Sitronix ST7571 4 Gray Scale Dot Matrix LCD Controller/Driver 1. INTRODUCTION ST7571 is a driver & controller LSI for 4-level gray scale graphic dot-matrix liquid crystal display systems. This chip is 2 connected directly to a microprocessor, accepts Serial Peripheral Interface (SPI), I C or 8-bit parallel display data and stores in an on-chip display data RAM of 128 x 129 x 2 bits. It performs display data RAM write operation with no external operating clock to minimize power consumption. In addition, because it contains power supply circuits necessary to drive liquid crystal, it is possible to make a display system with the fewest components. 2. FEATURES 4-level (White, Light Gray, Dark Gray, Black) Gray Scale Display with PWM Method DDRAM Data [ 2n : 2n+1 ] Gray Scale 2n 2n + 1 0 0 White 0 1 Light gray 1 0 Dark gray 1 1 Black (Accessible column address, n = 0, 1, 2, ……, 125, 126, 127) Driver Output Circuits On-chip Low Power Analog Circuits - - On-chip oscillator circuit Applicable Duty Ratios - Build-in Voltage converter ( x8) - Various partial display - Voltage regulator (temperature gradient: -0.13%/°C) - Partial window moving & data scrolling 128 segment outputs / 128+1 common outputs - On-chip contrast control function (64 steps x 8) On-chip Display Data RAM - Voltage follower (LCD bias : 1/5 to 1/12) - Operating Voltage Range Capacity: 128 x 129 x 2= 33,024 bits Microprocessor Interface - Digital Power (VDD1): - Analog Power (VDD2, VDD3): 8-bit parallel interface supports 6800-series or 8080-series MCU - 4-line serial interface (4-Line SPI) - 3-line serial interface (3-Line 8-bit SPI) - - 2 I C serial interface 1.8V~3.3V (cover 1.7V~3.4V) 2.7V~3.3V (cover 2.6V~3.4V) Package Type - Application for COG ST7571 6800 , 8080 , 4-Line , 3-Line interface (without I2C interface) ST7571i I2C interface Sitronix Technology Corp. reserves the right to change the contents in this document without prior notice. Ver 1.5a 1/76 2009/7/21 ST7571 3. PAD ARRANGEMENT (COG) l l Chip Size : 7956um X 780um Bump Pitch : I/O PAD : 80um COM PAD : 33um SEG PAD : 27um l Bump Size : I/O PAD : 65um X 63 um COM/SEG PAD : 14um X 128um l l Bump Height : 15um Chip Thickness : 300 um Fig. 1 IC Pad Arrangement Ver 1.5a 2/76 2009/7/21 ST7571 4. PAD CENTER COORDINATES PAD No. Pin Name X Y PAD No. Pin Name X Y 1 COM[126] 3896.50 283.00 36 COM[56] 2741.50 283.00 2 COM[124] 3863.50 283.00 37 COM[54] 2708.50 283.00 3 COM[122] 3830.50 283.00 38 COM[52] 2675.50 283.00 4 COM[120] 3797.50 283.00 39 COM[50] 2642.50 283.00 5 COM[118] 3764.50 283.00 40 COM[48] 2609.50 283.00 6 COM[116] 3731.50 283.00 41 COM[46] 2576.50 283.00 7 COM[114] 3698.50 283.00 42 COM[44] 2543.50 283.00 8 COM[112] 3665.50 283.00 43 COM[42] 2510.50 283.00 9 COM[110] 3632.50 283.00 44 COM[40] 2477.50 283.00 10 COM[108] 3599.50 283.00 45 COM[38] 2444.50 283.00 11 COM[106] 3566.50 283.00 46 COM[36] 2411.50 283.00 12 COM[104] 3533.50 283.00 47 COM[34] 2378.50 283.00 13 COM[102] 3500.50 283.00 48 COM[32] 2345.50 283.00 14 COM[100] 3467.50 283.00 49 COM[30] 2312.50 283.00 15 COM[98] 3434.50 283.00 50 COM[28] 2279.50 283.00 16 COM[96] 3401.50 283.00 51 COM[26] 2246.50 283.00 17 COM[94] 3368.50 283.00 52 COM[24] 2213.50 283.00 18 COM[92] 3335.50 283.00 53 COM[22] 2180.50 283.00 19 COM[90] 3302.50 283.00 54 COM[20] 2147.50 283.00 20 COM[88] 3269.50 283.00 55 COM[18] 2114.50 283.00 21 COM[86] 3236.50 283.00 56 COM[16] 2081.50 283.00 22 COM[84] 3203.50 283.00 57 COM[14] 2048.50 283.00 23 COM[82] 3170.50 283.00 58 COM[12] 2015.50 283.00 24 COM[80] 3137.50 283.00 59 COM[10] 1982.50 283.00 25 COM[78] 3104.50 283.00 60 COM[8] 1949.50 283.00 26 COM[76] 3071.50 283.00 61 COM[6] 1916.50 283.00 27 COM[74] 3038.50 283.00 62 COM[4] 1883.50 283.00 28 COM[72] 3005.50 283.00 63 COM[2] 1850.50 283.00 29 COM[70] 2972.50 283.00 64 COM[0] 1817.50 283.00 30 COM[68] 2939.50 283.00 65 COMS1 1784.50 283.00 31 COM[66] 2906.50 283.00 66 SEG[0] 1714.50 283.00 32 COM[64] 2873.50 283.00 67 SEG[1] 1687.50 283.00 33 COM[62] 2840.50 283.00 68 SEG[2] 1660.50 283.00 34 COM[60] 2807.50 283.00 69 SEG[3] 1633.50 283.00 35 COM[58] 2774.50 283.00 70 SEG[4] 1606.50 283.00 Ver 1.5a 3/76 2009/7/21 ST7571 PAD No. Pin Name X Y PAD No. Pin Name X Y 71 SEG[5] 1579.50 283.00 106 SEG[40] 634.50 283.00 72 SEG[6] 1552.50 283.00 107 SEG[41] 607.50 283.00 73 SEG[7] 1525.50 283.00 108 SEG[42] 580.50 283.00 74 SEG[8] 1498.50 283.00 109 SEG[43] 553.50 283.00 75 SEG[9] 1471.50 283.00 110 SEG[44] 526.50 283.00 76 SEG[10] 1444.50 283.00 111 SEG[45] 499.50 283.00 77 SEG[11] 1417.50 283.00 112 SEG[46] 472.50 283.00 78 SEG[12] 1390.50 283.00 113 SEG[47] 445.50 283.00 79 SEG[13] 1363.50 283.00 114 SEG[48] 418.50 283.00 80 SEG[14] 1336.50 283.00 115 SEG[49] 391.50 283.00 81 SEG[15] 1309.50 283.00 116 SEG[50] 364.50 283.00 82 SEG[16] 1282.50 283.00 117 SEG[51] 337.50 283.00 83 SEG[17] 1255.50 283.00 118 SEG[52] 310.50 283.00 84 SEG[18] 1228.50 283.00 119 SEG[53] 283.50 283.00 85 SEG[19] 1201.50 283.00 120 SEG[54] 256.50 283.00 86 SEG[20] 1174.50 283.00 121 SEG[55] 229.50 283.00 87 SEG[21] 1147.50 283.00 122 SEG[56] 202.50 283.00 88 SEG[22] 1120.50 283.00 123 SEG[57] 175.50 283.00 89 SEG[23] 1093.50 283.00 124 SEG[58] 148.50 283.00 90 SEG[24] 1066.50 283.00 125 SEG[59] 121.50 283.00 91 SEG[25] 1039.50 283.00 126 SEG[60] 94.50 283.00 92 SEG[26] 1012.50 283.00 127 SEG[61] 67.50 283.00 93 SEG[27] 985.50 283.00 128 SEG[62] 40.50 283.00 94 SEG[28] 958.50 283.00 129 SEG[63] 13.50 283.00 95 SEG[29] 931.50 283.00 130 SEG[64] -13.50 283.00 96 SEG[30] 904.50 283.00 131 SEG[65] -40.50 283.00 97 SEG[31] 877.50 283.00 132 SEG[66] -67.50 283.00 98 SEG[32] 850.50 283.00 133 SEG[67] -94.50 283.00 99 SEG[33] 823.50 283.00 134 SEG[68] -121.50 283.00 100 SEG[34] 796.50 283.00 135 SEG[69] -148.50 283.00 101 SEG[35] 769.50 283.00 136 SEG[70] -175.50 283.00 102 SEG[36] 742.50 283.00 137 SEG[71] -202.50 283.00 103 SEG[37] 715.50 283.00 138 SEG[72] -229.50 283.00 104 SEG[38] 688.50 283.00 139 SEG[73] -256.50 283.00 105 SEG[39] 661.50 283.00 140 SEG[74] -283.50 283.00 Ver 1.5a 4/76 2009/7/21 ST7571 PAD No. Pin Name X Y PAD No. Pin Name X Y 141 SEG[75] -310.50 283.00 176 SEG[110] -1255.50 283.00 142 SEG[76] -337.50 283.00 177 SEG[111] -1282.50 283.00 143 SEG[77] -364.50 283.00 178 SEG[112] -1309.50 283.00 144 SEG[78] -391.50 283.00 179 SEG[113] -1336.50 283.00 145 SEG[79] -418.50 283.00 180 SEG[114] -1363.50 283.00 146 SEG[80] -445.50 283.00 181 SEG[115] -1390.50 283.00 147 SEG[81] -472.50 283.00 182 SEG[116] -1417.50 283.00 148 SEG[82] -499.50 283.00 183 SEG[117] -1444.50 283.00 149 SEG[83] -526.50 283.00 184 SEG[118] -1471.50 283.00 150 SEG[84] -553.50 283.00 185 SEG[119] -1498.50 283.00 151 SEG[85] -580.50 283.00 186 SEG[120] -1525.50 283.00 152 SEG[86] -607.50 283.00 187 SEG[121] -1552.50 283.00 153 SEG[87] -634.50 283.00 188 SEG[122] -1579.50 283.00 154 SEG[88] -661.50 283.00 189 SEG[123] -1606.50 283.00 155 SEG[89] -688.50 283.00 190 SEG[124] -1633.50 283.00 156 SEG[90] -715.50 283.00 191 SEG[125] -1660.50 283.00 157 SEG[91] -742.50 283.00 192 SEG[126] -1687.50 283.00 158 SEG[92] -769.50 283.00 193 SEG[127] -1714.50 283.00 159 SEG[93] -796.50 283.00 194 COM[1] -1784.50 283.00 160 SEG[94] -823.50 283.00 195 COM[3] -1817.50 283.00 161 SEG[95] -850.50 283.00 196 COM[5] -1850.50 283.00 162 SEG[96] -877.50 283.00 197 COM[7] -1883.50 283.00 163 SEG[97] -904.50 283.00 198 COM[9] -1916.50 283.00 164 SEG[98] -931.50 283.00 199 COM[11] -1949.50 283.00 165 SEG[99] -958.50 283.00 200 COM[13] -1982.50 283.00 166 SEG[100] -985.50 283.00 201 COM[15] -2015.50 283.00 167 SEG[101] -1012.50 283.00 202 COM[17] -2048.50 283.00 168 SEG[102] -1039.50 283.00 203 COM[19] -2081.50 283.00 169 SEG[103] -1066.50 283.00 204 COM[21] -2114.50 283.00 170 SEG[104] -1093.50 283.00 205 COM[23] -2147.50 283.00 171 SEG[105] -1120.50 283.00 206 COM[25] -2180.50 283.00 172 SEG[106] -1147.50 283.00 207 COM[27] -2213.50 283.00 173 SEG[107] -1174.50 283.00 208 COM[29] -2246.50 283.00 174 SEG[108] -1201.50 283.00 209 COM[31] -2279.50 283.00 175 SEG[109] -1228.50 283.00 210 COM[33] -2312.50 283.00 Ver 1.5a 5/76 2009/7/21 ST7571 PAD No. Pin Name X Y PAD No. Pin Name X Y 211 COM[35] -2345.50 283.00 246 COM[105] -3500.50 283.00 212 COM[37] -2378.50 283.00 247 COM[107] -3533.50 283.00 213 COM[39] -2411.50 283.00 248 COM[109] -3566.50 283.00 214 COM[41] -2444.50 283.00 249 COM[111] -3599.50 283.00 215 COM[43] -2477.50 283.00 250 COM[113] -3632.50 283.00 216 COM[45] -2510.50 283.00 251 COM[115] -3665.50 283.00 217 COM[47] -2543.50 283.00 252 COM[117] -3698.50 283.00 218 COM[49] -2576.50 283.00 253 COM[119] -3731.50 283.00 219 COM[51] -2609.50 283.00 254 COM[121] -3764.50 283.00 220 COM[53] -2642.50 283.00 255 COM[123] -3797.50 283.00 221 COM[55] -2675.50 283.00 256 COM[125] -3830.50 283.00 222 COM[57] -2708.50 283.00 257 COM[127] -3863.50 283.00 223 COM[59] -2741.50 283.00 258 COMS2 -3896.50 283.00 224 COM[61] -2774.50 283.00 259 PS0 -3858.00 -315.50 225 COM[63] -2807.50 283.00 260 VSS1 -3778.00 -315.50 226 COM[65] -2840.50 283.00 261 PS1 -3698.00 -315.50 227 COM[67] -2873.50 283.00 262 VDD1 -3618.00 -315.50 228 COM[69] -2906.50 283.00 263 PS2 -3538.00 -315.50 229 COM[71] -2939.50 283.00 264 VSS1 -3458.00 -315.50 230 COM[73] -2972.50 283.00 265 CSB -3378.00 -315.50 231 COM[75] -3005.50 283.00 266 RST -3298.00 -315.50 232 COM[77] -3038.50 283.00 267 A0 -3218.00 -315.50 233 COM[79] -3071.50 283.00 268 RWR -3138.00 -315.50 234 COM[81] -3104.50 283.00 269 ERD -3058.00 -315.50 235 COM[83] -3137.50 283.00 270 D0 -2978.00 -315.50 236 COM[85] -3170.50 283.00 271 D1 -2898.00 -315.50 237 COM[87] -3203.50 283.00 272 D2 -2818.00 -315.50 238 COM[89] -3236.50 283.00 273 D3 -2738.00 -315.50 239 COM[91] -3269.50 283.00 274 D4 -2658.00 -315.50 240 COM[93] -3302.50 283.00 275 D5 -2578.00 -315.50 241 COM[95] -3335.50 283.00 276 D6 -2498.00 -315.50 242 COM[97] -3368.50 283.00 277 D7 -2418.00 -315.50 243 COM[99] -3401.50 283.00 278 RST -2338.00 -315.50 244 COM[101] -3434.50 283.00 279 CSB -2258.00 -315.50 245 COM[103] -3467.50 283.00 280 VDD1 -2178.00 -315.50 Ver 1.5a 6/76 2009/7/21 ST7571 PAD No. Pin Name X Y PAD No. Pin Name X Y 281 VDD1 -2098.00 -315.50 316 V0I 702.00 -315.50 282 VDD1 -2018.00 -315.50 317 V0I 782.00 -315.50 283 VDD2 -1938.00 -315.50 318 V0S 862.00 -315.50 284 VDD2 -1858.00 -315.50 319 V0O 942.00 -315.50 285 VDD2 -1778.00 -315.50 320 V0O 1022.00 -315.50 286 VDD2 -1698.00 -315.50 321 XV0O 1102.00 -315.50 287 VDD3 -1618.00 -315.50 322 XV0O 1182.00 -315.50 288 VDD3 -1538.00 -315.50 323 XV0S 1262.00 -315.50 289 VSS3 -1458.00 -315.50 324 XV0I 1385.00 -315.50 290 VSS3 -1378.00 -315.50 325 XV0I 1465.00 -315.50 291 VSS2 -1298.00 -315.50 326 XV0I 1545.00 -315.50 292 VSS2 -1218.00 -315.50 327 XV0I 1625.00 -315.50 293 VSS2 -1138.00 -315.50 328 VDD1 1705.00 -315.50 294 VSS2 -1058.00 -315.50 329 VEXT 1785.00 -315.50 295 VSS1 -978.00 -315.50 330 OSC1 1865.00 -315.50 296 VSS1 -898.00 -315.50 331 DCPS 1945.00 -315.50 297 VSS1 -818.00 -315.50 332 VSS1 2025.00 -315.50 298 VSS1 -738.00 -315.50 333 CSEL 2105.00 -315.50 299 VDD2 -658.00 -315.50 334 VD1I 2185.00 -315.50 300 VDD2 -578.00 -315.50 335 VD1I 2265.00 -315.50 301 VDD2 -498.00 -315.50 336 VD1O 2345.00 -315.50 302 VDD2 -418.00 -315.50 337 VGO 2425.00 -315.50 303 VDD3 -338.00 -315.50 338 VGO 2505.00 -315.50 304 VDD3 -258.00 -315.50 339 VGS 2585.00 -315.50 305 MF2 -178.00 -315.50 340 VGI 2665.00 -315.50 306 MF1 -98.00 -315.50 341 VGI 2745.00 -315.50 307 MF0 -18.00 -315.50 342 VGI 2825.00 -315.50 308 DS0 62.00 -315.50 343 VGI 2905.00 -315.50 309 DS1 142.00 -315.50 344 VPP 2985.00 -315.50 310 VMO 222.00 -315.50 345 VPP 3065.00 -315.50 311 VMO 302.00 -315.50 346 VPP 3145.00 -315.50 312 VMO 382.00 -315.50 347 VE 3225.00 -315.50 313 VSS2 462.00 -315.50 348 DUMMY1 3341.00 -315.50 314 V0I 542.00 -315.50 349 DUMMY2 3421.00 -315.50 315 V0I 622.00 -315.50 350 DUMMY3 3501.00 -315.50 Ver 1.5a 7/76 2009/7/21 ST7571 PAD No. Pin Name X Y 351 DUMMY4 3581.00 -315.50 352 DUMMY5 3661.00 -315.50 353 DUMMY6 3741.00 -315.50 354 DUMMY7 3821.00 -315.50 Note: 1. CSEL=H. 2. Unit: um. Ver 1.5a 8/76 2009/7/21 ST7571 5. BLOCK DIAGRAM DB0 DB1 DB2 DB3 DB4 DB5 DB6(SI) DB7(SCL) ERD RWR A0 CSB RST PS0 PS1 PS2 2009/7/21 9/76 Ver 1.5a DS0 DS1 MF0 MF1 MF2 Fig.2 Block diagram ST7571 6. PIN DESCRIPTION 6.1 POWER SUPPLY Power Supply Pin Description Name I/O Description VDD1 Power VDD2 Power VDD3 Power VSS1 Power Ground for digital circuit. VSS1, VSS2 & VSS3 should be connected together by FPC. VSS2 Power Ground for analog circuit (booster), it should be connected together by FPC. VSS3 Power Ground for sensitive circuit (Vref regulator), it should be connected together by FPC. Power supply for digital circuit. If VDD1 is the same level as VDD2, they can be connected together by FPC. Power supply for analog circuit (booster). Power supply for sensitive circuit (internal Vref regulator). VDD3 is the same level as VDD2, and they should be connected together by FPC. 6.2 LCD DRIVER SUPPLY LCD Driver Supply Pin Description Name I/O Description V0 is the LCD driving voltage for common circuits at negative frame. V0O V0I V0O is the output of V0 regulator. V0S is the feedback of V0 regulator. Power V0I is the V0 input of common circuits. Be sure that: V0 ≥ VG > VM > VSS ≥ XV0 (under operation). V0S V0O, V0I & V0S should be connected together by FPC. XV0 is the LCD driving voltage for common circuits at positive frame. XV0O XV0I Power XV0S XV0O is the output of XV0 regulator. XV0S is the feedback of XV0 regulator. XV0I is the XV0 input of common circuits. XV0O, XV0I & XV0S should be connected together by FPC. VG is the LCD driving voltage for segment circuits. A storage capacitor on FPC or system for VG is required. VGO VGI Power VGS VGO is the output of VG regulator. VGS is the feedback of VG regulator. VGI is the VG input of segment circuits. VGO, VGI & VGS should be connected together by FPC. Be aware that: 1.8V ≤ VG < VDD2. VMO is the output of VM, which is the LCD driving voltage for common circuits. A storage capacitor on FPC or system for VM is required. Be aware that: 0.7V < VM < VDD2. VMO Power When the internal power circuit is active, the VG and VM are generated according to the bias setting as shown below: LCD bias VG VM 1/N bias (2/N) x V0 (1/N) x V0 NOTE: N = 5 to 12 Ver 1.5a 10/76 2009/7/21 ST7571 6.3 SYSTEM CONTROL System Control Pin Description Name I/O VEXT O OSC1 I Description Reserved for testing, must set with floating. Connect OSC1 to VDD1. This pin selects the supply voltage source of the digital circuit. DCPS I If system VDD1 is 3.0V ~ 3.3V, set DCPS=L to select Internal Regulator as digital circuit power. If system VDD1 is 1.8V ~ 2.8V, set DCPS=H to select VDD1 as digital circuit power. Select COM output sequence. CSEL I Fix CSEL=H to enable “Interlace” mode (recommended). In interlace mode, COM2n (even number) is in the one side, COM(2n+1) (odd number) is in the opposite side. Short VD1I with VD1O externally by ITO or FPC. VD1I VD1O O VD1I is the power supply pin of the internal digital circuits. When DCPS=L, VD1O is the output of the internal digital power regulator. When DCPS=H, VD1O is provided by VDD1. VE I When writing EEPROM, VE should be pull-high externally. VPP I When writing EEPROM, it needs external power supply voltage. MF[2:0] I Reserve for testing only, recommend setting to [ MF2,MF1,MF0 = 0,0,0 ]. DS[1:0] I Reserve for testing only, recommend setting to [ DS1,DS0 = 0,0 ]. Notes: 1. When system control pin set to “H”, it should be connected to VDD1. 2. When system control pin set to “L”, it should be connected to VSS1. 3. CSEL function is illustrated as the figure below: COM127 COM126 COM125 COM124 CSEL=“H” COM5 COM4 COM3 COM2 COM1 COM0 1 2 62 63 64 65 194 195 196 256 257 258 Gold Bump Face Up Ver 1.5a 11/76 2009/7/21 ST7571 6.4 MICROPROCESSOR INTERFACE Microprocessor Interface Pin Description Name I/O RST I Description Reset input pin. When RST is “L”, initialization is executed. PS[2:0] select the microprocessor interface: PS[2:0] I PS2 PS1 PS0 Selected Interface Mode L L H Parallel 8080 MPU Interface L H H Parallel 6800 MPU Interface L L L Serial 3-Line Interface L H L Serial 4-Line Interface H L L Serial I C Interface 2 * NOTE: It is impossible to read data from the on-chip DDRAM. For detailed interface connection, please refer to Section 7.1 and Application Circuits. Chip select input pin. 2 CSB I The interface is enabled only when CSB is "L" (except I C Interface). When CSB is non-active, DB[7:0] are high impedance. 2 CSB is not used in I C interface; it is recommended to fix CSB at “H” by VDD1. Register select input pin. A0 I A0 = “H”: DB0 to DB7 are display data. A0 = “L”: DB0 to DB7 are control command. 2 A0 is not used in serial 3-Line and I C interface; it is recommended to fix A0 at “H” by VDD1. Write execution control pin. RWR I PS2 PS1 PS0 MPU Type RWR L H H 6800-series R/W L L H 8080-series /WR Description Write control input pin. Keep this pin at “L” level. The data on DB[7:0] are latched at the rising edge of the /WR signal. Read / Write execution control pin. ERD Ver 1.5a I PS2 PS1 PS0 MPU Type ERD L H H 6800-series E L L H 8080-series /RD 12/76 Description The data on DB[7:0] are latched at the falling edge of the E signal. Keep this pin at “H” level. 2009/7/21 ST7571 Name I/O Description When using parallel interface: I DB[7:0] are 8-bit data bus. DB[7:0] are connected to the 8-bit data bus of a standard microprocessor. When chip select is not active (CSB=H), DB[7:0] are high impedance. When using 3-Line/4-Line serial interface: DB7: serial input data (SID). I DB6: serial input clock (SCLK). DB[5:0] are high impedance and must be fixed to “H”. DB[7:0] When chip select is not active (CSB=H), DB[7:0] are high impedance. 2 When using I C interface: DB7: SCL, serial clock input. I/O DB[6:4]: SDA_IN, serial input data. 2 DB[3:2]: SDA_OUT, output the acknowledge signal of the I C interface protocol. DB[6:2] must be connected together (SDA). *1 2 DB[1:0]: SA[1:0], I C slave address bits of ST7571. Must connect to VDD1 or VSS1. 1. 2 By connecting SDA_OUT to SDA_IN externally, the SDA line becomes fully I C interface compatible. Separating acknowledge-output from serial data input is advantageous for chip-on-glass (COG) applications. In COG applications, the ITO resistance and the pull-up resistor will form a voltage divider, which affects acknowledge-signal level. Larger ITO resistance will raise the acknowledged-signal level and system cannot recognize this level as a valid logic “0” level. By separating SDA_IN from SDA_OUT, the IC can be used in a mode that ignores the acknowledge-bit. For applications which check acknowledge-bit, it is necessary to minimize the ITO resistance of the SDA_OUT trace to guarantee a valid low level. 2. After VDD1 is turned ON, any MPU interface pins cannot be left floating. Ver 1.5a 13/76 2009/7/21 ST7571 6.5 LCD DRIVER OUTPUTS LCD Driver Output Pin Description Name I/O Description LCD segment driver outputs. The display data and frame signal control the output . Display Data SEG0 to O SEG127 Frame Segment Driver Output Voltage Normal Display Reverse Display H Positive VG VSS H Negative VSS VG L Positive VSS VG L Negative VG VSS VSS VSS Display off / Power save mode LCD common driver outputs. The internal scan signal and frame signal control the output voltage. COM0 to O COM127 Scan Signal Frame Common Driver Output Voltage H Positive XV0 H Negative V0 L Positive VM L Negative VM Display off / Power save mode COMS2 O COMS1 VSS Common output for the icons. The outputs at COMS1 and COMS2 are the same. When not used, these pins should be left open. Recommend I/O Resistance PIN Name ITO Resister PS[2:0], OCS1, VEXT, DCPS, MF[2:0], DS[1:0] <5KΩ VDD1, VDD2, VDD3, VSS1, VSS2, VSS3, VPP, VD1I, VD1O <100Ω CSB , ERD, RWR, A0, DB[7:0], VE <1KΩ V0, VG, VM, XV0, VD1 <500Ω RST <10KΩ Note: 1. These Limitations include the bottleneck of ITO layout. 2. Keep the ITO resistance of COM0 ~ COM127 be equal, and so it is of SEG0 ~ SEG127. 3. If using I C interface mode, the resistance of SDA signal is recommended to be lower than 300Ω 2 (if the system pull up resistor is 4.7KΩ). 4. If LCD panel size is larger than 1.5”, the resistance limitations will be lower. 5. To avoid the noise in different power system affect other power system, please separate different power source on ITO layout. Please refer to the ITO Layout Reference. 6. The V0, XV0 and VG power circuits have output pins, input pins and a sensor input. To avoid the power noise affects the sensor of the power circuits. The trace should be separated by ITO and should be connected together by FPC. Ver 1.5a 14/76 2009/7/21 ST7571 ITO Layout Reference VSS 1 VSS1 VSS1 VSS1 VSS2 VSS 2 VSS2 VSS2 VSS3 VSS3 VDD3 VDD3 VDD2 VDD 2 VDD2 VDD2 VDD1 VDD1 VDD1 VG I VG I VG I VG I VGS VGO VGO XV 0 I XV 0 I XV 0 I XV 0 I XV0S XV0O XV0O V0O V0O V0S V0 I V0 I V0 I V0 I 2009/7/21 15/76 Ver 1.5a ST7571 7. FUNCTIONAL DESCRIPTION 7.1 MICROPROCESSOR INTERFACE Chip Select Input CSB pin is used for chip selection. ST7571 can interface with an MPU when CSB is “L”. When CSB is “H”, the inputs of A0, ERD and RWR with any combination will be ignored and DB[7:0] are high impedance. In 3-Line and 4-Line serial interface, the internal shift register and serial counter are reset when CSB is “H”. Parallel / Serial Interface ST7571 has types of interface for kinds of MPU. The MPU interface is selected by PS[2:0] pins as shown in Table 1. The read-function is not available. Table 1 Parallel / Serial Interface Mode PS2 PS1 PS0 Type CSB A0 ERD RWR L L /RD /WR H Parallel CSB A0 L H E R/W L L --L CSB ----Serial L H A0 H L L --------Note: The un-used pins are marked as “---” and should be fixed to “H” by VDD1. MPU Interface 8080-series parallel interface 6800-series parallel interface 3-Line SPI interface 4-Line SPI interface 2 I C Interface Parallel Interface (PS2 = “L” & PS0 = “H”) The 8-bit data bus is used in parallel interface and the type of MPU is selected by PS1 as shown in Table 2. The type of data transfer is determined by signals at A0, ERD and RWR as shown in Table 3. Table 2 Microprocessor Selection for Parallel Interface PS1 L H Common A0 L H CSB CSB CSB A0 A0 A0 ERD RWR /RD /WR E R/W Table 3 Parallel Data Transfer 6800-series ERD (E) H H DB[7:0] DB[7:0] DB[7:0] 8080-series RWR (R/W) L L ERD (/RD) H H MPU bus 8080-series 6800-series Description RWR (/WR) L L Writes to internal register (instruction) Display data write Serial Interface Selection By setting PS[2:0], one of the Serial Interfaces can be selected. In 3-Line or 4-Line SPI mode, the internal 8-bit shift register and 3-bit counter are reset when IC is not active (CSB=“H”). Serial mode PS[2:0] CSB A0 ERD RWR DB[7:0] 3-Line SPI L, L, L CSB --- --- --- DB7=SID, DB6=SCLK 4-Line SPI L, H, L CSB A0 --- --- DB[5:0]= --- H, L, L --- --- --- --- 2 2 I C SPI Refer to I C Interface. DB7=SCL, DB[6:4]=SDA_IN, DB[3:2]=SDA_OUT, DB[1:0]=SA[1:0] Note: The un-used pins are marked as “---” and should be fixed to “H” by VDD1. Note: 1. The pin setting to be “H” should connect to VDD1. 2. The pin setting to be “L” should connect to VSS1. Ver 1.5a 16/76 2009/7/21 ST7571 4-Line SPI Mode (PS0 = “L”, PS1 = “H”, PS2 = “L”) When IC is active (CSB=“L”), serial data (SID) and serial clock (SCLK) inputs are enabled. When ST7571 is not active (CSB=“H”), the internal 8-bit shift register and 3-bit counter are reset. The display data/command indication is controlled by the register selection pin (A0). The signals transferred on data bus will be display data when A0 is high and will be instruction when A0 is low. The read feature is not supported. Serial data on SID is latched at the rising edge of serial clock th on SCLK. After the 8 serial clock, the serial data will be processed as 8-bit parallel data. The DDRAM column address pointer will be increased by one automatically after each byte of DDRAM access. Fig. 3 4-line SPI Timing 3-Line SPI Mode (PS0 = “L”, PS1 = “L”, PS2= “L”) In 3-Line mode, default message from MCU is command. The Display Data Length command (2 bytes command) must be set before writing display data into Display Data RAM, after the display data is sent over, the next message is turned to be command. Signals on SID are latched at the rising edge of SCLK. After receiving 8-bit display data, the column address pointer of DDRAM will be increased by one automatically. (1) Set Page and Column Address. Command (2) DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Set Page Address 1 0 1 1 P3 P2 P1 P0 Set Column Address MSB 0 0 0 1 0 X7 X6 X5 Set Column Address LSB 0 0 0 0 X4 X3 X2 X1 Set Display Data Length (DDL) command and No. of Data Bytes. Command Set Display Data Length (DDL) DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 1 1 0 1 0 0 0 Set No. of Data Bytes (3) Display Data Length (bytes) This figure is an example for 104 Data bytes to be transferred. Fig. 4 3-Line SPI Timing (A0 is not used) “Set Display Data Length” is used in 3-Line SPI mode only. It is 2-byte instruction: the first one informs the LCD driver and the second one sets the counter of input data (in bytes). After these two commands, the following messages will be data, till the data counter is cleared. If data is stopped during transmitting, it is not a valid data. A new data (8 bits) must write again. NOTE: If CSB is “H” before the end of a transmission, it stops this transfer and the next access should be re-initialized. Ver 1.5a 17/76 2009/7/21 ST7571 2 I C Interface (PS0= “L”, PS1= “L”, PS2= “H”) 2 The I C Interface is for bi-directional, two-line communication between different ICs or modules. The two lines are a Serial Data line (SDA) and a Serial Clock line (SCLK). Both lines must be connected with a pull-up resistor which drives SDA and SCLK to high when the bus is not busy. Data transfer can be initiated only when the bus is not busy. 2 2 The I C interface of ST7571 supports write access and read of acknowledge-bit. The I C interface receives and executes 2 the commands sent via the I C Interface. It also receives RAM data and sends it to the Display RAM. BIT TRANSFER One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse because changes of SDA line at this time will be interpreted as START or STOP. Bit transfer is illustrated in Fig 5. Fig 5. Bit transfer START AND STOP CONDITIONS Both SDA and SCLK lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of SDA, while SCLK is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of SDA while SCLK is HIGH is defined as the STOP condition (P). The START and STOP conditions are illustrated in Fig 6. Fig 6. Ver 1.5a Definition of START and STOP conditions 18/76 2009/7/21 ST7571 SYSTEM CONFIGURATION The system configuration is illustrated in Fig 7 and some word-definitions are explained below: - Transmitter: the device which sends the data to the bus. - Receiver: the device which receives the data from the bus. - Master: the device which initiates a transfer, generates clock signals and terminates a transfer. - Slave: the device which is addressed by a master. - Multi-Master: more than one master can attempt to control the bus at the same time without corrupting the message. - Arbitration: the procedure to ensure that, if more than one master tries to control the bus simultaneously, only one is allowed to do so and the message is not corrupted. - Synchronization: procedure to synchronize the clock signals of two or more devices. Fig 7. System configuration ACKNOWLEDGEMENT Each byte of eight bits is followed by an acknowledge-bit. The acknowledge-bit is a HIGH signal put on SDA by the transmitter during the time when the master generates an extra acknowledge-related clock pulse. A slave receiver which is addressed must generate an acknowledge-bit after the reception of each byte. A master receiver must also generate an acknowledge-bit after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges must pull-down the SDA line during the acknowledge-clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge-related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal an end-of-data to the slave transmitter by not generating a acknowledge-bit on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a 2 STOP condition. Acknowledgement on the I C Interface is illustrated in Fig 8. 2 Fig 8. Acknowledgement of I C Interface 2 I C INTERFACE PROTOCOL ST7571 supports command/data write to addressed slaves on the bus. 2 Before any data is transmitted on the I C Interface, the device, which should respond, is addressed first. Four 7-bit slave addresses (0111100, 0111101, 0111110 and 0111111) are reserved for ST7571. The least significant 2 bits of the slave address is set by connecting SA0 and SA1 to either logic 0 (VSS1) or logic 1 (VDD1). 2 The I C Interface protocol is illustrated in Fig 9. Ver 1.5a 19/76 2009/7/21 ST7571 2 The sequence is initiated with a START condition (S) from the I C Interface master, which is followed by the slave address. 2 All slaves with the corresponding address acknowledge in parallel, all the others will ignore the I C Interface transfer. After acknowledgement, one or more command words are followed and define the status of the addressed slaves. A command word consists of a control byte, which defines Co and A0, and a data byte. The last control byte is tagged with a cleared most significant bit (i.e. the continuation bit Co). After a control byte with a cleared Co bit, only data byte(s) will follow. The state of the A0 bit defines whether the following data bytes are interpreted as commands or as RAM data. All addressed slaves on the bus also acknowledge the control and data bytes. After the last control byte either a series of display data bytes or command data bytes may follow (depending on the A0 bit setting). If the A0 bit of the last control byte is set to logic 1, these data bytes (display data bytes) will be stored in the display RAM at the address specified by the internal data pointer. The data pointer is automatically updated and the data is directed to the intended ST7571 device. If the A0 bit of the last control byte is set to logic 0, these data bytes (command data byte) will be decoded and the setting of ST7571 will be changed according to the received commands. Only the addressed slave makes the acknowledgement after each byte. At the end of the transmission the bus master issues a STOP condition (P). If no acknowledge is generated by the master after a byte, the driver stops transferring data to A0 Co Co=0 A0 Co=1 A0 SA1 SA0 R/W Co R/W A0 SA1 SA0 the master. Fig 9. Co 0 1 Ver 1.5a 2 I C Interface protocol Last control byte. Only a stream of data bytes is allowed to follow. This stream may only be terminated by a STOP or RE-START condition. Another control byte will follow the data byte. 20/76 2009/7/21 ST7571 Data Transfer ST7571 uses bus holder and internal data bus for data transfer by the MPU. When writing data from the MPU to on-chip RAM, data is automatically transferred from the bus holder to the RAM as shown in Fig. 10 and Fig. 11. Fig. 10 External Timing from MPU Fig. 11 Ver 1.5a Internal Timing of IC 21/76 2009/7/21 ST7571 7.2 DISPLAY DATA RAM (DDRAM) The Display Data RAM stores pixel data for the LCD. It is 129-row by 128-column addressable array. Each pixel can be selected when the page and column addresses are specified. The 129 rows are divided into 16 pages of 8 lines and the 17 th page with a single line (DB0 only). Data is written to the 8 lines of each page directly through DB0 to DB7. The display data of DB0 to DB7 from the microprocessor correspond to the LCD common lines. The LCD controller and MPU interface operate independently, data can be written into RAM at the same time when data is being displayed without flicker on LCD. Page Address Circuit It incorporates 4-bit Page Address register changed by only the “Set Page” instruction. Page Address 16 is a special RAM area for the icons and display data DB0 is only valid. The page address is set from 0 to 15, and Page 16 is for Icon page. Line Address Circuit This circuit assigns DDRAM a Line Address corresponding to the first line (COM0) of the display. Therefore, by setting Line Address repeatedly, it is possible to realize the screen scrolling and page switching without changing the contents of on-chip RAM. It incorporates 7-bit Line Address register changed by only the initial display line instruction and 7-bit counter circuit. At the beginning of each LCD frame, the contents of register are copied to the line counter which is increased by CL signal and generates the line address for transferring the 128-bit RAM data to the display data latch circuit. When icon is enabled by setting icon control register, display data of icons are not scrolled because the MPU can not access Line Address of icons. Column Address Circuit When set Column Address MSB / LSB instruction is issued, 7-bit (X[7:1]) are set and lowest bit (X0) is set to “0”. The internal column address (X[7:0]) is increased by 1 automatically after each byte of data access (write data). After sequential access twice, the column address (X[7:1]) will point to the next column address. Please refer to Fig. 12. Segment Control Circuit This circuit controls the display data by the display ON / OFF, reverse display ON / OFF and entire display ON / OFF instructions without changing the data in the Display Data RAM. SEG Output Column Address X[7:1] Internal column address X[7:0] Display Data (MX=0) LCD panel display Display data (MX=1) LCD panel display SEG 0 SEG 1 SEG 2 SEG 3 … SEG 124 SEG 125 SEG 126 SEG 127 00H 01H 02H 03H … 7CH 7DH 7EH 7FH 00 01 02 03 04 05 06 07 … F8 F9 FA FB FC FD FE FF 1 1 1 0 0 1 0 0 … 1 1 1 0 0 1 0 0 0 0 0 1 1 0 1 1 … 0 0 0 1 1 0 1 1 … … Fig. 12 The Relationship between the Column Address and The Segment Outputs Ver 1.5a 22/76 2009/7/21 ST7571 7.3 LCD DISPLAY CIRCUITS Oscillator This is on-chip Oscillator without external resistor. When the internal oscillator is used, this pin must connect to VDD1; when the external oscillator is used, this pin could be input pin. This oscillator signal is used in the voltage converter and display timing generation circuit. Display Timing Generator Circuit This circuit generates some signals to be used for displaying LCD. The display clock, CL (internal), generated by oscillation clock, generates the clock for the line counter and the signal for the display data latch. The line address of on-chip RAM is generated in synchronization with the display clock and the display data latch circuit latches the 128-bit display data in synchronization with the display clock. The display data, which is read to the LCD driver, is completely independent of the access to the display data RAM from the microprocessor. The display clock generates an LCD AC signal (FR) which enables the LCD driver to make an AC drive waveform, and also generates an internal common timing signal and start signal to the common driver. The frame signal or the line signal changes the M by setting internal instruction. Driving waveform and internal timing signal are shown in Fig. 13. 127 128 0 1 2 3 4 5 6 7 8 9 126 120 122 124 128 121 123 125 127 0 10 11 1 2 3 4 CL(Internal) FR(Internal) Frame COM0 COM10 SEGn Fig. 13 Frame AC Driving Waveform (Duty Ratio: 1/129) Fig. 14 Ver 1.5a N-Line Inversion Driving Waveform (N=5,Duty Ratio=1/129) 23/76 2009/7/21 ST7571 Partial Display on LCD The ST7571 realizes the Partial Display function on LCD with low-duty driving for saving power consumption and showing the various display duty. To show the various display duty on LCD, LCD driving duty and bias are programmable via the instruction. And, built-in power supply circuits are controlled by the instruction for adjusting the LCD driving voltages. The partial display duty ratio could be set from 16 ~ 128. If the partial display region is out of the Max. Display range, it would be no operation. -COM0 -COM1 -COM2 -COM3 -COM4 -COM5 -COM6 -COM7 -COM8 -COM9 -COM10 -COM11 -COM12 -COM13 -COM14 -COM15 -COM16 -COM17 -COM18 -COM19 -COM20 -COM21 -COM22 -COM23 Fig. 15 Reference Example for Partial Display -COM0 -COM1 -COM2 -COM3 -COM4 -COM5 -COM6 -COM7 -COM8 -COM9 -COM10 -COM11 -COM12 -COM13 -COM14 -COM15 -COM16 -COM17 -COM18 -COM19 -COM20 -COM21 -COM22 -COM23 Fig. 16 Partial Display (Partial Display Duty=16, initial COM0=0) Ver 1.5a 24/76 2009/7/21 ST7571 -COM0 -COM1 -COM2 -COM3 -COM4 -COM5 -COM6 -COM7 -COM8 -COM9 -COM10 -COM11 -COM12 -COM13 -COM14 -COM15 -COM16 -COM17 -COM18 -COM19 -COM20 -COM21 -COM22 -COM23 Fig. 17 Moving Display (Partial Display Duty=16, initial COM0=8) Ver 1.5a 25/76 2009/7/21 ST7571 7.4 POWER SUPPLY CIRCUITS The Power Supply circuits generate the voltage levels necessary to drive liquid crystal driver circuits with low power consumption and the fewest components. There are voltage converter circuits, voltage regulator circuits, and voltage follower circuits. They are controlled by power control instruction. Voltage Regulator Circuits The internal Voltage Regulator circuit provides the liquid crystal operating voltage (V0) by adjusting resistors (SRR and EV). The parameter “SRR” can be set by “Select Regulator Register”. The parameter “EV” can be set by “Set Electronic Volume Register”, and the range of EV is 0~63. (63- EV) V0 = SRR x (1 - ——————) x 2.1 210 Table 5 Internal Regulator Ratio depending on 3-bit Data (R2 R1 R0) 3-bit data settings (R2 R1 R0) 000 001 010 011 100 101 110 111 2.3 3.0 3.7 4.4 5.1 5.8 6.5 7.2 SRR (Select Regulator Ratio) Fig. 18 shows V0 voltage measured by adjusting regulator register ratio and 6-bit electronic registers for each temperature coefficient at Ta = 25°C. The recommended range of EV setting is level 16 ~ 47. 16 14 12 000 001 10 010 011 8 100 101 6 110 111 4 2 63 60 57 54 51 48 45 42 39 36 33 30 27 24 21 18 15 9 12 6 3 0 0 Fig. 18 Electronic Volume Level (25°C) Ver 1.5a 26/76 2009/7/21 ST7571 Voltage Follower Circuits V0 is resistively divided into two voltage levels (VG, VM), and those output impedance are converted by the Voltage Follower for increasing drive capability. Table 6 shows the relationship between VG to VM level and each duty ratio. Table 6 The Relationship between V1 to V4 Level and Each Duty Ratio LCD Bias VG VM Remarks 1/N 2/N x V0 1/N x V0 N = 5 to 12 Booster Efficiency The Booster Efficiency Command could be used to choose the best Booster performance. Booster Efficiency (Level1~4) can easily set the best Booster performance with suitable current consumption. If the Booster Efficiency is set to a higher level (level2 is higher than level1), the Boost Efficiency is better than lower level, and it just needs few more power consumption current. When the LCD Panel loading is heavier, the performance of Booster Efficiency will be lower. We could select higher BE level to improve the efficiency with just few more current increased. Ver 1.5a 27/76 2009/7/21 ST7571 7.5 RESET CIRCUITS Setting RST to “L” can initialize internal function. RST pin is connected to the reset pin of MPU and initialization by RST pin is essential before operating. Please note the hardware reset is not same as the software reset. When RST becomes “L”, the hardware reset procedure will start. When RESET instruction is executed, the software reset procedure will start. The procedure is listed below: Procedure Hardware Reset Software Reset Clear Serial Counter and Shift Register (if using Serial Interface) V V Page Address, P[3:0]=0 (Page 0) V V Column Address, X[7:0]=00h (Column 0) V V Display ON/OFF, D=0 (Display OFF) V X Reverse Display, REV=0 (Normal) V X Entire Display ON, EON=0 (Normal) V X Icon Control, ION=0 (OFF) V X Start Line, S[6:0]=0 (1 line of DDRAM) V V COM0, C[6:0]=0 (COM0 Pin) V X Display Duty, L[7:0]=0 (1/129) V X N-Line, N[4:0]=0 (N-Line OFF) V X Power Control, VC=0, VR=0, VF=0 (Internal Power OFF) V X Booster Efficiency, BE[1:0]=0,1 (Level 2) V X Regulator Resistor, R[2:0]=0,0,0 V V Contrast Control, EV[5:0]=20h V V LCD Bias, BS[2:0]=1,1,1 (1/12 bias) V X Frame Rate, FR[3:0]=0,0,0,0 (77Hz) V X COM Scan Direction, MY=0 (Normal) V X SEG Scan Direction, MX=0 (Normal) V X Oscillator Circuit: OFF V X Power-Save Mode, P=0 (Release) V X Display Data Length, DL[7:0]=00h (for 3-Line serial interface only) V V st After power-on, RAM data are undefined and the display status is “Display OFF”. It’s recommended to initialize the whole DDRAM (ex: fill all 00h or write a display pattern) before turning the Display ON (including the ICON RAM as well). Besides, the system power is not stable at the time that the power is just turned ON. After the system power is stable, a hardware reset is required to initialize internal registers. Ver 1.5a 28/76 2009/7/21 ST7571 8. INSTRUCTIONS Instruction A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 1 1 1 0 0 0 0 0 FR3 FR2 FR1 FR0 BE1 BE0 -- 0 1 0 Set Mode Write Display Data Description Section 2-byte instruction FR[3:0]: Set frame frequency Write data 9.1.1 BE[1:0]: Set booster efficiency Write data into DDRAM 9.1.2 ION=0: Disable Icon function Set Icon 0 0 1 0 1 0 0 0 1 ION ION=1: Enable Icon function 9.1.3 and set Page Address = 16 Set Page Address 0 0 1 0 1 1 P3 P2 P1 P0 Set Page Address 9.1.4 Set Column Address (MSB) 0 0 0 0 0 1 0 X7 X6 X5 Set MSB of Column Address 9.1.5 Set Column Address (LSB) 0 0 0 0 0 0 X4 X3 X2 X1 Set LSB of Column Address 9.1.6 Display ON/OFF 0 0 1 0 1 0 1 1 1 D D=0: Display OFF 9.1.7 D=1: Display ON 0 0 0 1 0 0 0 0 -- -- 2-byte instruction. Specify Line Address for the 1st display line Set Display Start Line 0 0 -- S6 S5 S4 S3 S2 S1 S0 0 0 0 1 0 0 0 1 -- -- 0 0 -- C6 C5 C4 C3 C2 C1 C0 0 0 0 1 0 0 1 0 -- -- 2-byte instruction. Set display 0 0 L7 L6 L5 L4 L3 L2 L1 L0 duty 0 0 0 1 0 0 1 1 -- -- 2-byte instruction. Set N-line 0 0 -- -- -- N4 N3 N2 N1 N0 inversion counter Release N-line Inversion 0 0 1 1 1 0 0 1 0 0 Reverse Display 0 0 1 0 1 0 0 1 1 REV Set COM0 9.1.8 of DDRAM (vertical scrolling). 2-byte instruction. Specify a COM pin to be COM0 (moving 9.1.9 partial display window). Set Display Duty 9.1.10 Set N-line Inversion 9.1.11 Exit N-line inversion mode 9.1.12 REV=0: Normal display 9.1.13 REV=1: Reverse display EON=0: Normal display Entire Display ON 0 0 1 0 1 0 0 1 0 EON 9.1.14 EON=1: Entire display ON Ver 1.5a 29/76 2009/7/21 ST7571 Instruction A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Power Control 0 0 0 0 1 0 1 VC VR VF Select Regulator Register 0 0 0 0 1 0 0 R2 R1 R0 Description Section Set internal power ON/OFF 9.1.15 Select internal Regulator 9.1.16 resistor 0 0 1 0 0 0 0 0 0 1 0 0 -- -- EV5 EV4 EV3 EV2 EV1 EV0 0 0 0 1 0 1 0 B2 B1 B0 2-byte instruction. Select EV for Set Contrast Select LCD bias 9.1.17 internal Regulator’s reference Select LCD bias 9.1.18 Set COM scan direction: Set COM Scan Direction 0 0 1 1 0 0 MY -- -- -- MY=0: Normal direction 9.1.19 MY=1: Reverse direction Set SEG scan direction: Set SEG Scan Direction 0 0 1 0 1 0 0 0 0 MX MX=0: Normal direction 9.1.20 MX=1: Reverse direction Oscillator ON 0 0 1 0 1 0 1 0 1 1 Set Power-Save Mode 0 0 1 0 1 0 1 0 0 P Turn ON internal Oscillator 9.1.21 P=0: Normal mode 9.1.22 P=1: Enable Power-Save mode Release Power-Save Mode 0 0 1 1 1 0 0 0 0 1 Exit Power-Save mode 9.1.23 RESET 0 0 1 1 1 0 0 0 1 0 Software reset 9.1.24 -- -- 1 1 1 0 1 0 0 0 2-byte instruction. Set the data -- -- DL7 DL6 DL5 DL4 DL3 DL2 DL1 DL0 NOP 0 0 1 1 1 0 0 0 1 1 No operation 9.1.26 Reserved 0 0 1 1 1 0 0 0 0 0 Do NOT use -- Reserved 0 0 1 1 1 0 1 1 1 0 Do NOT use -- Reserved 0 0 1 1 1 1 -- -- -- -- Reserved for testing -- Extension Command Set1 0 0 1 1 1 1 1 1 0 TE1 TE1=1: Enter extension Mode1 9.1.27 Extension Command Set2 0 0 1 1 0 1 0 0 0 TE2 TE2=1: Enter extension Mode2 9.1.28 Extension Command Set3 0 0 0 1 1 1 1 0 1 TE3 TE3=1: Enter extension Mode3 9.1.29 Set Display Data Length Ver 1.5a 9.1.25 30/76 counter in 3-Line SPI only 2009/7/21 ST7571 Instruction A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Description EXTENSION COMMAND SET 1 Increase Vop offset 0 0 0 1 0 1 0 0 0 1 Increase vop offset by 1step Decrease Vop offset 0 0 0 1 0 1 0 0 1 0 Decrease vop offset by 1 step Return normal mode 0 0 0 0 0 0 0 0 0 0 Return normal mode EXTENSION COMMAND SET 2 Disable autoread 0 0 1 0 1 0 1 0 1 0 Disable autoread Enter EEPROM mode 0 0 0 0 0 1 0 0 1 1 Enter EEPROM mode Enable read mode 0 0 0 0 1 0 0 0 0 0 Enable read mode Set read pulse 0 0 0 1 1 1 0 0 0 1 Set read pulse width Exit EEPROM mode 0 0 1 0 0 0 0 0 1 1 Exit EEPROM mode Enable erase mode 0 0 0 1 0 0 1 0 1 0 Enable erase mode Set erase pulse 0 0 0 1 0 1 0 1 0 1 Set erase pulse width Enable write mode 0 0 0 0 1 1 0 1 0 1 Enable write mode Set write pulse 0 0 0 1 1 0 1 0 1 0 Set write pulse width Return normal mode 0 0 0 0 0 0 0 0 0 0 Return normal mode EXTENSION COMMAND SET 3 Select Black/White or Gray mode Set Color Mode 0 0 0 0 0 1 0 0 0 B/G B/G=1: Black/White mode; B/G=0: Gray mode (default) Return normal mode 0 0 0 0 0 0 0 0 0 0 Return normal mode Note: Do NOT use non-specified instructions in any extension command mode. Ver 1.5a 31/76 2009/7/21 ST7571 9. INSTRUCTION DESCRIPTION 9.1.1 Set Mode This 2-byte instruction specifies frame frequency (FR[3:0]) and booster efficiency (BE[1:0]) st The 1 Instruction A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 1 1 1 0 0 0 nd Instruction A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 FR3 FR2 FR1 FR0 BE1 BE0 x’ 0 The 2 Frame Frequency FR[3:0] specifies the frame frequency: FR3 FR2 FR1 FR0 Frame Frequency 0 0 0 0 77 Hz ±10% 0 0 0 1 51 Hz ±20% 0 0 1 0 55 Hz ±20% 0 0 1 1 58 Hz ±20% 0 1 0 0 63 Hz ±20% 0 1 0 1 67 Hz ±20% 0 1 1 0 68 Hz ±20% 0 1 1 1 70 Hz ±20% 1 0 0 0 73 Hz ±20% 1 0 0 1 75 Hz ±20% 1 0 1 0 80 Hz ±20% 1 0 1 1 85 Hz ±20% 1 1 0 0 91 Hz ±20% 1 1 0 1 102 Hz ±20% 1 1 1 0 113 Hz ±20% 1 1 1 1 123 Hz ±20% Booster Efficiency The efficiency of internal Booster is configurable by BE[1:0]. The optimized setting is Level-3. BE1 BE0 0 0 Booster Efficiency Level 1 0 1 Booster Efficiency Level 2 1 0 Booster Efficiency Level 3 1 1 Booster Efficiency Level 4 Ver 1.5a Description 32/76 2009/7/21 ST7571 9.1.2 Write Display Data 8-bit data of Display Data from the microprocessor can be written to the RAM location specified by the column address and page address. The column address is increased by 1 automatically so that the microprocessor can continuously write data to the addressed page. During auto-increment, the column address wraps to 0 after the last column is written. A0 R/W 1 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Write data Write Data Flow Set Page Address (0~15) Set Column Address Write Data Column = Column +1 (Auto Increment) Write more Data? Yes No Write Data End Fig. 20 Sequence for Writing Display Data Ver 1.5a 33/76 2009/7/21 ST7571 9.1.3 Set Icon This instruction makes Icon function enable or disable. After reset, the Icon function is disabled (ION=0). When ION=“1”, Icon display is enabled and the page address is set to “16” for updating icon data (it is impossible to set page address to “16” by Set Page Address instruction). Therefore, when writing data for icons, “Set Icon” instruction is necessary before writing icon data. It set the page address to “16” before writing icon data. When “ION” is “0”, Icon display function is not available. A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 0 1 0 0 0 1 ION ION Description 0 Disable Icon function 1 Enable Icon display and set Page Address to “16”. Fig. 20 Sequence for Writing Display Data Ver 1.5a 34/76 2009/7/21 ST7571 9.1.4 Set Page Address This instruction sets the Page Address of display data RAM from the microprocessor into the page address register. Any RAM data bit can be accessed when its Page Address and column address are specified. Along with the column address, the Page Address defines the address of the display RAM to write display data. Changing the Page Address doesn’t affect the display status. Set Page Address instruction can not be used to set the page address to “16”. Use ICON control register ON/OFF instruction to set the page address to “16”. A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 0 1 1 P3 P2 P1 P0 P3 P2 P1 P0 Page 0 0 0 0 0 0 0 0 1 1 : : : : : 1 1 1 0 14 1 1 1 1 15 9.1.5 & 9.1.6 Set Column Address These instructions set the specified column address of DDRAM into the internal Column Address register. The internal Column Address register points to the address of DDRAM for accessing display data. The Column Addresses register is automatically increased by 1 when the microprocessor accesses the display data in DDRAM. Set Column Address (MSB) A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 0 1 0 X7 X6 X5 Set Column Address (LSB) A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 0 0 X4 X3 X2 X1 X7 X6 X5 X4 X3 X2 X1 Column Address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 : : : : : : : : 1 1 1 1 1 1 0 126 1 1 1 1 1 1 1 127 Ver 1.5a 35/76 2009/7/21 ST7571 9.1.7 Display ON / OFF This instruction turns the display ON or OFF. It has priority over Entire Display ON/OFF and Reverse Display ON/OFF. A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 0 1 0 1 1 1 DON DON = 1: display ON DON = 0: display OFF 9.1.8 Set Display Start Line This 2-byte instruction sets the line address of DDRAM to determine the first display line. The display data of the selected line will be displayed at the top of row (COM0) on the LCD panel. st The 1 Instruction A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 1 0 0 0 0 x x nd Instruction A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 x S6 S5 S4 S3 S2 S1 S0 S6 S5 S4 S3 S2 S1 S0 Line address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 2 0 0 0 0 0 1 1 3 : : : : : : : : 1 1 1 1 1 0 0 124 1 1 1 1 1 0 1 125 1 1 1 1 1 1 0 126 1 1 1 1 1 1 1 127 The 2 Fig. Ver 1.5a 21 Sequence for Setting Display Start Line 36/76 2009/7/21 ST7571 9.1.9 Set COM0 This 2-byte instruction set the initial row (COM) of the LCD panel. By using this instruction, it is possible to realize the window moving without the change of display data. st The 1 Instruction A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 1 0 0 0 1 x x nd Instruction A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 x C6 C5 C4 C3 C2 C1 C0 C6 C5 C4 C3 C2 C1 C0 Initial COM0 0 0 0 0 0 0 0 COM0 0 0 0 0 0 0 1 COM1 0 0 0 0 0 1 0 COM2 0 0 0 0 0 1 1 COM3 : : : : : : : : 1 1 1 1 1 0 0 COM124 1 1 1 1 1 0 1 COM125 1 1 1 1 1 1 0 COM126 1 1 1 1 1 1 1 COM127 The 2 Fig. 22 Sequence for Setting COM0 Ver 1.5a 37/76 2009/7/21 ST7571 9.1.10 Set Display Duty This 2-byte instruction sets the display duty within the range of 1/(16+1) to 1/(128+1) to realize partial display. st The 1 Instruction A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 1 0 0 1 0 x x nd Instruction A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 L7 L6 L5 L4 L3 L2 L1 L0 The 2 L7 L6 L5 L4 L3 L2 L1 L0 0 0 0 0 0 0 0 0 Selected Partial Duty Ratio : : : : : : : : 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1/(16+1) 0 0 0 1 0 0 0 1 1/(17+1) : : : : : : : : : 0 1 1 0 0 1 0 0 1/(100+1) No Operation : : : : : : : : : 0 1 1 1 1 1 1 1 1/(127+1) 1 0 0 0 0 0 0 0 1/(128+1) 1 0 0 0 0 0 0 1 : : : : : : : : 1 1 1 1 1 1 1 1 No Operation NOTE: The duty includes the duty for ICON. Fig. 23 Ver 1.5a Sequence for Setting Display Duty 38/76 2009/7/21 ST7571 9.1.11 Set N-line Inversion (recommended 12-line inversion for full duty, 1/129 duty) This 2-byte instruction sets the inverted line number within range of 3 to 33 to improve the display quality by controlling the phase of the internal Frame signal. The DC bias maybe occurred if the N-line is not set well. Be sure to confirm this factor after choosing a value of N. st The 1 Instruction A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 1 0 0 1 1 x x The 2 nd Instruction A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 x x x N4 N3 N2 N1 N0 N4 N3 N2 N1 N0 Selected n-line inversion 0 0 0 0 0 0-line inversion (frame inversion) 0 0 0 0 1 3-line inversion 0 0 0 1 0 4-line inversion 0 0 0 1 1 5-line inversion : : : : : : 0 1 0 1 0 12-line inversion (Recommend) : 1 1 1 0 1 31-line inversion 1 1 1 1 0 32-line inversion 1 1 1 1 1 33-line inversion Fig. 24 Sequence for N-line Inversion Ver 1.5a 39/76 2009/7/21 ST7571 9.1.12 Release N-line Inversion This instruction makes the inversion mode back to the frame inversion from the N-line inversion. A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 1 1 0 0 1 0 0 9.1.13 Reverse Display This instruction reverses the display status on LCD panel without rewriting new contents into DDRAM. A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 0 1 0 0 1 1 REV Pixel Data in DDRAM REV “00” (White) “01” (Light Gray) “10” (Dark Gray) “11” (Black) 0 (normal) White Light Gray Dark Gray Black 1 (reverse) Black Dark gray Light gray White 9.1.14 Entire Display ON This instruction forces the whole LCD pixels to be turned ON, regardless of the contents in DDRAM. The contents in DDRAM are not changed. This instruction has priority over the Reverse Display instruction. A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 0 1 0 0 1 0 EON EON Pixel Data in DDRAM “00” (White) “01” (Light Gray) “10” (Dark Gray) “11” (Black) 0 (normal) White Light Gray Dark Gray Black 1 (entire ON) Black Black Black Black Ver 1.5a 40/76 2009/7/21 ST7571 9.1.15 Power Control This instruction selects one of eight power circuit functions by using 3-bit register. An external power supply and part of internal power supply functions can be used simultaneously. A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 1 0 1 VC VR VF VC VR VF Internal Power Supply Circuits 0 Status OFF Internal voltage converter circuit 1 0 ON OFF Internal voltage regulator circuit 1 0 ON OFF Internal voltage follower circuit 1 ON 9.1.16 Select Regulator Resister This instruction selects resistance ratio of the internal regulator resistors. Refer to the voltage regulator circuits in power supply circuit section. A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 1 0 0 R2 R1 R0 Ver 1.5a R2 R1 R0 1+ (Rb / Ra) 0 0 0 2.3 0 0 1 3.0 0 1 0 3.7 0 1 1 4.4 1 0 0 5.1 1 0 1 5.8 1 1 0 6.5 1 1 1 7.2 41/76 2009/7/21 ST7571 9.1.17 Set Electronic Volume Register st nd This is 2-byte Instruction. The 1 instruction enters Reference Voltage mode, and the 2 reference voltage register. After 2 nd one updates the contents of the instruction, Reference Voltage mode is released. st The 1 Instruction: Set Reference Voltage Select Mode A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 0 0 0 0 0 0 1 The 2 nd Instruction: Set Reference Voltage Register A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 x x EV5 EV4 EV3 EV2 EV1 EV0 EV5 EV4 EV3 EV2 EV1 EV0 EV Value 0 0 0 0 0 0 0 0 0 0 0 0 1 1 : : : : : : : : : : : : : : 1 1 1 1 1 0 62 1 1 1 1 1 1 63 9.1.18 Select LCD Bias This instruction selects LCD bias ratio for the internal voltage follower to drive the LCD. A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 1 0 1 0 B2 B1 B0 Ver 1.5a B2 B1 B0 LCD bias 0 0 0 1/5 0 0 1 1/6 0 1 0 1/7 0 1 1 1/8 1 0 0 1/9 1 0 1 1/10 1 1 0 1/11 1 1 1 1/12 42/76 2009/7/21 ST7571 9.1.19 Set COM Scan Direction This instruction selects the COM output scanning direction and determines the LCD driver output status. A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 1 0 0 SHL x x x SHL = 0: normal direction (COM0 ~ COM127) SHL = 1: reverse direction (COM127 ~ COM0) 9.1.20 Set SEG Scan Direction This instruction changes the relationship between the DDRAM column address and the segment driver. The SEG scan direction can be reversed by this instruction. This feature makes IC layout more flexible for LCD module assembly. A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 0 1 0 0 0 0 ADC ADC = 0: normal direction (SEG0 ~ SEG127) ADC = 1: reverse direction (SEG127 ~ SEG0) 9.1.21 Oscillator ON Start This instruction enables the built-in oscillator circuit. A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 0 1 0 1 0 1 1 9.1.22 & 9.1.23 Power Save ST7571 enters Power-Save mode and reduces the power consumption to the static power consumption. It returns to the normal operation mode by the Release Power Save Mode instruction. Set Power Save Mode A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 0 1 0 1 0 0 P P = 0: normal mode P = 1: power-save mode (sleep mode) Fig. 25 Internal Procedure of Power Save Release Power Save Mode A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 1 1 0 0 0 0 1 Ver 1.5a 43/76 2009/7/21 ST7571 9.1.24 RESET This is software reset. It resets internal registers. The software reset is different with a hardware reset. This instruction cannot initialize the LCD power supply, which is initialized by a hardware reset (refer to section 7.5 RESET CIRCUITS). A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 1 1 0 0 0 1 0 9.1.25 Set Display Data Length (only for 8-bit 3-Line SPI Mode) This 2-byte instruction is used in 3-Line SPI mode only. In 3-Line SPI mode, A0 is not used and “Set Display Data Length” st instruction is used to indicate the number of display data bytes which are going to be transmitted. The 1 byte sets the mode, and the 2 nd byte sets the data bytes, which will be written, into internal counter. The next byte after the display data string is handled as instruction. The 3-Line SPI mode supports write-access only. st The 1 Instruction: Set Display Data Length Command (Only Write Mode) A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 x x 1 1 1 0 1 0 0 0 The 2 nd Instruction: Set Display Data Length Counter A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 x x D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 Display Data Length 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 1 0 3 : : : : : : : : : 1 1 1 1 1 1 0 1 254 1 1 1 1 1 1 1 0 255 1 1 1 1 1 1 1 1 256 A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 1 1 0 0 0 1 1 9.1.26 NOP No operation Ver 1.5a 44/76 2009/7/21 ST7571 9.1.27 Extension Command Set1 This instruction enables the extension command set-1. A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 1 1 1 1 1 0 1 9.1.28 Extension Command Set2 This instruction enables the extension command set-2. A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 1 0 1 0 0 0 1 9.1.29 Extension Command Set3 This instruction enables the extension command set-3. A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 1 1 1 1 0 1 1 Extension Command Set 1 After entering the extension mode-1, the extension command set-1 is enabled. These commands are valid only in this mode. Always remember to return back to normal mode for correct operation. Increase Vop Offset This instruction increases the Vop offset (Vof[4:0]) by 1. A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 1 0 1 0 0 0 1 Decrease Vop Offset This instruction decreases the Vop offset (Vof[4:0]) by 1. A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 1 0 1 0 0 1 0 Fine Tune Vop The “Increase Vop Offset” and “Decrease Vop Offset” instructions fine tune the voltage of Vop. The relation is shown below: Note: 1. The range is limited. If continuously setting “Increase Vop Offset”, Vof[4:0] will increase. When Vof[4:0] is 0x0F and followed by a “Increase Vop Offset” command, Vof[4:0] will become 0x10. As the result, Vop changes from +15 step to -16 step. Software programmer should add a software protection to prevent that an operator maybe presses the “Increase Button” too many times accidentally. 2. EV”[5:0] = EV[5:0] + Vof[4:0] and EV”[5:0] ≤ 0x3F. If EV[5:0] + Vof[4:0] > 0x3F, EV”[5:0] will truncate the invalid bit. Ver 1.5a 45/76 2009/7/21 ST7571 Return to Normal Mode This instruction returns IC into normal mode and the general commands are available. A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 0 0 0 0 0 0 Extension Command Set 2 After entering the extension mode-2, the extension command set-2 is enabled. These commands are valid only in this mode. Always remember to return back to normal mode for correct operation. Disable auto-Read This instruction disables the EEPROM auto-read function and lets the related registers can be set manually. A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 0 1 0 1 0 1 0 Enter EEPROM Mode This instruction enters EEPROM mode. A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 0 1 0 0 1 1 Enable Read Mode This instruction enables the manually-read function. A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 1 0 0 0 0 0 Set Read Pulse This instruction generates one read cycle to read the contents in EEPROM. A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 1 1 1 0 0 0 1 Exit EEPROM Mode This instruction exits EEPROM mode. A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 0 0 0 0 0 1 1 Enable ERASE Mode This instruction enables manually-erase function. A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 1 0 0 1 0 1 0 Set ERASE Pulse This instruction generates one erase cycle to erase the contents in EEPROM. A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 1 0 1 0 1 0 1 Ver 1.5a 46/76 2009/7/21 ST7571 Enable Write Mode This instruction enables manually-write function. A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 1 1 0 1 0 1 Set Write Pulse This instruction generates one write cycle to write parameters into EEPROM. A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 1 1 0 1 0 1 0 Return to Normal Mode This instruction returns IC into normal mode and the general commands are available. A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 0 0 0 0 0 0 Extension Command Set 3 After entering the extension mode-3, the extension command set-3 is enabled. These commands are valid only in this mode. Always remember to return back to normal mode for correct operation. Set Color Mode This instruction controls the gray-scale mode. A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 0 1 0 0 0 B/G Flag B/G Description B/G=0 : IC is in Gray-Scale mode (write 2-byte for 8-pixel). B/G=1 : IC is in Black/White mode (write 1-byte for 8-pixel). Return to Normal Mode This instruction returns IC into normal mode and the general commands are available. A0 R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 0 0 0 0 0 0 Ver 1.5a 47/76 2009/7/21 ST7571 10. OPERATION FLOW 10.1 Power ON Sequence Case 1: RST=L while Power ON (Recommended) Case 2: RST=H while Power ON Timing Requirement: Item Symbol Requirement Note l After VDDI is stable, a successful hardware reset by RST is required. RST input time tON-RST Recommend l RST=L can be input at any time after power is stable. 0 ≤ tON-RST ≤ 50 ms l tRW & tR should match the timing specification of RST. l The recommended time just prevents abnormal display (customer can use Case 1 instead). VDD2 power delay tON-V2 0 ≤ tON-V2 l Applying VDDI and VDDA in any order will not damage IC. l If VDDI and VDDA are separated, it is recommend to turn ON VDDI first, followed by a success hardware reset, and the VDDA is the last one. Note: 1. IC will NOT be damaged if either VDDI or VDDA is OFF while another is ON. The specification listed below just wants to prevent abnormal display on LCD module. 2. Power stable is defined as the time that the later power (VDDI or VDDA) reaches 90% of its rated voltage. The power stable time depends on system and the time is not included in this specification (customer should consider this factor). 3. It is recommended to keep the interface pins (A0, RWR, ERD, CSB and DB[7:0]), except RST, at “High” level before the internal reset procedure is finished. 4. Internal VD1 generator will generate VD1 when DCPS is set to “L”. The VD1 rising time is controlled by ITO resistance and the external capacitor. Before VD1 is stable, internal logic state is unstable and large current maybe occurred. This current will not damage IC. This period can be reduced by reduce the ITO resistance or the external capacitor value. Ver 1.5a 48/76 2009/7/21 ST7571 10.2 Referential Operation Flow : Initializing with internal power system Fig. 26 Initializing with the Built-in Power Supply Circuits Ver 1.5a 49/76 2009/7/21 ST7571 Referential Initial Code The referential initial code is shown below. In order to be compatible with ST7541, some instructions are still included, such as the instructions with gray background). These instructions will not operate in ST7571 (just like NOP). void Initial_ST7571(void) { Reset( ); Delay (100); // Delay 100ms for stable VDD1/VDD2/VDD3 Write(COMMAND, 0xAE); // Display OFF Write(COMMAND, 0x38); // MODE SET Write(COMMAND, 0xB8); // FR=1011 => 85Hz // BE[1:0]=1,0 => booster efficiency Level-3 Write(COMMAND, 0xA1); // ADC select, ADC=1 =>reverse direction Write(COMMAND, 0xC8); // SHL select, SHL=1 => reverse direction Write(COMMAND, 0x44); // Set initial COM0 register Write(COMMAND, 0x00); // Write(COMMAND, 0x40); // Set initial display line register Write(COMMAND, 0x00); // Write(COMMAND, 0xAB); // OSC. ON Write(COMMAND, 0x67); // DC-DC step up, 8 times boosting circuit Write(COMMAND, 0x25); // Select regulator register(1+(Ra+Rb)) Write(COMMAND, 0x81); // Set Reference Voltage Write(COMMAND, 0x23); // EV=35 Write(COMMAND, 0x54); // Set LCD Bias=1/9 V0 Write(COMMAND, 0xF3); // Release Bias Power Save Mode Write(COMMAND, 0x04); // Write(COMMAND, 0x93); // Set FRC and PWM mode (4FRC & 15PWM) Write(COMMAND, 0x2C); // Power Control, VC: ON Delay (200); // Delay 200ms Write(COMMAND, 0x2E); // Power Control, VC: ON Delay (200); // Delay 200ms Write(COMMAND, 0x2F); // Power Control, VC: ON Delay (10); // Delay 10ms Write(COMMAND, 0xAF); // Display ON => Vop =10.556V VR: OFF VR: ON VR: ON VF: OFF VF: OFF VF: ON } Note: The initial code is for reference only. An optimized initial code should be checked on customer’s system and LCD module. Ver 1.5a 50/76 2009/7/21 ST7571 10.3 Referential Operation Flow : Displaying Data Fig. 27 Data Displaying Flow 10.4 Referential Operation Flow : Set Color Mode (Black/White Mode) Gray Mode (default) Enter Test Command Set 3 Write( COMMAND, 0x7B ); Set Color Mode Write( COMMAND, 0x11 ); Exit Test Command Set 3 Write( COMMAND, 0x00 ); Black/White Mode Ver 1.5a 51/76 2009/7/21 ST7571 10.5 Referential Operation Flow : Power-OFF By setting 0xA9, ST7571 will go into power save mode. The LCD driving outputs are fixed to VSS, built-in power circuits are turned OFF and a discharge process starts. Instruction Flow After the built-in power circuits are turned OFF and completely discharged, the power (VDD1 and VDD2) can be removed. Fig. 28 Power off instruction flow Note: 1. tPOFF: Internal Power discharge time. => 250ms (max). 2. tV2OFF: Period between VDD1 and VDD2 OFF time. => 0 ms (min). 3. It is NOT recommended to turn VDD1 OFF before VDD2. Without VDD1, the internal status cannot be guaranteed and internal discharge-process maybe stopped. The un-discharged power maybe flows into COM/SEG output(s) and the liquid crystal in panel maybe polarized. 4. IC will NOT be damaged if either VDD1 or VDD2 is OFF while another is ON. 5. The timing is dependent on panel loading and the external capacitor(s). 6. The timing in these figures is base on the condition that: LCD Panel Size = 1.8” and C=1uF. 7. When turning VDD2 OFF, the falling time should follow the specification: 300ms ≤ tPFall ≤ 1sec Ver 1.5a 52/76 2009/7/21 ST7571 10.6 Referential Operation Flow : Burning EEPROM HW Reset Delay 120ms ( Software Coding Flow) Initial Sequence Key Show Image 0x51 + 0x52 - Disable Autoread Read EE Set EE Register (for the best display quality) Adjust Vop Offset VE connect to VDD VPP connect to 18V ( Software Coding Flow) Erase EE Write EE Remove 18V from VPP Remove VDD from VE HW Reset Delay 120ms Check Module Performance Fig. 19 EE Burning flow chart Ver 1.5a 53/76 2009/7/21 ST7571 Referential Software Functions void Disable_autoread(void) { Write(COMMAND, 0xD1); //Enter test command set 2 Write(COMMAND, 0xAA); //Disable auto-read Write(COMMAND, 0x00); //Enter normal mode } void Read_EE (void) { Write(COMMAND, 0xD1); //Enter test command set 2 Write(COMMAND, 0xAA); //Auto-read disable Write(COMMAND, 0x13); //Enter EEPROM mode Write(COMMAND, 0x20); //Enable read mode Delay(200); //Delay 200ms Write(COMMAND, 0x71); //Set read pulse Delay(200); //Delay 200ms Write(COMMAND, 0x83); //Exit EEPROM mode Write(COMMAND, 0x00); //Enter normal mode } void Set_EE _Register (void) { // Adjust Vop offset here // Command 0x51 and 0x52 can be set 16 times for adjusting a suitable Vop // Maxmum adjusting ranges are +/-16 levels. Write(COMMAND, 0xFD); //Enter test command set 1 Write(COMMAND, 0x8C); //Set Vop offset highest bit Vop_j[4]=0 Write(COMMAND, 0x90); //Set Vop offset Write(COMMAND, 0x51); //0x51 for increase Vop offset by 1 level Vop_j[3:0]=0 or Write(COMMAND, 0x52); //0x52 for decrease Vop offset by 1 level Write(COMMAND, 0x00); //Enter normal mode } Ver 1.5a 54/76 2009/7/21 ST7571 void Erase_EE (void) { Write(COMMAND, 0xD1); //Enter test command set 2 Write(COMMAND, 0x13); //Enter EEPROM mode Write(COMMAND, 0x4A); //Enable erase mode Delay(200); //Delay 200ms Write(COMMAND, 0x55); //Set erase pulse Delay(200); //Delay 200ms Write(COMMAND, 0x83); //Exit EEPROM mode Write(COMMAND, 0x00); //Enter normal mode } void Write_EE (void) { Write(COMMAND, 0xD1); //Enter test command set 2 Write(COMMAND, 0x13); //Enter EEPROM mode Write(COMMAND, 0x35); //Enable write mode Delay(200); //Delay 200ms Write(COMMAND, 0x6A); //Set write pulse Delay(200); //Delay 200ms Write(COMMAND, 0x83); //Exit EEPROM mode Write(COMMAND, 0x00); //Enter normal mode } Ver 1.5a 55/76 2009/7/21 ST7571 11. LIMITING VALUES In accordance with the Absolute Maximum Rating System; see notes 1 and 2. Parameter Symbol Conditions Unit Digital Power Supply Voltage VDD1 –0.3 ~ 3.6 V Analog Power supply voltage VDD2 –0.3 ~ 3.6 V Analog Power supply voltage VDD3 –0.3 ~ 3.6 V LCD Power supply voltage V0-XV0 –0.3 ~ 15 V LCD Power supply voltage VG, VM –0.3 ~ VDD2 V VIN –0.3 ~ VDD1+0.3 V Operating temperature TOPR –30 to +85 °C Storage temperature TSTR –40 to +125 °C Input Voltage V0 VDD VDD VG, VM VSS VSS VSS System (MPU) side XV0 Chip side Fig. 30 Notes 1. Stresses above those listed under Limiting Values may cause permanent damage to the device. 2. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless otherwise noted. 3. Insure the voltage levels of V0, VDD2, VG, VM, VSS and XV0 always match the correct relation: V0 ≥ VDD2 > VG > VM > VSS ≥ XV0 Ver 1.5a 56/76 2009/7/21 ST7571 12. DC CHARACTERISTICS Item Symbol Rating Condition Min. Typ. Max. Units Applicable Pin Digital Operating Voltage VDD1 1.7 — 3.4 V VDD1 Analog Operating Voltage VDD2 2.6 — 3.4 V *2 Analog Operating Voltage VDD3 2.6 — 3.4 V *2 High-level Input Voltage VIHC 0.7 x VDD1 — VDD1 V *1 Low-level Input Voltage VILC VSS — 0.3 x VDD1 V *1 Input leakage current ILI VIN = VDD1 or VSS –1.0 — 1.0 μA *3 Output leakage current ILO VIN = VDD1 or VSS –3.0 — 3.0 μA *4 — 0.7 Vop=12V LCD Driver ON Resistance RON Ta =25°C ΔV=1.2V VG=2V ΔV=0.2V KΩ — 0.7 70 77 SEGn COMn *5 VDD1~3 = 2.8V, Frame Frequency fFR 1/129 duty, N-line=0, Ta = 25°C 84 Hz FR[3:0]=0000(77Hz) 1. VSS1 = VSS2 = VSS3 = 0 V unless otherwise specified. Bare Dice Current Consumption Using Internal Power Circuits and applying external operating voltage (VDD1, VDD2 & VDD3). Item Symbol Condition Rating Units Notes 600 μA *6 10 μA *6 Min. Typ. Max. — 450 — 5 VDD1=1.8V, VDD2=VDD3=2.8V Display ON Pattern: SNOW ISS Ta = 25°C, Vop=10.5V, 8X booster, 1/9 Bias, N-Line=0x01, 1/129 duty, FR[3:0]=0000(77Hz) Power Save ISS VDD1=1.8V, VDD2=VDD3=2.8V , Ta = 25°C Note: 1. The A0, D0 to D5, D6 (SI), D7 (SCL), /RD (E), /WR (R/W), CSB, IMS, OSC, P/S, /DOF, RESB, and MODE terminals. 2. Used by internal analog circuits. 3. The A0, /RD (E), /WR, /(R/W), CSB, IMS, OSC, P/S, /DOF, RESB and MODE terminals. 4. Applies when the D0 to D5, D6 (SI), D7 (SCL) terminals are in a high impedance state. 5. These are the resistance values for when a specified voltage difference is applied between the output terminals (SEGn/COMn) and the various power supply terminals (V0, XV0, VG & VM). RON = ΔV / ΔI 6. (ΔV is the specified voltage difference; ΔI is the current when applying ΔV between output and power) It indicates the current consumed by Bare Chip alone. Ver 1.5a 57/76 2009/7/21 ST7571 Internal Power Circuits The operation ranges of the internal power circuits are shown below: Item Symbol Condition Rating Units Min. Typ. Max. V0-XV0 — — 15 V Voltage follower output voltage VM 0.7 VG/2 VDD2-0.7 V VG output voltage range VG 1.8 — VDD2 V Vop Applicable Pin Internal Power Application Notes l Positive Booster: (VDD2 x 8 x BE) ≥ V0 or (VDD2 x 8 x BE) ≥ Vop; l Negative Booster: [–VDD2 x (8 – 1) x BE] ≤ XV0 or [VDD2 x (8 – 1) x BE] ≥ (Vop – VG), l Vop requirement: [VDD2 x (8 – 1) x BE] ≥ [Vop x (N – 2) / N] or [Vop ≤ VDD2 x (8 – 1) x BE x N / (N – 2)]. l “8” is the booster stage and BE is the booster efficiency. Actual BE should be determined by module loading and ITO where VG = Vop x 2 / N; resistance value. l 1.8V ≤ VG < VDD2. Recommend VG setting is: (VDD2-VG) = 0.5~0.8V. l VM=VG/2 and 0.7V ≤ VM < VDD2. l The worse condition should be considered. Furthermore, it should reserve some range for the temperature compensation and the contrast control (for end-customer). Internal Power Application Summary (Recommend LCD Module Setting) For quick reference, the following table lists some recommended settings for LCD module. VDD1=1.8V, VDD2=2.8V, N-Line=12 (0x0A), Panel Size=1.5” Duty Vop Bias 1/129 10V ~ 12V 1/9 1/81 9V ~ 11V 1/9 1/65 8.5V ~ 10.5V 1/9 Note: 1. It is recommended to reserve some range for user adjustment and temperature effect. 2. The value listed above is in the IC point of view. The liquid crystal display status should be checked by customer. Ver 1.5a 58/76 2009/7/21 ST7571 13. TIMING CHARACTERISTICS System Bus Write Characteristics 8080 Series MPU Fig. 31 (VDD1 = 1.8V~3.3V, Ta =-30~85°C ) Item Address hold time Address setup time Signal A0 System cycle time Write L pulse width /WR Write H pulse width WRITE Data setup time WRITE Data hold time l DB[7:0] Symbol Condition Rating Min. Max. tAH8 0 — tAW8 0 — tCYC8 500 — tCCLW 250 — tCCHW 250 — tDS8 80 — tDH8 30 — Units ns The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr + tf) ≤ (tCYC8 – tCCLW – tCCHW) is specified. l All timing is specified using 20% and 80% of VDD1 as the reference. l tCCLW is specified as the overlap between CSB being “L” and /WR being at the “L” level. Ver 1.5a 59/76 2009/7/21 ST7571 6800 Series MPU Fig. 32 (VDD1 = 1.8V~3.3V, Ta =-30~85°C ) Item Address hold time Address setup time Signal A0 System cycle time Enable L pulse width (Write) E Enable H pulse width (Write) WRITE Data setup time WRITE Data hold time DB[7:0] Symbol Condition Rating Min. Max. tAH6 0 — tAW6 0 — tCYC6 500 — tEWLW 250 — tEWHW 250 — tDS6 80 — tDH6 30 — Units ns l The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, l All timing is specified using 20% and 80% of VDD1 as the reference. l tEWLW is specified as the overlap between CSB being “H” and E being “L”. l R/W signal is always “H”. (tr + tf) ≤ (tCYC6 – tEWLW – tEWHW) is specified. Ver 1.5a 60/76 2009/7/21 ST7571 Serial 4-Line Interface First bit Last bit Fig. 33 (VDD1 = 1.8V~3.3V, Ta =-30~85°C ) Item Signal Serial Clock Period SCL “H” pulse width SCL Symbol Condition Rating Min. Max. tSCYC 200 — tSHW 80 — SCL “L” pulse width tSLW 80 — Address setup time tSAS 60 — tSAH 30 — tSDS 60 — tSDH 30 — tCSS 40 — tCSH 100 — Address hold time Data setup time Data hold time CS-SCL time CS-SCL time A0 SID CSB l The input signal rise and fall time (tr, tf) are specified at 15 ns or less. l All timing is specified using 20% and 80% of VDD1 as the standard. Ver 1.5a 61/76 Units ns 2009/7/21 ST7571 Serial 3-Line Interface Fig. 34 (VDD1 = 1.8V~3.3V, Ta =-30~85°C ) Item Signal Serial Clock Period SCL “H” pulse width SCL SCL “L” pulse width Data setup time Data hold time CS-SCL time CS-SCL time SID CSB Symbol Condition Min. Max. tSCYC 200 — tSHW 80 — tSLW 80 — tSDS 60 — tSDH 30 — tCSS 40 — tCSH 100 — l The input signal rise and fall time (tr, tf) are specified at 15 ns or less. l All timing is specified using 20% and 80% of VDD1 as the standard. Ver 1.5a Rating 62/76 Units ns 2009/7/21 ST7571 2 Serial I C Interface Fig. 35 (VDD1 = 3.3V, Ta =-30~85°C ) Item Signal Symbol SCL clock frequency SCL SCL clock low period Condition Rating Units Min. Max. FSCLK - 400 kHZ SCL TLOW 1.3 - us SCL clock high period SCL THIGH 0.6 - us Data set-up time SDA TSU;Data 100 - ns Data hold time SDA THD;Data 0 0.9 us SCL,SDA rise time SCL TR 20+0.1Cb 300 ns SCL,SDA fall time SCL Capacitive load represented by each bus line TF 20+0.1Cb 300 ns Cb - 400 pF Setup time for a repeated START condition SDA TSU;SUA 0.6 - us Start condition hold time SDA THD;STA 0.6 - us TSU;STO 0.6 - us TSW - 50 ns TBUF 1.3 Setup time for STOP condition Tolerable spike width on bus BUS free time between a STOP and START condition SCL us Note: l All timing is specified using 20% and 80% of VDD1 as the standard. l It is recommended to operate the I C interface with VDD1 higher than 2.6V. Ver 1.5a 2 63/76 2009/7/21 ST7571 Reset Timing tRW RST tR Internal Status During Reset ... Reset Finished Fig. 36 (VDD1 = 1.8V~3.3V, Ta =-30~85°C ) Item Signal Reset time Reset “L” pulse width Ver 1.5a RST Symbol Condition Rating Units Min. Typ. Max. tR 120 — — ms tRW 2.0 — — us 64/76 2009/7/21 ST7571 14. EXTERNAL COMPONENTS The pinning of the ST7571 is optimized for single plane wiring e.g. for chip-on-glass display modules. For VDD1 = 3.0V ~ 3.3V For VDD1 = 1.8V ~ 2.8V Fig. 37 External Components Note: 1. The resistors are reserved only. Please reserve the space for them on FPC (or system). 2. The capacitors in these 2 cases are not same. C4 is not used if VDD1 is 1.8V ~ 2.8V. Recommend Value: (for typical 1.6” LCD panel) l C1~C3: 1uF ~ 4.7uF l C4: 0.1uF ~ 1uF Components selection notes: l Higher capacitor values are recommended for ripple reduction. l In order to avoid the characteristic differences of the LCD panel. The capacitor values should be verified according to the display performance on LCD panel. l If the display panel is larger (> 2”), higher capacitor (C1~C3) values are recommended. l If the display panel is smaller (< 1”), lower capacitor (C1~C3) values can be used. l The resistor is reserved for discharge in the worse case, when VDD suddenly drops to 0. Ver 1.5a 65/76 2009/7/21 ST7571 15. APPLICATION PROGRAM EXAMPLE Programming example for displaying data with ST7571: Step Bus Status A0 1 2 3.a 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 x’ 0 A0 0 A0 0 A0 3.b 0 0 3.c LCD Display DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 A0 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 1 0 1 0 1 1 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 0 0 R2 R1 R0 Operation Description Mode Set: FR[3:0]=0000; BE[1:0]=10 OSC ON Set Ra/Rb (R[2:0]) DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 x’ x’ 0 0 0 0 0 1 EV5 EV4 EV3 EV2 EV1 EV0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 1 Set contrast (EV[5:0]) 0 1 0 B2 B1 B0 Set Bias (B[2:0]) Set Power Control 4.a A0 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 0 1 1 1 1 Booster=ON, Regulator=ON, Follower=ON 4.b A0 0 A0 5 Ver 1.5a 1 1 1 1 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Display ON Write Data 0 0 1 1 0 X, Y are default 0 after reset. 1 0 0 1 0 0 1 1 0 Skip setting X & Y here. DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 Write Data DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 Write Data DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 Write Data DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 A0 10 0 1 A0 9 1 0 A0 8 0 0 A0 7 1 Display Control 1 A0 6 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Write Data DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 66/76 Write Data 2009/7/21 ST7571 Step Bus Status A0 11 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 13 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 14 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 A0 15 Ver 1.5a DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 1 0 0 1 1 1 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 A0 16 Write Data DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 A0 Write Data DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 A0 Operation Description DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 A0 12 LCD Display Write Data Display Control: Set Reverse display mode (REV=1) Set Column Address Set address to “00000000” X[7:0]=0x00 (X0 default is 0) DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 67/76 Write Data 2009/7/21 ST7571 2 Programming example for displaying data with ST7571 (for I C Interface): Step 1 2 3 Bus Status 6.a DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 0 0 0 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 x’ 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 1 0 1 0 1 1 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 0 0 R2 R1 R0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 0 0 0 0 0 1 x’ x’ EV5 EV4 EV3 EV2 EV1 EV0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 1 0 1 0 B2 B1 B0 6.b 6.c Operation Description I C Interface Start 4 5 LCD Display 2 Slave address for write Set Control Byte Co=0; A0=0 Mode Set: FR[3:0]=0000; BE[1:0]=10 OSC ON Set Ra/Rb (R[2:0]) Set contrast (EV[5:0]) Set Bias (B[2:0]) Set Power Control 7.a DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 0 1 1 1 1 Booster=ON, Regulator=ON, Follower=ON 7.b 8 9 10 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 1 0 1 1 1 1 2 I C Interface Start Display Control Display ON Re-start DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 1 0 0 0 0 0 0 Co=0; A0=1 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Write Data 0 0 1 0 0 1 1 0 X, Y are default 0 after reset. 0 0 1 0 0 1 1 0 Skip setting X & Y here. DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 11 12 13 14 Ver 1.5a 68/76 Slave address for write Set Control Byte Write Data Write Data Write Data 2009/7/21 ST7571 Step Bus Status DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 15 16 17 18 19 20 21 22 23 24 2 I C Interface Start DB6 DB5 DB4 DB3 DB2 DB1 DB0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 0 0 0 0 0 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 1 0 0 1 1 1 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 0 0 0 0 0 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 1 0 0 0 0 0 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 28 2 Write Data Write Data Write Data Write Data Write Data Slave address for write Set Control Byte Co=1; A0=0 Display Control: Set Reverse display mode (REV=1) Set Control Byte Co=1; A0=0 Set Column Address Set address to “00000000” X[7:0]=0x00 (X0 default is 0) Set Control Byte Co=1; A0=1 Write Data 2 I C Interface Stop Ver 1.5a Operation Description Re-start DB7 25 26 LCD Display STOP I C transmission 69/76 2009/7/21 ST7571 16. APPLICATION NOTES Ver 1.5a 70/76 2009/7/21 ST7571 Ver 1.5a 71/76 2009/7/21 ST7571 Ver 1.5a 72/76 2009/7/21 ST7571 Ver 1.5a 73/76 2009/7/21 ST7571 Ver 1.5a 74/76 2009/7/21 ST7571 ST7571 Specification Revision History Version Date 1.0 2008/01/29 1.1 1.2 2008/04/02 2008/08/08 Description 1. Official Release. 1. Remove CSL=L setting. 2. Modify Application note 3. Add Initial code 4. Modify ITO layout reference 5. Modify 9.1.14 entire display 1. Re-arrange sections for document format issue. 2. Remove one of the Power OFF flow (not easy control by customer). 3. Update recommend N-Line setting as 12-line (0x0A). 4. Rewrite some description for easy understanding and grammar issue. 5. Fix wrong Limiting Values. 6. Rewrite DC Characteristics section. Separate Internal Power Application Note for detailed description. 1.3 1.4 1.4a 1.4b 2008/12/19 2009/03/13 2009/03/16 2009/05/13 7. Modify Recommend LCD Vop Setting: use same bias for easy use. 1. Modify limiting voltage values. 2. Modify 8080/6800 system cycle time. 1. Remove reversion history before Ver. 1.0. 2. Redraw broken figures. 3. Rewrite Section 7.5 RESET CIRCUITS for easy understanding. 4. Rewrite descriptions for easy understanding. 5. Update Power ON Sequence information. 6. Add 0x8C & 0x90 to “Set_EE_Register” at Software Function Program. 7. Fix COM pad naming in figures. 8. Update external components information. 9. Match the instruction name with the instruction description. 1. Modify drawing: RST waveform at 10.1 Power ON Sequence Section (Case 2). 2. Fix typing mistakes. 1. Redraw IC outline (Page 2) and use only one view direction for IC and PAD. 2. Fix typing mistakes and rewrite descriptions for easy understanding. 3. Add ITO limitation of I C interface signal SDA (Page 14). 4. Fix naming issue on Page 17, 22, 35. Column Address should be X[7:0] (not Y[7:0]). 5. The default value of FR[3:0] after reset is missing in previous version. 6. Rearrange the operation flow information into one section: 2 “Section 10. OPERATION FLOW” (Page 48). 7. Rename section “10. COMMAND DESCRIPTION” to be “10. OPERATION FLOW.” 8. Add note of I C: “VDD1 higher than 2.6V”. 9. Add notes to Section 14. EXTERNAL COMPONENTS. Modify the value to be a range. 2 10. Fix Section 15. APPLICATION PROGRAM EXAMPLE mistakes. 11. Update detailed settings into Section 16. APPLICATION NOTES: Different circuit for different VDD1 level (C4 is not used if VDD1 is 1.8V or 2.8V). Reserve 2 more resistors. Ver 1.5a 75/76 2009/7/21 ST7571 ST7571 Specification Revision History 1.5 1.5a Ver 1.5a 2009/6/25 2009/7/21 1. Fix typing mistakes. 2. Add axis into Section 3. PAD ARRANGEMENT (COG). 3. Modify referential codes: use 8-bit format, keep delay time same as description. 4. Mark no operation instructions in initial code (Page 50). 5. Add Test Instructions into instruction table. 6. Reserve external components for special case. 7. Define the VDD2 voltage range: 2.7V ~ 3.3V (cover 2.6V ~ 3.4V). 1. Add description of Extension Command Sets. 76/76 2009/7/21