Sitronix ST7568 68 x 102 Dot Matrix LCD Controller/Driver 1. INTERODUCTION The ST7568 is a driver & controller LSI for 4-level gray scale graphic dot-matrix liquid crystal display systems. It contains 102 segment and 68 common driver circuits. This chip is connected directly to a microprocessor, accepts. 4-line serial interface(SPI) or 8-bit parallel interface or IIC serial interface, display data can stores in an on-chip display data RAM of 68 x 102 x 2 bits. It performs display data RAM read/write operation with no external operating clock to minimize power consumption. In addition, because it contains power supply circuits to drive liquid crystal, it is possible to make a display system with the fewest components. 2. FEATURES Single chip LCD controller/driver for 4 GRAY SCALE STN LCD 4-level (White, Light Gray, Dark Gray, Black) Gray Scale Display with PWM and FRC Methods DDRAM data [2n: 2n+1] 00 01 10 11 Gray scale White Light gray Dark gray Dark (Accessible column address=0,1,2…99,100,101) Driver Output Circuits - Generation of intermediate LCD bias voltages 102 segment outputs / 68 common outputs - Oscillator requires no external components (external clock also possible) On-chip Display Data ram - Capacity: 68X102X2=13,872 bits - Voltage converter (x2, x3, x4, x5) - Voltage regulator 8-bit parallel bi-directional interface with 6800-series or - Voltage follower 8080-series - On-chip electronic contrast control function (128 steps) Microprocessor Interface - - - 4-line SPI (serial peripheral interface) available (only External RESB (reset) pin write operation) Supply Voltage Range IIC serial interface (only write operation) On-chip Low Power Analog Circuit - Generation of LCD supply voltage (externally Vout - Digital (VDD –VSS): 1.8V to 3.3V - Analog (VDD2-VSS2): 2.4 to 3.3V Temperature range: -30 to +85 degree voltage supply is possible) ST7568 6800 , 8080 , 4-Line Interface (without IIC interface) ST7568i IIC interface Sitronix Technology Corp. reserves the right to change the contents in this document without prior notice. Ver 2.2 1/73 2008/01/04 ST7568 3. ST7568 Pad Arrangement (COG) Chip Size: 10,220 um × 1000 um Bump Pitch: PAD NO 1 ~ 148 , 250 ~ 272 : 75.5 um (com/seg) PAD NO 248 ~ 249 : 93.5 um PAD NO 149 ~ 248 : 75 um (I/O) PAD NO 148 ~ 149 : 114 um PAD NO 249 ~ 250 : 95.9 um Bump Size: PAD NO 1 ~ 125 , 137 ~ 248 , 250 ~ 261 : 55(x) um × 60(y) um PAD NO 249 : 92(x) um × 60(y) um , 262 ~ 272 : 60(x)um × 55(y) um PAD NO 126 ~ 136 Bump Height: 17 um Chip Thickness: 635 um 60 6 15 75 Metal area Bump area (-4766,410) unit: um 15 6 6 30 30 15 30 60 75 6 15 30 (4766,410) unit:um Mark 1 125 126 272 Y A2024 X (0,0) 136 262 248 249 250 RES 137 261 30 15 30 15 55 15 10 60 55 60 30 75 Bump Size of Top & Bottom 60 Bump Size of Right & Left (-4763,-410) unit:um Ver 2.2 60 75 92 Bump Size of RES unit: um 2/73 30 10 15 60 (4763,-410) unit:um 2008/01/04 ST7568 Pad Center Coordinates(68 Duty) PAD NO. PIN Name X Y PAD NO. PIN Name X Y 1 COM[44] 4681.0 389.0 36 SEG[23] 2038.5 389.0 2 COM[43] 4605.5 389.0 37 SEG[24] 1963.0 389.0 3 COM[42] 4530.0 389.0 38 SEG[25] 1887.5 389.0 4 COM[41] 4454.5 389.0 39 SEG[26] 1812.0 389.0 5 COM[40] 4379.0 389.0 40 SEG[27] 1736.5 389.0 6 COM[39] 4303.5 389.0 41 SEG[28] 1661.0 389.0 7 COM[38] 4228.0 389.0 42 SEG[29] 1585.5 389.0 8 COM[37] 4152.5 389.0 43 SEG[30] 1510.0 389.0 9 COM[36] 4077.0 389.0 44 SEG[31] 1434.5 389.0 10 COM[35] 4001.5 389.0 45 SEG[32] 1359.0 389.0 11 COM[34] 3926.0 389.0 46 SEG[33] 1283.5 389.0 12 COM[33] 3850.5 389.0 47 SEG[34] 1208.0 389.0 13 SEG[0] 3775.0 389.0 48 SEG[35] 1132.5 389.0 14 SEG[1] 3699.5 389.0 49 SEG[36] 1057.0 389.0 15 SEG[2] 3624.0 389.0 50 SEG[37] 981.5 389.0 16 SEG[3] 3548.5 389.0 51 SEG[38] 906.0 389.0 17 SEG[4] 3473.0 389.0 52 SEG[39] 830.5 389.0 18 SEG[5] 3397.5 389.0 53 SEG[40] 755.0 389.0 19 SEG[6] 3322.0 389.0 54 SEG[41] 679.5 389.0 20 SEG[7] 3246.5 389.0 55 SEG[42] 604.0 389.0 21 SEG[8] 3171.0 389.0 56 SEG[43] 528.5 389.0 22 SEG[9] 3095.5 389.0 57 SEG[44] 453.0 389.0 23 SEG[10] 3020.0 389.0 58 SEG[45] 377.5 389.0 24 SEG[11] 2944.5 389.0 59 SEG[46] 302.0 389.0 25 SEG[12] 2869.0 389.0 60 SEG[47] 226.5 389.0 26 SEG[13] 2793.5 389.0 61 SEG[48] 151.0 389.0 27 SEG[14] 2718.0 389.0 62 SEG[49] 75.5 389.0 28 SEG[15] 2642.5 389.0 63 SEG[50] 0.0 389.0 29 SEG[16] 2567.0 389.0 64 SEG[51] -75.5 389.0 30 SEG[17] 2491.5 389.0 65 SEG[52] -151.0 389.0 31 SEG[18] 2416.0 389.0 66 SEG[53] -226.5 389.0 32 SEG[19] 2340.5 389.0 67 SEG[54] -302.0 389.0 33 SEG[20] 2265.0 389.0 68 SEG[55] -377.5 389.0 34 SEG[21] 2189.5 389.0 69 SEG[56] -453.0 389.0 35 SEG[22] 2114.0 389.0 70 SEG[57] -528.5 389.0 Ver 2.2 3/73 2008/01/04 ST7568 PAD NO. PIN Name X Y PAD NO. PIN Name X Y 71 SEG[58] -604.0 389.0 107 SEG[94] -3322.0 389.0 72 SEG[59] -679.5 389.0 108 SEG[95] -3397.5 389.0 73 SEG[60] -755.0 389.0 109 SEG[96] -3473.0 389.0 74 SEG[61] -830.5 389.0 110 SEG[97] -3548.5 389.0 75 SEG[62] -906.0 389.0 111 SEG[98] -3624.0 389.0 76 SEG[63] -981.5 389.0 112 SEG[99] -3699.5 389.0 77 SEG[64] -1057.0 389.0 113 SEG[100] -3775.0 389.0 78 SEG[65] -1132.5 389.0 114 SEG[101] -3850.5 389.0 79 SEG[66] -1208.0 389.0 115 COMS1 -3926.0 389.0 80 SEG[67] -1283.5 389.0 116 COM[0] -4001.5 389.0 81 SEG[68] -1359.0 389.0 117 COM[1] -4077.0 389.0 82 SEG[69] -1434.5 389.0 118 COM[2] -4152.5 389.0 83 SEG[70] -1510.0 389.0 119 COM[3] -4228.0 389.0 84 SEG[71] -1585.5 389.0 120 COM[4] -4303.5 389.0 85 SEG[72] -1661.0 389.0 121 COM[5] -4379.0 389.0 86 SEG[73] -1736.5 389.0 122 COM[6] -4454.5 389.0 87 SEG[74] -1812.0 389.0 123 COM[7] -4530.0 389.0 88 SEG[75] -1887.5 389.0 124 COM[8] -4605.5 389.0 89 SEG[76] -1963.0 389.0 125 COM[9] -4681.0 389.0 90 SEG[77] -2038.5 389.0 126 COM[10] -4998.5 381.5 91 SEG[78] -2114.0 389.0 127 COM[11] -4998.5 306.0 92 SEG[79] -2189.5 389.0 128 COM[12] -4998.5 230.5 93 SEG[80] -2265.0 389.0 129 COM[13] -4998.5 155.0 94 SEG[81] -2340.5 389.0 130 COM[14] -4998.5 79.5 95 SEG[82] -2416.0 389.0 131 COM[15] -4998.5 4.0 96 SEG[83] -2491.5 389.0 132 COM[16] -4998.5 -71.5 97 SEG[84] -2567.0 389.0 133 COM[17] -4998.5 -147.0 98 SEG[85] -2642.5 389.0 134 COM[18] -4998.5 -222.5 99 SEG[86] -2718.0 389.0 135 COM[19] -4998.5 -298.0 100 SEG[87] -2793.5 389.0 136 COM[20] -4998.5 -373.5 101 SEG[88] -2869.0 389.0 137 COM[21] -4694.5 -389.0 102 SEG[89] -2944.5 389.0 138 COM[22] -4619.0 -389.0 103 SEG[90] -3020.0 389.0 139 COM[23] -4543.5 -389.0 104 SEG[91] -3095.5 389.0 140 COM[24] -4468.0 -389.0 105 SEG[92] -3171.0 389.0 141 COM[25] -4392.5 -389.0 106 SEG[93] -3246.5 389.0 142 COM[26] -4317.0 -389.0 Ver 2.2 4/73 2008/01/04 ST7568 PAD NO. PIN Name X Y PAD NO. PIN Name X Y 143 COM[27] -4241.5 -389.0 179 D2 -1500.0 -389.0 144 COM[28] -4166.0 -389.0 180 D1 -1425.0 -389.0 145 COM[29] -4090.5 -389.0 181 D1 -1350.0 -389.0 146 COM[30] -4015.0 -389.0 182 D0 -1275.0 -389.0 147 COM[31] -3939.5 -389.0 183 D0 -1200.0 -389.0 148 COM[32] -3864.0 -389.0 184 VDD -1125.0 -389.0 149 T9 -3750.0 -389.0 185 T0 -1050.0 -389.0 150 VDD -3675.0 -389.0 186 T1 -975.0 -389.0 151 VDD -3600.0 -389.0 187 T2 -900.0 -389.0 152 VDD -3525.0 -389.0 188 T3 -825.0 -389.0 153 VDD -3450.0 -389.0 189 T4 -750.0 -389.0 154 VDD -3375.0 -389.0 190 T5 -675.0 -389.0 155 VDD -3300.0 -389.0 191 T6 -600.0 -389.0 156 VDD2 -3225.0 -389.0 192 T7 -525.0 -389.0 157 VDD2 -3150.0 -389.0 193 T8 -450.0 -389.0 158 VDD2 -3075.0 -389.0 194 VRS -375.0 -389.0 159 VDD2 -3000.0 -389.0 195 ERD -300.0 -389.0 160 VDD2 -2925.0 -389.0 196 ERD -225.0 -389.0 161 VDD2 -2850.0 -389.0 197 RWR -150.0 -389.0 162 VDD2 -2775.0 -389.0 198 RWR -75.0 -389.0 163 VDD2 -2700.0 -389.0 199 A0 0.0 -389.0 164 VDD2 -2625.0 -389.0 200 A0 75.0 -389.0 165 VDD2 -2550.0 -389.0 201 CS 150.0 -389.0 166 VDD2 -2475.0 -389.0 202 CS 225.0 -389.0 167 VDD2 -2400.0 -389.0 203 IMS 300.0 -389.0 168 D7 -2325.0 -389.0 204 VDD 375.0 -389.0 169 D7 -2250.0 -389.0 205 PS 450.0 -389.0 170 D6 -2175.0 -389.0 206 MODE 525.0 -389.0 171 D6 -2100.0 -389.0 207 T10 600.0 -389.0 172 D5 -2025.0 -389.0 208 VDD 675.0 -389.0 173 D5 -1950.0 -389.0 209 OSC 750.0 -389.0 174 D4 -1875.0 -389.0 210 OSC 825.0 -389.0 175 D4 -1800.0 -389.0 211 V0 900.0 -389.0 176 D3 -1725.0 -389.0 212 V0 975.0 -389.0 177 D3 -1650.0 -389.0 213 V0 1050.0 -389.0 178 D2 -1575.0 -389.0 214 V0 1125.0 -389.0 Ver 2.2 5/73 2008/01/04 ST7568 PAD NO. PIN Name X Y PAD NO. PIN Name X Y 215 V1 1200.0 -389.0 244 VLCDOUT 3375.0 -389.0 216 V2 1275.0 -389.0 245 VLCDOUT 3450.0 -389.0 217 V3 1350.0 -389.0 246 VLCDOUT 3525.0 -389.0 218 V4 1425.0 -389.0 247 VLCDOUT 3600.0 -389.0 219 VSS2 1500.0 -389.0 248 VLCDOUT 3675.0 -389.0 220 VSS2 1575.0 -389.0 249 RES 3768.5 -389.0 221 VSS2 1650.0 -389.0 250 COMS2 3864.5 -389.0 222 VSS2 1725.0 -389.0 251 COM[66] 3940.0 -389.0 223 VSS2 1800.0 -389.0 252 COM[65] 4015.5 -389.0 224 VSS2 1875.0 -389.0 253 COM[64] 4091.0 -389.0 225 VSS2 1950.0 -389.0 254 COM[63] 4166.5 -389.0 226 VSS2 2025.0 -389.0 255 COM[62] 4242.0 -389.0 227 VSS2 2100.0 -389.0 256 COM[61] 4317.5 -389.0 228 VSS2 2175.0 -389.0 257 COM[60] 4393.0 -389.0 229 VSS2 2250.0 -389.0 258 COM[59] 4468.5 -389.0 230 VSS2 2325.0 -389.0 259 COM[58] 4544.0 -389.0 231 VSS 2400.0 -389.0 260 COM[57] 4619.5 -389.0 232 VSS 2475.0 -389.0 261 COM[56] 4695.0 -389.0 233 VSS 2550.0 -389.0 262 COM[55] 4998.5 -373.5 234 VSS 2625.0 -389.0 263 COM[54] 4998.5 -298.0 235 VSS 2700.0 -389.0 264 COM[53] 4998.5 -222.5 236 VSS 2775.0 -389.0 265 COM[52] 4998.5 -147.0 237 VLCDIN 2850.0 -389.0 266 COM[51] 4998.5 -71.5 238 VLCDIN 2925.0 -389.0 267 COM[50] 4998.5 4.0 239 VLCDIN 3000.0 -389.0 268 COM[49] 4998.5 79.5 240 VLCDIN 3075.0 -389.0 269 COM[48] 4998.5 155.0 241 VLCDIN 3150.0 -389.0 270 COM[47] 4998.5 230.5 242 VLCDIN 3225.0 -389.0 271 COM[46] 4998.5 306.0 243 VLCDOUT 3300.0 -389.0 272 COM[45] 4998.5 381.5 Ver 2.2 6/73 2008/01/04 ST7568 Pad Center Coordinates(65 Duty) PAD NO. PIN Name X Y PAD NO. PIN Name X Y 1 COM[41] 4681.0 389.0 36 SEG[23] 2038.5 389.0 2 COM[40] 4605.5 389.0 37 SEG[24] 1963.0 389.0 3 COM[39] 4530.0 389.0 38 SEG[25] 1887.5 389.0 4 COM[38] 4454.5 389.0 39 SEG[26] 1812.0 389.0 5 COM[37] 4379.0 389.0 40 SEG[27] 1736.5 389.0 6 COM[36] 4303.5 389.0 41 SEG[28] 1661.0 389.0 7 COM[35] 4228.0 389.0 42 SEG[29] 1585.5 389.0 8 COM[34] 4152.5 389.0 43 SEG[30] 1510.0 389.0 9 COM[33] 4077.0 389.0 44 SEG[31] 1434.5 389.0 10 COM[32] 4001.5 389.0 45 SEG[32] 1359.0 389.0 11 Reserve 3926.0 389.0 46 SEG[33] 1283.5 389.0 12 Reserve 3850.5 389.0 47 SEG[34] 1208.0 389.0 13 SEG[0] 3775.0 389.0 48 SEG[35] 1132.5 389.0 14 SEG[1] 3699.5 389.0 49 SEG[36] 1057.0 389.0 15 SEG[2] 3624.0 389.0 50 SEG[37] 981.5 389.0 16 SEG[3] 3548.5 389.0 51 SEG[38] 906.0 389.0 17 SEG[4] 3473.0 389.0 52 SEG[39] 830.5 389.0 18 SEG[5] 3397.5 389.0 53 SEG[40] 755.0 389.0 19 SEG[6] 3322.0 389.0 54 SEG[41] 679.5 389.0 20 SEG[7] 3246.5 389.0 55 SEG[42] 604.0 389.0 21 SEG[8] 3171.0 389.0 56 SEG[43] 528.5 389.0 22 SEG[9] 3095.5 389.0 57 SEG[44] 453.0 389.0 23 SEG[10] 3020.0 389.0 58 SEG[45] 377.5 389.0 24 SEG[11] 2944.5 389.0 59 SEG[46] 302.0 389.0 25 SEG[12] 2869.0 389.0 60 SEG[47] 226.5 389.0 26 SEG[13] 2793.5 389.0 61 SEG[48] 151.0 389.0 27 SEG[14] 2718.0 389.0 62 SEG[49] 75.5 389.0 28 SEG[15] 2642.5 389.0 63 SEG[50] 0.0 389.0 29 SEG[16] 2567.0 389.0 64 SEG[51] -75.5 389.0 30 SEG[17] 2491.5 389.0 65 SEG[52] -151.0 389.0 31 SEG[18] 2416.0 389.0 66 SEG[53] -226.5 389.0 32 SEG[19] 2340.5 389.0 67 SEG[54] -302.0 389.0 33 SEG[20] 2265.0 389.0 68 SEG[55] -377.5 389.0 34 SEG[21] 2189.5 389.0 69 SEG[56] -453.0 389.0 35 SEG[22] 2114.0 389.0 70 SEG[57] -528.5 389.0 Ver 2.2 7/73 2008/01/04 ST7568 PAD NO. PIN Name X Y PAD NO. PIN Name X Y 71 SEG[58] -604.0 389.0 107 SEG[94] -3322.0 389.0 72 SEG[59] -679.5 389.0 108 SEG[95] -3397.5 389.0 73 SEG[60] -755.0 389.0 109 SEG[96] -3473.0 389.0 74 SEG[61] -830.5 389.0 110 SEG[97] -3548.5 389.0 75 SEG[62] -906.0 389.0 111 SEG[98] -3624.0 389.0 76 SEG[63] -981.5 389.0 112 SEG[99] -3699.5 389.0 77 SEG[64] -1057.0 389.0 113 SEG[100] -3775.0 389.0 78 SEG[65] -1132.5 389.0 114 SEG[101] -3850.5 389.0 79 SEG[66] -1208.0 389.0 115 COMS1 -3926.0 389.0 80 SEG[67] -1283.5 389.0 116 COM[0] -4001.5 389.0 81 SEG[68] -1359.0 389.0 117 COM[1] -4077.0 389.0 82 SEG[69] -1434.5 389.0 118 COM[2] -4152.5 389.0 83 SEG[70] -1510.0 389.0 119 COM[3] -4228.0 389.0 84 SEG[71] -1585.5 389.0 120 COM[4] -4303.5 389.0 85 SEG[72] -1661.0 389.0 121 COM[5] -4379.0 389.0 86 SEG[73] -1736.5 389.0 122 COM[6] -4454.5 389.0 87 SEG[74] -1812.0 389.0 123 COM[7] -4530.0 389.0 88 SEG[75] -1887.5 389.0 124 COM[8] -4605.5 389.0 89 SEG[76] -1963.0 389.0 125 COM[9] -4681.0 389.0 90 SEG[77] -2038.5 389.0 126 COM[10] -4998.5 381.5 91 SEG[78] -2114.0 389.0 127 COM[11] -4998.5 306.0 92 SEG[79] -2189.5 389.0 128 COM[12] -4998.5 230.5 93 SEG[80] -2265.0 389.0 129 COM[13] -4998.5 155.0 94 SEG[81] -2340.5 389.0 130 COM[14] -4998.5 79.5 95 SEG[82] -2416.0 389.0 131 COM[15] -4998.5 4.0 96 SEG[83] -2491.5 389.0 132 COM[16] -4998.5 -71.5 97 SEG[84] -2567.0 389.0 133 COM[17] -4998.5 -147.0 98 SEG[85] -2642.5 389.0 134 COM[18] -4998.5 -222.5 99 SEG[86] -2718.0 389.0 135 COM[19] -4998.5 -298.0 100 SEG[87] -2793.5 389.0 136 COM[20] -4998.5 -373.5 101 SEG[88] -2869.0 389.0 137 COM[21] -4694.5 -389.0 102 SEG[89] -2944.5 389.0 138 COM[22] -4619.0 -389.0 103 SEG[90] -3020.0 389.0 139 COM[23] -4543.5 -389.0 104 SEG[91] -3095.5 389.0 140 COM[24] -4468.0 -389.0 105 SEG[92] -3171.0 389.0 141 COM[25] -4392.5 -389.0 106 SEG[93] -3246.5 389.0 142 COM[26] -4317.0 -389.0 Ver 2.2 8/73 2008/01/04 ST7568 PAD NO. PIN Name X Y PAD NO. PIN Name X Y 143 COM[27] -4241.5 -389.0 179 D2 -1500.0 -389.0 144 COM[28] -4166.0 -389.0 180 D1 -1425.0 -389.0 145 COM[29] -4090.5 -389.0 181 D1 -1350.0 -389.0 146 COM[30] -4015.0 -389.0 182 D0 -1275.0 -389.0 147 COM[31] -3939.5 -389.0 183 D0 -1200.0 -389.0 148 Reserve -3864.0 -389.0 184 VDD -1125.0 -389.0 149 T9 -3750.0 -389.0 185 T0 -1050.0 -389.0 150 VDD -3675.0 -389.0 186 T1 -975.0 -389.0 151 VDD -3600.0 -389.0 187 T2 -900.0 -389.0 152 VDD -3525.0 -389.0 188 T3 -825.0 -389.0 153 VDD -3450.0 -389.0 189 T4 -750.0 -389.0 154 VDD -3375.0 -389.0 190 T5 -675.0 -389.0 155 VDD -3300.0 -389.0 191 T6 -600.0 -389.0 156 VDD2 -3225.0 -389.0 192 T7 -525.0 -389.0 157 VDD2 -3150.0 -389.0 193 T8 -450.0 -389.0 158 VDD2 -3075.0 -389.0 194 VRS -375.0 -389.0 159 VDD2 -3000.0 -389.0 195 ERD -300.0 -389.0 160 VDD2 -2925.0 -389.0 196 ERD -225.0 -389.0 161 VDD2 -2850.0 -389.0 197 RWR -150.0 -389.0 162 VDD2 -2775.0 -389.0 198 RWR -75.0 -389.0 163 VDD2 -2700.0 -389.0 199 A0 0.0 -389.0 164 VDD2 -2625.0 -389.0 200 A0 75.0 -389.0 165 VDD2 -2550.0 -389.0 201 CS 150.0 -389.0 166 VDD2 -2475.0 -389.0 202 CS 225.0 -389.0 167 VDD2 -2400.0 -389.0 203 IMS 300.0 -389.0 168 D7 -2325.0 -389.0 204 VDD 375.0 -389.0 169 D7 -2250.0 -389.0 205 PS 450.0 -389.0 170 D6 -2175.0 -389.0 206 MODE 525.0 -389.0 171 D6 -2100.0 -389.0 207 T10 600.0 -389.0 172 D5 -2025.0 -389.0 208 VDD 675.0 -389.0 173 D5 -1950.0 -389.0 209 OSC 750.0 -389.0 174 D4 -1875.0 -389.0 210 OSC 825.0 -389.0 175 D4 -1800.0 -389.0 211 V0 900.0 -389.0 176 D3 -1725.0 -389.0 212 V0 975.0 -389.0 177 D3 -1650.0 -389.0 213 V0 1050.0 -389.0 178 D2 -1575.0 -389.0 214 V0 1125.0 -389.0 Ver 2.2 9/73 2008/01/04 ST7568 PAD NO. PIN Name X Y PAD NO. PIN Name X Y 215 V1 1200.0 -389.0 244 VLCDOUT 3375.0 -389.0 216 V2 1275.0 -389.0 245 VLCDOUT 3450.0 -389.0 217 V3 1350.0 -389.0 246 VLCDOUT 3525.0 -389.0 218 V4 1425.0 -389.0 247 VLCDOUT 3600.0 -389.0 219 VSS2 1500.0 -389.0 248 VLCDOUT 3675.0 -389.0 220 VSS2 1575.0 -389.0 249 RES 3768.5 -389.0 221 VSS2 1650.0 -389.0 250 COMS2 3864.5 -389.0 222 VSS2 1725.0 -389.0 251 COM[63] 3940.0 -389.0 223 VSS2 1800.0 -389.0 252 COM[62] 4015.5 -389.0 224 VSS2 1875.0 -389.0 253 COM[61] 4091.0 -389.0 225 VSS2 1950.0 -389.0 254 COM[60] 4166.5 -389.0 226 VSS2 2025.0 -389.0 255 COM[59] 4242.0 -389.0 227 VSS2 2100.0 -389.0 256 COM[58] 4317.5 -389.0 228 VSS2 2175.0 -389.0 257 COM[57] 4393.0 -389.0 229 VSS2 2250.0 -389.0 258 COM[56] 4468.5 -389.0 230 VSS2 2325.0 -389.0 259 COM[55] 4544.0 -389.0 231 VSS 2400.0 -389.0 260 COM[54] 4619.5 -389.0 232 VSS 2475.0 -389.0 261 COM[53] 4695.0 -389.0 233 VSS 2550.0 -389.0 262 COM[52] 4998.5 -373.5 234 VSS 2625.0 -389.0 263 COM[51] 4998.5 -298.0 235 VSS 2700.0 -389.0 264 COM[50] 4998.5 -222.5 236 VSS 2775.0 -389.0 265 COM[49] 4998.5 -147.0 237 VLCDIN 2850.0 -389.0 266 COM[48] 4998.5 -71.5 238 VLCDIN 2925.0 -389.0 267 COM[47] 4998.5 4.0 239 VLCDIN 3000.0 -389.0 268 COM[46] 4998.5 79.5 240 VLCDIN 3075.0 -389.0 269 COM[45] 4998.5 155.0 241 VLCDIN 3150.0 -389.0 270 COM[44] 4998.5 230.5 242 VLCDIN 3225.0 -389.0 271 COM[43] 4998.5 306.0 243 VLCDOUT 3300.0 -389.0 272 COM[42] 4998.5 381.5 Ver 2.2 10/73 2008/01/04 ST7568 4. BLOCK DIAGRAM SEG0 TO SEG101 COM0 TO COM67 SEGMENT DRIVERS COMMON DRIVERS BIAS VOLTAGE GENERATOR COMMON OUTPUT CONTROLLER CIRCUIT DATA LATCHES FRC/PWM FUNCTION CIRCUIT RESET /RES OSCILLATOR OSC VLCD GENERATOR DISPLAY DATA RAM (DDRAM) [68X102X2] VLCDIN VLCDOUT ADDRESS COUNTER VDD2 VDD Vss1 Vss2 PS IMS DATA REGISTER INSTRUCTION REGISTER BUS HOLDER INSTRUCTION DECODER TIMING GENERATOR DISPLAY ADDRESS COUNTER MPU INTERFACE(PARALLEL & SERIAL) DB0 DB1 DB2 DB3 DB4 DB5 DB6(SI) DB7(SCL) WR(R/W) RD(E) A0 /CS /RES Fig.1 block diagram Ver 2.2 11/73 2008/01/04 ST7568 5. PINNING DESCRIPTIONS Pin Name I/O Description No. of Pins Lcd driver outputs LCD segment driver outputs This display data and the M signal control the output voltage of segment driver. Segment drover output voltage Display data M (Internal) Normal display Reverse display SEG0 to SEG101 O H H H L L H L L Power save mode VLCD V2 VSS V2 V3 VSS V3 VLCD VSS VSS COM0 to COM66 O LCD column driver outputs This internal scanning data and M signal control the output voltage of common driver. Common drover output voltage Display data M(Internal) Normal display Reverse display H H VSS H L VLCD L H V1 L L V4 Power save mode VSS COMS O Common output for the icons The output signals of two pins are same. When not used, this pin should be left open. 102 67 2 MICROPROCESSOR INTERFACE Microprocessor interface select input pin P/S I IMS I CSB I RESB I A0 I Ver 2.2 P/S= " H “: parallel data input. P/S= " L “: serial data input. (4-line serial or IIC serial interface) When 4-line serial interface is applied, D0 to D5 are fixed to " H ". RD (E) and WR(R/W) are fixed to " H ". Input mode select P/S IMS State "H" " H " 6800-series parallel MPU interface "H" " L " 8080-series parallel MPU interface "L" " H " 4 Pin-SPI MPU interface "L" " L " IIC serial interface Chip select input pins Data/instruction I/O is enabled only when CSB is " L ". When chip select is non-active, DB0 to DB7 is high impedance. There is no CSB pin in two line interface, so this pin can fix to ” H” or “L”. Reset input pin When RESET is " L ", initialization is executed. It determines whether the data bits are data or a command. A0=" H “: Indicates that D0 to D7 are display data. A0=" L “: Indicates that D0 to D7 are control data. There is no A0 pin in two line interface, so this pin can fix to ” H” or “L” 12/73 1 1 2 1 2 2008/01/04 ST7568 Read/Write execution control pin /WR(R/W) IMS MPU type /WR(R/W) H 6800-series R/W I L 8080-series /WR Description Read/Write control input pin R/W=" H “: read R/W=" L”: write Write enable clock input pin The data on D0 to D7 are latched at the rising edge of the /WR signal 2 When in the serial interface must fixed to " H ". Read/Write execution control pin IMS /RD (E) I MPU Type /RD (E) H 6800-series E L 8080-series /RD Description Read/Write control input pin R/W=" H “: When E is " H ", D0 to D7 are in an output status. R/W=" L “: The data on D0 to D7 are latched at the falling edge of the E signal. Read enable clock input pin When /RD is " L ", D0 to D7 are in an output status. 2 When in the serial interface must fixed to " H ". D5 to D0 D6 (SI) D7 (SCL) Ver 2.2 I/O When the Parallel interface is selected (P/S=" H " ): 8-bit interface 8-bit bi-directional data bus that is connected to the standard 8-bit microprocessor data bus. When chip select is not active, D0 to D7 is high impedance. When the serial interface is selected (P/S=" L " & IMS=”H”):4-line D7: serial input clock (SCL) D6: serial input data (SI) D5, D4, D3, D2, D1, D0: must fix to “H”.. When chip select is not active, D0 to D7 is high impedance. When the IIC serial interface is selected (P/S=" L " & IMS=”L”) D0 is SA0 D1 is SA1 D2,D3 are SDA_IN D4,D5,D6 are SDA_OUT D7 is SCL SA1, SA0: Is slave address (SA) bit1, 0, must fix to “H” or “L” SDA_IN: serial input data 2 SDA_OUT: serial data acknowledge output for the I C interface. SCL: serial clock input By connecting SDA_OUT to SDA_IN externally, the SDA line becomes fully 2-line interface compatible. Having the acknowledge output separated from the serial data line is advantageous in chip on glass (COG) applications. In COG application where the track resistance from the SDA_OUT pad to the system SDA line can be significant, a potential divider is generated by the bus pull-up resistor and the ITO track resistance. It is possible the during the acknowledge cycle the ST7568 will not be able to create a valid logic 0 level. By splitting the SDA_IN input from the SDA_OUT output the device could be used in a mode that ignores the acknowledge bit. In COG applications where the acknowledge cycle is required, it is necessary to minimize the track resistance from the SDA_OUT pad to the system SDA line to guarantee a valid low level. All Pad of SDA_IN, SDA_OUT must be connected together (SDA) 13/73 16 2008/01/04 ST7568 MODE I Use this pin can select 65 duty or 68 duty mode When MODE=‘L’: select 65 duty (64 com + coms) When MODE=‘H’: select 68 duty (67 com + coms) 1 LCD DRIVER SUPPLY OSC I Oscillator When the on-chip oscillator is used, this input must be connected to VDD. An external clock signal, if used, is connected to this input. If the oscillator and external clock are both inhibited by connecting the OSC pin to VSS the display is not clocked and may be left in a DC state. To avoid this, the chip should always be put into Power Down Mode before stopping the clock. 2 Power Supply Pins Power VSS1 Supply Power VSS2 Supply Power VDD Supply Power VDD2 Supply Power VLCDOUT Supply Power VLCDIN Supply Power V1, V2, V3, V4 Supply Power Digital Ground. The 2 supply rails VSS1 and VSS2 must be connected together. 6 Analog Ground. The 2 supply rails VSS1 and VSS2 must be connected together. 12 Digital Supply voltage. The 2 supply rails VDD and VDD2 could be connected together. If Digital Option pin is high, must be this level Analog Supply voltage. The 2 supply rails VDD and VDD2 could be connected together. If the internal voltage generator is used, the V LCDIN & VLCDOUT must be connected together and series one capacitor to VSS2. If an external supply is used this pin must be left open. If the internal voltage generator is used, the V LCDIN & VLCDOUT must be connected together. An external supply voltage can be supplied using the VLCDIN pad. This pad is for external multiple voltage input. In this case, VLCDOUT has to be left open, This is a multi-level power supply for the liquid crystal. VLCDIN ≥V0 ≥V1≥V2≥V3≥V4≥VSS 9 12 6 6 8 Monitor Voltage Regulator level, must be left open. VRS 1 Supply Test Pin Test0~Test10 Ver 2.2 T To test used. Test0~Test8 must floating Test9 could be connected out for monitor the VLCD(V0) voltage Test10 must connect to VDD 14/73 11 2008/01/04 ST7568 Recommend ITO Resistance Value PIN Name ITO Resistance P/S, IMS, MODE, OSC, Test9, Test10 No Limitation Test[0:8] Floating VDD, VDD2, VSS1, VSS2, VRS, VLCD <100Ω CSB, E, R/W, A0, D0…D7 <1KΩ V0, V1 , V2 , V3 , V4 <500Ω RESB <10KΩ Ver 2.2 15/73 2008/01/04 ST7568 6. FUNCTIONS DESCRIPTION MICROPROCESSOR INTERFACE Chip Select Input There is CSB pin for chip selection. The ST7568 can interface with an MPU when CSB is "L". When CSB is “H”, these pins are set to any other combination, A0, /RD(E), and /WR(R/W) inputs are disabled and D0 to D7 are to be high impedance. And, in case of 4-line serial interface, the internal shift register and the counter are reset. In case of IIC serial interface CSB is a no use pin which must be fixed to high or low Parallel / Serial Interface ST7568 has four types of interface with an MPU, which are two serial and two parallel interfaces. This parallel or serial interface is determined by P/S pin as shown in table 1. Table 1. Parallel/Serial Interface Mode Type P/S IMS CSB Interface mode H 6800-series MPU interface Parallel H CSB L 8080-series MPU interface H CSB 4-pin SPI interface Serial L L No use IIC serial interface Parallel Interface (P/S = "H") The 8-bit bi-directional data bus is used in parallel interface and the type of MPU is selected by IMS as shown in table 2. The type of data transfer is determined by signals at A0, /RD (E) and /WR(R/W) as shown in t able 3. Table 2. Microprocessor Selection for Parallel Interface IMS CSB A0 /RD (E) /WR (R/W) DB0 to DB7 MPU bus H CSB A0 E R/W DB0 to DB7 6800-series L CSB A0 /RD /WR DB0 to DB7 8080-series Table 3. Parallel Data Transfer Common 6800-series 8080-series Description E R/W /RD /WR RS (/RD) (/WR) (E) (R/W) H H H L H Display data read out H H L H L Display data write L H H L H Register status read L H L H L Writes to internal register (instruction) NOTE: When /RD (E) pin is always pulled high for 6800-series interface, it can be used CSB for enable signal. In this case, interface data is latched at the rising edge of CSB and the type of data transfer is determined by signals at A0, /WR(R/W) as in case of 6800-series mode. Serial Interface (P/S=" L ") Serial Mode 4-line SPI interface IIC serial interface P/S L L IMS H L CSB CSB No Used A0 A0 No Used /RD (E) No Used No Used /WR (R/W) No Used No Used IMS=” L “, P/S=” H “: 4-line SPI interface When the ST7568 is active (CSB=”L”), serial data (D7) and serial clock (D6) inputs are enabled. And not active, the internal 8-bit shift register and the 3-bit counter are reset. The display data/command indication may be controlled either via software or the Register Select (A0) Pin, based on the setting of P/S. When the A0 pin is used (IMS = “H”), data is display data when A0 is high, and command data when A0 is low. If messages on the data pin are data rather than command, MCU should send Data direction to the SI data signal pin,. And the DDRAM column address pointer will be increased by one pixel data (2 bits) automatically. The next bytes after the display data string are handled as command data. /CB SI DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 DB7 DB6 SCL A0 Figure 2. 4-line SPI Timing Ver 2.2 16/73 2008/01/04 ST7568 2 IMS=” L “, P/S=” L “:I C Interface 2 2 The I C interface send RAM data and executes the commands sent via the I C Interface. It could send data it to the RAM. 2 The I C Interface is two-line communication between different ICs or modules. The two lines are a Serial Data line (SDA) and a Serial Clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy. BIT TRANSFER One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse because changes in the data line at this time will be interpreted as a control signal. Bit transfer is illustrated in Fig.3. START AND STOP CONDITIONS Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P). The START and STOP conditions are illustrated in Fig.4. SYSTEM CONFIGURATION The system configuration is illustrated in Fig.5. · Transmitter: the device, which sends the data to the bus · Master: the device, which initiates a transfer, generates clock signals and terminates a transfer · Slave: the device addressed by a master · Multi-Master: more than one master can attempt to control the bus at the same time without corrupting the message · Arbitration: procedure to ensure that, if more than one master simultaneously tries to control the bus, only one is allowed to do so and the message is not corrupted · Synchronization: procedure to synchronize the clock signals of two or more devices. ACKNOWLEDGE Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH signal put on the bus by the transmitter during which time the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. A master receiver must also generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges must pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal an end-of-data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a 2 STOP condition. Acknowledgement on the I C Interface is illustrated in Fig.6. Ver 2.2 17/73 2008/01/04 ST7568 SDA SCL data line stable; data valid change of data allowed Fig .3 Bit transfer SDA SCL S P START con dition STOP con dition Fig .4 Definition of START and STOP conditions MASTER TRANSMITTER/ RECEIVER SLAVE RECEIVER (1) 0111100 SLAVE RECEIVER (2) 0111101 SLAVE RECEIVER (3) 0111110 SLAVE RECEIVER (4) 0111111 SDA SCL Fig .5 System configuration DATA OUTPUT BY TRANSMITTER not acknowledge DATA OUTPUT BY RECEIVER acknowledge SCL FROM MASTER 1 2 8 S 9 clock pulse for acknowledge ment START condition Fig .6 Acknowledgement on the 2-line Interface Ver 2.2 18/73 2008/01/04 ST7568 2 I C Interface protocol The ST7568 supports command, data write addressed slaves on the bus. 2 Before any data is transmitted on the I C Interface, the device, which should respond, is addressed first. Four 7-bit slave addresses (0111100,0111101, 0111110 and 0111111) are reserved for the ST7568. The least significant bit of the slave address is set by connecting the input SA0 and SA1 to either logic 0 (or logic 1 (VDD). 2 The I C Interface protocol is illustrated in Fig.7. 2 The sequence is initiated with a START condition (S) from the I C Interface master, which is followed by the slave address. 2 All slaves with the corresponding address acknowledge in parallel, all the others will ignore the I C Interface transfer. After acknowledgement, one or more command words follow which define the status of the addressed slaves. A command word consists of a control byte, which defines Co and A0, plus a data byte. The last control byte is tagged with a cleared most significant bit (i.e. the continuation bit Co). After a control byte with a cleared Co bit, only data bytes will follow. The state of the A0 bit defines whether the data byte is interpreted as a command or as RAM data. All addressed slaves on the bus also acknowledge the control and data bytes. After the last control byte, depending on the A0 bit setting; either a series of display data bytes or command data bytes may follow. If the A0 bit is set to logic 1, these display bytes are stored in the display RAM at the address specified by the data pointer. The data pointer is automatically updated and the data is directed to the intended ST7568i device. If the A0 bit of the last control byte is set to logic 0, these command bytes will be decoded and the setting of the device will be changed according to the received 2 commands. Only the addressed slave makes the acknowledgement after each byte. At the end of the transmission the I C INTERFACE-bus master issues a STOP condition (P).If the R/W bit is set to logic 1 the chip will output data immediately after the slave address if the A0 bit, which was sent during the last write access, is set to logic 0. If no acknowledge is generated by the master after a byte, the driver stops transferring data to the master. Write mode acknowledgement from ST7568i S 0 1 1 1 1 slave address S A 1 S A 0 0 A 1 A 0 acknowledgement from ST7568i control byte acknowledgement from ST7568i data byte A A 0 control byte 1 byte R/W 2n>=0bytes command word Co 0 1 1 1 1 A 0 acknowledgement from ST7568i acknowledgement from ST7568i data byte A A P n>=0bytes MSB.......................LSB Co S A 1 S A 0 slave address R / W Co A 0 0 0 0 0 0 0 A D D D D D D D D 7 6 5 4 3 2 1 0 control byte A data byte Fig .7 2-line Interface protocol Last control byte to be sent. Only a stream of data bytes is allowed to follow. 0 Co This stream may only be terminated by s STOP or RE-START condition. 1 Ver 2.2 Another control byte will follow the data byte unless a STOP or RE-START condition is received. 19/73 2008/01/04 ST7568 Busy Flag The Busy Flag indicates whether the ST7568 is operating or not. When D7 is "H" in read status operation, this device is in busy status and will accept only read status instruction. If the cycle time is correct, the microprocessor needs not to check this flag before each instruction, which improves the MPU performance. Data Transfer The ST7568 uses bus holder and internal data bus for data transfer with the MPU. When writing data from the MPU to on-chip RAM, data is automatically transferred from the bus holder to the RAM as shown in figure 8. And when reading data from on-chip RAM to the MPU, the data for the initial read cycle is stored in the bus holder (dummy read) and the MPU reads this stored data from bus holder for the next data read cycle as shown in figure 9. This means that a dummy read cycle must be inserted between each pair of address sets when a sequence of address sets is executed. Therefore, the data of the specified address cannot be output with the read display data instruction right after the address sets, but can be output at the second read of data. MPU signal A0 /WR D0 to D7 N D(N) D(N+1) D(N+2) D(N+3) N D(N) D(N+1) D(N+2) D(N+3) N N+1 N+2 N+3 Internal signals /WR BUS HOLDER COLUMN ADDRESS Figure 8. Write Timing MPU signal A0 /W R /RD D0 to D7 N Dummy D(N) D(N+1) Internal signals /W R /RD BUS HOLDER COLUMN ADDRESS Ver 2.2 N N D(N) D(N+1) D(N+2) D(N) D(N+1) D(N+2) Figure 9.Read Timing 20/73 2008/01/04 ST7568 DISPLAY DATA RAM (DDRAM) The ST7568 contains a 68X102X2 bit static RAM that stores the display data. The display data RAM store the dot data for the LCD. It has a 68(8 pageX8 bit +1 pageX3 bit +1 pageX1 bit) X102 X2. There is a direct correspondence between X-address and column output number. It is 68-row by 102-column addressable array. Each pixel can be selected when the page and column addresses are specified. The 65 rows are divided into 8 pages of 8 lines (0~63 COM) and 8th page with three line (D0 ~D2)(64~ 66 COM) and 9th page with a single line (D0 only)(67 row—COMS (ICON). Data is read from or written to the 8 lines of each page directly through D0 to D7. The display data of D0 to D7 from the microprocessor correspond to the LCD common lines. The microprocessor can read from and write to RAM through the I/O buffer. Since the LCD controller operates independently, data can be written into RAM at the same time as data is being displayed without causing the LCD flicker. Page Address Circuit This circuit is for providing a Page Address to Display Data RAM shown in figure 6. It incorporates 4-bit Page Address register changed by only the “Set Page” instruction. Page Address 9 is a special RAM area for the icons and display data D0 is only valid. Line Address Circuit This circuit assigns DDRAM a Line Address corresponding to the first line (COM0) of the display. Therefore, by setting Line Address repeatedly, it is possible to realize the screen scrolling and page switching without changing the contents of on-chip RAM as shown in figure 10. It incorporates 7-bit Line Address register changed by only the initial display line instruction and 7-bit counter circuit. At the beginning of each LCD frame, the contents of register are copied to the line counter which is increased by CL signal and generates the line address for transferring the 102-bit RAM data to the display data latch circuit. When icon is selected by setting icon page address, display data of icons are not scrolled because the MPU cannot access Line Address of icons. Column Address Circuit Column Address Circuit has an 8-bit preset counter that provides Column Address to the Display Data RAM as shown in figure11. The display data RAM column address is specified by the Column Address Set command. The specified column address is incremented (+1) with each display data read/write command. This allows the MPU display data to be accessed continuously. Register MX and MY selection instruction makes it possible to invert the relationship between the Column Address and the segment outputs. It is necessary to rewrite the display data on built-in RAM after issuing MX select instruction. Refer to the following figure 12. SEG Output SEG Output MX SEG0 SEG101 “0” seg0 à Segment Address à seg101 “1” seg101 ß Segment Address ß seg0 Com Output SEG Output MY Com0 Com66 Coms “0” com0 à Common Address à com66 Coms “1” com66 ß Common Address ß com0 Coms COM Scan Direction 1/65 DUTY 1/68 DUTY COM0 à COM63 COM0 à COM66 COM63 à COM0 COM66 à COM0 Status Normal Reverse Duty MY 1/68 1/65 Ver 2.2 0 1 0 1 Com [0:31] Com [0:31] Com [63:32] Common output pins Com [32:34] Com [35:66] Com [0:66] Com [66:0] Reverse Com [32:63] Reverse Com [31:0] 21/73 Coms Coms Coms Coms Coms 2008/01/04 ST7568 SEG output SEG 0 SEG 1 SEG 2 SEG 3 Column 00H 01H 02H 03H address [X6:X0] Internal column 00 01 02 03 04 05 06 07 address HEX HEX HEX HEX HEX HEX HEX HEX Display data 1 1 1 0 0 0 0 1 (MX=0) LCD panel display Display data (MX=1) LCD panel display 0 1 0 0 1 1 1 0 … SEG 98 SEG 99 SEG 100 SEG 101 … 62H 63H 64H 65H … … 7C 7D 7E 7F 80 81 82 83 HEX HEX HEX HEX HEX HEX HEX HEX 1 0 1 1 0 0 0 1 0 1 0 0 1 0 1 1 … … … Figure10.The Relationship between the Column Address and The Segment Outputs ADDRESSING Data is downloaded in bytes into the RAM matrix of ST7568 as indicated in Figs.11, 12,13. The display RAM has a matrix of 68 by 102 × 2 bits. The address pointer addresses the columns. The address ranges are: X 0 to 101 (1100101), Y 0 to 9 (1001). Addresses outside these ranges are not allowed. In vertical addressing mode (V=1) the Y address increments after each byte (see Fig.13). After the last Y address (Y = 9) Y wraps around to 0 and X increments to address the next column. In horizontal addressing mode (V=0) the X address increments after each byte (see Fig.12). After the last X address (X = 101) X wraps around to 0 and Y increments to address the next row. After the very last address (X = 101, Y = 9) the address pointers wrap around to address (X = 0, Y =0) D0 D7 LSB 0 1 2 3 4 5 6 7 8 9 MSB LSB MSB 1 bit 0 X-address 101 Fig.11 RAM format, addressing Ver 2.2 22/73 2008/01/04 Y-address Data structure 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 0 917 X-address 0 1 2 3 4 5 6 7 8 9 Y-address ST7568 101 0 1 2 102103104 204205206 306307308 408409410 510511512 612613614 714715716 816817818 0 917 X-address 101 0 1 2 3 4 5 6 7 8 9 Y-address Fig.12 Sequence of writing data bytes into RAM with vertical addressing (V=1) Fig.13 sequence of writing data bytes into RAM with horizontal addressing (V=0) Ver 2.2 23/73 2008/01/04 ST7568 Page Address Dat D3 D2 D1 D0 a COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 Page 8 65 64 63 62 61 60 5F 5E 5D 08 07 S0 S1 S2 S3 S4 S5 S6 S7 S8 S93 S94 MX Column address ICON(COMS) 0 D0 D0 0 1 0 D0 0 COM Output Regardless of the display start line address, 1/65duty => 64th line, LCD Out 1 Page 7 65 1 64 1 00 1 S101 0 Page 6 63 0 01 1 S100 1 62 0 Page 5 02 1 S99 0 61 1 03 0 Page 4 S98 0 60 0 04 1 S97 0 Page 3 5F 1 05 1 S96 0 5E 0 Page 2 06 0 S95 1 5D 0 08 0 Page 1 07 1 06 0 05 0 04 0 When the common output is normal 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH Page 0 03 0 02 0 01 0 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 00 0 Line Address Figure 14. Display Data RAM Map (65 COM) Ver 2.2 24/73 2008/01/04 ST7568 63 62 61 60 5F 5E S2 S3 S4 S5 S6 S7 0 64 S1 ICON(COMS) 1 65 S0 43H D0 Page 9 D0 D0 1 Regardless of the display start line address, 1/68duty => 67th line, LCD Out 0 65 0 64 1 Page 8 00 0 S101 0 63 0 01 1 Page 7 S100 1 62 1 02 1 S99 0 Page 6 61 0 03 1 S98 1 60 0 Page 5 04 1 S97 0 5F 1 05 0 Page 4 S96 0 5E 0 COM Output COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 COM64 COM65 COM66 06 1 When the common output is normal 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH 40H 41H 42H S95 0 Page 3 5D 1 07 1 08 0 S94 0 Page 2 S93 0 08 1 07 0 5D 0 Page 1 S8 1 06 0 05 0 04 0 Page 0 03 0 02 0 01 0 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 00 0 Line Address MX Column address Page Address Dat D3 D2 D1 D0 a Display Data RAM Map (68 COM) Ver 2.2 25/73 2008/01/04 ST7568 LCD DISPLAY CIRCUITS FRC (Frame Rate Control) and PWM (Pulse Width Modulation) Function Circuit The ST7568 incorporates an FRC function and a PWM function circuit to display a 4-level gray scale. The FRC function and PWM utilize liquid crystal characteristics whose transmittance is changed by an effective value of applied voltage. The ST7568 provides four 4-bit palette-registers to assign the desired gray level. The instructions and the RESB Pin set these registers. -Gray Scale Table of 4 FRC (Frame Rate Control) Gray scale level White Light gray Dark gray Black MSB (D7 TO D4) LSB (D3 TO D0) 2nd FR (FR2) 4th FR (FR4) 2nd FR (FR2) 4th FR (FR4) 2nd FR (FR2) 4th FR (FR4) 2nd FR (FR2) 4th FR (FR4) 1st FR (FR1) 3rd FR (FR3) 1st FR (FR1) 3rd FR (FR3) 1st FR (FR1) 3rd FR (FR3) 1st FR (FR1) 3rd FR (FR3) -Gray Scale Table of 3 FRC (Frame Rate Control) Gray scale level White Light gray Dark gray Black MSB (D7 TO D4) LSB (D3 TO D0) 2nd FR (FR2) XXXX 2nd FR (FR2) XXXX 2nd FR (FR2) XXXX 2nd FR (FR2) XXXX 1st FR (FR1) 3rd FR (FR3) 1st FR (FR1) 3rd FR (FR3) 1st FR (FR1) 3rd FR (FR3) 1st FR (FR1) 3rd FR (FR3) -Gray Scale Table of 15 PWM (Pulse Width Modulation) Dec 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Ver 2.2 Hex 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 4-bits 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 PWM (on width) 0(0/15) 1/15 2/15 3/15 4/15 5/15 6/15 7/15 8/15 9/15 10/15 11/15 12/15 13/15 14/15 1(15/15) 26/73 Note Brighter Darker 2008/01/04 ST7568 -Gray Scale Table of 12 PWM (Pulse Width Modulation) Dec 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Hex 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 4-bits 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 PWM (on width) 0(0/12) 1/12 2/12 3/12 4/12 5/12 6/12 7/12 8/12 9/12 10/12 11/12 1(12/12) 0/12 0/12 0/12 Note Brighter Darker This area is selected to OFF level (0/12 level) -Gray Scale Table of 9 PWM (Pulse Width Modulation) Dec 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Ver 2.2 Hex 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 4-bits 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 PWM (on width) 0(0/9) 1/9 2/9 3/9 4/9 5/9 6/9 7/9 8/9 1(9/9) 0/9 0/9 0/9 0/9 0/9 0/9 27/73 Note Brighter Darker This area is selected to OFF level (0/9 level) 2008/01/04 ST7568 Booster Efficiency By Booster Stages (2X, 3X, 4X, 5X) and Booster Efficiency (Level1~4) commands, we could easily set the best Booster performance with suitable current consumption. If the Booster Efficiency is set to higher level (level4 is higher than level1), The Boost Efficiency is better than lower level, and it just need few more power consumption current. It could be applied to each multiple voltage Condition. When the LCD Panel loading is heavier. Then the Performance of Booster will be not in a good working condition. We could set the BE level to be higher. We do not need to change to higher Booster Stage, and just need few more current. The Booster Efficiency Command could be used together with Booster Stage Command to choose one best Boost output condition. We could see the Boost Stage Command as a large scale operation, and see the Booster Efficiency Command as a small scale operation. These commands are very convenient for using Level1 Vout Voltage Level2 Level3 Level4 5X boost Loading VSS Current Level1 Level2 Level3 Level4 5X Current Loading Ver 2.2 28/73 2008/01/04 ST7568 Oscillator The on-chip oscillator provides the clock signal for the display system. No external components are required and the OSC input must be connected to VDD. An external clock signal, if used, is connected to this input. Display Timing Generator Circuit This circuit generates some signals to be used for displaying LCD. The display clock, CL (internal), generated by oscillation clock, generates the clock for the line counter and the signal for the display data latch. The line address of on-chip RAM is generated in synchronization with the display clock and the display data latch circuit latches the 102-bit display data in synchronization with the display clock. The display data, which is read to the LCD driver, is completely independent of the access to the display data RAM from the microprocessor. The display clock generates an LCD AC signal (M) which enables the LCD driver to make a AC drive waveform, and also generates an internal common timing signal and start signal to the common driver. The frame signal or the line signal changes the M by setting internal instruction. Driving waveform and internal timing signal are shown in Figure 15. 64 65 1 2 3 4 5 6 7 8 9 10 11 12 57 58 59 60 61 62 63 64 65 1 2 3 4 5 CL(Internal) FR(Internal) M(Internal) COM0 VLCD V1 V2 V3 V4 VSS COM1 VLCD V1 V2 V3 V4 VSS SEGn VLCD V1 V2 V3 V4 VSS Figure 15 2-frame AC Driving Waveform (Duty Ratio: 1/65) 64 65 1 2 3 4 5 6 7 8 9 10 11 12 56 57 58 59 60 61 62 63 64 65 1 2 3 4 CL(Internal) FR(Internal) M(Internal) VLCD V1 V2 V3 V4 Vss COM0 VLCD V1 V2 V3 V4 Vss COM1 VLCD V1 V2 V3 V4 Vss SEGn Figure 16. N-Line Inversion Driving Waveform (N=5,Duty Ratio=1/65) Ver 2.2 29/73 2008/01/04 ST7568 LCD DRIVER CIRCUIT 68-channel common drivers and 102-channel segment drivers configure this driver circuit. This LCD panel driver voltage depends on the combination of display data and M signal. V DD V SS V LCD V1 V2 V3 V4 V SS V LCD V1 V2 V3 V4 V SS V LCD V1 V2 V3 V4 V SS V LCD V1 V2 V3 V4 V SS V LCD V1 V2 V3 V4 V SS V LCD V4 V3 V2 V1 V SS -V 1 -V 2 -V 3 -V 4 -V LCD V L2 V1 V2 V3 V4 V SS -V 1 -V 2 -V 3 -V 4 -V LCD M COM0 COM1 COM0 COM2 COM3 COM4 COM5 COM6 COM1 COM7 COM8 COM9 COM2 COM10 COM11 COM12 COM13 COM14 SEG0 SEG 0 1 2 3 4 SEG1 COM0 to SET0 COM0 to SET1 Fig.17 Typical LCD driver waveforms Ver 2.2 30/73 2008/01/04 ST7568 Partial Display on LCD The ST7568 realizes the Partial Display function on LCD with low-duty driving for saving power consumption and showing the various display duty. To show the various display duty on LCD, LCD driving duty and bias are programmable via the instruction. And, built-in power supply circuits are controlled by the instruction for adjusting the LCD driving voltages. -COM0 -COM1 -COM2 -COM3 -COM4 -COM5 -COM6 -COM7 -COM8 -COM9 -COM10 -COM11 -COM12 -COM13 -COM14 -COM15 -COM16 -COM17 -COM18 -COM19 -COM20 -COM21 -COM22 -COM23 Figure 18.Reference Example for Partial Display -COM0 -COM1 -COM2 -COM3 -COM4 -COM5 -COM6 -COM7 -COM8 -COM9 -COM10 -COM11 -COM12 -COM13 -COM14 -COM15 -COM16 -COM17 -COM18 -COM19 -COM20 -COM21 -COM22 -COM23 Figure 19.Partial Display (Partial Display Duty=16,initial COM0=0) Ver 2.2 31/73 2008/01/04 ST7568 -COM0 -COM1 -COM2 -COM3 -COM4 -COM5 -COM6 -COM7 -COM8 -COM9 -COM10 -COM11 -COM12 -COM13 -COM14 -COM15 -COM16 -COM17 -COM18 -COM19 -COM20 -COM21 -COM22 -COM23 Figure 20.Moving Display (Partial Display Duty=16,Initial COM0=8) Ver 2.2 32/73 2008/01/04 ST7568 7. RESET CIRCUIT Setting RESB to “L” or Reset instruction can initialize internal function. When RESB becomes “L”, following procedure is occurred. Page address: 0 Column address: 0 Read-modify-write: OFF Display ON / OFF: OFF Initial display line: 0 (first) Initial COM0 register: 0 (COM0) Reverse display ON / OFF: OFF (normal) N-line inversion register: 0 (disable) Entire Display ON/OFF: OFF ICON Control Register ON/OFF: OFF (ICON disable) COM Scan Direction MY: 0 SEG Select Direction MX: 0 Oscillator: OFF Power Save Mode: Release Display Data Length register: 0 (for SPI mode) White mode set: OFF White palette register (WG3, WG2, WG1, WG0) = (0, 0, 0, 0) Light gray mode set: OFF Light gray palette register (LG3, LG2, LG1, LG0) = (0, 0, 0, 0) Dark gray mode set: OFF Dark gray palette register (DG3, DG2, DG1, DG0) = (1, 1, 1, 1) Black mode set: OFF Black palette register (BG3, BG2, BG1, BG0) = (1, 1, 1, 1) FRC, PWM mode: 4FRC, 9PWM Power down mode (PD = 1) Horizontal addressing (V = 0) normal instruction set (H = 0) Display blank (E = D = 0) Address counter X [6:0] = 0, Y [2:0] = 0 Bias system (BS [2:0] = 0) VLCD is equal to 0; the HV generator is switched off (VOP [6:0] = 0) After power-on, RAM data are undefined While RESB is “L” or reset instruction is executed, no instruction except read status can be accepted. Reset status appears at DB6. After DB6 becomes ”L”, any instruction can be accepted. RESB must be connected to the reset pin of the MPU, and initialize the MPU and this LSI at the same time. The initialization by RESB is essential before used. Ver 2.2 33/73 2008/01/04 ST7568 8. INSTRUCTION TABLE COMMAND BYTE D4 D3 D2 A0 WR (R/W) D7 D6 D5 H=0 or 1 NOP Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Function set 0 0 0 0 1 0 Ext. display control 0 0 0 0 1 Window size for Partial screen 0 0 0 0 Display part 0 0 0 Read status byte Read data Write data 0 1 1 1 1 0 PD D7 D7 INSTRUCTION D1 D0 0 0 0 1 0 1 0 PD V H 0 1 MX MY PS 1 1 0 0 0 WS 0 1 1 1 DP2 DP1 DP0 RST D6 D6 BUSY D5 D5 D D4 D4 E D3 D3 1 D2 D2 0 D1 D1 1 D0 D0 DESCRIPTION No operation Internal reset Power-down; entry mode; Extended instruction control Mirror X, Mirror Y, partial screen mode Partial screen size 0:8 row, 1:16 row Sets display part for partial screen mode Read status byte Read data from RAM Write data to RAM * Reset instruction could not applied on IIC serial interface Ver 2.2 34/73 2008/01/04 ST7568 INSTRUCTION H=0 Set VLCD range END Read/modify/write Display control Set Y address of RAM Start line set COMMAND BYTE D4 D3 D2 A0 WR (R/W) D7 D6 D5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 S5 D1 D0 1 1 1 D 0 1 1 0 PRS 0 1 E Y3 Y2 Y1 Y0 S4 S3 S2 S1 S0 Set X address of RAM H=1 Booster Efficiency 0 0 1 X6 X5 X4 X3 X2 X1 X0 0 0 0 0 0 0 0 1 BE1 BE0 Booster stages 0 0 0 0 0 0 1 0 PC1 PC0 Release N-line inversion 0 0 0 0 0 0 1 1 0 0 0 0 S/W Internal register 0 initial 0 Frame freq. Adjust 0 and set FRC, PWM 0 Bias system 0 Set white mode and 0 st nd 1 /2 frame 0 Set white mode and 0 rd th 3 /4 frame 0 Set light gray mode 0 st nd 1 /2 frame 0 Set light gray mode 0 rd th 3 /4 frame 0 Set dark gray mode 0 st nd and 1 /2 frame 0 Set dark gray and 0 rd th 3 /4 frame 0 Set block mode and 0 st nd 1 /2 frame 0 Set block mode and 0 rd th 3 /4 frame 0 Reserved 0 Set VOP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 X 0 0 WB3 0 WD3 0 LB3 0 LD3 0 DB3 0 DD3 0 BB3 0 DB3 0 1 0 X 0 0 0 FR2 0 0 WB2 0 WD2 0 LB2 0 LD2 0 DB2 0 DD2 0 BB2 0 DB2 1 VOP6 0 X 0 0 0 FR1 0 0 WB1 0 WD1 0 LB1 0 LD1 0 DB1 0 DD1 0 BB1 0 DB1 X VOP5 0 N4 0 1 0 FR0 1 1 WB0 1 WD0 1 LB0 1 LD0 1 DB0 1 DD0 1 BB0 0 DB0 X VOP4 1 N3 1 0 1 X 0 1 WA3 1 WC3 1 LA3 1 LC3 1 DA3 1 DC3 1 BA3 1 BC3 X VOP3 1 N2 1 0 1 FRC BS2 0 WA2 0 WC2 0 LA2 0 LC2 1 DA2 1 DC2 1 BA2 1 BC2 X VOP2 Set N-line inversion Ver 2.2 35/73 DESCRIPTION VLCD range L/H select Release read/modify/write RAM address at R:+0 , W:+1 Set display configuration Sets Y address of RAM 0≦Y≦9 Specify the initial display line to realize vertical scrolling Sets X address of RAM 0≦X≦101 Booster Efficiency Set # of booster voltage multiplication Release N-line inversion 0 1 Sets N-line inversion N1 N0 1 0 S/W Internal register initial 1 0 1 1 Adjust frame frequency and PWM1 PWM0 FRC and PWM mode BS1 BS0 Sets bias system (BSx) st nd 0 0 Set white mode and 1 /2 WA1 WA0 frame, set pulse width rd th 0 1 Set white mode and 3 /4 WC1 WC0 frame, set pulse width 1 0 Set light gray mode and st nd LA1 LA0 1 /2 frame set pulse width 1 1 Set light gray mode and rd th LC1 LC0 3 /4 frame, set pulse width 0 0 Set dark gray mode and st nd DA1 DA0 1 /2 frame, set pulse width 0 1 Set dark gray mode and rd th DC1 DC0 3 /4 frame, set pulse width st nd 1 0 Set black mode and 1 /2 BA1 BA0 Frame, set pulse width rd th 1 1 Set black mode and 3 /4 BC1 BC0 frame, set pulse width X X Do not use VOP1 VOP0 Write VOP to register 2008/01/04 ST7568 9. INSTRUCTION DESCRIPTION H=”0” or “1” Reset This instruction resets initial display line, column address, page address, and common output status select to their initial status.This instruction cannot initialize the LCD power supply, which is initialized by the RESB pin. Note: This instruction is invalid in IIC serial interface A0 0 WR(R/W) 0 Function Set A0 WR(R/W) 0 0 Flag PD V H MX MY PS D6 0 D5 0 D4 0 D3 0 D2 0 D1 1 D0 1 D7 0 D6 0 D5 1 D4 0 D3 0 D2 PD D1 V D0 H Description All LCD outputs at VSS (display off), bias generator and VLCD generator off, VLCD can be disconnected, oscillator off (external clock possible), RAM contents not cleared; RAM data can be written. PD=0:chip is active PD=1:chip is in power down mode When V = 0, the horizontal addressing is selected. The data is written into the DDRAM as shown in Fig13. When V = 1, the vertical addressing is selected. The data is written into the DDRAM as shown in Fig12 When H = 0 the commands ‘display control’, ‘set Y address’ and ‘set X address’ can be performed, when H = 1 the others can be executed. The commands ‘write data’ and ‘function set’ can be executed in both cases. H=0:use basic instruction set H=1:use extended instruction set Ext. display byte A0 WR(R/W) 0 0 Flag D7 0 D7 0 D6 0 D5 1 D4 0 D3 1 D2 MX D1 MY D0 PS Description SEG bi-direction selection MY=0:normal direction (SEG0àSEG101) MY=1:reverse direction (SEG101àSEG0) COM bi-direction selection MY=0:normal direction (COM0àCOM67) MY=1:reverse direction (COM67àCOM0) Full display mode or partial screen mode selection PS=0:Full display mode with MUX 1:68 PS=1:Partial screen mode with MUX 1:8 or MUX 1:16 Window sizes for partial scan This instruction can select partial screen size, partial screen 8 rows when WS is low and partial screen 16 rows when WS is height. A0 0 Ver 2.2 WR(R/W) 0 D7 0 D6 0 D5 1 D4 1 36/73 D3 0 D2 0 D1 0 D0 WS 2008/01/04 ST7568 Display part This instruction can select partial screen modes A0 D7 D6 D5 WR(R/W) 0 0 0 0 1 Flag 0 0 0 0 1 1 1 1 DP2 DP1 DP0 Status 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 D4 1 D3 1 D2 DP2 D1 DP1 D0 DP0 D1 0 D0 1 Description RAM bank 0 to 1 (row0~row7) RAM bank 1 to 2 (row8~row15) RAM bank 2 to 3 (row16~row23) RAM bank 3 to 4 (row24~row31) RAM bank 4 to 5 (row32~row39) RAM bank 5 to 6 (row40~row47) RAM bank 6 to 7 (row48~row55) RAM bank 7 to 8 (row56~row63) Read status byte Indicates the internal status of the ST7568 A0 0 WR(R/W) 1 D7 PD D6 RST D5 BUSY D4 D D3 E D2 1 Flag Description PD=0:chip is active PD PD=1:chip is in power down mode Indicates the initialization is in progress by RESET signal RST 0: chip is active,1:chip is being reset The device is busy when internal operation or reset. Any instruction is rejected until BUSY goes LOW. BUSY 0:chip is active 1:chip is being busy D E The bits D and E select the display mode. 0 0 Display blank D,E 0 1 All display segments on 1 0 Normal mode 1 1 Inverse video mode D2~D0 ST7568 will return the fix data “101” as identification bit Write data 8-bit data of Display Data from the microprocessor can be written to the RAM location specified by the column address and page address. The column address is increased by 1 automatically so that the microprocessor can continuously write data to the addressed page. During auto-increment, the column address wraps to 0 after the last column is written. A0 1 WR(R/W) D7 D6 D5 D4 D3 Write data D2 D1 D0 D7 0 D6 0 D5 0 D4 0 D2 1 D1 0 D0 PRS 0 H=”0” Set VLCD range VLCD range L/H select A0 0 WR(R/W) 0 D3 0 PRS=0:VLCD programming range LOW PRS=1: VLCD programming range HIGH Ver 2.2 37/73 2008/01/04 ST7568 END This command releases the read/modify/write mode, and returns the column and row address to the address it was at when the mode was entered. A0 D7 D6 D5 D4 D3 D2 D1 D0 WR(R/W) 0 0 0 0 0 0 0 1 1 0 Read/modify/write This command is used paired with the“END”command. Once this command has been input, the display data read command does not change the column and row address, but only the display data write command increments (+1) the address depend on V register setting. This mode is maintained until the END command is input. When the END command is input, the address returns to the address it was at when the read/modify/write command was entered. This function makes it possible to reduce the load on the MPU when there are repeating data changes in a specified display region, such as when there is a blanking cursor. A0 D7 D6 D5 D4 D3 D2 D1 D0 WR(R/W) 0 0 0 0 0 0 0 1 1 1 * Even in read/modify/write mode, other commands aside from display data read/write commands can also be used. Page address set Column address set Read-modify-write cycle Dummy read Data read Data write NO Changes Finished ? YES END Ver 2.2 38/73 2008/01/04 ST7568 Display Control This bits D and E selects the display mode. A0 0 Flag D,E WR(R/W) 0 D7 0 D6 0 D5 0 D4 0 D3 1 D2 D D1 0 D0 E D3 Y3 D2 Y2 D1 Y1 D0 Y0 Description D E The bits D and E select the display mode. 0 0 Display off 1 0 Normal display 0 1 All display segments on 1 1 Inverse video mode Set Y address of RAM Y [3:0] defines the Y address vector address of the display RAM. A0 0 WR(R/W) 0 X/Y Address range Y3 Y2 Y1 Y0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 D7 0 D6 0 D5 0 D4 1 CONTENT Page0 (display RAM) Page1 (display RAM) Page2 (display RAM) Page3 (display RAM) Page4 (display RAM) Page5 (display RAM) Page6 (display RAM) Page7 (display RAM) Page8 (display RAM) Page9 (display RAM) ALLOWED X-RANGE 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 Start line set Sets the line address of display RAM to determine the initial display line instruction. The RAM display data is displayed at the top of row (COM0) of LCD panel. A0 0 S5 0 0 0 0 : 1 1 1 1 Ver 2.2 WR(R/W) 0 S4 0 0 0 0 : 1 1 1 1 D7 0 D6 1 S3 0 0 0 0 : 1 1 1 1 D5 S5 S2 0 0 0 0 : 1 1 1 1 D4 S4 S1 0 0 1 1 : 0 0 1 1 D3 S3 S0 0 1 0 1 : 0 1 0 1 39/73 D2 S2 D1 S1 D0 S0 Line address 0 1 2 3 : 61 62 62 63 2008/01/04 ST7568 Set X address of RAM The X address points to the columns. The range of X is 0…101. A0 0 X6 0 0 0 0 : 1 1 1 1 D7 1 WR(R/W) 0 X5 0 0 0 0 : 1 1 1 1 X4 0 0 0 0 : 0 0 0 0 D6 X6 X3 0 0 0 0 : 0 0 0 0 D5 X5 X2 0 0 1 1 : 0 0 1 1 D4 X4 D3 X3 X1 X0 0 1 0 1 : 0 1 0 1 1 1 0 0 D2 X2 D1 X1 D0 X0 Column address 0 1 2 3 : 98 99 100 101 H=”1” Booster stages The ST7568 incorporates a software configurable voltage multiplier. After reset (RESB), the default voltage multiplier is set to 2*VDD2. Other voltage multiplier factors are set via the command “Set Booster stages”. A0 0 WR(R/W) 0 D7 0 D6 0 D5 0 D4 0 D3 1 D2 0 D1 PC1 D0 PC0 Flag Description PC1 PC0 0 0 2*voltage multiplier PC1, PC0 0 1 3*voltage multiplier 1 0 4*voltage multiplier 1 1 5*voltage multiplier Booster Efficiency The ST7568 incorporates software configurable Booster Efficiency Command. It could be used with Voltage multiplier to get the suitable Vout and Power consumption. Default setting is Level 2 A0 0 Flag BE[1:0] WR(R/W) 0 Description BE1 BE2 0 0 0 1 1 0 1 1 D7 0 D6 0 D5 0 D4 0 D3 1 D2 0 D1 BE1 D0 BE0 D1 0 D0 0 Booster Efficiency Level 1 Booster Efficiency Level 2 Booster Efficiency Level 3 Booster Efficiency Level 4 Release N-line inversion ST7568 returns to the frame inversion condition from the n-line inversion condition. A0 D7 D6 D5 D4 D3 D2 WR(R/W) 0 0 0 0 0 0 1 1 Set N-line inversion Sets the inverted line number within range of 3 to 33 to improve the display quality by controlling the phase of the internal LCD AC signal (M) by 2-byte instruction. Note: The N-line inversion mode will be disabled when partial display mode enter. After the partial display mode end, the N-line inversion mode will return as it was. Ver 2.2 40/73 2008/01/04 ST7568 st The 1 Instruction A0 WR(R/W) 0 0 D7 0 D6 0 D5 0 D4 0 D3 1 D2 1 D1 0 D0 1 D7 X D6 X D5 X D4 N4 D3 N3 D2 N2 D1 N1 D0 N0 nd The 2 Instruction A0 WR(R/W) 0 0 N4 0 0 0 0 : 1 1 1 N3 0 0 0 0 : 1 1 1 N2 0 0 0 0 : 1 1 1 S/W initial Internal register st The 1 Instruction D7 A0 WR(R/W) 0 0 0 nd The 2 Instruction A0 D7 WR(R/W) 0 0 0 N1 0 0 1 1 : 0 1 1 N0 0 1 0 1 : 1 0 1 Selected n-line inversion 0-line inversion (frame inversion) 3-line inversion 4-line inversion 5-line inversion : 31-line inversion 32-line inversion 33-line inversion D6 0 D5 0 D4 0 D3 1 D2 1 D1 1 D0 0 D6 0 D5 0 D4 1 D3 0 D2 0 D1 1 D0 0 Frame frequency adjusts and set FRC, PWM This command is designed for frame frequency adjustment, which can provide about 50% variation of frame frequency to avoid the interference with the frequency of daylight lamp in different countries and set by double command instruction. Select 3/4 FRC and 9/12/15 PWM and set by double command instruction. st The 1 Instruction A0 WR(R/W) 0 0 D7 0 D6 0 D5 0 D4 0 D3 1 D2 1 D1 1 D0 1 D7 X D6 FR2 D5 FR1 D4 FR0 D3 X D2 FRC D1 PWM1 D0 PWM0 nd The 2 Instruction A0 WR(R/W) 0 0 Frame frequency This command is used to set the frame frequency. FR2 FR1 FR0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 FR frequency 77 Hz ±5% 80 Hz ±20% 85 Hz ±20% 90 Hz ±20% 100 Hz ±20% 110 Hz ±20% 120 Hz ±20% 130 Hz ±20% Select 3/4 FRC FRC 0 1 Ver 2.2 Status of FRC 4 FRC 3 FRC 41/73 2008/01/04 ST7568 Select 9/12/15 PWM PWM1 0 0 1 1 PWM0 0 1 0 1 Status of PWM 9 PWM 9 PWM 12 PWM 15 PWM System Bias Select LCD bias ratio of the voltage required for driving the LCD. A0 D7 D6 D5 D4 D3 WR(R/W) 0 0 0 0 0 1 0 BS2 0 0 0 0 1 1 1 1 BS1 0 0 1 1 0 0 1 1 BS0 0 1 0 1 0 1 0 1 Bias 11 10 9 8 7 6 5 4 D2 BS2 D1 BS1 D0 BS0 Recommend Duty 1:100 1:80 1:65/1:68 1:48 1/40:1/34 1/24 1:18/1:16 1:10/1:9/1:8 Set Gray Scale Mode & Register The first byte sets grayscale mode and the second byte updates the contents of gray scale register without issuing any other instruction. --Set Gray Scale Mode A0 D7 D6 D5 D4 D3 D2 D1 D0 WR(R/W) 0 0 0 0 0 1 1 GM2 GM1 GM0 GM2 0 0 0 0 1 1 1 1 GM1 0 0 1 1 0 0 1 1 GM0 0 1 0 1 0 1 0 1 Description st nd In case of setting whit mode and 1 / 2 frame rd th In case of setting whit mode and 3 / 4 frame st nd In case of setting light gray mode and 1 / 2 frame rd th In case of setting light gray mode and 3 / 4 frame st nd In case of setting dark gray mode and 1 / 2 frame rd th In case of setting dark gray mode and 3 / 4 frame st nd In case of setting block mode and 1 / 2 frame rd th In case of setting block mode and 3 / 4 frame --Set Gray Scale Register GA3, GB3, GA2, GB2, GA1, GB1, GA0, GB0, Pulse width Pulse width Pulse width GC3, GD3 GC2, GD2 GC1, GD1 GC0, GD0 (9 PWM) (12 PWM) (15 PWM) 0 0 0 0 0/9 0/12 0/15 0 0 0 1 1/9 1/12 1/15 : : : : : : : 1 0 0 1 9/9 9/12 9/15 1 0 1 0 0/9 10/12 10/15 1 0 1 0 0/9 11/12 11/15 1 1 0 0 0/9 12/12 12/15 1 1 0 1 0/9 0/12 13/15 1 1 1 0 0/9 0/12 14/15 1 1 1 1 0/9 0/12 15/15 * GA3=WA3, LA3, DA3, BA3 GA2=WA2, LA2, DA2, BA2 GA1=WA1, LA1, DA1, BA1 GA0=WA0, LA0, DA0, BA0 GB3=WB3, LB3, DB3, BB3 GA2=WB2, LB2, DB2, BB2 GA1=WB1, LB1, DB1, BB1 GA0=WB0, LB0, DB0, BB0 GC3=WC3, LC3, DC3, BC3 GA2=WC2, LC2, DC2, BC2 GA1=WC1, LC1, DC1, BC1 GA0=WC0, LC0, DC0, BC0 Ver 2.2 42/73 2008/01/04 ST7568 GD3=WD3, LD3, DD3, BD3 GA2=WD2, LD2, DD2, BD2 GA1=WD1, LD1, DD1, BD1 GA0=WD0, LD0, DD0, BD0 LCD bias voltage Symbol Bias voltage for 1/8 bias Symbol Bias voltage for 1/8 bias VLCDIN VLCDIN V3 2/8 X VLCDIN V1 7/8 X VLCDIN V4 1/8 X VLCDIN V2 6/8 X VLCDIN VSS VSS Set VOP value: The operation voltage VLCD can be set by software. V0=( a + VOP×b ) (1) The parameters are explained in table 4.The maximum voltage that can be generated is depending on the VDD voltage and the display load current. Two overlapping VLCD ranges are selectable via the command “Booster control”. For the LOW (PS=0) range a=a1 and for the HIGH (PRS=1) range a=a2 with steps equal to “b” in both ranges. Note that the charge pump is turned off if VOP [6;0] and the bit PRS are all set to zero. o The V0 Temperature Gradient is -0.05%/ C Table 4 Typical values for parameter for the HV-Generator programming SYMBOL VALUE UNIT a1 2.94(PRS=0) V a2 6.75(PRS=1) V b 0.03 V VL2 Charge pump off b 00 a2 a1+b 01 02 03 04 05 06 ..... 7D 7E 7F 00 01 02 03 LOW(PRS=0) 04 05 06 ..... 7D 7E 7F HIGH(PRS=1) VOP [6:0](programmed) {00 hex… 7F hex} Fig.21 VOP programming of ST7568 Ver 2.2 43/73 2008/01/04 ST7568 Caution As the programming range for the internally generated VLCDIN allows values above the max allowed VLCDIN, the customer has to ensure while setting the VOP register that under all condition and including all tolerances the VLCD limit of max. 13V will never be exceeded. As VLCDIN increases with lower temperatures, care must be taken not to set a Vop generating a VLCDIN voltage that will exceed the maximum of 10.6V when operating at –30 ℃. 10. COMMAND DESCRIPTION Referential Instruction Setup Flow: Initializing with the built-in Power Supply Circuits User System Setup by External Pins Start of Initialization Power ON(VDD-VSS) Keeping the /RES Pin="L" Waiting for Stabilizing the Power /RES Pin="H" Wait 1 msec Function set PD=0 ,V=0 , H=1 SET Bias system S/W Internal register initial (2-byte) SET Booster 2X Delay 50ms SET VOP HV_gen stages SET N-LINE SET Booster 4X / 5X SET FRS , PWM GRAY SCALE SELECT Function set PD=0 , V=0 , H=0 Ext.display control Set window size for partial screen(if PS=1) Set Display part(if PS=1) Set VLCD Range(PRS) Display control D=1 E=0 (Normal) Set X , Y address Set start line address End of Initialization Figure 22. Initializing with the Built-in Power Supply Circuits Ver 2.2 44/73 2008/01/04 ST7568 Referential Instruction Setup Flow: Initializing without the built-in Power Supply Circuits User System Setup by External Pins Start of Initialization Power ON(VDD-VSS) Keeping the /RES Pin="L" Waiting for Stabilizing the Power /RES Pin="H" wait 1 msec Set Power Save Function set PD=0 ,V=0 , H=1 SET Bias system S/W Internal register initial SET N-LINE SET FRS , PWM GRAY SCALE SELECT Function set PD=0 , V=0 , H=0 Ext.display control Set window size for partial screen(if PS=1) Set Display part(if PS=1) Display control D=1 E=0 (Normal) Set X , Y address Set start line address Waiting for Stabilizing the LCD Power Levels End of Initialization Fig 23. Initializing without Built-in Power Supply Circuits Ver 2.2 45/73 2008/01/04 ST7568 Referential Instruction Setup Flow: Data Displaying End of Initialization Display Data RAM Addressing by Instruction [Initial Display Line] [Set Page Address] [Set Column Address] Write Display Data by Instruction [Display Data Write] Turn Display ON/OFF Instruction [Display ON/OFF] End of Data Display Figure 24.Data Displaying Referential Instruction Setup Flow: Power OFF Optional Status Set Power Save by Instruction Power OFF(VDD-VSS) End of Power OFF Figure 25. Power OFF Ver 2.2 46/73 2008/01/04 ST7568 11. LIMITING VALUES In accordance with the Absolute Maximum Rating System; see notes 1 and 2. Parameter Symbol Conditions Unit Power Supply Voltage VDD/VDD2 –0.3 ~ +3.6 V Power supply voltage V0 3.0 ~ 12 V Power supply voltage VLCDIN –0.3 ~ +13.5 V Power supply voltage V1, V2, V3, V4 0.3 to VLCDIN V Input voltage VIN –0.5 to VDD+0.5 V Output voltage VO –0.5 to VDD+0.5 V Operating temperature TOPR –30 to +85 °C Storage temperature TSTR –65 to +150 °C VLCD V1 to V4 VDD VDD VSS VSS System (MPU) side VSS ST7568 chip side Notes 1. Stresses above those listed under Limiting Values may cause permanent damage to the device. 2. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless otherwise noted. 3. Insure that the voltage levels of V1, V2, V3, and V4 are always such that Vout ≧ V0 ≧ V1 ≧ V2 ≧ V3 ≧ V4 ≧ Vss Ver 2.2 47/73 2008/01/04 ST7568 12. HANDLING Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see “Handling MOS devices”). 13. DC CHARACTERISTICS VSS = 0 V; Tamb = -30℃ to +85℃; unless otherwise specified. Applicable Rating Item Symbol Condition Units Min. Typ. Max. Pin Operating Voltage (1) VDD 1.8 — 3.3 V Vss*1 Operating Voltage (2) VDD2 (Relative to VSS) 2.4 — 3.3 V VSS2 High-level Input Voltage VIHC 0.7 x VDD — VDD V *2 Low-level Input Voltage VILC VSS — 0.3 x VDD V *2 High-level Output Voltage VOHC 0.7 x VDD — VDD V *3 Low-level Output Voltage VOLC VSS — 0.3 x VDD V *3 Input leakage current ILI VIN = VDD or VSS –1.0 — 1.0 μA *4 Output leakage current ILO VIN = VDD or VSS –3.0 — 3.0 μA *5 — 2.0 3.5 Liquid Crystal Driver ON VLCDIN = 13V RON Ta=25°C Resistance VLCDIN = 8V Internal Oscillator fOSC Oscillator Ta = 25°C External Input fCL Frequency 1/68 duty SEGn KΩ — 3.2 5.4 — 80 84 kHz *7 — 80 84 kHz OSC — 77 80.3 Hz COMn *6 15 PWM Frame frequency fFRAME Rating Item Symbol Condition Internal Power Supply Step-up output Min. Typ. Max. Units Applicable Pin VLCDOUT (Relative To VSS) — — 13.5 V VLCDOUT VLCDIN (Relative To VSS) — — 13.5 V VLCDIN voltage Circuit Voltage regulator Circuit Operating Voltage Ver 2.2 48/73 2008/01/04 ST7568 Bare Dice Consumption Current : During Display, with the Internal Power Supply, Current consumed by total ICs when an external power supply(VDD,VDD2) is used . Rating Test pattern Symbol Condition Units Notes 400 μA *8 2 μA Min. Typ. Max. — 300 — 0.01 VDD,VDD2 = 3.0 V, V0 – VSS = 9.0 V Display Pattern ISS SNOW 4X Booster 1/9 Bias VDD=3.0V Power Down ISS Ta = 25°C Notes to the DC characteristics 1. The maximum possible VLCD voltage that may be generated is dependent on voltage, temperature and (display) load. 2. Internal clock 3. Power-down mode. During power down all static currents are switched off. 4. If external VLCDIN, the display load current is not transmitted to I DD. 5. VOUT external voltage applied to VLCDIN pin; VLCDIN disconnected from VLCDOUT (no connect) References for items market with * *1 While a broad range of operating voltages is guaranteed, performance cannot be guaranteed if there are sudden fluctuations to the voltage while the MPU is being accessed. *2 The A0, D0 to D5, D6 (SI), D7 (SCL), /RD (E), /WR ,/(R/W), CSB, IMS, OSC, P/S, /DOF, RESB ,and MODE terminals. *3 The D0 to D7, and OSC terminals. *4 The A0,/RD (E), /WR ,/(R/W), CSB, IMS, OSC, P/S, /DOF, RESB ,and MODE terminals. *5 Applies when the D0 to D5, D6 (SI), D7 (SCL) terminals are in a high impedance state. *6 These are the resistance values for when a 0.1 V voltage is applied between the output terminal SEGn or COMn and the various power supply terminals (V1, V2, V3, and V4). These are specified for the operating voltage range. RON = 0.1 V /ΔI (Where ΔI is the current that flows when 0.1 V is applied while the power supply is ON.) *7 The relationship between the oscillator frequency and the frame rate frequency. *8,9It indicates the current consumed on ICs alone when the internal oscillator circuit and display are turned on. Ver 2.2 49/73 2008/01/04 ST7568 14. TIMING CHARACTERISTICS System Bus Read/Write Characteristics 1 (For the 8080 Series MPU) A0 tAW8 tAH8 /CS tCYC8 tCCLR,tCCLW WR,RD tCCHR,tCCHW tDS8 tDH8 D0 to D7 (Write) tACC8 tOH8 D0 to D7 (Read) Figure 26. (VDD = 3.3V , Ta =-30~85°C) Rating Item Signal Symbol Condition Units Min. Max. tAH8 0 — tAW8 0 — tCYC8 240 — tCCLW 80 — tCCHW 80 — tCCLR 140 — Enable H pulse width (READ) tCCHR 80 WRITE Data setup time tDS8 40 — tDH8 10 — Address hold time Address setup time A0 System cycle time Enable L pulse width (WRITE) WR Enable H pulse width (WRITE) Enable L pulse width (READ) ns RD WRITE Data hold time D0 to D7 READ access time tACC8 CL = 100 pF — 70 READ Output disable time tOH8 CL = 100 pF 5 50 Ver 2.2 50/73 2008/01/04 ST7568 (VDD = 2.7 V , Ta = -30~85°C ) Rating Item Signal Symbol Condition Units Min. Max. tAH8 0 — tAW8 0 — tCYC8 400 — tCCLW 220 — tCCHW 180 — tCCLR 220 — Enable H pulse width (READ) tCCHR 180 — WRITE Data setup time tDS8 40 — tDH8 15 — Address hold time Address setup time A0 System cycle time Enable L pulse width (WRITE) WR Enable H pulse width (WRITE) Enable L pulse width (READ) RD WRITE Data hold time D0 to D7 READ access time tACC8 CL = 100 pF — 140 READ Output disable time tOH8 CL = 100 pF 10 100 ns (VDD = 1.8V , Ta =-30~85°C ) Rating Item Signal Symbol Condition Units Min. Max. tAH8 0 — tAW8 0 — tCYC8 640 — tCCLW 360 — tCCHW 280 — tCCLR 360 — Enable H pulse width (READ) tCCHR 280 WRITE Data setup time tDS8 80 — tDH8 30 — Address hold time Address setup time A0 System cycle time Enable L pulse width (WRITE) WR Enable H pulse width (WRITE) Enable L pulse width (READ) ns RD WRITE Data hold time D0 to D7 READ access time tACC8 CL = 100 pF — 240 READ Output disable time tOH8 CL = 100 pF 10 200 *1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) ≦ (tCYC8 – tCCLW – tCCHW) for (tr + tf) ≦ (tCYC8 – tCCLR – tCCHR) are specified. *2 All timing is specified using 20% and 80% of VDD as the reference. *3 tCCLW and tCCLR are specified as the overlap between CSB being “L” and WR and RD being at the “L” level. Ver 2.2 51/73 2008/01/04 ST7568 System Bus Read/Write Characteristics 1 (For the 6800 Series MPU) A0 R/W tAW6 tAH6 CS1 (CS2="1") tCYC6 tCCLR,tCCLW E tCCHR,tCCHW tDS6 tDH6 D0 to D7 (Write) tACC6 tOH6 D0 to D7 (Read) Figure 27. (VDD = 3.3 V , Ta =-30~85°C ) Rating Item Signal Symbol Condition Units Min. Max. tAH6 0 — tAW6 0 — tCYC6 240 — tEWLW 80 — tEWHW 80 — tEWLR 80 — Enable H pulse width (READ) tEWHR 140 WRITE Data setup time tDS6 40 — tDH6 10 — Address hold time Address setup time A0 System cycle time Enable L pulse width (WRITE) WR Enable H pulse width (WRITE) Enable L pulse width (READ) ns RD WRITE Data hold time D0 to D7 READ access time tACC6 CL = 100 pF — 70 READ Output disable time tOH6 CL = 100 pF 5 50 Ver 2.2 52/73 2008/01/04 ST7568 (VDD = 2.7V , Ta =-30~85°C ) Rating Item Signal Symbol Units Condition Min. Max. tAH6 0 — tAW6 0 — tCYC6 400 — tEWLW 220 — tEWHW 180 — tEWLR 220 — Enable H pulse width (READ) tEWHR 180 — WRITE Data setup time tDS6 40 — tDH6 15 — Address hold time A0 Address setup time System cycle time Enable L pulse width (WRITE) WR Enable H pulse width (WRITE) Enable L pulse width (READ) RD WRITE Data hold time D0 to D7 READ access time tACC6 CL = 100 pF — 140 READ Output disable time tOH6 CL = 100 pF 10 100 ns (VDD =1.8V , Ta =-30~85°C ) Rating Item Signal Symbol Condition Units Min. Max. tAH6 0 — tAW6 0 — tCYC6 640 — tEWLW 360 — tEWHW 280 — tEWLR 360 — Enable H pulse width (READ) tEWHR 280 — WRITE Data setup time tDS6 80 — tDH6 30 — Address hold time Address setup time A0 System cycle time Enable L pulse width (WRITE) WR Enable H pulse width (WRITE) Enable L pulse width (READ) RD WRITE Data hold time D0 to D7 READ access time tACC6 CL = 100 pF — 240 READ Output disable time tOH6 CL = 100 pF 10 200 ns *1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) ≦ (tCYC6 – tEWLW – tEWHW) for (tr + tf) ≦ (tCYC6 – tEWLR – tEWHR) are specified. *2 All timing is specified using 20% and 80% of VDD as the reference. *3 tEWLW and tEWLR are specified as the overlap between CSB being “L” and E. Ver 2.2 53/73 2008/01/04 ST7568 SERIAL INTERFACE(4-Line Interface) tCCSS tCSH /CS1 (CS2="1") tSAS tSAH A0 tSCYC tSLW SCL tSHW tf tr tSDS tSDH SI Fig 28. (VDD=3.3V,Ta=-30~85℃) Rating Item Signal Serial Clock Period SCL “H” pulse width SCL SCL “L” pulse width Address setup time Symbol Condition Units Min. Max. tSCYC 50 — tSHW 25 — tSLW 25 — tSAS 20 — tSAH 10 — tSDS 20 — tSDH 10 — tCSS 20 — tCSH 140 — A0 Address hold time Data setup time SI Data hold time CS-SCL time CSB CS-SCL time ns (VDD=2.7V,Ta=-30~85℃) Rating Item Signal Serial Clock Period SCL “H” pulse width SCL SCL “L” pulse width Address setup time Symbol Condition Units Min. Max. tSCYC 100 — tSHW 50 — tSLW 50 — tSAS 30 — tSAH 20 — tSDS 30 — tSDH 20 — tCSS 30 — tCSH 160 — A0 Address hold time Data setup time SI Data hold time CS-SCL time CSB CS-SCL time Ver 2.2 54/73 ns 2008/01/04 ST7568 (VDD=1.8V,Ta=-30~85℃) Rating Item Signal Serial Clock Period SCL “H” pulse width SCL SCL “L” pulse width Address setup time Symbol Condition Units Min. Max. tSCYC 200 — tSHW 80 — tSLW 80 — tSAS 60 — tSAH 30 — tSDS 60 — tSDH 30 — tCSS 40 — tCSH 200 — A0 Address hold time Data setup time SI Data hold time CS-SCL time CSB CS-SCL time ns *1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less. *2 All timing is specified using 20% and 80% of VDD as the standard. Ver 2.2 55/73 2008/01/04 ST7568 15. RESET TIMING tRW /RES tR Internal status During reset Reset complete Fig 29. (VDD = 3.3V , Ta = –30 to 85°C ) Rating Item Signal Reset time Reset “L” pulse width RESB Symbol Condition Units Min. Typ. Max. tR — — 1 us tRW 1 — — us (VDD = 2.7V , Ta = –30 to 85°C ) Rating Item Signal Reset time Reset “L” pulse width RESB Symbol Condition Units Min. Typ. Max. tR — — 1.5 us tRW 1.5 — — us (VDD = 1.8V , Ta = –30 to 85°C ) Rating Item Signal Reset time Reset “L” pulse width Ver 2.2 RESB Symbol Condition Units Min. Typ. Max. tR — — 2.0 us tRW 2.0 — — us 56/73 2008/01/04 ST7568 16. APPLICATION INFORMATION Table 5 programming example for ST7568 SERIAL BUS BYTE SETP DISPLAY OPERATION 1 Start CSB IS going low. 2 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Function Set. 0 PD=0,V=0,select extended 0 0 1 0 0 0 0 0 Instruction set(H=0 mode) 3 4 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Set VOP 0 VOP is set to a+16*b[V] 1 0 0 1 0 0 0 0 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Function Set. 0 PD=0,V=0,select normal 0 0 1 0 0 0 0 0 Instruction set(H=0 mode). 5 6 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Display control. 0 Set normal mode(D=1,E=0) 0 0 0 0 0 1 0 0 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Data Write. 1 0 0 1 0 0 1 1 0 Y,X are initialized to 0 by 1 0 0 1 0 0 1 1 0 default, so they aren’t set here… 7 8 9 10 11 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 Data Write. A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 Data Write. A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 Data Write. A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 Data Write. A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 Ver 2.2 Data Write. 57/73 2008/01/04 ST7568 12 13 14 15 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 Data Write. A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 Data Write. A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 Data Write. A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Display Control. 0 Set inverse video mode 0 0 0 0 1 1 0 1 (D=1,E=1). 16 17 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Set X address of RAM. 0 Set address to “0000000”. 1 0 0 0 0 0 0 0 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 Data Write. Table 6 Display examples for ST7568 depending on PS,MX,MY and DP[2:0] bit setting Example WS PS DP2 DP1 DP0 MX MY 1 0 0 X X X 0 0 2 0 0 X X X 1 0 Ver 2.2 58/73 DISPLAY 2008/01/04 ST7568 3 0 0 X X X 0 1 4 0 0 X X X 1 1 5 0 1 0 0 0 0 0 6 0 1 0 0 0 1 0 7 0 1 0 0 0 0 1 8 0 1 0 0 0 1 1 9 0 1 0 0 1 0 0 10 0 1 0 0 1 1 0 11 0 1 0 0 1 0 1 Ver 2.2 59/73 2008/01/04 ST7568 12 0 1 0 0 1 1 1 13 1 1 0 0 0 0 0 14 1 1 0 0 0 1 0 15 1 1 0 0 0 0 1 16 1 1 0 0 0 1 1 17 1 1 0 0 1 0 0 18 1 1 0 0 1 1 0 19 1 1 0 0 1 0 1 20 1 1 0 0 1 1 1 Note: When you use 68 com mode and will use partial display to display , then you can control 0~64com to display , not control 65~67 com to display. Ver 2.2 60/73 2008/01/04 ST7568 The pinning of the ST7568 is optimized for single plane wiring e.g. for chip-on-glass display modules. Display size: 65x102 pixels. Display 102X 68 pixels 102 34 VLCDOUT VLCDIN 34 VSS1 VSS2 VDD2 VDD ST7568 8 CLVCD I/O CVDD VSS VDD Fig 30. Application diagram: internal charge pump is used and single V DD Display 102 X 68 pixels 102 34 VLCDOUT VLCDIN 34 8 VSS1 VSS2 VDD2 VDD ST7568 VDD CVDD CLVCD I/OVDD2 CVDD2 VSS Fig 31. Application diagram: Internal charge pump is used and two separate VDD(VDD2) Ver 2.2 61/73 2008/01/04 ST7568 Display 102 X 68 pixels 102 34 VSS1 VSS2 VDD2 VDD ST7568 VLCDOUT VLCDIN 34 8 VL2 I/O VDD2 CVDD VSS Fig 32. application diagram : External high voltage generation is used The required minimum value for the external capacitors in an application with the ST7568 are: CVDD,2= min. 1.0 μF CVLCD = min. 100nF Higher capacitor values are recommended for ripple reduction. 17.THE MPU INTERFACE (REFERENCE EXAMPLES) The ST7568 Series can be connected to either60X86 Series MPUs or to 6800Swries MPUs. Moreover, using the serial interface it is possible to operate the ST7568 series chips with fewer signal lines. The display area can be enlarged by using multiple ST7568 Series chips. When this is done, the chip select signal can be used to select the individual Ics to access. (1) 8080 Series MPUs VDD VCC GND A1 to A7 IORQ A0 Decoder DO to D7 RD WR RES VDD IMS /CS ST7568 MPU A0 D0 to D7 E (/RD) R/W (/WR) /RES RESET PS VSS VSS Ver 2.2 62/73 2008/01/04 ST7568 (2) 6800 Series MPUs VDD VCC A0 /CS Decoder DO to D7 RD WR RES ST7568 A1 to A7 IORQ MPU VDD IMS A0 D0 to D7 /RD (E) /WR (R/W) /RES GND PS VSS RESET VSS (3) Using the Serial Interface (4-line interface) VDD VCC A0 VDD IMS ST7568 /CS Decoder MPU A1 to A7 A0 SI SCL /RES Port 1 Port 2 RES GND PS VSS RESET VSS Ver 2.2 63/73 2008/01/04 ST7568 ST7568 Application Note << index >> Hardware Option set up & interfaces Figure – 1: 68-duty/parallel-6800/VLCDIN-internal/VDD2=VDD/internal-OSC Figure - 2: 65-duty/parallel-6800/VLCDIN-internal/VDD2=VDD/internal-OSC Figure - 3: 68-duty/parallel-8080/VLCDIN-internalVDD2=VDD/internal-OSC Figure - 4: 68-duty/serial-4Line/VLCDIN-internal/VDD2=VDD/internal-OSC Figure - 5: 68-duty/parallel-6800 /VLCDIN-External/VDD2=VDD/internal-OSC Figure - 6: 68-duty/parallel-6800 /VLCDIN-External/VDD2=Independent/internal-OSC Figure - 7: 68-duty/parallel-6800 /VLCDIN-External/VDD2=VDD/External-OSC Figure - 8: 68-duty/IIC serial /VLCDIN-internal/VDD2=VDD/internal-OSC Ver 2.2 64/73 2008/01/04 ST7568 Figure – 1: 68-duty/parallel-6800/VLCDIN-internal/VDD2=VDD/internal-OSC Ver 2.2 65/73 2008/01/04 ST7568 Figure - 2: 65-duty/parallel-6800/VLCDIN-internal/VDD2=VDD/internal-OSC Ver 2.2 66/73 2008/01/04 ST7568 Figure - 3: 68-duty/parallel-8080/VLCDIN-internalVDD2=VDD/internal-OSC Ver 2.2 67/73 2008/01/04 ST7568 Figure - 4: 68-duty/serial-4Line/VLCDIN-internal/VDD2=VDD/internal-OSC Ver 2.2 68/73 2008/01/04 ST7568 Figure - 5: 68-duty/parallel-6800 /VLCDIN-External/VDD2=VDD/internal-OSC Ver 2.2 69/73 2008/01/04 ST7568 Figure - 6: 68-duty/parallel-6800 /VLCDIN-External/VDD2=Independent/internal-OSC Ver 2.2 70/73 2008/01/04 ST7568 Figure - 7: 68-duty/parallel-6800 /VLCDIN-External/VDD2=VDD/External-OSC Ver 2.2 71/73 2008/01/04 ST7568 Figure - 8: 68-duty/IIC serial /VLCDIN-internal/VDD2=VDD/internal-OSC Ver 2.2 72/73 2008/01/04 ST7568 Revision Version 0.X - Preliminary Version 1.0 – 2002/11/15 version 1.0 Version 1.0a – 2002/12/05 add application Note Version 1.0b – 2003/01/02 Character Correction Version 1.1 – 2003/04/11 modify application Note Version 2.0 --- 2003/05/10 add ST7568i Version 2.1 --- 2005/10/05 Gold Bump Height: 17um; voltage and temperature range. Version 2.1a – 2007/07/24 Add ITO resistance; Fix serial application mistake: D7=SCL Version 2.2 – 2008/01/04 Recommend VDD2 minimal value to be 2.4V. Ver 2.2 73/73 2008/01/04