TOSHIBA TAR5S15

TAR5S15~TAR5S50
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic
TAR5S15, TAR5S18, TAR5S20, TAR5S21, TAR5S22, TAR5S23,
TAR5S25, TAR5S27, TAR5S28, TAR5S29, TAR5S30, TAR5S31,
TAR5S32, TAR5S33, TAR5S35, TAR5S45, TAR5S48, TAR5S50
Point Regulators (Low-Dropout Regulator)
The TAR5Sxx Series is comprised of general-purpose bipolar
single-power-supply devices incorporating a control pin which can
be used to turn them ON/OFF.
Overtemperature and overcurrent protection circuits are built
into the devices’ output circuit.
Features
•
Low stand-by current
•
Overtemperature/overcurrent protection
•
Operation voltage range is wide.
•
Maximum output current is high.
•
Difference between input voltage and output voltage is low.
•
Small package.
•
Ceramic capacitors can be used.
Weight: 0.014 g (typ.)
Pin Assignments (top view)
VIN
VOUT
5
4
1
2
CONTROL GND
3
NOISE
Overtemperature protection and overcurrent protection functions are not necessary guarantee of operating
ratings below the maximum ratings.
Do not use devices under conditions in which their maximum ratings will be exceeded.
000707EBA1
• TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general
can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the
buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and
to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or
damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the
most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling
Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc..
• The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal
equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are
neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or
failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy
control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control
instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document
shall be made at the customer’s own risk.
• The products described in this document are subject to the foreign exchange and foreign trade laws.
• The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by
TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its
use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or
others.
• The information contained herein is subject to change without notice.
2000-10-30
1/22
TAR5S15~TAR5S50
List of Products Number and Marking
Products No.
Marking
TAR5S15
1V5
TAR5S18
1V8
TAR5S20
2V0
TAR5S21
2V1
TAR5S22
2V2
TAR5S23
2V3
TAR5S25
2V5
TAR5S27
2V7
TAR5S28
2V8
TAR5S29
2V9
TAR5S30
3V0
TAR5S31
3V1
TAR5S32
3V2
TAR5S33
3V3
TAR5S35
3V5
TAR5S45
4V5
TAR5S48
4V8
TAR5S50
5V0
Marking on the Product
Example: TAR5S30 (3.0 V output)
3V0
Maximum Ratings (Ta = 25°C)
Characteristics
Symbol
Rating
Unit
Supply voltage
VIN
15
V
Output current
IOUT
200
mA
Power dissipation
PD
200
(Note1)
380
(Note2)
mW
Operation temperature range
Topr
−40 to 85
°C
Storage temperature range
Tstg
−55 to 150
°C
Note1: Unit Ratintg
Note2: Mounted on a glass epoxy circuit board of 30 × 30 mm. Pad dimension of 50 mm
2
2000-10-30
2/22
TAR5S15~TAR5S50
TAR5S15~TAR5S22
Electrical Characteristic (unless otherwise specified, VIN = VOUT + 1 V, IOUT = 50 mA,
CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Tj = 25°C)
Characteristics
Output voltage
Symbol
Test Condition
VOUT
Min
Typ.
Max
Unit
Please refer to the Output Voltage Accuracy table.
Line regulation
Reg・line
VOUT + 1 V <
= VIN <
= 15 V,
IOUT = 1 mA
Load regulation
Reg・load
1 mA <
= IOUT <
= 150 mA

25
75
IB1
IOUT = 0 mA

170

IB2
IOUT = 50 mA

550
850
VCT = 0 V


0.1
µA

30

µVrms
Quiescent current
Stand-by current
IB (OFF)
Output noise voltage
VNO
VIN = VOUT + 1 V, IOUT = 10 mA,
10 Hz <
=f<
= 100 kHz,
CNOISE = 0.01 µF, Ta = 25°C
Temperature coefficient
TCVO
−40°C <
= Topr <
= 85°C

3
15
mV
mV
µA

100

ppm/°C
Input voltage
VIN

2.4

15
V
Ripple rejection
R.R.
VIN = VOUT + 1 V, IOUT = 10 mA,
CNOISE = 0.01 µF, f = 1 kHz,
VRipple = 500 mVp-p, Ta = 25°C

70

dB
Control voltage (ON)
VCT (ON)

1.5

VIN
V
Control voltage (OFF)
VCT (OFF)



0.4
V
Control current (ON)
ICT (ON)
VCT = 1.5 V

3
10
µA
Control current (OFF)
ICT (OFF)
VCT = 0 V

0
0.1
µA
TAR5S23~TAR5S50
Electrical Characteristic (unless otherwise specified, VIN = VOUT + 1 V, IOUT = 50 mA,
CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Tj = 25°C)
Characteristics
Symbol
Test Condition
Min
Typ.
Max
Unit
Output voltage
VOUT
Line regulation
Reg・line
VOUT + 1 V <
= VIN <
= 15 V,
IOUT = 1 mA

3
15
mV
Load regulation
Reg・load
1 mA <
= IOUT <
= 150 mA

25
75
mV
IB1
IOUT = 0 mA

170

IB2
IOUT = 50 mA

550
850
VCT = 0 V


0.1
µA
VIN = VOUT + 1 V, IOUT = 10 mA,
10 Hz <
=f<
= 100 kHz,
CNOISE = 0.01 µF, Ta = 25°C

30

µVrms
IOUT = 50 mA

130
200
mV
−40°C <
= Topr <
= 85°C

100

ppm/°C
Quiescent current
Stand-by current
Output noise voltage
Dropout volatge
Temperature coefficient
IB (OFF)
VNO
VIN − VOUT
TCVO
Please refer to the Output Voltage Accuracy table.
µA
Input voltage
VIN

VOUT
+ 0.2 V

15
V
Ripple rejection
R.R.
VIN = VOUT + 1 V, IOUT = 10 mA,
CNOISE = 0.01 µF, f = 1 kHz,
VRipple = 500 mVp-p, Ta = 25°C

70

dB
Control voltage (ON)
VCT (ON)

1.5

VIN
V
Control voltage (OFF)
VCT (OFF)



0.4
V
Control current (ON)
ICT (ON)
VCT = 1.5 V

3
10
µA
Control current (OFF)
ICT (OFF)
VCT = 0 V

0
0.1
µA
2000-10-30
3/22
TAR5S15~TAR5S50
Output Voltage Accuracy
(VIN = VOUT + 1 V, IOUT = 50 mA, CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF, Tj = 25°C)
Product No.
Min
Typ.
Max
TAR5S15
1.44
1.5
1.56
TAR5S18
1.74
1.8
1.86
TAR5S20
1.94
2.0
2.06
TAR5S21
2.04
2.1
2.16
TAR5S22
2.14
2.2
2.26
TAR5S23
2.24
2.3
2.36
TAR5S25
2.43
2.5
2.57
TAR5S27
2.63
2.7
2.77
2.73
2.8
2.87
2.83
2.9
2.97
TAR5S30
2.92
3.0
3.08
TAR5S31
3.02
3.1
3.18
TAR5S32
3.12
3.2
3.28
TAR5S33
3.21
3.3
3.39
TAR5S35
3.41
3.5
3.59
TAR5S45
4.38
4.5
4.62
TAR5S48
4.68
4.8
4.92
TAR5S50
4.87
5.0
5.13
TAR5S28
TAR5S29
Symbol
VOUT
Unit
V
2000-10-30
4/22
TAR5S15~TAR5S50
Application Note
1. Recommended Application Circuit
VIN
1 µF
10 µF
VOUT
5
2
Control Level
Operation
HIGH
ON
LOW
OFF
3
0.01 µF
1
4
CONTROL GND
NOISE
The figure above shows the recommended configuration for using a point regulator. Insert a capacitor for
stable input/output operation. If the control function is not to be used, Toshiba recommend that the control pin
(pin 1) be connected to the VCC pin.
2. Power Dissipation
The power dissipation for board-mounted TAR5Sxx Series devices (rated at 380 mW) is measured using a
board whose size and pattern are as shown below. When incorporating a device belonging to this series into
your design, derate the power dissipation as far as possible by reducing the levels of parameters such as input
voltage, output current and ambient temperature. Toshiba recommend that these devices should typically be
derated to 70%~80% of their absolute maximum power dissipation value.
Thermal Resistance Evaluation Board
VIN
CIN
VOUT
COUT
CNOISE
Circuit board material: glass epoxy,
Circuit board dimension:30 mm × 30 mm,
CONTROL GND
NOISE
2
Copper foil pad area: 50 mm (t = 0.8 mm)
2000-10-30
5/22
TAR5S15~TAR5S50
3. Ripple Rejection
The devices of the TAR5Sxx Series feature a circuit with an excellent ripple rejection characteristic. Because
the circuit also features an excellent output fluctuation characteristic for sudden supply voltage drops, the
circuit is ideal for use in the RF blocks incorporated in all mobile telephones.
Ripple Rejection − f
TAR5S28 Input Transient Response
80
Ripple rejection (dB)
70
10 µF
60
50
2.2 µF
40
Input voltage
3.4 V
3.1 V
1 µF
2.8 V
Output voltage
30
20
VIN = 4.0 V, CNOISE = 0.01 µF,
CIN = 1 µF, Vripple = 500 mVp−p,
10
Ta = 25°C, CIN = 1 µF,
Cout = 10 µF, CNOISE = 0.01 µF,
VIN: 3.4 V → 3.1 V, Iout = 50 mA
Iout = 10 mA, Ta = 25°C
0
10
100
1k
10 k
0
100 k 300 k
1
2
3
Frequency f (Hz)
4
5
6
7
8
9
10
Time t (ms)
4. NOISE Pin
TAR5Sxx Series devices incorporate a NOISE pin to reduce output noise voltage. Inserting a capacitor
between the NOISE pin and GND reduces output noise. To ensure stable operation, insert a capacitor of
0.0047 µF or more between the NOISE pin and GND.
The output voltage rise time varies according to the capacitance of the capacitor connected to the NOISE
pin.
CNOISE − VN
Turn On Waveform
60
2
Control voltage
VCT (ON) (V)
Control voltage waveform
Iout = 10 mA, Ta = 25°C
50
40
30
20
TAR5S50
TAR5S30
10
0
0.001 µ
1
0
CNOISE = 0.01 µF
3
Output voltage
VOUT (V)
Output noise voltage VN
(µV)
CIN = 1 µF, Cout = 10 µF,
TAR5S15
0.01 µ
0.1 µ
NOISE capacitance CNOISE
1.0 µ
(F)
Output voltage waveform
1 µF
2
0.33 µF
0.1 µF
1
CIN = 1 µF, Cout = 10 µF,
0
−10
Iout = 50 mA, Ta = 25°C
0
10
20
30
40
50
60
70
80
90
Time t (ms)
2000-10-30
6/22
TAR5S15~TAR5S50
5. Example of Characteristics when Ceramic Capacitor is Used
Shown below is the stable operation area, where the output voltage does not oscillate, evaluated using a
Toshiba evaluation circuit. The equivalent series resistance (ESR) of the output capacitor and output current
determines this area. TAR5Sxx Series devices operate stably even when a ceramic capacitor is used as the
output capacitor.
If a ceramic capacitor is used as the output capacitor and the ripple frequency is 30 kHz or more, the ripple
rejection differs from that when a tantalum capacitor is used. This is shown below.
Toshiba recommend that users check that devices operate stably under the intended conditions of use.
Examples of safe operating area characteristics
(TAR5S15) Stable Operating Area
(TAR5S50) Stable Operating Area
10
1
Stable Operating Area
@VIN = 2.5 V, CNOISE = 0.01 µF,
CIN = 1 µF, Cout = 1 µF~10 µF,
0.1
Ta = 25°C
0.02
0
20
40
60
80
100
Output current IOUT
120
140 150
Equivalent series resistance ESR
Equivalent series resistance ESR
(Ω)
100
(Ω)
100
10
Stable Operating Area
1
@VIN = 6.0 V, CNOISE = 0.01 µF,
CIN = 1 µF, Cout = 1 µF~10 µF,
0.1
Ta = 25°C
0.02
0
(mA)
20
40
60
80
100
Output current IOUT
120
140 150
(mA)
(TAR5S28) Stable Operating Area
Evaluation Circuit for Stable Operating Area
Equivalent series resistance ESR
(Ω)
100
CONTROL
10
CNOISE = 0.01 µF
TAR5S**
Stable Operating Area
VIN = VOUT
+1V
1
CIN
Ceramic
COUT
Ceramic
GND
ROUT
ESR
@VIN = 3.8 V, CNOISE = 0.01 µF,
0.1
CIN = 1 µF, Cout = 1 µF~10 µF,
Ta = 25°C
0.02
0
20
40
60
80
100
Output current IOUT
120
140 150
Capacitors used for evaluation
Made by Murata CIN: GRM40B105K
COUT: GRM40B105K/GRM40B106K
(mA)
Ripple Rejection Characteristic (f = 10 kHz~300 kHz)
(TAR5S30) Ripple Rejection – f
70
Ceramic 10 µF
Tantalum10 µF
Ripple rejection (dB)
60
Ceramic
2.2 µF
Ceramic
1 µF
50
40
Tantalum 2.2 µF
Tantalum 1 µF
30
20
@VIN = 4.0 V, CNOISE = 0.01 µF,
10
0
10 k
CIN = 1 µF, Vripple = 500 mVp-p,
Iout = 10 mA, Ta = 25°C
100 k
300 k
1000 k
Frequency f (Hz)
2000-10-30
7/22
TAR5S15~TAR5S50
IOUT – VOUT
(TAR5S15)
1.9
Output voltage VOUT
Output voltage VOUT
(V)
VIN = 2.8 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
(V)
VIN = 2.5 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
Ta = 85°C
25
1.5
−40
1.4
0
50
100
Output current IOUT
Ta = 85°C
25
1.8
−40
1.7
0
150
(mA)
IOUT – VOUT
(TAR5S20)
50
100
Output current IOUT
150
(mA)
IOUT – VOUT
(TAR5S21)
2.1
2.2
Output voltage VOUT
(V)
VIN = 3.1 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
(V)
VIN = 3.0 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
Output voltage VOUT
IOUT – VOUT
(TAR5S18)
1.6
Ta = 85°C
2.0
25
−40
1.9
0
50
100
Output current IOUT
Ta = 85°C
2.1
25
−40
2.0
0
150
(mA)
100
Output current IOUT
IOUT – VOUT
(TAR5S22)
50
150
(mA)
IOUT – VOUT
(TAR5S23)
2.3
Output voltage VOUT
Output voltage VOUT
(V)
VIN = 3.3 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
(V)
VIN = 3.2 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
Ta = 85°C
2.2
25
−40
2.1
0
50
100
Output current IOUT
(mA)
150
Ta = 85°C
2.3
25
−40
2.2
0
50
100
Output current IOUT
150
(mA)
2000-10-30
8/22
TAR5S15~TAR5S50
IOUT – VOUT
(TAR5S25)
2.8
VIN = 3.7 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
(V)
Output voltage VOUT
Output voltage VOUT
(V)
VIN = 2.6 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
Ta = 85°C
2.5
25
−40
2.4
0
50
100
Output current IOUT
Ta = 85°C
2.7
25
−40
2.6
0
150
(mA)
IOUT – VOUT
(TAR5S28)
100
150
(mA)
IOUT – VOUT
(TAR5S29)
3
Output voltage VOUT
(V)
VIN = 3.9 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF Pulse width = 1 ms
(V)
VIN = 3.8 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF Pulse width = 1 ms
Output voltage VOUT
50
Output current IOUT
2.9
Ta = 85°C
2.8
25
−40
2.7
0
50
100
Output current IOUT
Ta = 85°C
2.9
25
−40
2.8
0
150
(mA)
IOUT – VOUT
(TAR5S30)
50
100
Output current IOUT
150
(mA)
IOUT – VOUT
(TAR5S31)
3.1
3.2
Output voltage VOUT
(V)
VIN = 4.1 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
(V)
VIN = 4.0 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF Pulse width = 1 ms
Output voltage VOUT
IOUT – VOUT
(TAR5S27)
2.6
Ta = 85°C
3.0
25
−40
2.9
0
50
100
Output current IOUT
(mA)
150
Ta = 85°C
3.1
25
−40
3.0
0
50
100
Output current IOUT
150
(mA)
2000-10-30
9/22
TAR5S15~TAR5S50
IOUT – VOUT
(TAR5S32)
3.4
VIN = 4.3 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
(V)
Output voltage VOUT
Output voltage VOUT
(V)
VIN = 4.2 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
Ta = 85°C
3.2
25
−40
3.1
0
50
100
Output current IOUT
Ta = 85°C
3.3
25
−40
3.2
0
150
(mA)
IOUT – VOUT
(TAR5S35)
100
150
(mA)
IOUT – VOUT
(TAR5S45)
4.6
VIN = 5.5 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
Output voltage VOUT
(V)
(V)
VIN = 4.5 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF Pulse width = 1 ms
Output voltage VOUT
50
Output current IOUT
3.6
Ta = 85°C
3.5
25
−40
3.4
0
50
100
Output current IOUT
Ta = 85°C
4.5
25
−40
4.4
0
150
(mA)
IOUT – VOUT
(TAR5S48)
50
100
Output current IOUT
150
(mA)
IOUT – VOUT
(TAR5S50)
4.9
5.1
VIN = 5.8 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF Pulse width = 1 ms
VIN = 6.0 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF Pulse width = 1 ms
Output voltage VOUT
(V)
(V)
VOUT
Output voltage 圧
IOUT – VOUT
(TAR5S33)
3.3
Ta = 85°C
4.8
25
−40
4.7
0
50
100
Output current IOUT
(mA)
150
Ta = 85°C
5.0
25
−40
4.9
0
50
100
Output current IOUT
150
(mA)
2000-10-30
10/22
TAR5S15~TAR5S50
IB – VIN
(TAR5S15)
10
(mA)
CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF
Pulse width = 1 ms
Bias current IB
(mA)
CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF
Pulse width = 1 ms
Bias current IB
IB – VIN
(TAR5S18)
10
5
5
IOUT = 150 mA
IOUT = 150 mA
100
100
1
50
0
0
5
10
Input voltage VIN
15
15
(V)
IB – VIN
(TAR5S21)
10
(mA)
CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF
Pulse width = 1 ms
Bias current IB
(mA)
CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF
Pulse width = 1 ms
5
5
IOUT = 150 mA
IOUT = 150 mA
100
100
50
0
0
5
50
1
10
Input voltage VIN
0
0
15
1
10
Input voltage VIN
IB – VIN
(TAR5S22)
5
(V)
15
(V)
IB – VIN
(TAR5S23)
10
10
(mA)
CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF
Pulse width = 1 ms
Bias current IB
(mA)
CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF
Pulse width = 1 ms
Bias current IB
10
Input voltage VIN
10
Bias current IB
5
(V)
IB – VIN
(TAR5S20)
1
50
0
0
5
5
IOUT = 150 mA
IOUT = 150 mA
100
100
50
0
0
5
Input voltage VIN
10
(V)
50
1
15
0
0
5
10
Input voltage VIN
1
15
(V)
2000-10-30
11/22
TAR5S15~TAR5S50
(TAR5S25)
(TAR5S27)
IB – VIN
10
(mA)
CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF
Pulse width = 1 ms
Bias current IB
(mA)
CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF
Pulse width = 1 ms
Bias current IB
IB – VIN
10
5
5
IOUT = 150 mA
IOUT = 150 mA
100
100
50
0
0
5
10
Input voltage VIN
(TAR5S28)
1
15
10
Input voltage VIN
(TAR5S29)
IB – VIN
15
(V)
IB – VIN
10
CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF
Pulse width = 1 ms
Bias current IB
(mA)
(mA)
CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF
Pulse width = 1 ms
Bias current IB
5
(V)
10
5
5
IOUT = 150 mA
IOUT = 150 mA
100
100
50
0
0
5
50
1
10
Input voltage VIN
0
0
15
(TAR5S31)
1
10
Input voltage VIN
IB – VIN
(TAR5S30)
5
(V)
10
15
(V)
IB – VIN
10
CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF
Pulse width = 1 ms
Bias current IB
(mA)
(mA)
CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF
Pulse width = 1 ms
Bias current IB
1
50
0
0
5
5
IOUT = 150 mA
IOUT = 150 mA
100
100
50
0
0
5
Input voltage VIN
10
(V)
50
1
15
0
0
5
10
Input voltage VIN
1
15
(V)
2000-10-30
12/22
TAR5S15~TAR5S50
IB – VIN
(TAR5S32)
(mA)
CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF
Pulse width = 1 ms
Bias current IB
(mA)
CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF
Pulse width = 1 ms
Bias current IB
IB – VIN
(TAR5S33)
10
10
5
5
IOUT = 150 mA
IOUT = 150 mA
100
100
50
0
0
5
10
Input voltage VIN
0
0
15
15
(V)
IB – VIN
(TAR5S45)
10
(mA)
CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF
Pulse width = 1 ms
Bias current IB
(mA)
CIN = 1 µF, COUT = 10 µF, CNOISE = 0.01 µF
Pulse width = 1 ms
5
5
IOUT = 150 mA
IOUT = 150 mA
100
100
50
0
0
5
(TAR5S48)
1
10
Input voltage VIN
50
0
0
15
(V)
5
IB – VIN
(TAR5S50)
1
10
Input voltage VIN
10
15
(V)
IB – VIN
10
CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF
Pulse width = 1 ms
Pulse width = 1 ms
(mA)
CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF
Bias current IB
(mA)
Bias current IB
10
Input voltage VIN
10
Bias current IB
5
(V)
IB – VIN
(TAR5S35)
1
50
1
5
5
IOUT = 150 mA
IOUT = 150 mA
100
100
50
0
0
5
Input voltage VIN
10
(V)
1
50
15
0
0
5
10
Input voltage VIN
1
15
(V)
2000-10-30
13/22
TAR5S15~TAR5S50
VOUT – VIN
(TAR5S15)
6
IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF,
IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
CNOISE = 0.01 µF, Pulse width = 1 ms
Output voltage VOUT
Output voltage VOUT
(V)
5
(V)
5
4
3
2
1
4
3
2
1
0
0
5
10
Input voltage VIN
0
0
15
10
Input voltage VIN
IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF,
15
(V)
VOUT – VIN
(TAR5S21)
6
IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
CNOISE = 0.01 µF, Pulse width = 1 ms
Output voltage VOUT
(V)
5
(V)
5
Output voltage VOUT
5
(V)
VOUT – VIN
(TAR5S20)
6
4
3
2
1
4
3
2
1
0
0
5
10
Input voltage VIN
0
0
15
5
(V)
10
Input voltage VIN
VOUT – VIN
(TAR5S22)
6
IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF,
15
(V)
VOUT – VIN
(TAR5S23)
6
CNOISE = 0.01 µF, Pulse width = 1 ms
IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
Output voltage VOUT
(V)
5
(V)
5
Output voltage VOUT
VOUT – VIN
(TAR5S18)
6
4
3
2
1
0
0
4
3
2
1
5
Input voltage VIN
10
(V)
15
0
0
5
10
Input voltage VIN
15
(V)
2000-10-30
14/22
TAR5S15~TAR5S50
VOUT – VIN
(TAR5S25)
6
IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF,
IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
CNOISE = 0.01 µF, Pulse width = 1 ms
Output voltage VOUT
Output voltage VOUT
(V)
5
(V)
5
4
3
2
1
4
3
2
1
0
0
5
10
Input voltage VIN
0
0
15
10
Input voltage VIN
IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF,
15
(V)
VOUT – VIN
(TAR5S29)
6
IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
CNOISE = 0.01 µF, Pulse width = 1 ms
5
Output voltage VOUT
(V)
(V)
5
Output voltage VOUT
5
(V)
VOUT – VIN
(TAR5S28)
6
4
3
2
1
4
3
2
1
0
0
5
10
Input voltage VIN
0
0
15
5
(V)
10
Input voltage VIN
VOUT – VIN
(TAR5S30)
6
IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF,
15
(V)
VOUT – VIN
(TAR5S31)
6
CNOISE = 0.01 µF, Pulse width = 1 ms
IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
Output voltage VOUT
(V)
5
(V)
5
Output voltage VOUT
VOUT – VIN
(TAR5S27)
6
4
3
2
1
0
0
4
3
2
1
5
Input voltage VIN
10
(V)
15
0
0
5
10
Input voltage VIN
15
(V)
2000-10-30
15/22
TAR5S15~TAR5S50
VOUT – VIN
(TAR5S32)
6
IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF,
IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
CNOISE = 0.01 µF, Pulse width = 1 ms
Output voltage VOUT
Output voltage VOUT
(V)
5
(V)
5
4
3
2
1
5
10
Input voltage VIN
3
2
0
0
15
5
(V)
10
Input voltage VIN
VOUT – VIN
(TAR5S35)
5
5
(V)
Output voltage VOUT
(V)
6
15
VOUT – VIN
(TAR5S45)
6
(V)
Output voltage VOUT
4
1
0
0
4
3
2
1
4
3
2
1
IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF,
IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
CNOISE = 0.01 µF, Pulse width = 1 ms
0
0
5
10
Input voltage VIN
0
0
15
5
(V)
10
Input voltage VIN
VOUT – VIN
(TAR5S48)
5
5
(V)
Output voltage VOUT
(V)
6
15
VOUT – VIN
(TAR5S50)
6
(V)
Output voltage VOUT
VOUT – VIN
(TAR5S33)
6
4
3
2
1
4
3
2
1
IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
0
0
5
Input voltage VIN
10
(V)
IOUT = 1 mA, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
15
0
0
5
10
Input voltage VIN
15
(V)
2000-10-30
16/22
TAR5S15~TAR5S50
VOUT – Ta
(TAR5S15)
1.9
(V)
VIN = 2.8 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
1.55
Output voltage VOUT
Output voltage VOUT
(V)
VIN = 2.5 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
IOUT = 50 mA
1.5
100
150
1.45
1.4
−50
−25
0
25
50
75
1.85
IOUT = 50 mA
1.8
100
1.7
−50
100
−25
0
100
(V)
VIN = 3.1 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
2.05
Output voltage VOUT
(V)
75
2.2
VIN = 3.0 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
Output voltage VOUT
50
VOUT – Ta
(TAR5S21)
2.1
IOUT = 50 mA
2.0
150
100
1.95
1.9
−50
−25
0
25
50
75
2.15
IOUT = 50 mA
2.1
2.0
−50
100
−25
0
100
(V)
VIN = 3.3 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
Output voltage VOUT
2.25
2.1
−50
75
2.4
VIN = 3.2 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
2.15
50
VOUT – Ta
(TAR5S23)
2.3
2.2
25
Ambient temperature Ta (°C)
VOUT – Ta
(TAR5S22)
150
100
2.05
Ambient temperature Ta (°C)
(V)
25
Ambient temperature Ta (°C)
VOUT – Ta
(TAR5S20)
150
1.75
Ambient temperature Ta (°C)
Output voltage VOUT
VOUT – Ta
(TAR5S18)
1.6
IOUT = 50 mA
150
100
−25
0
25
50
Ambient temperature Ta (°C)
75
100
2.35
2.3
IOUT = 50 mA
2.2
−50
150
100
2.25
−25
0
25
50
75
100
Ambient temperature Ta (°C)
2000-10-30
17/22
TAR5S15~TAR5S50
VOUT – Ta
(TAR5S25)
2.8
(V)
VIN = 3.7 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
2.55
Output voltage VOUT
Output voltage VOUT
(V)
VIN = 3.5 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
IOUT = 50 mA
2.5
100
150
2.45
2.4
−50
−25
0
25
50
75
2.75
2.7
IOUT = 50 mA
2.6
−50
100
−25
0
100
(V)
VIN = 3.9 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
2.85
Output voltage VOUT
(V)
75
3.0
VIN = 3.8 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF Pulse width = 1 ms
Output voltage VOUT
50
VOUT – Ta
(TAR5S29)
2.9
IOUT = 50 mA
2.8
150
100
2.75
2.7
−50
−25
0
25
50
75
2.95
IOUT = 50 mA
2.9
100
2.8
−50
100
−25
0
100
(V)
VIN = 4.1 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
Output voltage VOUT
3.05
2.9
−50
75
3.2
VIN = 4 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF Pulse width = 1 ms
2.95
50
VOUT – Ta
(TAR5S31)
3.1
3.0
25
Ambient temperature Ta (°C)
VOUT – Ta
(TAR5S30)
150
2.85
Ambient temperature Ta (°C)
(V)
25
Ambient temperature Ta (°C)
VOUT – Ta
(TAR5S28)
150
100
2.65
Ambient temperature Ta (°C)
Output voltage VOUT
VOUT – Ta
(TAR5S27)
2.6
IOUT = 50 mA
150
100
−25
0
25
50
Ambient temperature Ta (°C)
75
100
3.15
3.1
IOUT = 50 mA
3.05
3.0
−50
150
100
−25
0
25
50
75
100
Ambient temperature Ta (°C)
2000-10-30
18/22
TAR5S15~TAR5S50
VOUT – Ta
(TAR5S32)
3.4
VIN = 4.3 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
(V)
3.25
Output voltage VOUT
Output voltage VOUT
(V)
VIN = 4.2 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
IOUT = 50 mA
3.2
3.15
150
100
3.1
−50
−25
0
25
50
75
3.35
3.3
IOUT = 50 mA
3.2
−50
100
−25
0
100
VIN = 5.5 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
(V)
3.55
3.5
Output voltage VOUT
(V)
75
4.6
VIN = 4.5 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF, Pulse width = 1 ms
Output voltage VOUT
50
VOUT – Ta
(TAR5S45)
3.6
IOUT = 50 mA
3.45
150
100
3.4
−50
−25
0
25
50
75
4.55
4.5
IOUT = 50 mA
4.45
150
100
4.4
−50
100
Ambient temperature Ta (°C)
VOUT – Ta
(TAR5S48)
−25
0
50
75
100
VOUT – Ta
(TAR5S50)
5.1
VIN = 5.8 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF Pulse width = 1 ms
(V)
VIN = 6 V, CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF Pulse width = 1 ms
Output voltage VOUT
4.85
4.8
IOUT = 50 mA
4.75
150
5.05
5
IOUT = 50 mA
4.95
150
100
4.7
−50
25
Ambient temperature Ta (°C)
4.9
(V)
25
Ambient temperature Ta (°C)
VOUT – Ta
(TAR5S35)
150
100
3.25
Ambient temperature Ta (°C)
Output voltage VOUT
VOUT – Ta
(TAR5S33)
3.3
−25
100
0
25
50
Ambient temperature Ta (°C)
75
100
4.9
−50
−25
0
25
50
75
100
Ambient temperature Ta (°C)
2000-10-30
19/22
TAR5S15~TAR5S50
IB – Ta
0.6
IOUT = 150 mA
(V)
VIN = VOUT + 1 V, CIN = 1 µF,
COUT = 10 µF, CNOISE = 0.01 µF
Dropout voltage VIN - VOUT
Pulse width = 1 ms
2
Bias current
IB
(mA)
2.5
1.5
100
1
50
0.5
10
0.5
CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01 µF
Pulse width = 1 ms
0.4
IOUT = 150 mA
0.3
100
0.2
50
0.1
10
1
1
0
−50
−25
0
25
50
75
0
−50
100
−25
CIN = 1 µF, COUT = 10 µF,
CNOISE = 0.01µF
Pulse width = 1 ms
2.0
(mA)
85
Ta = 25°C
0.3
−40
0.2
0.1
75
100
VIN = VOUT + 1 V,
CIN = 1 µF, COUT = 10 µF,
−40
CNOISE = 0.01 µF
Pulse width = 1 ms
Ta = 25°C
1.5
85
1.0
0.5
0
0
50
100
Output current IOUT
0
0
150
50
(mA)
Turn On Waveform
1
0
VIN = VOUT + 1 V,
VCT (ON) = 0 → 1.5 V, CIN = 1 µF,
Output voltage
VOUT (V)
Ta = 25°C
85
0
VIN = VOUT + 1 V,
VCT (ON) = 1.5 → 0 V, CIN = 1 µF,
2
COUT = 10 µF, CNOISE = 0.01 µF
1
Control voltage waveform
0
3
2
1
(mA)
Output voltage waveform
−40
3
Control voltage
VCT (ON) (V)
Control voltage waveform
150
Turn Off Waveform
3
2
100
Output current IOUT
3
Control voltage
VCT (ON) (V)
50
IB – IOUT
2.5
Bias current IB
(V)
Dropout voltage VIN - VOUT
0.4
25
VIN - VOUT – IOUT
(TAR5S23~TAR5S50)
0.5
0
Ambient temperature Ta (°C)
Ambient temperature Ta (°C)
Output voltage
VOUT (V)
VIN - VOUT – Ta
(TAR5S23~TAR5S50)
3
2
1
Output voltage waveform
0
COUT = 10 µF, CNOISE = 0.01 µF
0
1
Time t (ms)
0
1
Time t (ms)
2000-10-30
20/22
TAR5S15~TAR5S50
Ripple Rejection – f
VN – f
80
10
TAR5S25 (2.5 V)
1
0.1
TAR5S30 (3.0 V)
TAR5S15 (1.5 V)
70
COUT = 10 µF, CNOISE = 0.01 µF,
10 Hz < f < 100 kHz, Ta = 25°C
Ripple rejection (dB)
Output noise voltage VN
(µV/√ Hz )
VIN = VOUT + 1 V, IOUT = 10 mA, CIN = 1 µF,
60
50
TAR5S45 (4.5 V)
TAR5S50 (5.0 V)
40
TAR5S35 (3.5 V)
30
20
VIN = VOUT + 1 V, IOUT = 10 mA, CIN = 1 µF,
10 COUT = 10 µF, CNOISE = 0.01 µF,
VRipple = 500 mVp-p, Ta = 25°C
0
10
100
1k
10 k
100 k
0.01
0.001
10
100
1k
10 k
100 k
80
120
1000 k
Frequency f (Hz)
Frequency f (Hz)
PD – Ta
400
Power dissipation PD
(mW)
①
300
200
②
100
0
−40
① Circuit board material: glass epoxy,
Circuit board dimention:
30 mm × 30 mm,
pad area: 50 mm2 (t = 0.8 mm)
② Unit
0
40
Ambient temperature Ta (°C)
2000-10-30
21/22
TAR5S15~TAR5S50
Package Dimensions
Weight: 0.014 g (typ.)
2000-10-30
22/22