TAR5S15~TAR5S50 TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic TAR5S15, TAR5S18, TAR5S20, TAR5S21, TAR5S22, TAR5S23, TAR5S25, TAR5S27, TAR5S28, TAR5S29, TAR5S30, TAR5S31, TAR5S32, TAR5S33, TAR5S35, TAR5S45, TAR5S48, TAR5S50 Point Regulators (Low-Dropout Regulator) The TAR5Sxx Series is comprised of general-purpose bipolar single-power-supply devices incorporating a control pin which can be used to turn them ON/OFF. Overtemperature and overcurrent protection circuits are built into the devices’ output circuit. Features • Low stand-by current • Overtemperature/overcurrent protection • Operation voltage range is wide. • Maximum output current is high. • Difference between input voltage and output voltage is low. • Small package. • Ceramic capacitors can be used. Weight: 0.014 g (typ.) Pin Assignments (top view) VIN VOUT 5 4 1 2 CONTROL GND 3 NOISE Overtemperature protection and overcurrent protection functions are not necessary guarantee of operating ratings below the maximum ratings. Do not use devices under conditions in which their maximum ratings will be exceeded. 000707EBA1 • TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc.. • The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer’s own risk. • The products described in this document are subject to the foreign exchange and foreign trade laws. • The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. • The information contained herein is subject to change without notice. 2000-10-30 1/22 TAR5S15~TAR5S50 List of Products Number and Marking Products No. Marking TAR5S15 1V5 TAR5S18 1V8 TAR5S20 2V0 TAR5S21 2V1 TAR5S22 2V2 TAR5S23 2V3 TAR5S25 2V5 TAR5S27 2V7 TAR5S28 2V8 TAR5S29 2V9 TAR5S30 3V0 TAR5S31 3V1 TAR5S32 3V2 TAR5S33 3V3 TAR5S35 3V5 TAR5S45 4V5 TAR5S48 4V8 TAR5S50 5V0 Marking on the Product Example: TAR5S30 (3.0 V output) 3V0 Maximum Ratings (Ta = 25°C) Characteristics Symbol Rating Unit Supply voltage VIN 15 V Output current IOUT 200 mA Power dissipation PD 200 (Note1) 380 (Note2) mW Operation temperature range Topr −40 to 85 °C Storage temperature range Tstg −55 to 150 °C Note1: Unit Ratintg Note2: Mounted on a glass epoxy circuit board of 30 × 30 mm. Pad dimension of 50 mm 2 2000-10-30 2/22 TAR5S15~TAR5S50 TAR5S15~TAR5S22 Electrical Characteristic (unless otherwise specified, VIN = VOUT + 1 V, IOUT = 50 mA, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Tj = 25°C) Characteristics Output voltage Symbol Test Condition VOUT Min Typ. Max Unit Please refer to the Output Voltage Accuracy table. Line regulation Reg・line VOUT + 1 V < = VIN < = 15 V, IOUT = 1 mA Load regulation Reg・load 1 mA < = IOUT < = 150 mA 25 75 IB1 IOUT = 0 mA 170 IB2 IOUT = 50 mA 550 850 VCT = 0 V 0.1 µA 30 µVrms Quiescent current Stand-by current IB (OFF) Output noise voltage VNO VIN = VOUT + 1 V, IOUT = 10 mA, 10 Hz < =f< = 100 kHz, CNOISE = 0.01 µF, Ta = 25°C Temperature coefficient TCVO −40°C < = Topr < = 85°C 3 15 mV mV µA 100 ppm/°C Input voltage VIN 2.4 15 V Ripple rejection R.R. VIN = VOUT + 1 V, IOUT = 10 mA, CNOISE = 0.01 µF, f = 1 kHz, VRipple = 500 mVp-p, Ta = 25°C 70 dB Control voltage (ON) VCT (ON) 1.5 VIN V Control voltage (OFF) VCT (OFF) 0.4 V Control current (ON) ICT (ON) VCT = 1.5 V 3 10 µA Control current (OFF) ICT (OFF) VCT = 0 V 0 0.1 µA TAR5S23~TAR5S50 Electrical Characteristic (unless otherwise specified, VIN = VOUT + 1 V, IOUT = 50 mA, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Tj = 25°C) Characteristics Symbol Test Condition Min Typ. Max Unit Output voltage VOUT Line regulation Reg・line VOUT + 1 V < = VIN < = 15 V, IOUT = 1 mA 3 15 mV Load regulation Reg・load 1 mA < = IOUT < = 150 mA 25 75 mV IB1 IOUT = 0 mA 170 IB2 IOUT = 50 mA 550 850 VCT = 0 V 0.1 µA VIN = VOUT + 1 V, IOUT = 10 mA, 10 Hz < =f< = 100 kHz, CNOISE = 0.01 µF, Ta = 25°C 30 µVrms IOUT = 50 mA 130 200 mV −40°C < = Topr < = 85°C 100 ppm/°C Quiescent current Stand-by current Output noise voltage Dropout volatge Temperature coefficient IB (OFF) VNO VIN − VOUT TCVO Please refer to the Output Voltage Accuracy table. µA Input voltage VIN VOUT + 0.2 V 15 V Ripple rejection R.R. VIN = VOUT + 1 V, IOUT = 10 mA, CNOISE = 0.01 µF, f = 1 kHz, VRipple = 500 mVp-p, Ta = 25°C 70 dB Control voltage (ON) VCT (ON) 1.5 VIN V Control voltage (OFF) VCT (OFF) 0.4 V Control current (ON) ICT (ON) VCT = 1.5 V 3 10 µA Control current (OFF) ICT (OFF) VCT = 0 V 0 0.1 µA 2000-10-30 3/22 TAR5S15~TAR5S50 Output Voltage Accuracy (VIN = VOUT + 1 V, IOUT = 50 mA, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Tj = 25°C) Product No. Min Typ. Max TAR5S15 1.44 1.5 1.56 TAR5S18 1.74 1.8 1.86 TAR5S20 1.94 2.0 2.06 TAR5S21 2.04 2.1 2.16 TAR5S22 2.14 2.2 2.26 TAR5S23 2.24 2.3 2.36 TAR5S25 2.43 2.5 2.57 TAR5S27 2.63 2.7 2.77 2.73 2.8 2.87 2.83 2.9 2.97 TAR5S30 2.92 3.0 3.08 TAR5S31 3.02 3.1 3.18 TAR5S32 3.12 3.2 3.28 TAR5S33 3.21 3.3 3.39 TAR5S35 3.41 3.5 3.59 TAR5S45 4.38 4.5 4.62 TAR5S48 4.68 4.8 4.92 TAR5S50 4.87 5.0 5.13 TAR5S28 TAR5S29 Symbol VOUT Unit V 2000-10-30 4/22 TAR5S15~TAR5S50 Application Note 1. Recommended Application Circuit VIN 1 µF 10 µF VOUT 5 2 Control Level Operation HIGH ON LOW OFF 3 0.01 µF 1 4 CONTROL GND NOISE The figure above shows the recommended configuration for using a point regulator. Insert a capacitor for stable input/output operation. If the control function is not to be used, Toshiba recommend that the control pin (pin 1) be connected to the VCC pin. 2. Power Dissipation The power dissipation for board-mounted TAR5Sxx Series devices (rated at 380 mW) is measured using a board whose size and pattern are as shown below. When incorporating a device belonging to this series into your design, derate the power dissipation as far as possible by reducing the levels of parameters such as input voltage, output current and ambient temperature. Toshiba recommend that these devices should typically be derated to 70%~80% of their absolute maximum power dissipation value. Thermal Resistance Evaluation Board VIN CIN VOUT COUT CNOISE Circuit board material: glass epoxy, Circuit board dimension:30 mm × 30 mm, CONTROL GND NOISE 2 Copper foil pad area: 50 mm (t = 0.8 mm) 2000-10-30 5/22 TAR5S15~TAR5S50 3. Ripple Rejection The devices of the TAR5Sxx Series feature a circuit with an excellent ripple rejection characteristic. Because the circuit also features an excellent output fluctuation characteristic for sudden supply voltage drops, the circuit is ideal for use in the RF blocks incorporated in all mobile telephones. Ripple Rejection − f TAR5S28 Input Transient Response 80 Ripple rejection (dB) 70 10 µF 60 50 2.2 µF 40 Input voltage 3.4 V 3.1 V 1 µF 2.8 V Output voltage 30 20 VIN = 4.0 V, CNOISE = 0.01 µF, CIN = 1 µF, Vripple = 500 mVp−p, 10 Ta = 25°C, CIN = 1 µF, Cout = 10 µF, CNOISE = 0.01 µF, VIN: 3.4 V → 3.1 V, Iout = 50 mA Iout = 10 mA, Ta = 25°C 0 10 100 1k 10 k 0 100 k 300 k 1 2 3 Frequency f (Hz) 4 5 6 7 8 9 10 Time t (ms) 4. NOISE Pin TAR5Sxx Series devices incorporate a NOISE pin to reduce output noise voltage. Inserting a capacitor between the NOISE pin and GND reduces output noise. To ensure stable operation, insert a capacitor of 0.0047 µF or more between the NOISE pin and GND. The output voltage rise time varies according to the capacitance of the capacitor connected to the NOISE pin. CNOISE − VN Turn On Waveform 60 2 Control voltage VCT (ON) (V) Control voltage waveform Iout = 10 mA, Ta = 25°C 50 40 30 20 TAR5S50 TAR5S30 10 0 0.001 µ 1 0 CNOISE = 0.01 µF 3 Output voltage VOUT (V) Output noise voltage VN (µV) CIN = 1 µF, Cout = 10 µF, TAR5S15 0.01 µ 0.1 µ NOISE capacitance CNOISE 1.0 µ (F) Output voltage waveform 1 µF 2 0.33 µF 0.1 µF 1 CIN = 1 µF, Cout = 10 µF, 0 −10 Iout = 50 mA, Ta = 25°C 0 10 20 30 40 50 60 70 80 90 Time t (ms) 2000-10-30 6/22 TAR5S15~TAR5S50 5. Example of Characteristics when Ceramic Capacitor is Used Shown below is the stable operation area, where the output voltage does not oscillate, evaluated using a Toshiba evaluation circuit. The equivalent series resistance (ESR) of the output capacitor and output current determines this area. TAR5Sxx Series devices operate stably even when a ceramic capacitor is used as the output capacitor. If a ceramic capacitor is used as the output capacitor and the ripple frequency is 30 kHz or more, the ripple rejection differs from that when a tantalum capacitor is used. This is shown below. Toshiba recommend that users check that devices operate stably under the intended conditions of use. Examples of safe operating area characteristics (TAR5S15) Stable Operating Area (TAR5S50) Stable Operating Area 10 1 Stable Operating Area @VIN = 2.5 V, CNOISE = 0.01 µF, CIN = 1 µF, Cout = 1 µF~10 µF, 0.1 Ta = 25°C 0.02 0 20 40 60 80 100 Output current IOUT 120 140 150 Equivalent series resistance ESR Equivalent series resistance ESR (Ω) 100 (Ω) 100 10 Stable Operating Area 1 @VIN = 6.0 V, CNOISE = 0.01 µF, CIN = 1 µF, Cout = 1 µF~10 µF, 0.1 Ta = 25°C 0.02 0 (mA) 20 40 60 80 100 Output current IOUT 120 140 150 (mA) (TAR5S28) Stable Operating Area Evaluation Circuit for Stable Operating Area Equivalent series resistance ESR (Ω) 100 CONTROL 10 CNOISE = 0.01 µF TAR5S** Stable Operating Area VIN = VOUT +1V 1 CIN Ceramic COUT Ceramic GND ROUT ESR @VIN = 3.8 V, CNOISE = 0.01 µF, 0.1 CIN = 1 µF, Cout = 1 µF~10 µF, Ta = 25°C 0.02 0 20 40 60 80 100 Output current IOUT 120 140 150 Capacitors used for evaluation Made by Murata CIN: GRM40B105K COUT: GRM40B105K/GRM40B106K (mA) Ripple Rejection Characteristic (f = 10 kHz~300 kHz) (TAR5S30) Ripple Rejection – f 70 Ceramic 10 µF Tantalum10 µF Ripple rejection (dB) 60 Ceramic 2.2 µF Ceramic 1 µF 50 40 Tantalum 2.2 µF Tantalum 1 µF 30 20 @VIN = 4.0 V, CNOISE = 0.01 µF, 10 0 10 k CIN = 1 µF, Vripple = 500 mVp-p, Iout = 10 mA, Ta = 25°C 100 k 300 k 1000 k Frequency f (Hz) 2000-10-30 7/22 TAR5S15~TAR5S50 IOUT – VOUT (TAR5S15) 1.9 Output voltage VOUT Output voltage VOUT (V) VIN = 2.8 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms (V) VIN = 2.5 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms Ta = 85°C 25 1.5 −40 1.4 0 50 100 Output current IOUT Ta = 85°C 25 1.8 −40 1.7 0 150 (mA) IOUT – VOUT (TAR5S20) 50 100 Output current IOUT 150 (mA) IOUT – VOUT (TAR5S21) 2.1 2.2 Output voltage VOUT (V) VIN = 3.1 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms (V) VIN = 3.0 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms Output voltage VOUT IOUT – VOUT (TAR5S18) 1.6 Ta = 85°C 2.0 25 −40 1.9 0 50 100 Output current IOUT Ta = 85°C 2.1 25 −40 2.0 0 150 (mA) 100 Output current IOUT IOUT – VOUT (TAR5S22) 50 150 (mA) IOUT – VOUT (TAR5S23) 2.3 Output voltage VOUT Output voltage VOUT (V) VIN = 3.3 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms (V) VIN = 3.2 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms Ta = 85°C 2.2 25 −40 2.1 0 50 100 Output current IOUT (mA) 150 Ta = 85°C 2.3 25 −40 2.2 0 50 100 Output current IOUT 150 (mA) 2000-10-30 8/22 TAR5S15~TAR5S50 IOUT – VOUT (TAR5S25) 2.8 VIN = 3.7 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms (V) Output voltage VOUT Output voltage VOUT (V) VIN = 2.6 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms Ta = 85°C 2.5 25 −40 2.4 0 50 100 Output current IOUT Ta = 85°C 2.7 25 −40 2.6 0 150 (mA) IOUT – VOUT (TAR5S28) 100 150 (mA) IOUT – VOUT (TAR5S29) 3 Output voltage VOUT (V) VIN = 3.9 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF Pulse width = 1 ms (V) VIN = 3.8 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF Pulse width = 1 ms Output voltage VOUT 50 Output current IOUT 2.9 Ta = 85°C 2.8 25 −40 2.7 0 50 100 Output current IOUT Ta = 85°C 2.9 25 −40 2.8 0 150 (mA) IOUT – VOUT (TAR5S30) 50 100 Output current IOUT 150 (mA) IOUT – VOUT (TAR5S31) 3.1 3.2 Output voltage VOUT (V) VIN = 4.1 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms (V) VIN = 4.0 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF Pulse width = 1 ms Output voltage VOUT IOUT – VOUT (TAR5S27) 2.6 Ta = 85°C 3.0 25 −40 2.9 0 50 100 Output current IOUT (mA) 150 Ta = 85°C 3.1 25 −40 3.0 0 50 100 Output current IOUT 150 (mA) 2000-10-30 9/22 TAR5S15~TAR5S50 IOUT – VOUT (TAR5S32) 3.4 VIN = 4.3 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms (V) Output voltage VOUT Output voltage VOUT (V) VIN = 4.2 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms Ta = 85°C 3.2 25 −40 3.1 0 50 100 Output current IOUT Ta = 85°C 3.3 25 −40 3.2 0 150 (mA) IOUT – VOUT (TAR5S35) 100 150 (mA) IOUT – VOUT (TAR5S45) 4.6 VIN = 5.5 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms Output voltage VOUT (V) (V) VIN = 4.5 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF Pulse width = 1 ms Output voltage VOUT 50 Output current IOUT 3.6 Ta = 85°C 3.5 25 −40 3.4 0 50 100 Output current IOUT Ta = 85°C 4.5 25 −40 4.4 0 150 (mA) IOUT – VOUT (TAR5S48) 50 100 Output current IOUT 150 (mA) IOUT – VOUT (TAR5S50) 4.9 5.1 VIN = 5.8 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF Pulse width = 1 ms VIN = 6.0 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF Pulse width = 1 ms Output voltage VOUT (V) (V) VOUT Output voltage 圧 IOUT – VOUT (TAR5S33) 3.3 Ta = 85°C 4.8 25 −40 4.7 0 50 100 Output current IOUT (mA) 150 Ta = 85°C 5.0 25 −40 4.9 0 50 100 Output current IOUT 150 (mA) 2000-10-30 10/22 TAR5S15~TAR5S50 IB – VIN (TAR5S15) 10 (mA) CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF Pulse width = 1 ms Bias current IB (mA) CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF Pulse width = 1 ms Bias current IB IB – VIN (TAR5S18) 10 5 5 IOUT = 150 mA IOUT = 150 mA 100 100 1 50 0 0 5 10 Input voltage VIN 15 15 (V) IB – VIN (TAR5S21) 10 (mA) CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF Pulse width = 1 ms Bias current IB (mA) CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF Pulse width = 1 ms 5 5 IOUT = 150 mA IOUT = 150 mA 100 100 50 0 0 5 50 1 10 Input voltage VIN 0 0 15 1 10 Input voltage VIN IB – VIN (TAR5S22) 5 (V) 15 (V) IB – VIN (TAR5S23) 10 10 (mA) CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF Pulse width = 1 ms Bias current IB (mA) CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF Pulse width = 1 ms Bias current IB 10 Input voltage VIN 10 Bias current IB 5 (V) IB – VIN (TAR5S20) 1 50 0 0 5 5 IOUT = 150 mA IOUT = 150 mA 100 100 50 0 0 5 Input voltage VIN 10 (V) 50 1 15 0 0 5 10 Input voltage VIN 1 15 (V) 2000-10-30 11/22 TAR5S15~TAR5S50 (TAR5S25) (TAR5S27) IB – VIN 10 (mA) CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF Pulse width = 1 ms Bias current IB (mA) CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF Pulse width = 1 ms Bias current IB IB – VIN 10 5 5 IOUT = 150 mA IOUT = 150 mA 100 100 50 0 0 5 10 Input voltage VIN (TAR5S28) 1 15 10 Input voltage VIN (TAR5S29) IB – VIN 15 (V) IB – VIN 10 CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF Pulse width = 1 ms Bias current IB (mA) (mA) CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF Pulse width = 1 ms Bias current IB 5 (V) 10 5 5 IOUT = 150 mA IOUT = 150 mA 100 100 50 0 0 5 50 1 10 Input voltage VIN 0 0 15 (TAR5S31) 1 10 Input voltage VIN IB – VIN (TAR5S30) 5 (V) 10 15 (V) IB – VIN 10 CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF Pulse width = 1 ms Bias current IB (mA) (mA) CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF Pulse width = 1 ms Bias current IB 1 50 0 0 5 5 IOUT = 150 mA IOUT = 150 mA 100 100 50 0 0 5 Input voltage VIN 10 (V) 50 1 15 0 0 5 10 Input voltage VIN 1 15 (V) 2000-10-30 12/22 TAR5S15~TAR5S50 IB – VIN (TAR5S32) (mA) CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF Pulse width = 1 ms Bias current IB (mA) CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF Pulse width = 1 ms Bias current IB IB – VIN (TAR5S33) 10 10 5 5 IOUT = 150 mA IOUT = 150 mA 100 100 50 0 0 5 10 Input voltage VIN 0 0 15 15 (V) IB – VIN (TAR5S45) 10 (mA) CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF Pulse width = 1 ms Bias current IB (mA) CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF Pulse width = 1 ms 5 5 IOUT = 150 mA IOUT = 150 mA 100 100 50 0 0 5 (TAR5S48) 1 10 Input voltage VIN 50 0 0 15 (V) 5 IB – VIN (TAR5S50) 1 10 Input voltage VIN 10 15 (V) IB – VIN 10 CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF Pulse width = 1 ms Pulse width = 1 ms (mA) CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF Bias current IB (mA) Bias current IB 10 Input voltage VIN 10 Bias current IB 5 (V) IB – VIN (TAR5S35) 1 50 1 5 5 IOUT = 150 mA IOUT = 150 mA 100 100 50 0 0 5 Input voltage VIN 10 (V) 1 50 15 0 0 5 10 Input voltage VIN 1 15 (V) 2000-10-30 13/22 TAR5S15~TAR5S50 VOUT – VIN (TAR5S15) 6 IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF, IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms CNOISE = 0.01 µF, Pulse width = 1 ms Output voltage VOUT Output voltage VOUT (V) 5 (V) 5 4 3 2 1 4 3 2 1 0 0 5 10 Input voltage VIN 0 0 15 10 Input voltage VIN IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF, 15 (V) VOUT – VIN (TAR5S21) 6 IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms CNOISE = 0.01 µF, Pulse width = 1 ms Output voltage VOUT (V) 5 (V) 5 Output voltage VOUT 5 (V) VOUT – VIN (TAR5S20) 6 4 3 2 1 4 3 2 1 0 0 5 10 Input voltage VIN 0 0 15 5 (V) 10 Input voltage VIN VOUT – VIN (TAR5S22) 6 IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF, 15 (V) VOUT – VIN (TAR5S23) 6 CNOISE = 0.01 µF, Pulse width = 1 ms IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms Output voltage VOUT (V) 5 (V) 5 Output voltage VOUT VOUT – VIN (TAR5S18) 6 4 3 2 1 0 0 4 3 2 1 5 Input voltage VIN 10 (V) 15 0 0 5 10 Input voltage VIN 15 (V) 2000-10-30 14/22 TAR5S15~TAR5S50 VOUT – VIN (TAR5S25) 6 IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF, IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms CNOISE = 0.01 µF, Pulse width = 1 ms Output voltage VOUT Output voltage VOUT (V) 5 (V) 5 4 3 2 1 4 3 2 1 0 0 5 10 Input voltage VIN 0 0 15 10 Input voltage VIN IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF, 15 (V) VOUT – VIN (TAR5S29) 6 IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms CNOISE = 0.01 µF, Pulse width = 1 ms 5 Output voltage VOUT (V) (V) 5 Output voltage VOUT 5 (V) VOUT – VIN (TAR5S28) 6 4 3 2 1 4 3 2 1 0 0 5 10 Input voltage VIN 0 0 15 5 (V) 10 Input voltage VIN VOUT – VIN (TAR5S30) 6 IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF, 15 (V) VOUT – VIN (TAR5S31) 6 CNOISE = 0.01 µF, Pulse width = 1 ms IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms Output voltage VOUT (V) 5 (V) 5 Output voltage VOUT VOUT – VIN (TAR5S27) 6 4 3 2 1 0 0 4 3 2 1 5 Input voltage VIN 10 (V) 15 0 0 5 10 Input voltage VIN 15 (V) 2000-10-30 15/22 TAR5S15~TAR5S50 VOUT – VIN (TAR5S32) 6 IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF, IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms CNOISE = 0.01 µF, Pulse width = 1 ms Output voltage VOUT Output voltage VOUT (V) 5 (V) 5 4 3 2 1 5 10 Input voltage VIN 3 2 0 0 15 5 (V) 10 Input voltage VIN VOUT – VIN (TAR5S35) 5 5 (V) Output voltage VOUT (V) 6 15 VOUT – VIN (TAR5S45) 6 (V) Output voltage VOUT 4 1 0 0 4 3 2 1 4 3 2 1 IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF, IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms CNOISE = 0.01 µF, Pulse width = 1 ms 0 0 5 10 Input voltage VIN 0 0 15 5 (V) 10 Input voltage VIN VOUT – VIN (TAR5S48) 5 5 (V) Output voltage VOUT (V) 6 15 VOUT – VIN (TAR5S50) 6 (V) Output voltage VOUT VOUT – VIN (TAR5S33) 6 4 3 2 1 4 3 2 1 IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms 0 0 5 Input voltage VIN 10 (V) IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms 15 0 0 5 10 Input voltage VIN 15 (V) 2000-10-30 16/22 TAR5S15~TAR5S50 VOUT – Ta (TAR5S15) 1.9 (V) VIN = 2.8 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms 1.55 Output voltage VOUT Output voltage VOUT (V) VIN = 2.5 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms IOUT = 50 mA 1.5 100 150 1.45 1.4 −50 −25 0 25 50 75 1.85 IOUT = 50 mA 1.8 100 1.7 −50 100 −25 0 100 (V) VIN = 3.1 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms 2.05 Output voltage VOUT (V) 75 2.2 VIN = 3.0 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms Output voltage VOUT 50 VOUT – Ta (TAR5S21) 2.1 IOUT = 50 mA 2.0 150 100 1.95 1.9 −50 −25 0 25 50 75 2.15 IOUT = 50 mA 2.1 2.0 −50 100 −25 0 100 (V) VIN = 3.3 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms Output voltage VOUT 2.25 2.1 −50 75 2.4 VIN = 3.2 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms 2.15 50 VOUT – Ta (TAR5S23) 2.3 2.2 25 Ambient temperature Ta (°C) VOUT – Ta (TAR5S22) 150 100 2.05 Ambient temperature Ta (°C) (V) 25 Ambient temperature Ta (°C) VOUT – Ta (TAR5S20) 150 1.75 Ambient temperature Ta (°C) Output voltage VOUT VOUT – Ta (TAR5S18) 1.6 IOUT = 50 mA 150 100 −25 0 25 50 Ambient temperature Ta (°C) 75 100 2.35 2.3 IOUT = 50 mA 2.2 −50 150 100 2.25 −25 0 25 50 75 100 Ambient temperature Ta (°C) 2000-10-30 17/22 TAR5S15~TAR5S50 VOUT – Ta (TAR5S25) 2.8 (V) VIN = 3.7 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms 2.55 Output voltage VOUT Output voltage VOUT (V) VIN = 3.5 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms IOUT = 50 mA 2.5 100 150 2.45 2.4 −50 −25 0 25 50 75 2.75 2.7 IOUT = 50 mA 2.6 −50 100 −25 0 100 (V) VIN = 3.9 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms 2.85 Output voltage VOUT (V) 75 3.0 VIN = 3.8 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF Pulse width = 1 ms Output voltage VOUT 50 VOUT – Ta (TAR5S29) 2.9 IOUT = 50 mA 2.8 150 100 2.75 2.7 −50 −25 0 25 50 75 2.95 IOUT = 50 mA 2.9 100 2.8 −50 100 −25 0 100 (V) VIN = 4.1 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms Output voltage VOUT 3.05 2.9 −50 75 3.2 VIN = 4 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF Pulse width = 1 ms 2.95 50 VOUT – Ta (TAR5S31) 3.1 3.0 25 Ambient temperature Ta (°C) VOUT – Ta (TAR5S30) 150 2.85 Ambient temperature Ta (°C) (V) 25 Ambient temperature Ta (°C) VOUT – Ta (TAR5S28) 150 100 2.65 Ambient temperature Ta (°C) Output voltage VOUT VOUT – Ta (TAR5S27) 2.6 IOUT = 50 mA 150 100 −25 0 25 50 Ambient temperature Ta (°C) 75 100 3.15 3.1 IOUT = 50 mA 3.05 3.0 −50 150 100 −25 0 25 50 75 100 Ambient temperature Ta (°C) 2000-10-30 18/22 TAR5S15~TAR5S50 VOUT – Ta (TAR5S32) 3.4 VIN = 4.3 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms (V) 3.25 Output voltage VOUT Output voltage VOUT (V) VIN = 4.2 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms IOUT = 50 mA 3.2 3.15 150 100 3.1 −50 −25 0 25 50 75 3.35 3.3 IOUT = 50 mA 3.2 −50 100 −25 0 100 VIN = 5.5 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms (V) 3.55 3.5 Output voltage VOUT (V) 75 4.6 VIN = 4.5 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Pulse width = 1 ms Output voltage VOUT 50 VOUT – Ta (TAR5S45) 3.6 IOUT = 50 mA 3.45 150 100 3.4 −50 −25 0 25 50 75 4.55 4.5 IOUT = 50 mA 4.45 150 100 4.4 −50 100 Ambient temperature Ta (°C) VOUT – Ta (TAR5S48) −25 0 50 75 100 VOUT – Ta (TAR5S50) 5.1 VIN = 5.8 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF Pulse width = 1 ms (V) VIN = 6 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF Pulse width = 1 ms Output voltage VOUT 4.85 4.8 IOUT = 50 mA 4.75 150 5.05 5 IOUT = 50 mA 4.95 150 100 4.7 −50 25 Ambient temperature Ta (°C) 4.9 (V) 25 Ambient temperature Ta (°C) VOUT – Ta (TAR5S35) 150 100 3.25 Ambient temperature Ta (°C) Output voltage VOUT VOUT – Ta (TAR5S33) 3.3 −25 100 0 25 50 Ambient temperature Ta (°C) 75 100 4.9 −50 −25 0 25 50 75 100 Ambient temperature Ta (°C) 2000-10-30 19/22 TAR5S15~TAR5S50 IB – Ta 0.6 IOUT = 150 mA (V) VIN = VOUT + 1 V, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF Dropout voltage VIN - VOUT Pulse width = 1 ms 2 Bias current IB (mA) 2.5 1.5 100 1 50 0.5 10 0.5 CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF Pulse width = 1 ms 0.4 IOUT = 150 mA 0.3 100 0.2 50 0.1 10 1 1 0 −50 −25 0 25 50 75 0 −50 100 −25 CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01µF Pulse width = 1 ms 2.0 (mA) 85 Ta = 25°C 0.3 −40 0.2 0.1 75 100 VIN = VOUT + 1 V, CIN = 1 µF, COUT = 10 µF, −40 CNOISE = 0.01 µF Pulse width = 1 ms Ta = 25°C 1.5 85 1.0 0.5 0 0 50 100 Output current IOUT 0 0 150 50 (mA) Turn On Waveform 1 0 VIN = VOUT + 1 V, VCT (ON) = 0 → 1.5 V, CIN = 1 µF, Output voltage VOUT (V) Ta = 25°C 85 0 VIN = VOUT + 1 V, VCT (ON) = 1.5 → 0 V, CIN = 1 µF, 2 COUT = 10 µF, CNOISE = 0.01 µF 1 Control voltage waveform 0 3 2 1 (mA) Output voltage waveform −40 3 Control voltage VCT (ON) (V) Control voltage waveform 150 Turn Off Waveform 3 2 100 Output current IOUT 3 Control voltage VCT (ON) (V) 50 IB – IOUT 2.5 Bias current IB (V) Dropout voltage VIN - VOUT 0.4 25 VIN - VOUT – IOUT (TAR5S23~TAR5S50) 0.5 0 Ambient temperature Ta (°C) Ambient temperature Ta (°C) Output voltage VOUT (V) VIN - VOUT – Ta (TAR5S23~TAR5S50) 3 2 1 Output voltage waveform 0 COUT = 10 µF, CNOISE = 0.01 µF 0 1 Time t (ms) 0 1 Time t (ms) 2000-10-30 20/22 TAR5S15~TAR5S50 Ripple Rejection – f VN – f 80 10 TAR5S25 (2.5 V) 1 0.1 TAR5S30 (3.0 V) TAR5S15 (1.5 V) 70 COUT = 10 µF, CNOISE = 0.01 µF, 10 Hz < f < 100 kHz, Ta = 25°C Ripple rejection (dB) Output noise voltage VN (µV/√ Hz ) VIN = VOUT + 1 V, IOUT = 10 mA, CIN = 1 µF, 60 50 TAR5S45 (4.5 V) TAR5S50 (5.0 V) 40 TAR5S35 (3.5 V) 30 20 VIN = VOUT + 1 V, IOUT = 10 mA, CIN = 1 µF, 10 COUT = 10 µF, CNOISE = 0.01 µF, VRipple = 500 mVp-p, Ta = 25°C 0 10 100 1k 10 k 100 k 0.01 0.001 10 100 1k 10 k 100 k 80 120 1000 k Frequency f (Hz) Frequency f (Hz) PD – Ta 400 Power dissipation PD (mW) ① 300 200 ② 100 0 −40 ① Circuit board material: glass epoxy, Circuit board dimention: 30 mm × 30 mm, pad area: 50 mm2 (t = 0.8 mm) ② Unit 0 40 Ambient temperature Ta (°C) 2000-10-30 21/22 TAR5S15~TAR5S50 Package Dimensions Weight: 0.014 g (typ.) 2000-10-30 22/22