CDD Cascade Priority Control Connection Example 34/35 ¡ Semiconductor MSM7660 PACKAGE OUTLINES AND DIMENSIONS 25.0±0.2 20.0±0.2 ^4 $1 $0 1.0TYP. 14.0±0.2 19.0±0.2 ^5 *0 @5 @4 q 0.8TYP. 0.17±0.05 0.8 0.12 0.32 +0.08 –0.07 0.16 M SEATING PLANE 2.1±0.2 0 to 10° 0.25 2.5MAX. 2.5TYP. 0.05 to 0.35 INDEX MARK Mirror finished surface 1.3TYP. 1.38±0.15 35/35