TAR5S15~TAR5S50 TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic TAR5S15~TAR5S50 Point Regulators (Low-Dropout Regulator) The TAR5Sxx Series is comprised of general-purpose bipolar single-power-supply devices incorporating a control pin which can be used to turn them ON/OFF. Overtemperature and overcurrent protection circuits are built in to the devices’ output circuit. Features • Low stand-by current • Overtemperature/overcurrent protection • Operation voltage range is wide. • Maximum output current is high. • Difference between input voltage and output voltage is low. • Small package. • Ceramic capacitors can be used. Weight: 0.014 g (typ.) Pin Assignments (top view) VIN VOUT 5 4 1 2 CONTROL GND 3 NOISE Overtemperature protection and overcurrent protection functions are not necessary guarantee of operating ratings below the absolute maximum ratings. Do not use devices under conditions in which their absolute maximum ratings will be exceeded. 1 2007-11-01 TAR5S15~TAR5S50 List of Products Number and Marking Marking on the Product Products No. Marking Products No. Marking TAR5S15 1V5 TAR5S33 3V3 TAR5S16 1V6 TAR5S34 3V4 TAR5S17 1V7 TAR5S35 3V5 TAR5S18 1V8 TAR5S36 3V6 TAR5S19 1V9 TAR5S37 3V7 TAR5S20 2V0 TAR5S38 3V8 TAR5S21 2V1 TAR5S39 3V9 TAR5S22 2V2 TAR5S40 4V0 TAR5S23 2V3 TAR5S41 4V1 TAR5S24 2V4 TAR5S42 4V2 TAR5S25 2V5 TAR5S43 4V3 TAR5S26 2V6 TAR5S44 4V4 TAR5S27 2V7 TAR5S45 4V5 TAR5S28 2V8 TAR5S46 4V6 TAR5S29 2V9 TAR5S47 4V7 TAR5S30 3V0 TAR5S48 4V8 TAR5S31 3V1 TAR5S49 4V9 TAR5S32 3V2 TAR5S50 5V0 Example: TAR5S30 (3.0 V output) 3V0 Absolute Maximum Ratings (Ta = 25°C) Characteristics Symbol Rating Unit Supply voltage VIN 15 V Output current IOUT 200 mA 200 (Note 1) 380 (Note 2) Power dissipation PD Operation temperature range Topr −40 to 85 °C Storage temperature range Tstg −55 to 150 °C Note: mW Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook (“Handling Precautions”/“Derating Concept and Methods”) and individual reliability data (i.e. reliability test report and estimated failure rate, etc). Note 1: Unit Ratintg 2 Note 2: Mounted on a glass epoxy circuit board of 30 × 30 mm. Pad dimension of 50 mm 2 2007-11-01 TAR5S15~TAR5S50 TAR5S15~TAR5S22 Electrical Characteristic (unless otherwise specified, VIN = VOUT + 1 V, IOUT = 50 mA, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Tj = 25°C) Characteristics Output voltage Symbol Test Condition VOUT Min Typ. Max Unit Please refer to the Output Voltage Accuracy table. Line regulation Reg・line VOUT + 1 V < = VIN < = 15 V, IOUT = 1 mA Load regulation Reg・load 1 mA < = IOUT < = 150 mA ⎯ 25 75 IB1 IOUT = 0 mA ⎯ 170 ⎯ IB2 IOUT = 50 mA ⎯ 550 850 VCT = 0 V ⎯ ⎯ 0.1 μA ⎯ 30 ⎯ μVrms Quiescent current Stand-by current IB (OFF) Output noise voltage VNO VIN = VOUT + 1 V, IOUT = 10 mA, 10 Hz < =f< = 100 kHz, CNOISE = 0.01 μF, Ta = 25°C Temperature coefficient TCVO −40°C < = Topr < = 85°C Input voltage VIN Ripple rejection R.R. ⎯ VIN = VOUT + 1 V, IOUT = 10 mA, CNOISE = 0.01 μF, f = 1 kHz, VRipple = 500 mVp-p, Ta = 25°C ⎯ 3 15 mV mV μA ⎯ 100 ⎯ ppm/°C 2.4 ⎯ 15 V ⎯ 70 ⎯ dB Control voltage (ON) VCT (ON) ⎯ 1.5 ⎯ VIN V Control voltage (OFF) VCT (OFF) ⎯ ⎯ ⎯ 0.4 V Control current (ON) ICT (ON) VCT = 1.5 V ⎯ 3 10 μA Control current (OFF) ICT (OFF) VCT = 0 V ⎯ 0 0.1 μA TAR5S23~TAR5S50 Electrical Characteristic (unless otherwise specified, VIN = VOUT + 1 V, IOUT = 50 mA, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Tj = 25°C) Characteristics Symbol Test Condition Min Typ. Max Unit Output voltage VOUT Line regulation Reg・line VOUT + 1 V < = VIN < = 15 V, IOUT = 1 mA ⎯ 3 15 mV Load regulation Reg・load 1 mA < = IOUT < = 150 mA ⎯ 25 75 mV IB1 IOUT = 0 mA ⎯ 170 ⎯ IB2 IOUT = 50 mA ⎯ 550 850 Quiescent current Stand-by current Output noise voltage Dropout volatge Temperature coefficient IB (OFF) VNO VIN − VOUT TCVO Input voltage VIN Ripple rejection R.R. Please refer to the Output Voltage Accuracy table. μA VCT = 0 V ⎯ ⎯ 0.1 μA VIN = VOUT + 1 V, IOUT = 10 mA, 10 Hz < =f< = 100 kHz, CNOISE = 0.01 μF, Ta = 25°C ⎯ 30 ⎯ μVrms IOUT = 50 mA ⎯ 130 200 mV −40°C < = Topr < = 85°C ⎯ 100 ⎯ ppm/°C VOUT + 0.2 V ⎯ 15 V ⎯ 70 ⎯ dB ⎯ VIN = VOUT + 1 V, IOUT = 10 mA, CNOISE = 0.01 μF, f = 1 kHz, VRipple = 500 mVp-p, Ta = 25°C Control voltage (ON) VCT (ON) ⎯ 1.5 ⎯ VIN V Control voltage (OFF) VCT (OFF) ⎯ ⎯ ⎯ 0.4 V Control current (ON) ICT (ON) VCT = 1.5 V ⎯ 3 10 μA Control current (OFF) ICT (OFF) VCT = 0 V ⎯ 0 0.1 μA 3 2007-11-01 TAR5S15~TAR5S50 Output Voltage Accuracy (VIN = VOUT + 1 V, IOUT = 50 mA, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Tj = 25°C) Product No. Min Typ. Max TAR5S15 1.44 1.5 1.56 TAR5S16 1.54 1.6 1.66 TAR5S17 1.64 1.7 1.76 TAR5S18 1.74 1.8 1.86 TAR5S19 1.84 1.9 1.96 TAR5S20 1.94 2.0 2.06 TAR5S21 2.04 2.1 2.16 TAR5S22 2.14 2.2 2.26 TAR5S23 2.24 2.3 2.36 TAR5S24 2.34 2.4 2.46 TAR5S25 2.43 2.5 2.57 TAR5S26 2.53 2.6 2.67 TAR5S27 2.63 2.7 2.77 TAR5S28 2.73 2.8 2.87 TAR5S29 2.83 2.9 2.97 TAR5S30 2.92 3.0 3.08 TAR5S31 3.02 3.1 3.18 3.12 3.2 3.28 3.21 3.3 3.39 TAR5S34 3.31 3.4 3.49 TAR5S35 3.41 3.5 3.59 TAR5S36 3.51 3.6 3.69 TAR5S37 3.6 3.7 3.8 TAR5S38 3.7 3.8 3.9 TAR5S39 3.8 3.9 4.0 TAR5S40 3.9 4.0 4.1 TAR5S41 3.99 4.1 4.21 TAR5S42 4.09 4.2 4.31 TAR5S43 4.19 4.3 4.41 TAR5S44 4.29 4.4 4.51 TAR5S45 4.38 4.5 4.62 TAR5S46 4.48 4.6 4.72 TAR5S47 4.58 4.7 4.82 TAR5S48 4.68 4.8 4.92 TAR5S49 4.77 4.9 5.03 TAR5S50 4.87 5.0 5.13 TAR5S32 TAR5S33 Symbol VOUT 4 Unit V 2007-11-01 TAR5S15~TAR5S50 Application Note 1. Recommended Application Circuit VIN 1 μF 10 μF VOUT 5 2 Control Level Operation HIGH ON LOW OFF 3 0.01 μF 1 4 CONTROL GND NOISE The figure above shows the recommended configuration for using a point regulator. Insert a capacitor for stable input/output operation. If the control function is not to be used, Toshiba recommend that the control pin (pin 1) be connected to the VCC pin. 2. Power Dissipation The power dissipation for board-mounted TAR5Sxx Series devices (rated at 380 mW) is measured using a board whose size and pattern are as shown below. When incorporating a device belonging to this series into your design, derate the power dissipation as far as possible by reducing the levels of parameters such as input voltage, output current and ambient temperature. Toshiba recommend that these devices should typically be derated to 70%~80% of their absolute maximum power dissipation value. Thermal Resistance Evaluation Board VIN CIN VOUT COUT CNOISE Circuit board material: glass epoxy, Circuit board dimension:30 mm × 30 mm, CONTROL GND NOISE 2 Copper foil pad area: 50 mm (t = 0.8 mm) 5 2007-11-01 TAR5S15~TAR5S50 3. Ripple Rejection The devices of the TAR5Sxx Series feature a circuit with an excellent ripple rejection characteristic. Because the circuit also features an excellent output fluctuation characteristic for sudden supply voltage drops, the circuit is ideal for use in the RF blocks incorporated in all mobile telephones. Ripple Rejection − f TAR5S28 Input Transient Response 80 Ripple rejection (dB) 70 10 μF 60 50 2.2 μF 40 3.1 V 1 μF 2.8 V 30 20 10 0 10 100 Input voltage 3.4 V Output voltage VIN = 4.0 V, CNOISE = 0.01 μF, Ta = 25°C, CIN = 1 μF, CIN = 1 μF, Vripple = 500 mVp−p, Iout = 10 mA, Ta = 25°C Cout = 10 μF, CNOISE = 0.01 μF, VIN: 3.4 V → 3.1 V, Iout = 50 mA 1k 10 k Frequency f 0 100 k 300 k 1 2 3 (Hz) 4 5 6 7 8 9 10 Time t (ms) 4. NOISE Pin TAR5Sxx Series devices incorporate a NOISE pin to reduce output noise voltage. Inserting a capacitor between the NOISE pin and GND reduces output noise. To ensure stable operation, insert a capacitor of 0.0047 μF or more between the NOISE pin and GND. The output voltage rise time varies according to the capacitance of the capacitor connected to the NOISE pin. CNOISE − VN Turn On Waveform 2 50 Control voltage VCT (ON) (V) CIN = 1 μF, Cout = 10 μF, Iout = 10 mA, Ta = 25°C 40 30 20 TAR5S50 TAR5S30 10 0 0.001 μ Control voltage waveform 1 0 CNOISE = 0.01 μF 3 Output voltage VOUT (V) Output noise voltage VN (μV) 60 TAR5S15 0.01 μ 0.1 μ NOISE capacitance CNOISE (F) 1 μF 2 0.33 μF 0.1 μF 1 0 −10 1.0 μ Output voltage waveform CIN = 1 μF, Cout = 10 μF, Iout = 50 mA, Ta = 25°C 0 10 20 30 40 50 60 70 80 90 Time t (ms) 6 2007-11-01 TAR5S15~TAR5S50 5. Example of Characteristics when Ceramic Capacitor is Used Shown below is the stable operation area, where the output voltage does not oscillate, evaluated using a Toshiba evaluation circuit. The equivalent series resistance (ESR) of the output capacitor and output current determines this area. TAR5Sxx Series devices operate stably even when a ceramic capacitor is used as the output capacitor. If a ceramic capacitor is used as the output capacitor and the ripple frequency is 30 kHz or more, the ripple rejection differs from that when a tantalum capacitor is used. This is shown below. Toshiba recommend that users check that devices operate stably under the intended conditions of use. Examples of safe operating area characteristics (TAR5S15) Stable Operating Area (TAR5S50) Stable Operating Area 100 Equivalent series resistance ESR (Ω) Equivalent series resistance ESR (Ω) 100 10 1 Stable Operating Area @VIN = 2.5 V, CNOISE = 0.01 μF, 0.1 CIN = 1 μF, Cout = 1 μF~10 μF, Ta = 25°C 0.02 0 20 40 60 80 Output current 100 IOUT 120 10 Stable Operating Area 1 CIN = 1 μF, Cout = 1 μF~10 μF, Ta = 25°C 0.02 0 140 150 @VIN = 6.0 V, CNOISE = 0.01 μF, 0.1 (mA) 20 40 60 80 Output current 100 IOUT 120 140 150 (mA) (TAR5S28) Stable Operating Area Evaluation Circuit for Stable Operating Area Equivalent series resistance ESR (Ω) 100 CONTROL 10 CNOISE = 0.01 μF TAR5S** Stable Operating Area VIN = VOUT +1V 1 CIN Ceramic GND COUT Ceramic ROUT ESR @VIN = 3.8 V, CNOISE = 0.01 μF, 0.1 CIN = 1 μF, Cout = 1 μF~10 μF, Ta = 25°C 0.02 0 20 40 60 80 Output current 100 IOUT 120 140 150 Capacitors used for evaluation Made by Murata CIN: GRM40B105K COUT: GRM40B105K/GRM40B106K (mA) Ripple Rejection Characteristic (f = 10 kHz~300 kHz) (TAR5S30) Ripple Rejection – f 70 Ceramic 10 μF Tantalum10 μF Ripple rejection (dB) 60 Ceramic 2.2 μF Ceramic 1 μF 50 40 Tantalum 2.2 μF Tantalum 1 μF 30 20 @VIN = 4.0 V, CNOISE = 0.01 μF, 10 0 10 k CIN = 1 μF, Vripple = 500 mVp-p, Iout = 10 mA, Ta = 25°C 100 k Frequency f 300 k 1000 k (Hz) 7 2007-11-01 TAR5S15~TAR5S50 (TAR5S15) IOUT – VOUT (TAR5S18) VIN = 2.5 V, CIN = 1 μF, COUT = 10 μF, VIN = 2.8 V, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Pulse width = 1 ms CNOISE = 0.01 μF, Pulse width = 1 ms Ta = 85°C 25 1.5 −40 1.4 0 50 100 Output current (TAR5S20) IOUT Ta = 85°C 25 1.8 −40 1.7 0 150 (mA) 50 100 Output current IOUT – VOUT (TAR5S21) 2.1 IOUT 150 (mA) IOUT – VOUT 2.2 VIN = 3.0 V, CIN = 1 μF, COUT = 10 μF, VIN = 3.1 V, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Pulse width = 1 ms CNOISE = 0.01 μF, Pulse width = 1 ms Output voltage VOUT (V) Output voltage VOUT (V) IOUT – VOUT 1.9 Output voltage VOUT (V) Output voltage VOUT (V) 1.6 Ta = 85°C 2.0 25 −40 1.9 0 50 100 Output current (TAR5S22) IOUT Ta = 85°C 2.1 25 −40 2.0 0 150 (mA) 50 100 Output current IOUT – VOUT (TAR5S23) IOUT 150 (mA) IOUT – VOUT VIN = 3.2 V, CIN = 1 μF, COUT = 10 μF, VIN = 3.3 V, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Pulse width = 1 ms CNOISE = 0.01 μF, Pulse width = 1 ms Output voltage VOUT (V) Output voltage VOUT (V) 2.3 Ta = 85°C 2.2 25 −40 2.1 0 50 Output current 100 IOUT Ta = 85°C 2.3 25 −40 2.2 0 150 (mA) 50 Output current 8 100 IOUT 150 (mA) 2007-11-01 TAR5S15~TAR5S50 (TAR5S25) IOUT – VOUT (TAR5S27) VIN = 2.6 V, CIN = 1 μF, COUT = 10 μF, VIN = 3.7 V, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Pulse width = 1 ms CNOISE = 0.01 μF, Pulse width = 1 ms Ta = 85°C 2.5 25 −40 2.4 0 50 100 Output current (TAR5S28) IOUT 25 −40 (mA) 50 100 Output current IOUT – VOUT (TAR5S29) IOUT 150 (mA) IOUT – VOUT 3 VIN = 3.8 V, CIN = 1 μF, COUT = 10 μF, VIN = 3.9 V, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF CNOISE = 0.01 μF Pulse width = 1 ms Output voltage VOUT (V) Output voltage VOUT (V) Ta = 85°C 2.7 2.6 0 150 2.9 Ta = 85°C 2.8 25 −40 2.7 0 50 100 Output current (TAR5S30) IOUT 25 −40 (mA) 50 100 Output current (TAR5S31) IOUT – VOUT IOUT 150 (mA) IOUT – VOUT 3.2 VIN = 4.0 V, CIN = 1 μF, COUT = 10 μF, VIN = 4.1 V, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF CNOISE = 0.01 μF, Pulse width = 1 ms Output voltage VOUT (V) Pulse width = 1 ms Ta = 85°C 3.0 25 −40 2.9 0 Pulse width = 1 ms Ta = 85°C 2.9 2.8 0 150 3.1 Output voltage VOUT (V) IOUT – VOUT 2.8 Output voltage VOUT (V) Output voltage VOUT (V) 2.6 50 Output current 100 IOUT Ta = 85°C 3.1 25 −40 3.0 0 150 (mA) 50 Output current 9 100 IOUT 150 (mA) 2007-11-01 TAR5S15~TAR5S50 (TAR5S32) (TAR5S33) IOUT – VOUT VIN = 4.3 V, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Pulse width = 1 ms CNOISE = 0.01 μF, Pulse width = 1 ms Output voltage VOUT (V) Output voltage VOUT (V) VIN = 4.2 V, CIN = 1 μF, COUT = 10 μF, Ta = 85°C 3.2 25 −40 3.1 0 50 100 Output current (TAR5S35) IOUT 3.3 25 −40 (mA) 50 100 Output current IOUT – VOUT (TAR5S45) IOUT 150 (mA) IOUT – VOUT 4.6 VIN = 4.5 V, CIN = 1 μF, COUT = 10 μF, VIN = 5.5 V, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF CNOISE = 0.01 μF, Pulse width = 1 ms Pulse width = 1 ms Output voltage VOUT (V) Output voltage VOUT (V) Ta = 85°C 3.2 0 150 3.6 Ta = 85°C 3.5 25 −40 3.4 0 50 100 Output current (TAR5S48) IOUT 4.5 25 −40 50 100 Output current (mA) IOUT – VOUT (TAR5S50) IOUT 150 (mA) IOUT – VOUT 5.1 VIN = 5.8 V, CIN = 1 μF, COUT = 10 μF, VIN = 6.0 V, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF CNOISE = 0.01 μF Output voltage VOUT (V) Pulse width = 1 ms Ta = 85°C 4.8 25 −40 4.7 0 Ta = 85°C 4.4 0 150 4.9 Output voltage 圧 VOUT (V) IOUT – VOUT 3.4 3.3 50 Output current 100 IOUT Ta = 85°C 5.0 25 −40 4.9 0 150 50 Output current (mA) 10 Pulse width = 1 ms 100 IOUT 150 (mA) 2007-11-01 TAR5S15~TAR5S50 (TAR5S15) (TAR5S18) IB – VIN 10 CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF Pulse width = 1 ms Bias current IB (mA) CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF Pulse width = 1 ms Bias current IB (mA) IB – VIN 10 5 5 IOUT = 150 mA IOUT = 150 mA 100 100 1 50 0 0 5 10 Input voltage (TAR5S20) 15 10 Input voltage (TAR5S21) IB – VIN 15 VIN (V) IB – VIN 10 CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF Pulse width = 1 ms Bias current IB (mA) CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF Pulse width = 1 ms Bias current IB (mA) 5 VIN (V) 10 5 5 IOUT = 150 mA IOUT = 150 mA 100 100 50 0 0 5 (TAR5S22) 50 1 10 Input voltage 0 0 15 5 VIN (V) (TAR5S23) IB – VIN 15 VIN (V) IB – VIN 10 CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF Pulse width = 1 ms Bias current IB (mA) CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF Pulse width = 1 ms 5 5 IOUT = 150 mA IOUT = 150 mA 100 100 50 0 0 1 10 Input voltage 10 Bias current IB (mA) 1 50 0 0 5 Input voltage 10 50 1 0 0 15 VIN (V) 5 Input voltage 11 10 1 15 VIN (V) 2007-11-01 TAR5S15~TAR5S50 IB – VIN (TAR5S25) 10 CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF Pulse width = 1 ms Bias current IB (mA) CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF Pulse width = 1 ms Bias current IB (mA) IB – VIN (TAR5S27) 10 5 5 IOUT = 150 mA IOUT = 150 mA 100 100 50 0 0 5 1 10 Input voltage 15 15 VIN (V) IB – VIN (TAR5S29) 10 CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF Pulse width = 1 ms Bias current IB (mA) CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF Pulse width = 1 ms 5 5 IOUT = 150 mA 100 0 0 (TAR5S30) IOUT = 150 mA 50 5 100 0 0 15 5 VIN (V) IB – VIN 1 10 Input voltage 15 VIN (V) IB – VIN (TAR5S31) 10 10 CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF Pulse width = 1 ms Bias current IB (mA) CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF Pulse width = 1 ms 5 5 IOUT = 150 mA IOUT = 150 mA 100 100 50 0 0 50 1 10 Input voltage Bias current IB (mA) 10 Input voltage 10 Bias current IB (mA) 5 VIN (V) IB – VIN (TAR5S28) 1 50 0 0 5 Input voltage 10 50 1 0 0 15 VIN (V) 5 Input voltage 12 10 1 15 VIN (V) 2007-11-01 TAR5S15~TAR5S50 (TAR5S32) (TAR5S33) IB – VIN 10 CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF Pulse width = 1 ms Bias current IB (mA) CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF Pulse width = 1 ms Bias current IB (mA) IB – VIN 10 5 IOUT = 150 mA 5 IOUT = 150 mA 100 100 50 0 0 5 10 Input voltage (TAR5S35) 0 0 15 10 Input voltage (TAR5S45) IB – VIN 15 VIN (V) IB – VIN 10 CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF Pulse width = 1 ms Bias current IB (mA) CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF Pulse width = 1 ms Bias current IB (mA) 5 VIN (V) 10 5 5 IOUT = 150 mA IOUT = 150 mA 100 100 50 0 0 5 1 10 Input voltage 50 0 0 15 VIN (V) IB – VIN (TAR5S48) 5 15 VIN (V) IB – VIN (TAR5S50) 10 CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF Pulse width = 1 ms Pulse width = 1 ms Bias current IB (mA) CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF 5 5 IOUT = 150 mA IOUT = 150 mA 100 100 50 0 0 1 10 Input voltage 10 Bias current IB (mA) 1 50 1 5 Input voltage 10 1 50 0 0 15 VIN (V) 5 Input voltage 13 10 1 15 VIN (V) 2007-11-01 TAR5S15~TAR5S50 (TAR5S15) 6 6 IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Pulse width = 1 ms 4 3 2 1 5 10 Input voltage (TAR5S20) 6 4 3 2 0 0 15 5 VIN (V) 10 Input voltage (TAR5S21) VOUT – VIN 6 IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Pulse width = 1 ms 4 3 2 1 15 VIN (V) VOUT – VIN IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Pulse width = 1 ms 5 Output voltage VOUT (V) 5 Output voltage VOUT (V) CNOISE = 0.01 μF, Pulse width = 1 ms 1 0 0 4 3 2 1 0 0 5 10 Input voltage (TAR5S22) 5 0 0 15 10 Input voltage (TAR5S23) VOUT – VIN 6 IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Pulse width = 1 ms 5 4 3 2 1 0 0 5 VIN (V) Output voltage VOUT (V) 6 Output voltage VOUT (V) VOUT – VIN IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF, 5 Output voltage VOUT (V) 5 Output voltage VOUT (V) (TAR5S18) VOUT – VIN 15 VIN (V) VOUT – VIN IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Pulse width = 1 ms 4 3 2 1 5 Input voltage 10 0 0 15 VIN (V) 5 Input voltage 14 10 15 VIN (V) 2007-11-01 TAR5S15~TAR5S50 (TAR5S25) 6 6 IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Pulse width = 1 ms 4 3 2 1 5 10 Input voltage (TAR5S28) 6 4 3 2 0 0 15 5 VIN (V) 10 Input voltage (TAR5S29) VOUT – VIN 6 IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Pulse width = 1 ms 4 3 2 1 15 VIN (V) VOUT – VIN IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Pulse width = 1 ms 5 Output voltage VOUT (V) 5 Output voltage VOUT (V) CNOISE = 0.01 μF, Pulse width = 1 ms 1 0 0 4 3 2 1 0 0 5 10 Input voltage (TAR5S30) 5 0 0 15 10 Input voltage (TAR5S31) VOUT – VIN 6 IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Pulse width = 1 ms 5 4 3 2 1 0 0 5 VIN (V) Output voltage VOUT (V) 6 Output voltage VOUT (V) VOUT – VIN IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF, 5 Output voltage VOUT (V) 5 Output voltage VOUT (V) (TAR5S27) VOUT – VIN 15 VIN (V) VOUT – VIN IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Pulse width = 1 ms 4 3 2 1 5 Input voltage 10 0 0 15 VIN (V) 5 Input voltage 15 10 15 VIN (V) 2007-11-01 TAR5S15~TAR5S50 (TAR5S32) 6 6 IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Pulse width = 1 ms 4 3 2 0 0 5 10 Input voltage (TAR5S35) 4 3 2 0 0 15 VOUT – VIN (TAR5S45) 6 5 5 4 3 2 CNOISE = 0.01 μF, Pulse width = 1 ms 5 10 Input voltage (TAR5S48) 5 Output voltage VOUT (V) 5 3 2 CNOISE = 0.01 μF, Pulse width = 1 ms Input voltage 5 10 10 VIN (V) VOUT – VIN 2 IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Pulse width = 1 ms 5 Input voltage 16 VIN (V) 3 0 0 15 15 4 1 IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF, 5 CNOISE = 0.01 μF, Pulse width = 1 ms (TAR5S50) VOUT – VIN 6 0 0 IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF, Input voltage 6 1 VOUT – VIN 2 VIN (V) 4 VIN (V) 3 0 0 15 15 4 1 IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF, 0 0 10 Input voltage 6 1 5 VIN (V) Output voltage VOUT (V) Output voltage VOUT (V) CNOISE = 0.01 μF, Pulse width = 1 ms 1 1 Output voltage VOUT (V) VOUT – VIN IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF, 5 Output voltage VOUT (V) 5 Output voltage VOUT (V) (TAR5S33) VOUT – VIN 10 15 VIN (V) 2007-11-01 TAR5S15~TAR5S50 (TAR5S15) (TAR5S18) VOUT – Ta 1.6 VIN = 2.5 V, CIN = 1 μF, COUT = 10 μF, VIN = 2.8 V, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Pulse width = 1 ms Output voltage VOUT (V) Output voltage VOUT (V) CNOISE = 0.01 μF, Pulse width = 1 ms 1.55 IOUT = 50 mA 1.5 100 150 1.45 1.4 −50 −25 0 25 50 75 1.85 IOUT = 50 mA 1.8 100 150 1.75 1.7 −50 100 Ambient temperature Ta (°C) (TAR5S20) −25 0 (TAR5S21) VOUT – Ta 50 75 100 VOUT – Ta 2.2 VIN = 3.0 V, CIN = 1 μF, COUT = 10 μF, VIN = 3.1 V, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Pulse width = 1 ms Output voltage VOUT (V) CNOISE = 0.01 μF, Pulse width = 1 ms Output voltage VOUT (V) 25 Ambient temperature Ta (°C) 2.1 2.05 IOUT = 50 mA 2.0 150 100 1.95 1.9 −50 −25 0 25 50 75 2.15 IOUT = 50 mA 2.1 2.0 −50 100 (TAR5S22) −25 0 (TAR5S23) VOUT – Ta 75 100 VOUT – Ta VIN = 3.3 V, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Pulse width = 1 ms Output voltage VOUT (V) CNOISE = 0.01 μF, Pulse width = 1 ms 2.25 2.1 −50 50 2.4 VIN = 3.2 V, CIN = 1 μF, COUT = 10 μF, 2.15 25 Ambient temperature Ta (°C) 2.3 2.2 150 100 2.05 Ambient temperature Ta (°C) Output voltage VOUT (V) VOUT – Ta 1.9 IOUT = 50 mA 150 100 −25 0 25 50 75 2.35 2.3 Ambient temperature Ta (°C) 150 100 2.25 2.2 −50 100 IOUT = 50 mA −25 0 25 50 75 100 Ambient temperature Ta (°C) 17 2007-11-01 TAR5S15~TAR5S50 (TAR5S25) (TAR5S27) VOUT – Ta 2.6 VIN = 3.5 V, CIN = 1 μF, COUT = 10 μF, VIN = 3.7 V, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Pulse width = 1 ms Output voltage VOUT (V) Output voltage VOUT (V) CNOISE = 0.01 μF, Pulse width = 1 ms 2.55 IOUT = 50 mA 2.5 100 150 2.45 2.4 −50 −25 0 25 50 75 2.75 2.7 IOUT = 50 mA 100 2.6 −50 100 (TAR5S28) −25 0 25 50 75 100 Ambient temperature Ta (°C) (TAR5S29) VOUT – Ta 2.9 VOUT – Ta 3.0 VIN = 3.8 V, CIN = 1 μF, COUT = 10 μF, VIN = 3.9 V, CIN = 1 μF, COUT = 10 μF, Pulse width = 1 ms CNOISE = 0.01 μF, Pulse width = 1 ms Output voltage VOUT (V) CNOISE = 0.01 μF Output voltage VOUT (V) 150 2.65 Ambient temperature Ta (°C) 2.85 IOUT = 50 mA 2.8 150 100 2.75 2.7 −50 −25 0 25 50 75 2.95 IOUT = 50 mA 2.9 100 2.8 −50 100 (TAR5S30) −25 0 (TAR5S31) VOUT – Ta 75 100 VOUT – Ta VIN = 4.1 V, CIN = 1 μF, COUT = 10 μF, Pulse width = 1 ms CNOISE = 0.01 μF, Pulse width = 1 ms Output voltage VOUT (V) CNOISE = 0.01 μF 3.05 2.9 −50 50 3.2 VIN = 4 V, CIN = 1 μF, COUT = 10 μF, 2.95 25 Ambient temperature Ta (°C) 3.1 3.0 150 2.85 Ambient temperature Ta (°C) Output voltage VOUT (V) VOUT – Ta 2.8 IOUT = 50 mA 150 100 −25 0 25 50 75 3.15 3.1 3.05 3.0 −50 100 Ambient temperature Ta (°C) IOUT = 50 mA 150 100 −25 0 25 50 75 100 Ambient temperature Ta (°C) 18 2007-11-01 TAR5S15~TAR5S50 (TAR5S32) (TAR5S33) VOUT – Ta VIN = 4.3 V, CIN = 1 μF, COUT = 10 μF, VIN = 4.2 V, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Pulse width = 1 ms Output voltage VOUT (V) Output voltage VOUT (V) CNOISE = 0.01 μF, Pulse width = 1 ms 3.25 IOUT = 50 mA 3.2 3.15 150 100 3.1 −50 −25 0 25 50 75 3.35 3.3 IOUT = 50 mA 3.2 −50 100 (TAR5S35) −25 0 (TAR5S45) VOUT – Ta 50 75 100 VOUT – Ta 4.6 VIN = 5.5 V, CIN = 1 μF, COUT = 10 μF, VIN = 4.5 V, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Pulse width = 1 ms Output voltage VOUT (V) CNOISE = 0.01 μF, Pulse width = 1 ms Output voltage VOUT (V) 25 Ambient temperature Ta (°C) 3.6 3.55 IOUT = 50 mA 3.45 150 100 3.4 −50 −25 0 25 50 75 4.55 4.5 IOUT = 50 mA 4.45 4.4 −50 100 (TAR5S48) 150 100 Ambient temperature Ta (°C) −25 0 25 50 75 100 Ambient temperature Ta (°C) (TAR5S50) VOUT – Ta 4.9 VOUT – Ta 5.1 VIN = 5.8 V, CIN = 1 μF, COUT = 10 μF, VIN = 6 V, CIN = 1 μF, COUT = 10 μF, Pulse width = 1 ms CNOISE = 0.01 μF Output voltage VOUT (V) CNOISE = 0.01 μF Output voltage VOUT (V) 150 100 3.25 Ambient temperature Ta (°C) 3.5 VOUT – Ta 3.4 3.3 4.85 4.8 IOUT = 50 mA 4.75 150 5 IOUT = 50 mA 4.95 150 100 4.7 −50 −25 Pulse width = 1 ms 5.05 100 0 25 50 75 4.9 −50 100 Ambient temperature Ta (°C) −25 0 25 50 75 100 Ambient temperature Ta (°C) 19 2007-11-01 TAR5S15~TAR5S50 IB – Ta (TAR5S23~TAR5S50) 3 VIN = VOUT + 1 V, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF Pulse width = 1 ms IOUT = 150 mA Dropout voltage VIN - VOUT (V) Bias current IB (mA) 2.5 2 1.5 100 1 50 0.5 10 1 0 −50 −25 0 25 50 75 0.5 CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF Pulse width = 1 ms 0.4 IOUT = 150 mA 0.3 100 0.2 50 0.1 10 1 0 −50 100 −25 (TAR5S23~TAR5S50) 0.4 50 75 100 IB – IOUT 2.5 CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01μF Pulse width = 1 ms 2.0 85 Ta = 25°C 0.3 −40 0.2 0.1 VIN = VOUT + 1 V, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF −40 Pulse width = 1 ms Ta = 25°C 1.5 85 1.0 0.5 0 0 50 100 Output current IOUT 0 0 150 50 (mA) Turn On Waveform 1 0 VIN = VOUT + 1 V, VCT (ON) = 0 → 1.5 V, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF Output voltage VOUT (V) Ta = 25°C 85 0 VIN = VOUT + 1 V, VCT (ON) = 1.5 → 0 V, CIN = 1 μF, 2 COUT = 10 μF, CNOISE = 0.01 μF 1 Control voltage waveform 0 3 2 0 (mA) Output voltage waveform −40 1 Control voltage VCT (ON) (V) Control voltage waveform 3 IOUT 150 Turn Off Waveform 3 2 100 Output current 3 Control voltage VCT (ON) (V) 25 VIN - VOUT – IOUT Bias current IB (mA) Dropout voltage VIN - VOUT (V) 0.5 0 Ambient temperature Ta (°C) Ambient temperature Ta (°C) Output voltage VOUT (V) VIN - VOUT – Ta 0.6 1 2 1 Output voltage waveform 0 0 Time t (ms) 1 Time t (ms) 20 2007-11-01 TAR5S15~TAR5S50 Ripple Rejection – f VN – f 80 10 TAR5S25 (2.5 V) TAR5S30 (3.0 V) TAR5S15 (1.5 V) 70 COUT = 10 μF, CNOISE = 0.01 μF, 10 Hz < f < 100 kHz, Ta = 25°C 1 Ripple rejection (dB) Output noise voltage VN (μV/√ Hz ) VIN = VOUT + 1 V, IOUT = 10 mA, CIN = 1 μF, 0.1 60 50 TAR5S45 (4.5 V) TAR5S50 (5.0 V) 40 TAR5S35 (3.5 V) 30 20 VIN = VOUT + 1 V, IOUT = 10 mA, CIN = 1 μF, 10 COUT = 10 μF, CNOISE = 0.01 μF, VRipple = 500 mVp-p, Ta = 25°C 0 10 100 1k 10 k 100 k 0.01 0.001 10 100 1k Frequency f 10 k 100 k 80 120 Frequency f 1000 k (Hz) (Hz) PD – Ta 400 Power dissipation PD (mW) ① 300 200 ② 100 ① Circuit board material: glass epoxy, Circuit board dimention: 30 mm × 30 mm, 2 pad area: 50 mm (t = 0.8 mm) ② Unit 0 −40 0 40 Ambient temperature Ta (°C) 21 2007-11-01 TAR5S15~TAR5S50 Package Dimensions Weight: 0.014 g (typ.) 22 2007-11-01 TAR5S15~TAR5S50 RESTRICTIONS ON PRODUCT USE 20070701-EN GENERAL • The information contained herein is subject to change without notice. • TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc. • The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer’s own risk. • The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. • The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties. • Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations. 23 2007-11-01