TOSHIBA TAR5S42

TAR5S15~TAR5S50
TOSHIBA Bipolar Linear Integrated Circuit
Silicon Monolithic
TAR5S15~TAR5S50
Point Regulators (Low-Dropout Regulator)
The TAR5Sxx Series is comprised of general-purpose bipolar single-power-supply devices incorporating a
control pin which can be used to turn them ON/OFF.
Overtemperature and overcurrent protection circuits are built
in to the devices’ output circuit.
Features
•
Low stand-by current
•
Overtemperature/overcurrent protection
•
Operation voltage range is wide.
•
Maximum output current is high.
•
Difference between input voltage and output voltage is low.
•
Small package.
•
Ceramic capacitors can be used.
Weight: 0.014 g (typ.)
Pin Assignments (top view)
VIN
VOUT
5
4
1
2
CONTROL GND
3
NOISE
Overtemperature protection and overcurrent protection functions are not necessary guarantee of operating
ratings below the absolute maximum ratings.
Do not use devices under conditions in which their absolute maximum ratings will be exceeded.
1
2007-11-01
TAR5S15~TAR5S50
List of Products Number and Marking
Marking on the Product
Products No.
Marking
Products No.
Marking
TAR5S15
1V5
TAR5S33
3V3
TAR5S16
1V6
TAR5S34
3V4
TAR5S17
1V7
TAR5S35
3V5
TAR5S18
1V8
TAR5S36
3V6
TAR5S19
1V9
TAR5S37
3V7
TAR5S20
2V0
TAR5S38
3V8
TAR5S21
2V1
TAR5S39
3V9
TAR5S22
2V2
TAR5S40
4V0
TAR5S23
2V3
TAR5S41
4V1
TAR5S24
2V4
TAR5S42
4V2
TAR5S25
2V5
TAR5S43
4V3
TAR5S26
2V6
TAR5S44
4V4
TAR5S27
2V7
TAR5S45
4V5
TAR5S28
2V8
TAR5S46
4V6
TAR5S29
2V9
TAR5S47
4V7
TAR5S30
3V0
TAR5S48
4V8
TAR5S31
3V1
TAR5S49
4V9
TAR5S32
3V2
TAR5S50
5V0
Example: TAR5S30 (3.0 V output)
3V0
Absolute Maximum Ratings (Ta = 25°C)
Characteristics
Symbol
Rating
Unit
Supply voltage
VIN
15
V
Output current
IOUT
200
mA
200
(Note 1)
380
(Note 2)
Power dissipation
PD
Operation temperature range
Topr
−40 to 85
°C
Storage temperature range
Tstg
−55 to 150
°C
Note:
mW
Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the
significant change in temperature, etc.) may cause this product to decrease in the reliability significantly
even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute
maximum ratings and the operating ranges.
Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook
(“Handling Precautions”/“Derating Concept and Methods”) and individual reliability data (i.e. reliability test
report and estimated failure rate, etc).
Note 1: Unit Ratintg
2
Note 2: Mounted on a glass epoxy circuit board of 30 × 30 mm. Pad dimension of 50 mm
2
2007-11-01
TAR5S15~TAR5S50
TAR5S15~TAR5S22
Electrical Characteristic (unless otherwise specified, VIN = VOUT + 1 V, IOUT = 50 mA,
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Tj = 25°C)
Characteristics
Output voltage
Symbol
Test Condition
VOUT
Min
Typ.
Max
Unit
Please refer to the Output Voltage Accuracy table.
Line regulation
Reg・line
VOUT + 1 V <
= VIN <
= 15 V,
IOUT = 1 mA
Load regulation
Reg・load
1 mA <
= IOUT <
= 150 mA
⎯
25
75
IB1
IOUT = 0 mA
⎯
170
⎯
IB2
IOUT = 50 mA
⎯
550
850
VCT = 0 V
⎯
⎯
0.1
μA
⎯
30
⎯
μVrms
Quiescent current
Stand-by current
IB (OFF)
Output noise voltage
VNO
VIN = VOUT + 1 V, IOUT = 10 mA,
10 Hz <
=f<
= 100 kHz,
CNOISE = 0.01 μF, Ta = 25°C
Temperature coefficient
TCVO
−40°C <
= Topr <
= 85°C
Input voltage
VIN
Ripple rejection
R.R.
⎯
VIN = VOUT + 1 V, IOUT = 10 mA,
CNOISE = 0.01 μF, f = 1 kHz,
VRipple = 500 mVp-p, Ta = 25°C
⎯
3
15
mV
mV
μA
⎯
100
⎯
ppm/°C
2.4
⎯
15
V
⎯
70
⎯
dB
Control voltage (ON)
VCT (ON)
⎯
1.5
⎯
VIN
V
Control voltage (OFF)
VCT (OFF)
⎯
⎯
⎯
0.4
V
Control current (ON)
ICT (ON)
VCT = 1.5 V
⎯
3
10
μA
Control current (OFF)
ICT (OFF)
VCT = 0 V
⎯
0
0.1
μA
TAR5S23~TAR5S50
Electrical Characteristic (unless otherwise specified, VIN = VOUT + 1 V, IOUT = 50 mA,
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Tj = 25°C)
Characteristics
Symbol
Test Condition
Min
Typ.
Max
Unit
Output voltage
VOUT
Line regulation
Reg・line
VOUT + 1 V <
= VIN <
= 15 V,
IOUT = 1 mA
⎯
3
15
mV
Load regulation
Reg・load
1 mA <
= IOUT <
= 150 mA
⎯
25
75
mV
IB1
IOUT = 0 mA
⎯
170
⎯
IB2
IOUT = 50 mA
⎯
550
850
Quiescent current
Stand-by current
Output noise voltage
Dropout volatge
Temperature coefficient
IB (OFF)
VNO
VIN − VOUT
TCVO
Input voltage
VIN
Ripple rejection
R.R.
Please refer to the Output Voltage Accuracy table.
μA
VCT = 0 V
⎯
⎯
0.1
μA
VIN = VOUT + 1 V, IOUT = 10 mA,
10 Hz <
=f<
= 100 kHz,
CNOISE = 0.01 μF, Ta = 25°C
⎯
30
⎯
μVrms
IOUT = 50 mA
⎯
130
200
mV
−40°C <
= Topr <
= 85°C
⎯
100
⎯
ppm/°C
VOUT
+ 0.2 V
⎯
15
V
⎯
70
⎯
dB
⎯
VIN = VOUT + 1 V, IOUT = 10 mA,
CNOISE = 0.01 μF, f = 1 kHz,
VRipple = 500 mVp-p, Ta = 25°C
Control voltage (ON)
VCT (ON)
⎯
1.5
⎯
VIN
V
Control voltage (OFF)
VCT (OFF)
⎯
⎯
⎯
0.4
V
Control current (ON)
ICT (ON)
VCT = 1.5 V
⎯
3
10
μA
Control current (OFF)
ICT (OFF)
VCT = 0 V
⎯
0
0.1
μA
3
2007-11-01
TAR5S15~TAR5S50
Output Voltage Accuracy
(VIN = VOUT + 1 V, IOUT = 50 mA, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Tj = 25°C)
Product No.
Min
Typ.
Max
TAR5S15
1.44
1.5
1.56
TAR5S16
1.54
1.6
1.66
TAR5S17
1.64
1.7
1.76
TAR5S18
1.74
1.8
1.86
TAR5S19
1.84
1.9
1.96
TAR5S20
1.94
2.0
2.06
TAR5S21
2.04
2.1
2.16
TAR5S22
2.14
2.2
2.26
TAR5S23
2.24
2.3
2.36
TAR5S24
2.34
2.4
2.46
TAR5S25
2.43
2.5
2.57
TAR5S26
2.53
2.6
2.67
TAR5S27
2.63
2.7
2.77
TAR5S28
2.73
2.8
2.87
TAR5S29
2.83
2.9
2.97
TAR5S30
2.92
3.0
3.08
TAR5S31
3.02
3.1
3.18
3.12
3.2
3.28
3.21
3.3
3.39
TAR5S34
3.31
3.4
3.49
TAR5S35
3.41
3.5
3.59
TAR5S36
3.51
3.6
3.69
TAR5S37
3.6
3.7
3.8
TAR5S38
3.7
3.8
3.9
TAR5S39
3.8
3.9
4.0
TAR5S40
3.9
4.0
4.1
TAR5S41
3.99
4.1
4.21
TAR5S42
4.09
4.2
4.31
TAR5S43
4.19
4.3
4.41
TAR5S44
4.29
4.4
4.51
TAR5S45
4.38
4.5
4.62
TAR5S46
4.48
4.6
4.72
TAR5S47
4.58
4.7
4.82
TAR5S48
4.68
4.8
4.92
TAR5S49
4.77
4.9
5.03
TAR5S50
4.87
5.0
5.13
TAR5S32
TAR5S33
Symbol
VOUT
4
Unit
V
2007-11-01
TAR5S15~TAR5S50
Application Note
1. Recommended Application Circuit
VIN
1 μF
10 μF
VOUT
5
2
Control Level
Operation
HIGH
ON
LOW
OFF
3
0.01 μF
1
4
CONTROL GND
NOISE
The figure above shows the recommended configuration for using a point regulator. Insert a capacitor for
stable input/output operation. If the control function is not to be used, Toshiba recommend that the control pin
(pin 1) be connected to the VCC pin.
2. Power Dissipation
The power dissipation for board-mounted TAR5Sxx Series devices (rated at 380 mW) is measured using a
board whose size and pattern are as shown below. When incorporating a device belonging to this series into
your design, derate the power dissipation as far as possible by reducing the levels of parameters such as input
voltage, output current and ambient temperature. Toshiba recommend that these devices should typically be
derated to 70%~80% of their absolute maximum power dissipation value.
Thermal Resistance Evaluation Board
VIN
CIN
VOUT
COUT
CNOISE
Circuit board material: glass epoxy,
Circuit board dimension:30 mm × 30 mm,
CONTROL GND
NOISE
2
Copper foil pad area: 50 mm (t = 0.8 mm)
5
2007-11-01
TAR5S15~TAR5S50
3. Ripple Rejection
The devices of the TAR5Sxx Series feature a circuit with an excellent ripple rejection characteristic. Because
the circuit also features an excellent output fluctuation characteristic for sudden supply voltage drops, the
circuit is ideal for use in the RF blocks incorporated in all mobile telephones.
Ripple Rejection − f
TAR5S28 Input Transient Response
80
Ripple rejection (dB)
70
10 μF
60
50
2.2 μF
40
3.1 V
1 μF
2.8 V
30
20
10
0
10
100
Input voltage
3.4 V
Output voltage
VIN = 4.0 V, CNOISE = 0.01 μF,
Ta = 25°C, CIN = 1 μF,
CIN = 1 μF, Vripple = 500 mVp−p,
Iout = 10 mA, Ta = 25°C
Cout = 10 μF, CNOISE = 0.01 μF,
VIN: 3.4 V → 3.1 V, Iout = 50 mA
1k
10 k
Frequency f
0
100 k 300 k
1
2
3
(Hz)
4
5
6
7
8
9
10
Time t (ms)
4. NOISE Pin
TAR5Sxx Series devices incorporate a NOISE pin to reduce output noise voltage. Inserting a capacitor
between the NOISE pin and GND reduces output noise. To ensure stable operation, insert a capacitor of
0.0047 μF or more between the NOISE pin and GND.
The output voltage rise time varies according to the capacitance of the capacitor connected to the NOISE
pin.
CNOISE − VN
Turn On Waveform
2
50
Control voltage
VCT (ON) (V)
CIN = 1 μF, Cout = 10 μF,
Iout = 10 mA, Ta = 25°C
40
30
20
TAR5S50
TAR5S30
10
0
0.001 μ
Control voltage waveform
1
0
CNOISE = 0.01 μF
3
Output voltage
VOUT (V)
Output noise voltage VN (μV)
60
TAR5S15
0.01 μ
0.1 μ
NOISE capacitance CNOISE (F)
1 μF
2
0.33 μF
0.1 μF
1
0
−10
1.0 μ
Output voltage waveform
CIN = 1 μF, Cout = 10 μF,
Iout = 50 mA, Ta = 25°C
0
10
20
30
40
50
60
70
80
90
Time t (ms)
6
2007-11-01
TAR5S15~TAR5S50
5. Example of Characteristics when Ceramic Capacitor is Used
Shown below is the stable operation area, where the output voltage does not oscillate, evaluated using a
Toshiba evaluation circuit. The equivalent series resistance (ESR) of the output capacitor and output current
determines this area. TAR5Sxx Series devices operate stably even when a ceramic capacitor is used as the
output capacitor.
If a ceramic capacitor is used as the output capacitor and the ripple frequency is 30 kHz or more, the ripple
rejection differs from that when a tantalum capacitor is used. This is shown below.
Toshiba recommend that users check that devices operate stably under the intended conditions of use.
Examples of safe operating area characteristics
(TAR5S15) Stable Operating Area
(TAR5S50) Stable Operating Area
100
Equivalent series resistance ESR (Ω)
Equivalent series resistance ESR (Ω)
100
10
1
Stable Operating Area
@VIN = 2.5 V, CNOISE = 0.01 μF,
0.1
CIN = 1 μF, Cout = 1 μF~10 μF,
Ta = 25°C
0.02
0
20
40
60
80
Output current
100
IOUT
120
10
Stable Operating Area
1
CIN = 1 μF, Cout = 1 μF~10 μF,
Ta = 25°C
0.02
0
140 150
@VIN = 6.0 V, CNOISE = 0.01 μF,
0.1
(mA)
20
40
60
80
Output current
100
IOUT
120
140 150
(mA)
(TAR5S28) Stable Operating Area
Evaluation Circuit for Stable Operating Area
Equivalent series resistance ESR (Ω)
100
CONTROL
10
CNOISE = 0.01 μF
TAR5S**
Stable Operating Area
VIN = VOUT
+1V
1
CIN
Ceramic
GND
COUT
Ceramic
ROUT
ESR
@VIN = 3.8 V, CNOISE = 0.01 μF,
0.1
CIN = 1 μF, Cout = 1 μF~10 μF,
Ta = 25°C
0.02
0
20
40
60
80
Output current
100
IOUT
120
140 150
Capacitors used for evaluation
Made by Murata CIN: GRM40B105K
COUT: GRM40B105K/GRM40B106K
(mA)
Ripple Rejection Characteristic (f = 10 kHz~300 kHz)
(TAR5S30)
Ripple Rejection – f
70
Ceramic 10 μF
Tantalum10 μF
Ripple rejection (dB)
60
Ceramic
2.2 μF
Ceramic
1 μF
50
40
Tantalum 2.2 μF
Tantalum 1 μF
30
20
@VIN = 4.0 V, CNOISE = 0.01 μF,
10
0
10 k
CIN = 1 μF, Vripple = 500 mVp-p,
Iout = 10 mA, Ta = 25°C
100 k
Frequency f
300 k
1000 k
(Hz)
7
2007-11-01
TAR5S15~TAR5S50
(TAR5S15)
IOUT – VOUT
(TAR5S18)
VIN = 2.5 V, CIN = 1 μF, COUT = 10 μF,
VIN = 2.8 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
CNOISE = 0.01 μF, Pulse width = 1 ms
Ta = 85°C
25
1.5
−40
1.4
0
50
100
Output current
(TAR5S20)
IOUT
Ta = 85°C
25
1.8
−40
1.7
0
150
(mA)
50
100
Output current
IOUT – VOUT
(TAR5S21)
2.1
IOUT
150
(mA)
IOUT – VOUT
2.2
VIN = 3.0 V, CIN = 1 μF, COUT = 10 μF,
VIN = 3.1 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
CNOISE = 0.01 μF, Pulse width = 1 ms
Output voltage VOUT (V)
Output voltage VOUT (V)
IOUT – VOUT
1.9
Output voltage VOUT (V)
Output voltage VOUT (V)
1.6
Ta = 85°C
2.0
25
−40
1.9
0
50
100
Output current
(TAR5S22)
IOUT
Ta = 85°C
2.1
25
−40
2.0
0
150
(mA)
50
100
Output current
IOUT – VOUT
(TAR5S23)
IOUT
150
(mA)
IOUT – VOUT
VIN = 3.2 V, CIN = 1 μF, COUT = 10 μF,
VIN = 3.3 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
CNOISE = 0.01 μF, Pulse width = 1 ms
Output voltage VOUT (V)
Output voltage VOUT (V)
2.3
Ta = 85°C
2.2
25
−40
2.1
0
50
Output current
100
IOUT
Ta = 85°C
2.3
25
−40
2.2
0
150
(mA)
50
Output current
8
100
IOUT
150
(mA)
2007-11-01
TAR5S15~TAR5S50
(TAR5S25)
IOUT – VOUT
(TAR5S27)
VIN = 2.6 V, CIN = 1 μF, COUT = 10 μF,
VIN = 3.7 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
CNOISE = 0.01 μF, Pulse width = 1 ms
Ta = 85°C
2.5
25
−40
2.4
0
50
100
Output current
(TAR5S28)
IOUT
25
−40
(mA)
50
100
Output current
IOUT – VOUT
(TAR5S29)
IOUT
150
(mA)
IOUT – VOUT
3
VIN = 3.8 V, CIN = 1 μF, COUT = 10 μF,
VIN = 3.9 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF
CNOISE = 0.01 μF
Pulse width = 1 ms
Output voltage VOUT (V)
Output voltage VOUT (V)
Ta = 85°C
2.7
2.6
0
150
2.9
Ta = 85°C
2.8
25
−40
2.7
0
50
100
Output current
(TAR5S30)
IOUT
25
−40
(mA)
50
100
Output current
(TAR5S31)
IOUT – VOUT
IOUT
150
(mA)
IOUT – VOUT
3.2
VIN = 4.0 V, CIN = 1 μF, COUT = 10 μF,
VIN = 4.1 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF
CNOISE = 0.01 μF, Pulse width = 1 ms
Output voltage VOUT (V)
Pulse width = 1 ms
Ta = 85°C
3.0
25
−40
2.9
0
Pulse width = 1 ms
Ta = 85°C
2.9
2.8
0
150
3.1
Output voltage VOUT (V)
IOUT – VOUT
2.8
Output voltage VOUT (V)
Output voltage VOUT (V)
2.6
50
Output current
100
IOUT
Ta = 85°C
3.1
25
−40
3.0
0
150
(mA)
50
Output current
9
100
IOUT
150
(mA)
2007-11-01
TAR5S15~TAR5S50
(TAR5S32)
(TAR5S33)
IOUT – VOUT
VIN = 4.3 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
CNOISE = 0.01 μF, Pulse width = 1 ms
Output voltage VOUT (V)
Output voltage VOUT (V)
VIN = 4.2 V, CIN = 1 μF, COUT = 10 μF,
Ta = 85°C
3.2
25
−40
3.1
0
50
100
Output current
(TAR5S35)
IOUT
3.3
25
−40
(mA)
50
100
Output current
IOUT – VOUT
(TAR5S45)
IOUT
150
(mA)
IOUT – VOUT
4.6
VIN = 4.5 V, CIN = 1 μF, COUT = 10 μF,
VIN = 5.5 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF
CNOISE = 0.01 μF, Pulse width = 1 ms
Pulse width = 1 ms
Output voltage VOUT (V)
Output voltage VOUT (V)
Ta = 85°C
3.2
0
150
3.6
Ta = 85°C
3.5
25
−40
3.4
0
50
100
Output current
(TAR5S48)
IOUT
4.5
25
−40
50
100
Output current
(mA)
IOUT – VOUT
(TAR5S50)
IOUT
150
(mA)
IOUT – VOUT
5.1
VIN = 5.8 V, CIN = 1 μF, COUT = 10 μF,
VIN = 6.0 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF
CNOISE = 0.01 μF
Output voltage VOUT (V)
Pulse width = 1 ms
Ta = 85°C
4.8
25
−40
4.7
0
Ta = 85°C
4.4
0
150
4.9
Output voltage 圧 VOUT (V)
IOUT – VOUT
3.4
3.3
50
Output current
100
IOUT
Ta = 85°C
5.0
25
−40
4.9
0
150
50
Output current
(mA)
10
Pulse width = 1 ms
100
IOUT
150
(mA)
2007-11-01
TAR5S15~TAR5S50
(TAR5S15)
(TAR5S18)
IB – VIN
10
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
Bias current IB (mA)
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
Bias current IB (mA)
IB – VIN
10
5
5
IOUT = 150 mA
IOUT = 150 mA
100
100
1
50
0
0
5
10
Input voltage
(TAR5S20)
15
10
Input voltage
(TAR5S21)
IB – VIN
15
VIN (V)
IB – VIN
10
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
Bias current IB (mA)
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
Bias current IB (mA)
5
VIN (V)
10
5
5
IOUT = 150 mA
IOUT = 150 mA
100
100
50
0
0
5
(TAR5S22)
50
1
10
Input voltage
0
0
15
5
VIN (V)
(TAR5S23)
IB – VIN
15
VIN (V)
IB – VIN
10
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
Bias current IB (mA)
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
5
5
IOUT = 150 mA
IOUT = 150 mA
100
100
50
0
0
1
10
Input voltage
10
Bias current IB (mA)
1
50
0
0
5
Input voltage
10
50
1
0
0
15
VIN (V)
5
Input voltage
11
10
1
15
VIN (V)
2007-11-01
TAR5S15~TAR5S50
IB – VIN
(TAR5S25)
10
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
Bias current IB (mA)
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
Bias current IB (mA)
IB – VIN
(TAR5S27)
10
5
5
IOUT = 150 mA
IOUT = 150 mA
100
100
50
0
0
5
1
10
Input voltage
15
15
VIN (V)
IB – VIN
(TAR5S29)
10
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
Bias current IB (mA)
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
5
5
IOUT = 150 mA
100
0
0
(TAR5S30)
IOUT = 150 mA
50
5
100
0
0
15
5
VIN (V)
IB – VIN
1
10
Input voltage
15
VIN (V)
IB – VIN
(TAR5S31)
10
10
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
Bias current IB (mA)
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
5
5
IOUT = 150 mA
IOUT = 150 mA
100
100
50
0
0
50
1
10
Input voltage
Bias current IB (mA)
10
Input voltage
10
Bias current IB (mA)
5
VIN (V)
IB – VIN
(TAR5S28)
1
50
0
0
5
Input voltage
10
50
1
0
0
15
VIN (V)
5
Input voltage
12
10
1
15
VIN (V)
2007-11-01
TAR5S15~TAR5S50
(TAR5S32)
(TAR5S33)
IB – VIN
10
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
Bias current IB (mA)
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
Bias current IB (mA)
IB – VIN
10
5
IOUT = 150 mA
5
IOUT = 150 mA
100
100
50
0
0
5
10
Input voltage
(TAR5S35)
0
0
15
10
Input voltage
(TAR5S45)
IB – VIN
15
VIN (V)
IB – VIN
10
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
Bias current IB (mA)
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
Bias current IB (mA)
5
VIN (V)
10
5
5
IOUT = 150 mA
IOUT = 150 mA
100
100
50
0
0
5
1
10
Input voltage
50
0
0
15
VIN (V)
IB – VIN
(TAR5S48)
5
15
VIN (V)
IB – VIN
(TAR5S50)
10
CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF
Pulse width = 1 ms
Pulse width = 1 ms
Bias current IB (mA)
CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF
5
5
IOUT = 150 mA
IOUT = 150 mA
100
100
50
0
0
1
10
Input voltage
10
Bias current IB (mA)
1
50
1
5
Input voltage
10
1
50
0
0
15
VIN (V)
5
Input voltage
13
10
1
15
VIN (V)
2007-11-01
TAR5S15~TAR5S50
(TAR5S15)
6
6
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
4
3
2
1
5
10
Input voltage
(TAR5S20)
6
4
3
2
0
0
15
5
VIN (V)
10
Input voltage
(TAR5S21)
VOUT – VIN
6
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
4
3
2
1
15
VIN (V)
VOUT – VIN
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
5
Output voltage VOUT (V)
5
Output voltage VOUT (V)
CNOISE = 0.01 μF, Pulse width = 1 ms
1
0
0
4
3
2
1
0
0
5
10
Input voltage
(TAR5S22)
5
0
0
15
10
Input voltage
(TAR5S23)
VOUT – VIN
6
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
5
4
3
2
1
0
0
5
VIN (V)
Output voltage VOUT (V)
6
Output voltage VOUT (V)
VOUT – VIN
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
5
Output voltage VOUT (V)
5
Output voltage VOUT (V)
(TAR5S18)
VOUT – VIN
15
VIN (V)
VOUT – VIN
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
4
3
2
1
5
Input voltage
10
0
0
15
VIN (V)
5
Input voltage
14
10
15
VIN (V)
2007-11-01
TAR5S15~TAR5S50
(TAR5S25)
6
6
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
4
3
2
1
5
10
Input voltage
(TAR5S28)
6
4
3
2
0
0
15
5
VIN (V)
10
Input voltage
(TAR5S29)
VOUT – VIN
6
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
4
3
2
1
15
VIN (V)
VOUT – VIN
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
5
Output voltage VOUT (V)
5
Output voltage VOUT (V)
CNOISE = 0.01 μF, Pulse width = 1 ms
1
0
0
4
3
2
1
0
0
5
10
Input voltage
(TAR5S30)
5
0
0
15
10
Input voltage
(TAR5S31)
VOUT – VIN
6
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
5
4
3
2
1
0
0
5
VIN (V)
Output voltage VOUT (V)
6
Output voltage VOUT (V)
VOUT – VIN
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
5
Output voltage VOUT (V)
5
Output voltage VOUT (V)
(TAR5S27)
VOUT – VIN
15
VIN (V)
VOUT – VIN
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
4
3
2
1
5
Input voltage
10
0
0
15
VIN (V)
5
Input voltage
15
10
15
VIN (V)
2007-11-01
TAR5S15~TAR5S50
(TAR5S32)
6
6
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
4
3
2
0
0
5
10
Input voltage
(TAR5S35)
4
3
2
0
0
15
VOUT – VIN
(TAR5S45)
6
5
5
4
3
2
CNOISE = 0.01 μF, Pulse width = 1 ms
5
10
Input voltage
(TAR5S48)
5
Output voltage VOUT (V)
5
3
2
CNOISE = 0.01 μF, Pulse width = 1 ms
Input voltage
5
10
10
VIN (V)
VOUT – VIN
2
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
5
Input voltage
16
VIN (V)
3
0
0
15
15
4
1
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
5
CNOISE = 0.01 μF, Pulse width = 1 ms
(TAR5S50)
VOUT – VIN
6
0
0
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
Input voltage
6
1
VOUT – VIN
2
VIN (V)
4
VIN (V)
3
0
0
15
15
4
1
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
0
0
10
Input voltage
6
1
5
VIN (V)
Output voltage VOUT (V)
Output voltage VOUT (V)
CNOISE = 0.01 μF, Pulse width = 1 ms
1
1
Output voltage VOUT (V)
VOUT – VIN
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
5
Output voltage VOUT (V)
5
Output voltage VOUT (V)
(TAR5S33)
VOUT – VIN
10
15
VIN (V)
2007-11-01
TAR5S15~TAR5S50
(TAR5S15)
(TAR5S18)
VOUT – Ta
1.6
VIN = 2.5 V, CIN = 1 μF, COUT = 10 μF,
VIN = 2.8 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
Output voltage VOUT (V)
Output voltage VOUT (V)
CNOISE = 0.01 μF, Pulse width = 1 ms
1.55
IOUT = 50 mA
1.5
100 150
1.45
1.4
−50
−25
0
25
50
75
1.85
IOUT = 50 mA
1.8
100 150
1.75
1.7
−50
100
Ambient temperature Ta (°C)
(TAR5S20)
−25
0
(TAR5S21)
VOUT – Ta
50
75
100
VOUT – Ta
2.2
VIN = 3.0 V, CIN = 1 μF, COUT = 10 μF,
VIN = 3.1 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
Output voltage VOUT (V)
CNOISE = 0.01 μF, Pulse width = 1 ms
Output voltage VOUT (V)
25
Ambient temperature Ta (°C)
2.1
2.05
IOUT = 50 mA
2.0
150
100
1.95
1.9
−50
−25
0
25
50
75
2.15
IOUT = 50 mA
2.1
2.0
−50
100
(TAR5S22)
−25
0
(TAR5S23)
VOUT – Ta
75
100
VOUT – Ta
VIN = 3.3 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
Output voltage VOUT (V)
CNOISE = 0.01 μF, Pulse width = 1 ms
2.25
2.1
−50
50
2.4
VIN = 3.2 V, CIN = 1 μF, COUT = 10 μF,
2.15
25
Ambient temperature Ta (°C)
2.3
2.2
150
100
2.05
Ambient temperature Ta (°C)
Output voltage VOUT (V)
VOUT – Ta
1.9
IOUT = 50 mA
150
100
−25
0
25
50
75
2.35
2.3
Ambient temperature Ta (°C)
150
100
2.25
2.2
−50
100
IOUT = 50 mA
−25
0
25
50
75
100
Ambient temperature Ta (°C)
17
2007-11-01
TAR5S15~TAR5S50
(TAR5S25)
(TAR5S27)
VOUT – Ta
2.6
VIN = 3.5 V, CIN = 1 μF, COUT = 10 μF,
VIN = 3.7 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
Output voltage VOUT (V)
Output voltage VOUT (V)
CNOISE = 0.01 μF, Pulse width = 1 ms
2.55
IOUT = 50 mA
2.5
100
150
2.45
2.4
−50
−25
0
25
50
75
2.75
2.7
IOUT = 50 mA
100
2.6
−50
100
(TAR5S28)
−25
0
25
50
75
100
Ambient temperature Ta (°C)
(TAR5S29)
VOUT – Ta
2.9
VOUT – Ta
3.0
VIN = 3.8 V, CIN = 1 μF, COUT = 10 μF,
VIN = 3.9 V, CIN = 1 μF, COUT = 10 μF,
Pulse width = 1 ms
CNOISE = 0.01 μF, Pulse width = 1 ms
Output voltage VOUT (V)
CNOISE = 0.01 μF
Output voltage VOUT (V)
150
2.65
Ambient temperature Ta (°C)
2.85
IOUT = 50 mA
2.8
150
100
2.75
2.7
−50
−25
0
25
50
75
2.95
IOUT = 50 mA
2.9
100
2.8
−50
100
(TAR5S30)
−25
0
(TAR5S31)
VOUT – Ta
75
100
VOUT – Ta
VIN = 4.1 V, CIN = 1 μF, COUT = 10 μF,
Pulse width = 1 ms
CNOISE = 0.01 μF, Pulse width = 1 ms
Output voltage VOUT (V)
CNOISE = 0.01 μF
3.05
2.9
−50
50
3.2
VIN = 4 V, CIN = 1 μF, COUT = 10 μF,
2.95
25
Ambient temperature Ta (°C)
3.1
3.0
150
2.85
Ambient temperature Ta (°C)
Output voltage VOUT (V)
VOUT – Ta
2.8
IOUT = 50 mA
150
100
−25
0
25
50
75
3.15
3.1
3.05
3.0
−50
100
Ambient temperature Ta (°C)
IOUT = 50 mA
150
100
−25
0
25
50
75
100
Ambient temperature Ta (°C)
18
2007-11-01
TAR5S15~TAR5S50
(TAR5S32)
(TAR5S33)
VOUT – Ta
VIN = 4.3 V, CIN = 1 μF, COUT = 10 μF,
VIN = 4.2 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
Output voltage VOUT (V)
Output voltage VOUT (V)
CNOISE = 0.01 μF, Pulse width = 1 ms
3.25
IOUT = 50 mA
3.2
3.15
150
100
3.1
−50
−25
0
25
50
75
3.35
3.3
IOUT = 50 mA
3.2
−50
100
(TAR5S35)
−25
0
(TAR5S45)
VOUT – Ta
50
75
100
VOUT – Ta
4.6
VIN = 5.5 V, CIN = 1 μF, COUT = 10 μF,
VIN = 4.5 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
Output voltage VOUT (V)
CNOISE = 0.01 μF, Pulse width = 1 ms
Output voltage VOUT (V)
25
Ambient temperature Ta (°C)
3.6
3.55
IOUT = 50 mA
3.45
150
100
3.4
−50
−25
0
25
50
75
4.55
4.5
IOUT = 50 mA
4.45
4.4
−50
100
(TAR5S48)
150
100
Ambient temperature Ta (°C)
−25
0
25
50
75
100
Ambient temperature Ta (°C)
(TAR5S50)
VOUT – Ta
4.9
VOUT – Ta
5.1
VIN = 5.8 V, CIN = 1 μF, COUT = 10 μF,
VIN = 6 V, CIN = 1 μF, COUT = 10 μF,
Pulse width = 1 ms
CNOISE = 0.01 μF
Output voltage VOUT (V)
CNOISE = 0.01 μF
Output voltage VOUT (V)
150
100
3.25
Ambient temperature Ta (°C)
3.5
VOUT – Ta
3.4
3.3
4.85
4.8
IOUT = 50 mA
4.75
150
5
IOUT = 50 mA
4.95
150
100
4.7
−50
−25
Pulse width = 1 ms
5.05
100
0
25
50
75
4.9
−50
100
Ambient temperature Ta (°C)
−25
0
25
50
75
100
Ambient temperature Ta (°C)
19
2007-11-01
TAR5S15~TAR5S50
IB – Ta
(TAR5S23~TAR5S50)
3
VIN = VOUT + 1 V, CIN = 1 μF,
COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
IOUT = 150 mA
Dropout voltage VIN - VOUT (V)
Bias current
IB (mA)
2.5
2
1.5
100
1
50
0.5
10
1
0
−50
−25
0
25
50
75
0.5
CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF
Pulse width = 1 ms
0.4
IOUT = 150 mA
0.3
100
0.2
50
0.1
10
1
0
−50
100
−25
(TAR5S23~TAR5S50)
0.4
50
75
100
IB – IOUT
2.5
CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01μF
Pulse width = 1 ms
2.0
85
Ta = 25°C
0.3
−40
0.2
0.1
VIN = VOUT + 1 V,
CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF
−40
Pulse width = 1 ms
Ta = 25°C
1.5
85
1.0
0.5
0
0
50
100
Output current
IOUT
0
0
150
50
(mA)
Turn On Waveform
1
0
VIN = VOUT + 1 V,
VCT (ON) = 0 → 1.5 V, CIN = 1 μF,
COUT = 10 μF, CNOISE =
0.01 μF
Output voltage
VOUT (V)
Ta = 25°C
85
0
VIN = VOUT + 1 V,
VCT (ON) = 1.5 → 0 V, CIN = 1 μF,
2
COUT = 10 μF, CNOISE =
0.01 μF
1
Control voltage waveform
0
3
2
0
(mA)
Output voltage waveform
−40
1
Control voltage
VCT (ON) (V)
Control voltage waveform
3
IOUT
150
Turn Off Waveform
3
2
100
Output current
3
Control voltage
VCT (ON) (V)
25
VIN - VOUT – IOUT
Bias current IB (mA)
Dropout voltage VIN - VOUT (V)
0.5
0
Ambient temperature Ta (°C)
Ambient temperature Ta (°C)
Output voltage
VOUT (V)
VIN - VOUT – Ta
0.6
1
2
1
Output voltage waveform
0
0
Time t (ms)
1
Time t (ms)
20
2007-11-01
TAR5S15~TAR5S50
Ripple Rejection – f
VN – f
80
10
TAR5S25 (2.5 V)
TAR5S30 (3.0 V)
TAR5S15 (1.5 V)
70
COUT = 10 μF, CNOISE = 0.01 μF,
10 Hz < f < 100 kHz, Ta = 25°C
1
Ripple rejection (dB)
Output noise voltage VN (μV/√ Hz )
VIN = VOUT + 1 V, IOUT = 10 mA, CIN = 1 μF,
0.1
60
50
TAR5S45 (4.5 V)
TAR5S50 (5.0 V)
40
TAR5S35 (3.5 V)
30
20
VIN = VOUT + 1 V, IOUT = 10 mA, CIN = 1 μF,
10 COUT = 10 μF, CNOISE = 0.01 μF,
VRipple = 500 mVp-p, Ta = 25°C
0
10
100
1k
10 k
100 k
0.01
0.001
10
100
1k
Frequency f
10 k
100 k
80
120
Frequency f
1000 k
(Hz)
(Hz)
PD – Ta
400
Power dissipation PD
(mW)
①
300
200
②
100
① Circuit board material: glass epoxy,
Circuit board dimention:
30 mm × 30 mm, 2
pad area: 50 mm (t = 0.8 mm)
② Unit
0
−40
0
40
Ambient temperature Ta (°C)
21
2007-11-01
TAR5S15~TAR5S50
Package Dimensions
Weight: 0.014 g (typ.)
22
2007-11-01
TAR5S15~TAR5S50
RESTRICTIONS ON PRODUCT USE
20070701-EN GENERAL
• The information contained herein is subject to change without notice.
• TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability
Handbook” etc.
• The TOSHIBA products listed in this document are intended for usage in general electronics applications
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,
etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his
document shall be made at the customer’s own risk.
• The products described in this document shall not be used or embedded to any downstream products of which
manufacture, use and/or sale are prohibited under any applicable laws and regulations.
• The information contained herein is presented only as a guide for the applications of our products. No
responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
may result from its use. No license is granted by implication or otherwise under any patents or other rights of
TOSHIBA or the third parties.
• Please contact your sales representative for product-by-product details in this document regarding RoHS
compatibility. Please use these products in this document in compliance with all applicable laws and regulations
that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
occurring as a result of noncompliance with applicable laws and regulations.
23
2007-11-01