TPS76901, TPS76912, TPS76915, TPS76918, TPS76925 TPS76927, TPS76928, TPS76930, TPS76933, TPS76950 ULTRALOW-POWER 100-mA LOW-DROPOUT LINEAR REGULATORS SLVS203E – JUNE 1999 – REVISED MAY 2001 D D D D D D D D DBV PACKAGE (TOP VIEW) 100-mA Low-Dropout Regulator Available in 1.2-V, 1.5-V, 1.8-V, 2.5-V, 2.7-V, 2.8-V, 3.0-V, 3.3-V, and 5-V Fixed-Output and Adjustable Versions Only 17 µA Quiescent Current at 100 mA 1 µA Quiescent Current in Standby Mode Dropout Voltage Typically 71 mV at 100mA Over Current Limitation –40°C to 125°C Operating Junction Temperature Range 5-Pin SOT-23 (DBV) Package IN 1 GND 2 EN 3 5 OUT 4 NC/FB TPS76933 GROUND CURRENT vs FREE-AIR TEMPERATURE 22 description 21 Ground Current – µ A The TPS769xx family of low-dropout (LDO) voltage regulators offers the benefits of low dropout voltage, ultralow-power operation, and miniaturized packaging. These regulators feature low dropout voltages and ultralow quiescent current compared to conventional LDO regulators. Offered in a 5-terminal small outline integrated-circuit SOT-23 package, the TPS769xx series devices are ideal for micropower operations and where board space is at a premium. VI = 4.3 V CO = 4.7 µF 20 19 IO = 100 mA 18 IO = 0 mA 17 A combination of new circuit design and process 16 innovation has enabled the usual PNP pass transistor to be replaced by a PMOS pass 15 element. Because the PMOS pass element –60 –40 –20 0 20 40 60 80 100 120 140 behaves as a low-value resistor, the dropout TA – Free-Air Temperature – °C voltage is very low, typically 71 mV at 100 mA of load current (TPS76950), and is directly proportional to the load current. Since the PMOS pass element is a voltage-driven device, the quiescent current is ultralow (28 µA maximum) and is stable over the entire range of output load current (0 mA to 100 mA). Intended for use in portable systems such as laptops and cellular phones, the ultralow-dropout voltage feature and ultralow-power operation result in a significant increase in system battery operating life. The TPS769xx also features a logic-enabled sleep mode to shut down the regulator, reducing quiescent current to 1 µA typical at TJ = 25°C. The TPS769xx is offered in 1.2-V, 1.5-V, 1.8-V, 2.5-V, 2.7-V, 2.8-V, 3.0-V, 3.3-V, and 5-V fixed-voltage versions and in a variable version (programmable over the range of 1.2 V to 5.5 V). Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 2001, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 TPS76901, TPS76912, TPS76915, TPS76918, TPS76925 TPS76927, TPS76928, TPS76930, TPS76933, TPS76950 ULTRALOW-POWER 100-mA LOW-DROPOUT LINEAR REGULATORS SLVS203E – JUNE 1999 – REVISED MAY 2001 AVAILABLE OPTIONS VOLTAGE TJ PACKAGE PART NUMBER SYMBOL Variable 1.2V to 5.5V TPS76901DBVT† TPS76901DBVR‡ PCFI 1.2 V TPS76912DBVT† TPS76915DBVT† TPS76912DBVR‡ TPS76915DBVR‡ PCGI TPS76918DBVT† TPS76925DBVT† TPS76918DBVR‡ TPS76925DBVR‡ TPS76927DBVT† TPS76928DBVT† TPS76927DBVR‡ TPS76928DBVR‡ PCKI TPS76930DBVR‡ TPS76933DBVR‡ PCMI 3.3 V TPS76930DBVT† TPS76933DBVT† 5.0 V TPS76950DBVT† TPS76950DBVR‡ PCOI 1.5 V 1.8 V SOT-23 (DBV) 2.5 V –40°C to 125°C 2.7 V 2.8 V 3.0 V † The DBVT indicates tape and reel of 250 parts. ‡ The DBVR indicates tape and reel of 3000 parts. functional block diagram TPS76901 OUT IN EN Current Limit / Thermal Protection VREF FB GND TPS76912/15/18/25/27/28/30/33/50 OUT IN EN VREF Current Limit / Thermal Protection GND 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PCHI PCII PCJI PCLI PCNI TPS76901, TPS76912, TPS76915, TPS76918, TPS76925 TPS76927, TPS76928, TPS76930, TPS76933, TPS76950 ULTRALOW-POWER 100-mA LOW-DROPOUT LINEAR REGULATORS SLVS203E – JUNE 1999 – REVISED MAY 2001 Terminal Functions TERMINAL NAME I/O NO. DESCRIPTION GND 2 Ground EN 3 I Enable input FB 4 I Feedback voltage (TPS76901 only) IN 1 I Input supply voltage NC 4 OUT 5 No connection (Fixed options only) O Regulated output voltage absolute maximum ratings over operating free-air temperature range (unless otherwise noted)Ĕ Input voltage range (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 13.5 V Voltage range at EN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to VI + 0.3 V Voltage on OUT, FB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V Peak output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internally limited ESD rating, HBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 kV Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating virtual junction temperature range, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 150°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltage values are with respect to network ground terminal. DISSIPATION RATING TABLE BOARD PACKAGE RθJC RθJA DERATING FACTOR ABOVE TA = 25°C TA ≤ 25°C POWER RATING TA = 70°C POWER RATING TA = 85°C POWER RATING Low K‡ High K§ DBV 65.8 °C/W 259 °C/W 3.9 mW/°C 386 mW 212 mW 154 mW DBV 65.8 °C/W 180 °C/W 5.6 mW/°C 555 mW 305 mW 222 mW ‡ The JEDEC Low K (1s) board design used to derive this data was a 3 inch x 3 inch, two layer board with 2 ounce copper traces on top of the board. § The JEDEC High K (2s2p) board design used to derive this data was a 3 inch x 3 inch, multilayer board with 1 ounce internal power and ground planes and 2 ounce copper traces on top and bottom of the board. recommended operating conditions MIN NOM MAX UNIT Input voltage, VI (see Note 2) 2.7 10 V Output voltage range, VO 1.2 5.5 V 0 100 mA –40 125 °C Continuous output current, IO (see Note 3) Operating junction temperature, TJ NOTES: 2. To calculate the minimum input voltage for your maximum output current, use the following formula: VI(min) = VO(max) + VDO (max load) 3. Continuous output current and operating junction temperature are limited by internal protection circuitry, but it is not recommended that the device operate under conditions beyond those specified in this table for extended periods of time. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 TPS76901, TPS76912, TPS76915, TPS76918, TPS76925 TPS76927, TPS76928, TPS76930, TPS76933, TPS76950 ULTRALOW-POWER 100-mA LOW-DROPOUT LINEAR REGULATORS SLVS203E – JUNE 1999 – REVISED MAY 2001 electrical characteristics over recommended operating free-air temperature range, VI = VO(typ) + 1 V, IO = 100 mA, EN = 0 V, Co = 4.7 µF (unless otherwise noted) PARAMETER TEST CONDITIONS 1.2 V ≤ VO ≤ 5.5 V, TPS76901 Output voltage g (10 ( µ µA to 100 mA load) (see Note 4) MIN TJ = 25°C TJ = –40°C to 125°C 1.2 V ≤ VO ≤ 5.5 V, TPS76912 TJ = 25°C, TJ = –40°C to 125°C, 2.7 V < VIN < 10 V TPS76915 TJ = 25°C, TJ = –40°C to 125°C, 2.7 V < VIN < 10 V TPS76918 TJ = 25°C, TJ = –40°C to 125°C, 2.8 V < VIN < 10 V TPS76925 TJ = 25°C, TJ = –40°C to 125°C, TPS76927 TJ = 25°C, TJ = –40°C to 125°C, 3.7 V < VIN < 10 V TPS76928 TJ = 25°C, TJ = –40°C to 125°C, 3.8 V < VIN < 10 V TPS76930 TJ = 25°C, TJ = –40°C to 125°C, 4.0 V < VIN < 10 V TPS76933 TJ = 25°C, TJ = –40°C to 125°C, TPS76950 TJ = 25°C, TJ = –40°C to 125°C, 6.0 V < VIN < 10 V EN = 0V, TJ = 25°C 0 mA < IO < 100 mA, EN = 0V, TJ = –40°C to 125°C IO = 100 mA, EN = 0V, TJ = 25°C IO = 0 to 100 mA, Quiescent current ((GND current)) (see Notes 4 and 5) Load regulation Output voltage line regulation (∆VO/VO) (see Note 5) 2.7 V < VIN < 10 V 2.7 V < VIN < 10 V Output current limit 1.261 1.5 1.455 1.545 1.8 1.854 2.5 2.575 2.7 2.619 V 2.781 2.8 2.716 2.884 3.0 4.0 V < VIN < 10 V 4.3 V < VIN < 10 V 2.910 4.3 V < VIN < 10 V 3.201 3.090 3.3 3.399 5.0 4.850 5.150 17 µA 28 VO + 1 V < VI ≤ 10 V, TJ = 25°C, See Note 4 12 mV 0.04 %/V VO + 1 V < VI ≤ 10 V, TJ = –40°C to 125°C, See Note 4 VO = 0 V, EN = VI, Standby current 1.03VO 1.187 2.425 6.0 V < VIN < 10 V UNIT 1.224 3.5 V < VIN < 10 V 0.1 BW = 300 Hz to 50 kHz, Co = 10 µF, TJ = 25°C Output noise voltage 0.97VO 1.746 3.8 V < VIN < 10 V MAX VO 2.8 V < VIN < 10 V 3.5 V < VIN < 10 V 3.7 V < VIN < 10 V TYP µVrms 190 See Note 4 350 2.7 < VI < 10 V 1 750 mA µA TJ = –40°C to 125°C 2 µA NOTES: 4. Minimum IN operating voltage is 2.7 V or VO(typ) + 1 V, whichever is greater. Maximum IN voltage 10 V, minimum output current 10 µA, maximum output current 100 mA. 5. If VO ≤ 1.8 V then VImin = 2.7 V, VImax = 10 V: Line Reg. (mV) + ǒ%ńVǓ V O If VO ≥ 2.5 V then VImin = VO + 1 V, VImax = 10 V: Line Reg. (mV) 4 + ǒ%ńVǓ V O ǒ V ǒ V POST OFFICE BOX 655303 Ǔ * 2.7 V Imax 100 Imax * ǒ V O 1000 ǓǓ )1 V 100 • DALLAS, TEXAS 75265 1000 TPS76901, TPS76912, TPS76915, TPS76918, TPS76925 TPS76927, TPS76928, TPS76930, TPS76933, TPS76950 ULTRALOW-POWER 100-mA LOW-DROPOUT LINEAR REGULATORS SLVS203E – JUNE 1999 – REVISED MAY 2001 electrical characteristics over recommended operating free-air temperature range, VI = VO(typ) + 1 V, IO = 100 mA, EN = 0 V, Co = 4.7 µF (unless otherwise noted) (continued) PARAMETER TEST CONDITIONS MIN FB input current FB = 1.224 V (TPS76901) –1 High level enable input voltage 2.7 V < VI < 10 V 1.7 Low level enable input voltage 2.7 V < VI < 10 V Power supply ripple rejection f = 1 kHz, TJ = 25°C, Co = 10 µF, See Note 4 TPS76930 Dropout voltage (see Note 6) TPS76933 TPS76950 UNIT µA 1 V V 60 –1 EN = VI TPS76928 MAX 0.9 EN = 0 V Input current (EN) TYP 0 –1 IO = 50 mA, IO = 50 mA, TJ = 25°C TJ = –40°C to 125°C 60 IO = 100 mA, IO = 100 mA, TJ = 25°C TJ = –40°C to 125°C 122 IO = 50 mA, IO = 50 mA, TJ = 25°C TJ = –40°C to 125°C 57 IO = 100 mA, IO = 100 mA, TJ = 25°C TJ = –40°C to 125°C 115 IO = 50 mA, IO = 50 mA, TJ = 25°C TJ = –40°C to 125°C 48 IO = 100 mA, IO = 100 mA, TJ = 25°C TJ = –40°C to 125°C 98 IO = 50 mA, IO = 50 mA, TJ = 25°C TJ = –40°C to 125°C 35 IO = 100 mA, IO = 100 mA, TJ = 25°C TJ = –40°C to 125°C 71 dB 1 µA 1 µA 125 245 115 230 mV 100 200 85 170 NOTES: 4. Minimum IN operating voltage is 2.7 V or VO(typ) + 1 V, whichever is greater. Maximum IN voltage 10 V, minimum output current 10 µA, maximum output current 100 mA. 6. IN voltage equals VO(Typ) – 100mV; TPS76901 output voltage set to 3.3V nominal with external resistor divider. TPS76912, TPS76915, TPS76918, TPS76925, and TPS76927 dropout voltage limited by input voltage range limitations. TYPICAL CHARACTERISTICS Table of Graphs FIGURE VO Zo VDO Output voltage vs Output current 1, 2, 3 vs Free-air temperature 4, 5, 6 Ground current vs Free-air temperature 7 Output spectral noise density vs Frequency 8 Output impedance vs Frequency 9 Dropout voltage vs Free-air temperature 10 Ripple rejection vs Frequency LDO startup time 11 12 Line transient response 13, 15 Load transient response 14, 16 Equivalent series resistance (ESR) POST OFFICE BOX 655303 vs Output current 17, 19 vs Added ceramic capacitance 18, 20 • DALLAS, TEXAS 75265 5 TPS76901, TPS76912, TPS76915, TPS76918, TPS76925 TPS76927, TPS76928, TPS76930, TPS76933, TPS76950 ULTRALOW-POWER 100-mA LOW-DROPOUT LINEAR REGULATORS SLVS203E – JUNE 1999 – REVISED MAY 2001 TYPICAL CHARACTERISTICS TPS76925 TPS76915 OUTPUT VOLTAGE vs OUTPUT CURRENT OUTPUT VOLTAGE vs OUTPUT CURRENT 1.498 2.498 VI = 3.5 V CO = 4.7 µF TA = 25° C 2.496 1.496 VO – Output Voltage – V 2.494 VO – Output Voltage – V VI = 2.7 V CO = 4.7 µF TA = 25° C 2.492 2.490 2.488 2.486 1.494 1.492 1.490 1.488 1.486 2.484 1.484 2.482 0 20 40 60 80 0 100 20 40 60 Figure 1 TPS76933 TPS76915 OUTPUT VOLTAGE vs OUTPUT CURRENT OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE 1.496 VI = 4.3 V CO = 4.7 µF TA = 25° C 3.282 1.494 IO = 1 mA VI = 2.7 V CO = 4.7 µF 1.492 3.280 VO – Output Voltage – V VO – Output Voltage – V 100 Figure 2 3.284 3.278 3.276 3.274 3.272 1.490 1.488 1.486 IO = 100 mA 1.484 1.482 3.270 0 20 40 60 80 100 1.480 –60 –40 –20 0 20 40 Figure 3 Figure 4 POST OFFICE BOX 655303 60 80 100 120 140 TA – Free-Air Temperature – °C IO – Output Current – mA 6 80 IO – Output Current – mA IO – Output Current – mA • DALLAS, TEXAS 75265 TPS76901, TPS76912, TPS76915, TPS76918, TPS76925 TPS76927, TPS76928, TPS76930, TPS76933, TPS76950 ULTRALOW-POWER 100-mA LOW-DROPOUT LINEAR REGULATORS SLVS203E – JUNE 1999 – REVISED MAY 2001 TYPICAL CHARACTERISTICS TPS76925 TPS76933 OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE 2.496 3.285 2.494 IO = 1 mA VO – Output Voltage – V VO – Output Voltage – V 2.490 2.488 2.486 2.484 IO = 100 mA 2.482 2.480 2.476 –60 –40 –20 0 20 40 60 VI = 4.3 V CO = 4.7 µF 3.275 3.270 IO = 100 mA 3.265 3.260 VI = 3.5 V CO = 4.7 µF 2.478 IO = 1 mA 3.280 2.492 3.255 –60 –40 –20 80 100 120 140 TA – Free-Air Temperature – °C Figure 5 TPS76933 40 60 80 100 120 140 TPS76933 OUTPUT SPECTRAL NOISE DENSITY vs FREQUENCY 22 2 VI = 4.3 V CO = 4.7 µF Output Spectral Noise Density – µV Hz Ground Current – µ A 20 Figure 6 GROUND CURRENT vs FREE-AIR TEMPERATURE 21 0 TA – Free-Air Temperature – °C 20 IO = 100 mA 19 18 IO = 0 mA 17 16 15 –60 –40 –20 0 20 40 60 80 100 120 140 1.8 CO = 10 µF IO = 1 mA 1.6 CO = 4.7 µF IO = 100 mA 1.4 1.2 1 0.8 CO = 4.7 µF IO = 1 mA 0.6 0.4 0.2 VI = 4.3 V 0 100 TA – Free-Air Temperature – °C CO = 10 µF IO = 100 mA 1k 10k f – Frequency – Hz 100k Figure 8 Figure 7 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 TPS76901, TPS76912, TPS76915, TPS76918, TPS76925 TPS76927, TPS76928, TPS76930, TPS76933, TPS76950 ULTRALOW-POWER 100-mA LOW-DROPOUT LINEAR REGULATORS SLVS203E – JUNE 1999 – REVISED MAY 2001 TYPICAL CHARACTERISTICS TPS76933 OUTPUT IMPEDANCE vs FREQUENCY DROPOUT VOLTAGE vs FREE-AIR TEMPERATURE 2 Zo – Output Impedance – Ω 1.6 VI = 3.2 V CO = 4.7 µF VDO – Dropout Voltage – mV 1.8 1000 VI = 4.3 V CO = 4.7 µF ESR = 0.3 Ω TA = 25° C 1.4 1.2 1 0.8 IO = 1 mA 0.6 0.4 IO = 100 mA 10 IO = 10 mA IO = 100 mA 0.2 0 10 100 100 1k 10 k 100 k 1M 1 –60 –40 –20 0 20 40 60 80 100 120 140 TA – Free-Air Temperature – °C f – Frequency – Hz Figure 9 Figure 10 TPS76933 RIPPLE REJECTION vs FREQUENCY 100 LDO STARTUP TIME 90 Ripple Rejection – dB 80 EN 70 IO = 1 mA 60 50 40 30 IO = 100 mA 20 10 0 – 10 10 VI = 4.3 V CO = 4.7 µF ESR = 0.3 Ω 100 VO 1k 10 k 100 k 1M 10 M 0 20 f – Frequency – Hz 60 80 100 120 140 160 180 200 t – Time – µs Figure 12 Figure 11 8 40 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TPS76901, TPS76912, TPS76915, TPS76918, TPS76925 TPS76927, TPS76928, TPS76930, TPS76933, TPS76950 ULTRALOW-POWER 100-mA LOW-DROPOUT LINEAR REGULATORS SLVS203E – JUNE 1999 – REVISED MAY 2001 10 0 –10 3.7 VI – Input Voltage – V TPS76915 LOAD TRANSIENT RESPONSE Current Load – mA TPS76915 LINE TRANSIENT RESPONSE 2.7 IL = 10 mA CO = 4.7 µF ESR = 0.3 Ω 0 20 40 60 100 0 ∆ VO – Change In Output Voltage – mV VO – Output Voltage – mV TYPICAL CHARACTERISTICS 0 –200 VI = 2.7 V CO = 10 µF ESR = 0.3 Ω –400 0 80 100 120 140 160 180 200 t – Time – µs 20 40 10 0 –10 ∆ VO – Change In Output Voltage – mV 5.3 VI – Input Voltage – V TPS76933 LOAD TRANSIENT RESPONSE Current Load – mA VO – Output Voltage – mV TPS76933 LINE TRANSIENT RESPONSE 4.3 IL = 10 mA CO = 4.7 µF ESR = 0.3 Ω 20 40 60 80 100 120 140 160 180 200 t – Time – µs Figure 14 Figure 13 0 60 80 100 120 140 160 180 t – Time – µs 100 0 VI = 4.3 V CO = 4.7 µF ESR = 0.3 Ω 100 0 –100 0 20 40 60 80 100 120 140 160 180 t – Time – µs Figure 16 Figure 15 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 TPS76901, TPS76912, TPS76915, TPS76918, TPS76925 TPS76927, TPS76928, TPS76930, TPS76933, TPS76950 ULTRALOW-POWER 100-mA LOW-DROPOUT LINEAR REGULATORS SLVS203E – JUNE 1999 – REVISED MAY 2001 TYPICAL CHARACTERISTICS TPS76933 TYPICAL REGIONS OF STABILITY TPS76933 TYPICAL REGIONS OF STABILITY EQUIVALENT SERIES RESISTANCE (ESR)† vs OUTPUT CURRENT EQUIVALENT SERIES RESISTANCE (ESR) vs ADDED CERAMIC CAPACITANCE 100 VIN = 4.3 V CO = 4.7 µF 3.3 V LDO ESR – Equivalent Series Resistance – Ω ESR – Equivalent Series Resistance – Ω 100 Region of Instability 10 Region of Stability 1 VIN = 4.3 V CO = 4.7 µF IL = 100 mA Region of Instability 10 Region of Stability 0.2 0.1 1 0 25 50 75 0 100 0.1 0.6 0.7 0.8 0.9 1 Added Ceramic Capacitance – µF IO – Output Current – mA Figure 18 Figure 17 TPS76933 TYPICAL REGIONS OF STABILITY TPS76933 TYPICAL REGIONS OF STABILITY EQUIVALENT SERIES RESISTANCE (ESR)† vs OUTPUT CURRENT EQUIVALENT SERIES RESISTANCE (ESR) vs ADDED CERAMIC CAPACITANCE 100 100 VIN = 4.3 V CO = 10 µF 3.3 V LDO ESR – Equivalent Series Resistance – Ω ESR – Equivalent Series Resistance – Ω 0.2 0.3 0.4 0.5 Region of Instability 10 1 Region of Stability VIN = 4.3 V CO = 10 µF IL = 100 mA Region of Instability 10 Region of Stability 0.2 0.1 1 0 25 50 75 100 0 0.1 Figure 20 Figure 19 10 0.2 0.3 0.4 0.5 POST OFFICE BOX 655303 0.6 0.7 0.8 Added Ceramic Capacitance – µF IO – Output Current – mA • DALLAS, TEXAS 75265 0.9 1 TPS76901, TPS76912, TPS76915, TPS76918, TPS76925 TPS76927, TPS76928, TPS76930, TPS76933, TPS76950 ULTRALOW-POWER 100-mA LOW-DROPOUT LINEAR REGULATORS SLVS203E – JUNE 1999 – REVISED MAY 2001 APPLICATION INFORMATION The TPS769xx family of low-dropout (LDO) regulators have been optimized for use in battery-operated equipment. They feature extremely low dropout voltages, low quiescent current (17 µA nominally), and enable inputs to reduce supply currents to 1 µA when the regulators are turned off. device operation The TPS769xx uses a PMOS pass element to dramatically reduce both dropout voltage and supply current over more conventional PNP-pass-element LDO designs. The PMOS pass element is a voltage-controlled device and, unlike a PNP transistor, it does not require increased drive current as output current increases. Supply current in the TPS769xx is essentially constant from no load to maximum load. Current limiting and thermal protection prevent damage by excessive output current and/or power dissipation. The device switches into a constant-current mode at approximately 350 mA; further load reduces the output voltage instead of increasing the output current. The thermal protection shuts the regulator off if the junction temperature rises above approximately 165°C. Recovery is automatic when the junction temperature drops approximately 25°C below the high temperature trip point. The PMOS pass element includes a back gate diode that conducts reverse current when the input voltage level drops below the output voltage level. A voltage of 1.7 V or greater on the EN input will disable the TPS769xx internal circuitry, reducing the supply current to 1µA. A voltage of less than 0.9 V on the EN input will enable the TPS769xx and will enable normal operation to resume. The EN input does not include any deliberate hysteresis, and it exhibits an actual switching threshold of approximately 1.5 V. A typical application circuit is shown in Figure 21. TPS769xx† VI C1 1 µF 1 IN NC/FB OUT 4 5 VO 3 EN + GND 2 4.7 µF ESR = 0.2 Ω † TPS76912, TPS76915, TPS76918, TPS76925, TPS76927, TPS76928, TPS76930, TPS76933, TPS76950 (fixed-voltage options). Figure 21. Typical Application Circuit POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 TPS76901, TPS76912, TPS76915, TPS76918, TPS76925 TPS76927, TPS76928, TPS76930, TPS76933, TPS76950 ULTRALOW-POWER 100-mA LOW-DROPOUT LINEAR REGULATORS SLVS203E – JUNE 1999 – REVISED MAY 2001 APPLICATION INFORMATION external capacitor requirements Although not required, a 0.047-µF or larger ceramic input bypass capacitor, connected between IN and GND and located close to the TPS769xx, is recommended to improve transient response and noise rejection. A higher-value electrolytic input capacitor may be necessary if large, fast-rise-time load transients are anticipated and the device is located several inches from the power source. Like all low dropout regulators, the TPS769xx requires an output capacitor connected between OUT and GND to stabilize the internal control loop. The minimum recommended capacitance is 4.7 µF. The ESR (equivalent series resistance) of the capacitor should be between 0.2 Ω and 10 Ω. to ensure stability. Capacitor values larger than 4.7 µF are acceptable, and allow the use of smaller ESR values. Capacitances less than 4.7 µF are not recommended because they require careful selection of ESR to ensure stability. Solid tantalum electrolytic, aluminum electrolytic, and multilayer ceramic capacitors are all suitable, provided they meet the requirements described above. Most of the commercially available 4.7 µF surface-mount solid tantalum capacitors, including devices from Sprague, Kemet, and Nichico, meet the ESR requirements stated above. Multilayer ceramic capacitors may have very small equivalent series resistances and may thus require the addition of a low value series resistor to ensure stability. CAPACITOR SELECTION PART NO. MAX ESR† SIZE (H × L × W)† MFR. VALUE T494B475K016AS KEMET 4.7 µF 1.5 Ω 1.9 × 3.5 × 2.8 195D106x0016x2T SPRAGUE 10 µF 1.5 Ω 1.3 × 7.0 × 2.7 695D106x003562T SPRAGUE 10 µF 1.3 Ω 2.5 × 7.6 × 2.5 AVX 4.7 µF 0.6 Ω 2.6 × 6.0 × 3.2 TPSC475K035R0600 † Size is in mm. ESR is maximum resistance in Ohms at 100 kHz and TA = 25°C. Contact manufacturer for minimum ESR values. 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TPS76901, TPS76912, TPS76915, TPS76918, TPS76925 TPS76927, TPS76928, TPS76930, TPS76933, TPS76950 ULTRALOW-POWER 100-mA LOW-DROPOUT LINEAR REGULATORS SLVS203E – JUNE 1999 – REVISED MAY 2001 APPLICATION INFORMATION output voltage programming The output voltage of the TPS76901 adjustable regulator is programmed using an external resistor divider as shown in Figure 22. The output voltage is calculated using: V O ǒ) Ǔ + Vref 1 R1 R2 (1) Where: Vref = 1.224 V typ (the internal reference voltage) Resistors R1 and R2 should be chosen for approximately 7-µA divider current. Lower value resistors can be used but offer no inherent advantage and waste more power. Higher values should be avoided as leakage currents at FB increase the output voltage error. The recommended design procedure is to choose R2 = 169 kΩ to set the divider current at 7 µA and then calculate R1 using: R1 + ǒ Ǔ V V O ref *1 (2) R2 OUTPUT VOLTAGE PROGRAMMING GUIDE OUTPUT VOLTAGE (V) 2.5 TPS76901 DIVIDER RESISTANCE (kΩ)‡ R1 R2 174 169 3.3 287 169 3.6 324 169 4.0 383 169 5.0 523 169 VI 1 µF 1 IN OUT ≥ 1.7 V 3 VO R1 EN ≤ 0.9 V FB GND 2 ‡ 1% values shown. 5 4 4.7 µF R2 ESR = 0.2 Ω Figure 22. TPS76901 Adjustable LDO Regulator Programming POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 TPS76901, TPS76912, TPS76915, TPS76918, TPS76925 TPS76927, TPS76928, TPS76930, TPS76933, TPS76950 ULTRALOW-POWER 100-mA LOW-DROPOUT LINEAR REGULATORS SLVS203E – JUNE 1999 – REVISED MAY 2001 APPLICATION INFORMATION power dissipation and junction temperature Specified regulator operation is assured to a junction temperature of 125°C; the maximum junction temperature should be restricted to 125°C under normal operating conditions. This restriction limits the power dissipation the regulator can handle in any given application. To ensure the junction temperature is within acceptable limits, calculate the maximum allowable dissipation, PD(max), and the actual dissipation, PD, which must be less than or equal to PD(max). The maximum-power-dissipation limit is determined using the following equation: P T max * T J A + D(max) R qJA Where: TJmax is the maximum allowable junction temperature RθJA is the thermal resistance junction-to-ambient for the package, see the dissipation rating table. TA is the ambient temperature. ǒ Ǔ The regulator dissipation is calculated using: P D + VI * VO I O Power dissipation resulting from quiescent current is negligible. Excessive power dissipation will trigger the thermal protection circuit. regulator protection The TPS769xx PMOS-pass transistor has a built-in back diode that conducts reverse current when the input voltage drops below the output voltage (e.g., during power down). Current is conducted from the output to the input and is not internally limited. If extended reverse voltage operation is anticipated, external limiting might be appropriate. The TPS769xx features internal current limiting and thermal protection. During normal operation, the TPS769xx limits output current to approximately 350 mA. When current limiting engages, the output voltage scales back linearly until the overcurrent condition ends. While current limiting is designed to prevent gross device failure, care should be taken not to exceed the power dissipation ratings of the package. If the temperature of the device exceeds approximately 165°C, thermal-protection circuitry shuts it down. Once the device has cooled down to below approximately 140°C, regulator operation resumes. 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PACKAGE OPTION ADDENDUM www.ti.com 24-Jan-2013 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Qty Drawing Eco Plan Lead/Ball Finish (2) MSL Peak Temp Op Temp (°C) Top-Side Markings (3) (4) TPS76901DBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCFI TPS76901DBVRG4 ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCFI TPS76901DBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCFI TPS76901DBVTG4 ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCFI TPS76912DBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCGI TPS76912DBVRG4 ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCGI TPS76912DBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCGI TPS76912DBVTG4 ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCGI TPS76915DBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCHI TPS76915DBVRG4 ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCHI TPS76915DBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCHI TPS76915DBVTG4 ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCHI TPS76918DBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCII TPS76918DBVRG4 ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCII TPS76918DBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCII TPS76918DBVTG4 ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCII TPS76925DBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCJI Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 24-Jan-2013 Status (1) Package Type Package Pins Package Qty Drawing Eco Plan Lead/Ball Finish (2) MSL Peak Temp Op Temp (°C) Top-Side Markings (3) (4) TPS76925DBVRG4 ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCJI TPS76925DBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCJI TPS76925DBVTG4 ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCJI TPS76927DBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCKI TPS76927DBVRG4 ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCKI TPS76927DBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCKI TPS76927DBVTG4 ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCKI TPS76928DBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCLI TPS76928DBVRG4 ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCLI TPS76928DBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCLI TPS76928DBVTG4 ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCLI TPS76930DBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCMI TPS76930DBVRG4 ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCMI TPS76930DBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCMI TPS76930DBVTG4 ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCMI TPS76933DBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCNI TPS76933DBVRG4 ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCNI TPS76933DBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCNI Addendum-Page 2 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 24-Jan-2013 Status (1) Package Type Package Pins Package Qty Drawing Eco Plan Lead/Ball Finish (2) MSL Peak Temp Op Temp (°C) Top-Side Markings (3) (4) TPS76933DBVTG4 ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCNI TPS76950DBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCOI TPS76950DBVRG4 ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCOI TPS76950DBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCOI TPS76950DBVTG4 ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCOI (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) Only one of markings shown within the brackets will appear on the physical device. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 3 Samples PACKAGE OPTION ADDENDUM www.ti.com 24-Jan-2013 OTHER QUALIFIED VERSIONS OF TPS76901, TPS76912, TPS76915, TPS76918, TPS76925, TPS76927, TPS76928, TPS76930, TPS76933, TPS76950 : • Automotive: TPS76901-Q1, TPS76912-Q1, TPS76915-Q1, TPS76918-Q1, TPS76925-Q1, TPS76927-Q1, TPS76928-Q1, TPS76930-Q1, TPS76933-Q1, TPS76950-Q1 • Enhanced Product: TPS76901-EP NOTE: Qualified Version Definitions: • Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects • Enhanced Product - Supports Defense, Aerospace and Medical Applications Addendum-Page 4 PACKAGE MATERIALS INFORMATION www.ti.com 8-May-2013 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) TPS76901DBVR SOT-23 DBV 5 3000 178.0 9.0 B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant 3.23 3.17 1.37 4.0 8.0 Q3 TPS76901DBVT SOT-23 DBV 5 250 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TPS76912DBVR SOT-23 DBV 5 3000 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TPS76912DBVT SOT-23 DBV 5 250 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TPS76915DBVR SOT-23 DBV 5 3000 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TPS76915DBVT SOT-23 DBV 5 250 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TPS76918DBVR SOT-23 DBV 5 3000 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TPS76918DBVT SOT-23 DBV 5 250 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TPS76925DBVR SOT-23 DBV 5 3000 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TPS76925DBVT SOT-23 DBV 5 250 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TPS76927DBVR SOT-23 DBV 5 3000 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TPS76927DBVT SOT-23 DBV 5 250 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TPS76928DBVR SOT-23 DBV 5 3000 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TPS76928DBVT SOT-23 DBV 5 250 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TPS76930DBVR SOT-23 DBV 5 3000 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TPS76930DBVT SOT-23 DBV 5 250 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TPS76933DBVR SOT-23 DBV 5 3000 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 TPS76933DBVT SOT-23 DBV 5 250 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 8-May-2013 Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) TPS76950DBVR SOT-23 DBV 5 3000 178.0 9.0 TPS76950DBVT SOT-23 DBV 5 250 178.0 9.0 B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant 3.23 3.17 1.37 4.0 8.0 Q3 3.23 3.17 1.37 4.0 8.0 Q3 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) TPS76901DBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 TPS76901DBVT SOT-23 DBV 5 250 180.0 180.0 18.0 TPS76912DBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 TPS76912DBVT SOT-23 DBV 5 250 180.0 180.0 18.0 TPS76915DBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 TPS76915DBVT SOT-23 DBV 5 250 180.0 180.0 18.0 TPS76918DBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 TPS76918DBVT SOT-23 DBV 5 250 180.0 180.0 18.0 TPS76925DBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 TPS76925DBVT SOT-23 DBV 5 250 180.0 180.0 18.0 TPS76927DBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 TPS76927DBVT SOT-23 DBV 5 250 180.0 180.0 18.0 TPS76928DBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 TPS76928DBVT SOT-23 DBV 5 250 180.0 180.0 18.0 TPS76930DBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 Pack Materials-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 8-May-2013 Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) TPS76930DBVT SOT-23 DBV 5 250 180.0 180.0 18.0 TPS76933DBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 TPS76933DBVT SOT-23 DBV 5 250 180.0 180.0 18.0 TPS76950DBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 TPS76950DBVT SOT-23 DBV 5 250 180.0 180.0 18.0 Pack Materials-Page 3 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated