ST Sitronix ST7576 66 x 102 Dot Matrix LCD Controller/Driver 1. INTRODUCTION The ST7576 is a driver & controller LSI for graphic dot-matrix liquid crystal display systems. It contains 102 segments and 65 common with 1 ICON driver circuits. This chip is connected directly to a microprocessor, accepts 3-line or 4-line serial peripheral interface (SPI), I2C interface or 8-bit parallel interface, display data can stores in an on-chip display data RAM of 66 x 102 bits. It performs display data RAM read/write operation with no external operating clock to minimize power consumption. In addition, because it contains power supply circuits to drive liquid crystal, it is possible to make a display system with the fewest components. 2. FEATURES Single-chip LCD controller & driver - Generation of intermediate LCD bias voltages Driver Output Circuits - Oscillator requires no external components 102 segment / 65 common+1 ICON common (1/66 duty) (external clock also possible) 102 segment / 16 common+1 ICON common (1/17 duty) - Voltage converter X4; X5 (1/17 duty is under partial screen mode) - Voltage follower On-chip Display Data Ram - On-chip electronic contrast control function (255 - Capacity: 66X102=6,732 bits steps) Microprocessor Interface - - External RESB (reset) pin 8-bit parallel bi-directional interface with Logic supply voltage range 6800-series or 8080-series - VDD1 -VSS : 1.8 to 3.3V 4-line SPI (serial peripheral interface) available - VDD2 -VSS : 2.4 to 3.3V (only write operation) - Display supply voltage range (V0) 3-line SPI (serial peripheral interface) available 2 I C (Inter-Integrated Circuit) Interface On-chip Low Power Analog Circuit - - Application Vop range: 4V-9.5V - Programmable Max V0: 10.5V Temperature range: -30 to +85 degree Generation of LCD supply voltage ST7576 6800 , 8080 , 4-Line , 3-Line interface (without I2C interface) ST7576i I2C Ver 1.0 interface 1/54 2007/01/29 ST7576 3. ST7576 Pad Arrangement Chip Size: 5570 um ×770 um Bump Height: 15 um Chip Thickness: 480 um Bump Pitch: (minimum) PAD Number Unit: um Pitch PAD Number Pitch 1~27, 130~156, 157~163, 243~250: 37.20 212~213 46.65 28~129: 33.00 213~216,218~221 33.30 27~28 62.90 216~217,217~218 38.80 129~130 60.69 221~222 46.30 163~164 329.57 228~229 66.40 164~207, 208~211,222~228,229~235,236~242 59.30 235~236 62.45 207~208 131.83 242~243 79.90 211~212 71.30 * Refer to “Pad Center Coordinates” section for ITO layout. Fig 1 Ver 1.0 2/54 2007/01/29 ST7576 Pad Center Coordinates 66 Duty (TMY=0) PAD NO. PIN Name Fig 2 Ver 1.0 3/54 X Y 1 COM[59] 2695.50 293.00 2 COM[58] 2658.30 293.00 3 COM[57] 2621.10 293.00 4 COM[56] 2583.90 293.00 5 COM[55] 2546.70 293.00 6 COM[54] 2509.50 293.00 7 COM[53] 2472.30 293.00 8 COM[52] 2435.10 293.00 9 COM[51] 2397.90 293.00 10 COM[50] 2360.70 293.00 11 COM[49] 2323.50 293.00 12 COM[48] 2286.30 293.00 13 COM[47] 2249.10 293.00 14 COM[46] 2211.90 293.00 15 COM[45] 2174.70 293.00 16 COM[44] 2137.50 293.00 17 COM[43] 2100.30 293.00 18 COM[42] 2063.10 293.00 19 COM[41] 2025.90 293.00 20 COM[40] 1988.70 293.00 21 COM[39] 1951.50 293.00 22 COM[38] 1914.30 293.00 23 COM[37] 1877.10 293.00 24 COM[36] 1839.90 293.00 25 COM[35] 1802.70 293.00 26 COM[34] 1765.50 293.00 27 COM[33] 1728.30 293.00 28 SEG[0] 1665.39 282.75 29 SEG[1] 1632.39 282.75 30 SEG[2] 1599.39 282.75 2007/01/29 ST7576 PAD NO. PIN Name X Y X Y 31 SEG[3] 1566.39 282.75 61 SEG[33] 576.39 282.75 32 SEG[4] 1533.39 282.75 62 SEG[34] 543.39 282.75 33 SEG[5] 1500.39 282.75 63 SEG[35] 510.39 282.75 34 SEG[6] 1467.39 282.75 64 SEG[36] 477.39 282.75 35 SEG[7] 1434.39 282.75 65 SEG[37] 444.39 282.75 36 SEG[8] 1401.39 282.75 66 SEG[38] 411.39 282.75 37 SEG[9] 1368.39 282.75 67 SEG[39] 378.39 282.75 38 SEG[10] 1335.39 282.75 68 SEG[40] 345.39 282.75 39 SEG[11] 1302.39 282.75 69 SEG[41] 312.39 282.75 40 SEG[12] 1269.39 282.75 70 SEG[42] 279.39 282.75 41 SEG[13] 1236.39 282.75 71 SEG[43] 246.39 282.75 42 SEG[14] 1203.39 282.75 72 SEG[44] 213.39 282.75 43 SEG[15] 1170.39 282.75 73 SEG[45] 180.39 282.75 44 SEG[16] 1137.39 282.75 74 SEG[46] 147.39 282.75 45 SEG[17] 1104.39 282.75 75 SEG[47] 114.39 282.75 46 SEG[18] 1071.39 282.75 76 SEG[48] 81.39 282.75 47 SEG[19] 1038.39 282.75 77 SEG[49] 48.39 282.75 48 SEG[20] 1005.39 282.75 78 SEG[50] 15.39 282.75 49 SEG[21] 972.39 282.75 79 SEG[51] -17.60 282.75 50 SEG[22] 939.39 282.75 80 SEG[52] -50.60 282.75 51 SEG[23] 906.39 282.75 81 SEG[53] -83.60 282.75 52 SEG[24] 873.39 282.75 82 SEG[54] -116.60 282.75 53 SEG[25] 840.39 282.75 83 SEG[55] -149.60 282.75 54 SEG[26] 807.39 282.75 84 SEG[56] -182.60 282.75 55 SEG[27] 774.39 282.75 85 SEG[57] -215.60 282.75 56 SEG[28] 741.39 282.75 86 SEG[58] -248.60 282.75 57 SEG[29] 708.39 282.75 87 SEG[59] -281.60 282.75 58 SEG[30] 675.39 282.75 88 SEG[60] -314.60 282.75 59 SEG[31] 642.39 282.75 89 SEG[61] -347.60 282.75 60 SEG[32] 609.39 282.75 90 SEG[62] -380.60 282.75 Ver 1.0 PAD NO. PIN Name 4/54 2007/01/29 ST7576 PAD NO. PIN Name X Y PAD NO. PIN Name X Y 91 SEG[63] -413.60 282.75 121 SEG[93] -1403.60 282.75 92 SEG[64] -446.60 282.75 122 SEG[94] -1436.60 282.75 93 SEG[65] -479.60 282.75 123 SEG[95] -1469.60 282.75 94 SEG[66] -512.60 282.75 124 SEG[96] -1502.60 282.75 95 SEG[67] -545.60 282.75 125 SEG[97] -1535.60 282.75 96 SEG[68] -578.60 282.75 126 SEG[98] -1568.60 282.75 97 SEG[69] -611.60 282.75 127 SEG[99] -1601.60 282.75 98 SEG[70] -644.60 282.75 128 SEG[100] -1634.60 282.75 99 SEG[71] -677.60 282.75 129 SEG[101] -1667.60 282.75 100 SEG[72] -710.60 282.75 130 COMS1 -1728.30 293.00 101 SEG[73] -743.60 282.75 131 COM[0] -1765.50 293.00 102 SEG[74] -776.60 282.75 132 COM[1] -1802.70 293.00 103 SEG[75] -809.60 282.75 133 COM[2] -1839.90 293.00 104 SEG[76] -842.60 282.75 134 COM[3] -1877.10 293.00 105 SEG[77] -875.60 282.75 135 COM[4] -1914.30 293.00 106 SEG[78] -908.60 282.75 136 COM[5] -1951.50 293.00 107 SEG[79] -941.60 282.75 137 COM[6] -1988.70 293.00 108 SEG[80] -974.60 282.75 138 COM[7] -2025.90 293.00 109 SEG[81] -1007.60 282.75 139 COM[8] -2063.10 293.00 110 SEG[82] -1040.60 282.75 140 COM[9] -2100.30 293.00 111 SEG[83] -1073.60 282.75 141 COM[10] -2137.50 293.00 112 SEG[84] -1106.60 282.75 142 COM[11] -2174.70 293.00 113 SEG[85] -1139.60 282.75 143 COM[12] -2211.90 293.00 114 SEG[86] -1172.60 282.75 144 COM[13] -2249.10 293.00 115 SEG[87] -1205.60 282.75 145 COM[14] -2286.30 293.00 116 SEG[88] -1238.60 282.75 146 COM[15] -2323.50 293.00 117 SEG[89] -1271.60 282.75 147 COM[16] -2360.70 293.00 118 SEG[90] -1304.60 282.75 148 COM[17] -2397.90 293.00 119 SEG[91] -1337.60 282.75 149 COM[18] -2435.10 293.00 120 SEG[92] -1370.60 282.75 150 COM[19] -2472.30 293.00 Ver 1.0 5/54 2007/01/29 ST7576 PAD NO. PIN Name X Y PAD NO. PIN Name X Y 151 COM[20] -2509.50 293.00 181 VDD1 -1134.54 -311.50 152 COM[21] -2546.70 293.00 182 VDD1 -1075.23 -311.50 153 COM[22] -2583.90 293.00 183 VDD1 -1015.92 -311.50 154 COM[23] -2621.10 293.00 184 VDD1 -956.62 -311.50 155 COM[24] -2658.30 293.00 185 VDD2 -897.32 -311.50 156 COM[25] -2695.50 293.00 186 VDD2 -838.01 -311.50 157 COM[32] -2695.50 -293.00 187 VDD2 -778.70 -311.50 158 COM[31] -2658.30 -293.00 188 VDD2 -719.40 -311.50 159 COM[30] -2621.10 -293.00 189 RESB -660.09 -311.50 160 COM[29] -2583.90 -293.00 190 CSB -600.79 -311.50 161 COM[28] -2546.70 -293.00 191 RWR -541.48 -311.50 162 COM[27] -2509.50 -293.00 192 ERD -482.18 -311.50 163 COM[26] -2472.30 -293.00 193 A0 -422.88 -311.50 164 VDX2O -2142.72 -311.50 194 VDD1 -363.57 -311.50 165 VDX2O -2083.42 -311.50 195 D7 -304.27 -311.50 166 VDX2O -2024.11 -311.50 196 D6 -244.96 -311.50 167 VSS2 -1964.81 -311.50 197 D5 -185.66 -311.50 168 T11 -1905.50 -311.50 198 D4 -126.35 -311.50 169 T12 -1846.19 -311.50 199 D3 -67.05 -311.50 170 BR -1786.89 -311.50 200 D2 -7.74 -311.50 171 CP -1727.58 -311.50 201 D1 51.56 -311.50 172 TMX -1668.28 -311.50 202 D0 110.87 -311.50 173 TMY -1608.97 -311.50 203 OSC 170.17 -311.50 174 PS2 -1549.67 -311.50 204 VSS2 229.47 -311.50 175 PS1 -1490.36 -311.50 205 VSS2 288.78 -311.50 176 PS0 -1431.06 -311.50 206 VSS2 348.09 -311.50 177 VMO -1371.75 -311.50 207 VSS2 407.39 -311.50 178 VMO -1312.45 -311.50 208 VSS1 539.23 -311.50 179 VMO -1253.14 -311.50 209 VSS1 598.53 -311.50 180 VSS2 -1193.84 -311.50 210 VSS1 657.84 -311.50 Ver 1.0 6/54 2007/01/29 ST7576 PAD NO. PIN Name X Y PAD NO. PIN Name X Y 211 VSS1 717.15 -311.50 241 XV0I 2295.89 -311.50 212 VRS 788.45 -311.50 242 XV0S 2355.20 -311.50 213 T1 835.10 -307.75 243 COMS2 2435.10 -293.00 214 T2 868.40 -307.75 244 COM[60] 2472.30 -293.00 215 T3 901.70 -307.75 245 COM[61] 2509.50 -293.00 216 T4 935.00 -307.75 246 COM[62] 2546.70 -293.00 217 T0 973.80 -307.75 247 COM[63] 2583.90 -293.00 218 T5 1012.60 -307.75 248 COM[64] 2621.10 -293.00 219 T6 1045.90 -307.75 249 Reserved 2658.30 -293.00 220 T7 1079.20 -307.75 250 Reserved 2695.50 -293.00 221 T8 1112.50 -307.75 222 VGO 1158.81 -311.50 223 VGO 1218.11 -311.50 224 VGI 1277.42 -311.50 225 VGI 1336.72 -311.50 226 VGI 1396.03 -311.50 227 VGI 1455.33 -311.50 228 VGS 1514.64 -311.50 229 V0O 1581.08 -309.75 230 V0O 1640.38 -309.75 231 V0I 1699.69 -309.75 232 V0I 1759.00 -309.75 233 V0I 1818.30 -309.75 234 V0I 1877.60 -311.50 235 V0S 1936.91 -311.50 236 XV0O 1999.36 -311.50 237 XV0O 2058.67 -311.50 238 XV0I 2117.98 -311.50 239 XV0I 2177.28 -311.50 240 XV0I 2236.58 -311.50 Ver 1.0 7/54 2007/01/29 ST7576 66 Duty (TMY=1) PAD NO. PIN Name X Y PAD NO. PIN Name X Y 1 COM[5] 2695.50 293.00 31 SEG[3] 1566.39 282.75 2 COM[6] 2658.30 293.00 32 SEG[4] 1533.39 282.75 3 COM[7] 2621.10 293.00 33 SEG[5] 1500.39 282.75 4 COM[8] 2583.90 293.00 34 SEG[6] 1467.39 282.75 5 COM[9] 2546.70 293.00 35 SEG[7] 1434.39 282.75 6 COM[10] 2509.50 293.00 36 SEG[8] 1401.39 282.75 7 COM[11] 2472.30 293.00 37 SEG[9] 1368.39 282.75 8 COM[12] 2435.10 293.00 38 SEG[10] 1335.39 282.75 9 COM[13] 2397.90 293.00 39 SEG[11] 1302.39 282.75 10 COM[14] 2360.70 293.00 40 SEG[12] 1269.39 282.75 11 COM[15] 2323.50 293.00 41 SEG[13] 1236.39 282.75 12 COM[16] 2286.30 293.00 42 SEG[14] 1203.39 282.75 13 COM[17] 2249.10 293.00 43 SEG[15] 1170.39 282.75 14 COM[18] 2211.90 293.00 44 SEG[16] 1137.39 282.75 15 COM[19] 2174.70 293.00 45 SEG[17] 1104.39 282.75 16 COM[20] 2137.50 293.00 46 SEG[18] 1071.39 282.75 17 COM[21] 2100.30 293.00 47 SEG[19] 1038.39 282.75 18 COM[22] 2063.10 293.00 48 SEG[20] 1005.39 282.75 19 COM[23] 2025.90 293.00 49 SEG[21] 972.39 282.75 20 COM[24] 1988.70 293.00 50 SEG[22] 939.39 282.75 21 COM[25] 1951.50 293.00 51 SEG[23] 906.39 282.75 22 COM[26] 1914.30 293.00 52 SEG[24] 873.39 282.75 23 COM[27] 1877.10 293.00 53 SEG[25] 840.39 282.75 24 COM[28] 1839.90 293.00 54 SEG[26] 807.39 282.75 25 COM[29] 1802.70 293.00 55 SEG[27] 774.39 282.75 26 COM[30] 1765.50 293.00 56 SEG[28] 741.39 282.75 27 COM[31] 1728.30 293.00 57 SEG[29] 708.39 282.75 28 SEG[0] 1665.39 282.75 58 SEG[30] 675.39 282.75 29 SEG[1] 1632.39 282.75 59 SEG[31] 642.39 282.75 30 SEG[2] 1599.39 282.75 60 SEG[32] 609.39 282.75 Ver 1.0 8/54 2007/01/29 ST7576 PAD NO. PIN Name X Y PAD NO. PIN Name X Y 61 SEG[33] 576.39 282.75 91 SEG[63] -413.60 282.75 62 SEG[34] 543.39 282.75 92 SEG[64] -446.60 282.75 63 SEG[35] 510.39 282.75 93 SEG[65] -479.60 282.75 64 SEG[36] 477.39 282.75 94 SEG[66] -512.60 282.75 65 SEG[37] 444.39 282.75 95 SEG[67] -545.60 282.75 66 SEG[38] 411.39 282.75 96 SEG[68] -578.60 282.75 67 SEG[39] 378.39 282.75 97 SEG[69] -611.60 282.75 68 SEG[40] 345.39 282.75 98 SEG[70] -644.60 282.75 69 SEG[41] 312.39 282.75 99 SEG[71] -677.60 282.75 70 SEG[42] 279.39 282.75 100 SEG[72] -710.60 282.75 71 SEG[43] 246.39 282.75 101 SEG[73] -743.60 282.75 72 SEG[44] 213.39 282.75 102 SEG[74] -776.60 282.75 73 SEG[45] 180.39 282.75 103 SEG[75] -809.60 282.75 74 SEG[46] 147.39 282.75 104 SEG[76] -842.60 282.75 75 SEG[47] 114.39 282.75 105 SEG[77] -875.60 282.75 76 SEG[48] 81.39 282.75 106 SEG[78] -908.60 282.75 77 SEG[49] 48.39 282.75 107 SEG[79] -941.60 282.75 78 SEG[50] 15.39 282.75 108 SEG[80] -974.60 282.75 79 SEG[51] -17.60 282.75 109 SEG[81] -1007.60 282.75 80 SEG[52] -50.60 282.75 110 SEG[82] -1040.60 282.75 81 SEG[53] -83.60 282.75 111 SEG[83] -1073.60 282.75 82 SEG[54] -116.60 282.75 112 SEG[84] -1106.60 282.75 83 SEG[55] -149.60 282.75 113 SEG[85] -1139.60 282.75 84 SEG[56] -182.60 282.75 114 SEG[86] -1172.60 282.75 85 SEG[57] -215.60 282.75 115 SEG[87] -1205.60 282.75 86 SEG[58] -248.60 282.75 116 SEG[88] -1238.60 282.75 87 SEG[59] -281.60 282.75 117 SEG[89] -1271.60 282.75 88 SEG[60] -314.60 282.75 118 SEG[90] -1304.60 282.75 89 SEG[61] -347.60 282.75 119 SEG[91] -1337.60 282.75 90 SEG[62] -380.60 282.75 120 SEG[92] -1370.60 282.75 Ver 1.0 9/54 2007/01/29 ST7576 PAD NO. PIN Name X Y PAD NO. PIN Name X Y 121 SEG[93] -1403.60 282.75 151 COM[44] -2509.50 293.00 122 SEG[94] -1436.60 282.75 152 COM[43] -2546.70 293.00 123 SEG[95] -1469.60 282.75 153 COM[42] -2583.90 293.00 124 SEG[96] -1502.60 282.75 154 COM[41] -2621.10 293.00 125 SEG[97] -1535.60 282.75 155 COM[40] -2658.30 293.00 126 SEG[98] -1568.60 282.75 156 COM[39] -2695.50 293.00 127 SEG[99] -1601.60 282.75 157 COM[32] -2695.50 -293.00 128 SEG[100] -1634.60 282.75 158 COM[33] -2658.30 -293.00 129 SEG[101] -1667.60 282.75 159 COM[34] -2621.10 -293.00 130 COMS1 -1728.30 293.00 160 COM[35] -2583.90 -293.00 131 COM[64] -1765.50 293.00 161 COM[36] -2546.70 -293.00 132 COM[63] -1802.70 293.00 162 COM[37] -2509.50 -293.00 133 COM[62] -1839.90 293.00 163 COM[38] -2472.30 -293.00 134 COM[61] -1877.10 293.00 164 VDX2O -2142.72 -311.50 135 COM[60] -1914.30 293.00 165 VDX2O -2083.42 -311.50 136 COM[59] -1951.50 293.00 166 VDX2O -2024.11 -311.50 137 COM[58] -1988.70 293.00 167 VSS2 -1964.81 -311.50 138 COM[57] -2025.90 293.00 168 T11 -1905.50 -311.50 139 COM[56] -2063.10 293.00 169 T12 -1846.19 -311.50 140 COM[55] -2100.30 293.00 170 BR -1786.89 -311.50 141 COM[54] -2137.50 293.00 171 CP -1727.58 -311.50 142 COM[53] -2174.70 293.00 172 TMX -1668.28 -311.50 143 COM[52] -2211.90 293.00 173 TMY -1608.97 -311.50 144 COM[51] -2249.10 293.00 174 PS2 -1549.67 -311.50 145 COM[50] -2286.30 293.00 175 PS1 -1490.36 -311.50 146 COM[49] -2323.50 293.00 176 PS0 -1431.06 -311.50 147 COM[48] -2360.70 293.00 177 VMO -1371.75 -311.50 148 COM[47] -2397.90 293.00 178 VMO -1312.45 -311.50 149 COM[46] -2435.10 293.00 179 VMO -1253.14 -311.50 150 COM[45] -2472.30 293.00 180 VSS2 -1193.84 -311.50 Ver 1.0 10/54 2007/01/29 ST7576 PAD NO. PIN Name X Y PAD NO. PIN Name X Y 181 VDD1 -1134.54 -311.50 211 VSS1 717.15 -311.50 182 VDD1 -1075.23 -311.50 212 VRS 788.45 -311.50 183 VDD1 -1015.92 -311.50 213 T1 835.10 -307.75 184 VDD1 -956.62 -311.50 214 T2 868.40 -307.75 185 VDD2 -897.32 -311.50 215 T3 901.70 -307.75 186 VDD2 -838.01 -311.50 216 T4 935.00 -307.75 187 VDD2 -778.70 -311.50 217 T0 973.80 -307.75 188 VDD2 -719.40 -311.50 218 T5 1012.60 -307.75 189 RESB -660.09 -311.50 219 T6 1045.90 -307.75 190 CSB -600.79 -311.50 220 T7 1079.20 -307.75 191 RWR -541.48 -311.50 221 T8 1112.50 -307.75 192 ERD -482.18 -311.50 222 VGO 1158.81 -311.50 193 A0 -422.88 -311.50 223 VGO 1218.11 -311.50 194 VDD1 -363.57 -311.50 224 VGI 1277.42 -311.50 195 D7 -304.27 -311.50 225 VGI 1336.72 -311.50 196 D6 -244.96 -311.50 226 VGI 1396.03 -311.50 197 D5 -185.66 -311.50 227 VGI 1455.33 -311.50 198 D4 -126.35 -311.50 228 VGS 1514.64 -311.50 199 D3 -67.05 -311.50 229 V0O 1581.08 -309.75 200 D2 -7.74 -311.50 230 V0O 1640.38 -309.75 201 D1 51.56 -311.50 231 V0I 1699.69 -309.75 202 D0 110.87 -311.50 232 V0I 1759.00 -309.75 203 OSC 170.17 -311.50 233 V0I 1818.30 -309.75 204 VSS2 229.47 -311.50 234 V0I 1877.60 -311.50 205 VSS2 288.78 -311.50 235 V0S 1936.91 -311.50 206 VSS2 348.09 -311.50 236 XV0O 1999.36 -311.50 207 VSS2 407.39 -311.50 237 XV0O 2058.67 -311.50 208 VSS1 539.23 -311.50 238 XV0I 2117.98 -311.50 209 VSS1 598.53 -311.50 239 XV0I 2177.28 -311.50 210 VSS1 657.84 -311.50 240 XV0I 2236.58 -311.50 Ver 1.0 11/54 2007/01/29 ST7576 PAD NO. PIN Name X Y 241 XV0I 2295.89 -311.50 242 XV0S 2355.20 -311.50 243 COMS2 2435.10 -293.00 244 COM[4] 2472.30 -293.00 245 COM[3] 2509.50 -293.00 246 COM[2] 2546.70 -293.00 247 COM[1] 2583.90 -293.00 248 COM[0] 2621.10 -293.00 249 Reserved 2658.30 -293.00 250 Reserved 2695.50 -293.00 Ver 1.0 12/54 2007/01/29 ST7576 4. BLOCK DIAGRAM 1 COM59 27 COM33 250 RESERVATION 249 RESERVATION 244 COM60 243 COMS 242 XV0S 238~241 XV0I 236~237 XV0O 235 V0S 231~234 V0I 229~230 V0O 228 VGS 224~227 VGI 222~223 VGO 221 T8 220 T7 219 T6 218 T5 217 T0 216 T4 215 T3 214 T2 213 T1 212 VRS 208~211 VSS1 204~207 VSS2 203 OSC 202 D0 201 D1 200 D2 199 D3 198 D4 197 D5 196 D6 195 D7 194 VDD1 193 A0 192 RD 191 WR 190 CSB 189 RESB 185~188 VDD2 181~184 VDD1 180 VSS2 179 VMO 178 VMO 177 VMO 176 PS0 175 PS1 174 PS2 173 TMY 172 TMX 171 CP 170 BR 169 T12 168 T11 167 VSS2 164~166 VDX2 163 COM26 157 COM32 18 XV0 Vss V0 D0 D1 D2 D3 D4 D5 D6 D7 17 15 A0 /RD /WR CSB RESB VG 14 13 12 11 10 VDD 16 7 8 9 28 SEG0 129 SEG101 130 COMS 131 COM0 156 COM25 2 3 4 5 6 2007/01/29 13/54 Ver 1.0 1 SYSTEMSIDE ...... ...... .......................................... ............................................. ............................................. ITOSIDE FPCSIDE C=1.0uF Fig 3 Block diagram ST7576 5. PINNING DESCRIPTIONS Pin Name I/O Description No. of Pins Lcd driver outputs LCD segment driver outputs This display data and the M signal control the output voltage of segment driver. Segment drover output voltage Display data Frame Normal display Reverse display SEG0 to SEG101 O COM0 to COM64 O COMS O H H VG VSS H L VSS VG L H VSS VG L L VG VSS 102 Power save mode VSS VSS LCD column driver outputs This internal scanning data and M signal control the output voltage of common driver. Common drover output voltage Display data Frame Normal display Reverse display H H XV0 H L V0 L H VM L L VM Power save mode VSS 65 Common output for the icons The output signals of two pins are same. When not used, this pin should be left open. 2 MICROPROCESSOR INTERFACE PS[2:0] I CSB I RESB I A0 I Ver 1.0 Microprocessor interface select input pin PS2 PS1 PS0 State " L " " L " " L " 4 Pin-SPI MPU interface " H " " L " " L " 3 Pin-SPI MPU interface " L " " H " " L " 8080-series parallel MPU interface " H " " H " " L " 6800-series parallel MPU interface "H" "H" " H " I2C interface 3 Chip select input pins Data/instruction I/O is enabled only when CSB is "L". When chip select is non-active, DB0 to DB7 is high impedance. There is no CSB pin in I2C interface, so this pin can fix to ” H” Reset input pin When RESB is "L", initialization is executed. It determines whether the data bits are data or a command. A0="H“: Indicates that D0 to D7 are display data. A0="L“: Indicates that D0 to D7 are control data. There is no A0 pin in three line or I2C interface, so this pin can fix to ” H” 14/54 1 1 1 2007/01/29 ST7576 Read/Write execution control pin (PS[0:1]=[L:H]) RWR PS2 MPU type /WR(R/W) H 6800-series R/W I L 8080-series /WR Description Read/Write control input pin R/W="H“: read R/W="L”: write Write enable clock input pin The data on D0 to D7 are latched at the rising edge of the /WR signal 1 When in the serial interface must fix to ”H” Read/Write execution control pin (PS[0:1]=[L:H]) PS2 ERD I MPU Type /RD (E) H 6800-series E L 8080-series /RD Description Read/Write control input pin R/W="H“: When E is "H", D0 to D7 are in an output status. R/W="L“: The data on D0 to D7 are latched at the falling edge of the E signal. Read enable clock input pin When /RD is "L", D0 to D7 are in an output status. 1 When in the serial interface must fix to ” H” When using 8-bit parallel interface : 6800 . 8080 8-bit bi-directional data bus that is connected to the standard 8-bit microprocessor data bus. When chip select is not active, D0 to D7 is high impedance. When using serial interface: 4-LINE.3-LINE D7: serial input clock (SCLK) ; D6: serial input data (SDA) D5: command/data selection (A0) ; D4: chip select pin(CSB) D3,D2.D1.D0: must fix to ” H” When using 3-line A0 must fix to “H” D7(SCLK) D6(SDA) D5(A0) D4(CSB) D3 to D0 I/O D7 to D6 (SA) D5 to D4(X) D3 to D2 (SDA_OUT) D1 (SDA_IN) D0 (SCLK) Ver 1.0 When using I2C interface D7: serial clock input (SCLK) D6: serial input data (SDA_IN) D3, D2: (SDA_OUT) serial data acknowledge for the I2C interface. By connecting SDA_OUT to SDA_IN externally, the SDA line becomes fully 2 I C interface compatible. Having the acknowledge output separated from the serial data line is advantageous in chip on glass (COG) applications. In COG application where the track resistance from the SDA_OUT pad to the system SDA line can be significant, a potential divider is generated by the bus pull-up resistor and the ITO track resistance. It is possible the during the acknowledge cycle the ST7576 will not be able to create a valid logic 0 level. By splitting the SDA_IN input from the SDA_OUT output the device could be used in a mode that ignores the acknowledge bit. In COG applications where the acknowledge cycle is required, it is necessary to minimize the track resistance from the SDA_OUT pad to the system SDA line to guarantee a valid low level. D6, D3,D2 must be connected together (SDA) D4, D5: must fix to ” H” D0, D1: Is slave address (SA0,SA1), must fix to “H” or “L” Chip select input pins “CSB” not used must fix to “H” 15/54 8 2007/01/29 ST7576 LCD DRIVER SUPPLY OSC I When the on-chip oscillator is used, this input must be connected to VDD1. An external clock signal, if used, is connected to this input. If the oscillator and external clock are both inhibited by connecting the OSC pin to VSS the display is not clocked and may be left in a DC state. To avoid this, the chip should always be put into Power Down Mode before stopping the clock. 1 Power Supply Pins VSS1 Power Digital ground: must be connected with VSS2 4 VSS2 Power Analog ground: must be connected with VSS1 6 VDX2 Power Testing mode power. Must be floating. 3 VDD1 Power Digital Supply voltage:1.8V~3.3V The 2 supply rails VDD1 and VDD2 could be connected together. Digital Option pin must connect to VDD1 to pull high 5 VDD2 Power Analog Supply voltage:1.8V~3.3V The 2 supply rails VDD1 and VDD2 could be connected together. 4 XV0 Power Negative LCD driver supply voltage XV0O, XV0I & XV0S should be separated in ITO layout. XV0O, XV0I & XV0S should be connected together in FPC layout. 7 V0 Power Positive LCD driver supply voltage V0 ≥ VG ≥ VM ≥ VSS ≥ XV0 V0O, V0I & V0S should be separated in ITO layout. V0O, V0I & V0S should be connected together in FPC layout. 7 VG Power LCD driving voltage for segments VGO, VGI & VGS should be separated in ITO layout. VGO, VGI & VGS should be connected together in FPC layout. 7 VMO Power VM output. LCD driving voltage for commons. 3 VRS Power Monitor Voltage Regulator level, must be left open. 1 Ver 1.0 16/54 2007/01/29 ST7576 Configuration Pins CP I Set Booster stages. (“L”=4X; “H”=5X) CP pin set the default value of booster stages after reset , and booster stage can be changed by software instruction 1 BR I Set LCD bias ratio. (“L”=1/7; “H”=1/9) BR pin set the default value of bias ratio after reset , and bias ratio can be changed by software instruction 1 TMX I Mirror X: SEG bi-direction selection TMX connect to VSS : normal direction (SEG0àSEG101) 1 TMX connect to VDD : reverse direction (SEG101àSEG0) TMY I Mirror Y: COM bi-direction selection TMY connect to VSS (TMY=0): normal direction TMY connect to VDD (TMY=1): reverse direction 1 See Pad Center Coordinates at page 3~10. Test Pin T0~T8 T Do NOT use. Reserved for testing. Must be floating 9 T11 T Do NOT use. Reserved for testing. Must be pull high 1 T12 T Do NOT use. Reserved for testing. Must be pull low 1 ST7576 I/O PIN ITO Resister Limitation PIN Name ITO Resister PS[2:0], OSC, CP, BR, T11, T12 No Limitation T0~T8, VRS, VDX2, TMX, TMY Floating VDD1, VDD2, VSS <100Ω V0(V0I, V0O, V0S), VG(VGI, VGO, VGS), XV0(XV0I, XV0O, XV0S), VM <500Ω A0, /WR, /RD, CSB, D7…D0 <1KΩ RESB RESB<10KΩ Ver 1.0 17/54 2007/01/29 ST7576 6. FUNCTIONS DESCRIPTION MICROPROCESSOR INTERFACE Chip Select Input There is CSB pin for chip selection. The ST7576 can interface with an MPU when CSB is "L". When CSB is “H”, these pins are set to any other combination, A0, /RD(E), and /WR(R/W) inputs are disabled and D0 to D7 are to be high impedance. And, in case of serial interface, the internal shift register and the counter are reset. Parallel / Serial Interface ST7576 has five types of interface with an MPU, which are three serial and two parallel interfaces. This parallel or serial interface is determined by PS [0:2] pin as shown in table 1. Table 1. Parallel/Serial Interface Mode PS2 "L" "H" "L" "H" "H" PS1 "L" "L" "H" "H" "H" PS0 "L" "L" "L" "L" "H" State 4 Pin-SPI MPU interface 3 Pin-SPI MPU interface 8080-series parallel MPU interface 6800-series parallel MPU interface I2C interface Parallel Interface The 8-bit bi-directional data bus is used in parallel interface and the type of MPU is selected by PS2 as shown in table 2. The type of data transfer is determined by signals at A0, /RD (E) and /WR(R/W) as shown in table 3. PS2 H L PS1 H H Table 2. Microprocessor Selection for Parallel Interface PS0 CSB A0 /RD (E) /WR (R/W) D0 to D7 MPU bus L CSB A0 E R/W D0 to D7 6800-series L CSB A0 /RD /WR D0 to D7 8080-series Table 3. Parallel Data Transfer 6800-series 8080-series Description E R/W /RD /WR A0 (/RD) (/WR) (E) (R/W) H H H L H Display data read out H H L H L Display data write L H H L H Register status read L H L H L Writes to internal register (instruction) NOTE: When /RD (E) pin is always pulled high for 6800-series interface, it can be used CSB for enable signal. In this case, interface data is latched at the rising edge of CSB and the type of data transfer is determined by signals at A0, /WR(R/W) as in case of 6800-series mode. Common Serial Interface Serial Mode 4-line SPI interface PS2 L PS1 L PS0 L CSB CSB 3-line SPI interface H L L CSB I2C interface H H H Not Used Fix to “H” Ver 1.0 18/54 A0 Used Not Used Fix to “H” Not Used Fix to “H” 2007/01/29 ST7576 PS2= “L”, PS1= “L”, PS0= “L”: 4-line SPI interface When the ST7576 is active (CSB=”L”), serial data (D6) and serial clock (D7) inputs are enabled. When CSB is “High”, the internal 8-bit shift register and the 3-bit counter are reset. The display data/command indication is controlled by the register selection pin (A0). The signals transferred on data bus will be display data when A0 is high and will be instruction when A0 is low. The read feature is not supported in this mode. Serial data on SDA (D6) is latched at the rising edge of serial clock on SCLK (D7). After the eighth serial clock, the serial data will be processed as 8-bit parallel data. The DDRAM column address pointer will be increased by one automatically after each byte of DDRAM access. 1 COM59 . .. .. . .. .. .. . .. .. .. . .. .. . .. .. .. . .. .. .. . .. . 249 RESE RVATION . . .. .. 250 R ESERVA TIO N 244 COM60 243 COMS 242 XV0S 235 V0S 231~234 V0I 238~241 XV0I 236~237 XV0O 229~230 V0O 228 VGS 8 9 10 VG V0 XV0 C 224~227 VGI 222~223 VGO 221 T8 220 T7 219 T6 218 T5 217 T0 216 T4 215 T3 214 T2 213 T1 212 VRS 208~211 VSS1 202 X 203 OSC Vss 204~207 VSS2 201 X CSB 200 X A0 199 X SDA 198 CSB(D4) SCLK 197 A0(D5) 19 5 SCLK( D7) 196 SDA(D6) 194 VDD1 7 193 X 6 192 RD 5 191 WR 4 190 X 3 189 RE SB 2 RESB 185~188 VDD2 1 27 COM33 28 SE G0 129 SEG101 . .. . .. .. .. . .. .. . .. .. .. . .. .. . .. .. .. . .. .. .. . .. . VDD S I D E 181~184 VDD1 180 V SS2 179 VMO 178 VMO 177 VMO 176 PS0 175 PS1 174 PS2 173 TMY 172 TMX S ID E 171 CP F P C S Y S T E M 170 BR S ID E 169 T12 I T O 168 T11 167 V SS2 164~166 VDX2 163 COM26 157 COM32 .. . .. . 130 COMS 131 COM0 156 COM25 . . .. .. .. . .. .. .. . .. .. . .. .. .. . .. .. .. . .. .. . .. .. . = 1 . 0 u F Fig 4 4-line SPI Timing PS2= “L”, PS1= “L”, PS0= “H”: 3-line SPI interface When ST7576 is active (CSB=”L”), SDA-out, SDA-in and SCL inputs are enabled. When ST7576 is not active (CSB=”H”), the internal 8-bit shift register and the 3-bit counter are reset. The A0 pin is not available in this mode. Before issuing serial data, an A0 bit is required to indicate the access is data or instruction. The read feature is not supported in this mode except ID code read feature. Serial data on SDA (D6) is latched at the rising edge of serial clock on SCLK (D7). After the eighth serial clock, the serial data will be processed as 8-bit parallel data. The DDRAM column address pointer will be increased by one automatically after each byte of DDRAM access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 CO M59 27 CO M33 28 S EG 0 129 S EG 101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 RE SE RVAT ION . . . . . . 2 50 RES ERV ATI ON 243 CO MS 244 C OM60 242 XV0 S 235 V0S 231~ 234 V0I 238~241 X V0I 236~237 XV0O 229 ~230 V0O 221 T8 228 V G S 224~227 V G I 220 T7 222~223 V G O 219 T6 218 T5 217 T0 216 T4 215 T3 214 T2 213 T1 212 V RS 208~211 V SS 1 202 X 203 O SC 204~207 V SS 2 201 X 200 X 199 X 1 98 CS B(D 4) 197 X 193 X 195 S CLK( D7) 1 96 SD A(D 6) 192 R D 194 V DD 1 191 WR 190 X 189 R ESB 185~188 V DD 2 179 VMO 181~184 V DD 1 178 VMO 177 VMO 180 V SS 2 176 PS 0 175 PS1 171 C P E I D E 5 6 7 C = 1 . 0 u 8 9 V0 4 XV0 3 VG V DD 2 Vss 1 C SB E SD A I D SC LK S R ESB M 174 PS2 S E 173 TMY C T 170 BR P S I D 172 TMX Y S 169 T12 F S O 168 T11 I T 167 V SS 2 163 CO M26 164~166 V DX 2 157 CO M32 . . . . . . 13 0 CO MS 131 CO M0 156 CO M25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F Fig 5 3-line SPI Timing Ver 1.0 19/54 2007/01/29 ST7576 PS2= “H”, PS1= “H”, PS0= “H”: I2C Interface The I2C interface receives and executes the commands sent via the I2C Interface. It also receives RAM data and sends it to the RAM. The I2C Interface is for bi-directional, two-line communication between different ICs or modules. The two lines are a Serial Data line (SDA) and a Serial Clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy. BIT TRANSFER One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse because changes in the data line at this time will be interpreted as a control signal. Bit transfer is illustrated in Fig.6. START AND STOP CONDITIONS Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P). The START and STOP conditions are illustrated in Fig.7. SYSTEM CONFIGURATION The system configuration is illustrated in Fig.8. - Transmitter: the device, which sends the data to the bus - Receiver: the device, which receives the data from the bus - Master: the device, which initiates a transfer, generates clock signals and terminates a transfer - Slave: the device addressed by a master - Multi-Master: more than one master can attempt to control the bus at the same time without corrupting the message - Arbitration: procedure to ensure that, if more than one master simultaneously tries to control the bus, only one is allowed to do so and the message is not corrupted - Synchronization: procedure to synchronize the clock signals of two or more devices. ACKNOWLEDGE Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH signal put on the bus by the transmitter during which time the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. A master receiver must also generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges must pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal an end-of-data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a STOP condition. Acknowledgement on the I2C Interface is illustrated in Fig.9. 1 COM59 250 RES ERVATION 243 COMS 244 COM60 9 ...... 249 RESERVA TIO N 235 V0S V0 XV0 VG 8 242 X V0S 238~241 XV0I 236~237 X V0O 231~234 V0I 229~230 V0O 221 T8 7 . .. . . . . . . .. . . . . . . .. . . . . . . .. . . . . . . . .. . . . . . . 228 V GS 220 T7 224~227 VGI 219 T6 222~223 V GO 218 T5 217 T0 216 T4 215 T3 V ss 214 T2 213 T1 203 OSC 20 2 SA0 (D0 ) 201 SA1(D1) 212 VRS 208~211 VS S1 200 SDA _O UT(D 2) 204~207 VS S2 SDA 199 SDA _O UT(D 3) SCLK 198 X 197 X 193 X 196 SDA_IN(D6) VDD 192 RD 19 5 SCLK(D7 ) 6 191 WR 4 194 VDD1 3 190 X 2 189 RESB 1 27 COM33 28 SEG0 129 SE G101 . .. . . . . . . .. . . . . . . . .. . . . . . . .. . . . . . . .. . . . . . . .. . RESB 185~188 V DD2 181~184 V DD1 176 PS 0 180 VSS2 175 PS1 179 VMO 178 VMO 177 VMO 171 CP 174 PS2 S ID E 170 BR S ID E 173 TMY F P C S Y S T E M 169 T12 S ID E 172 TMX IT O 168 T11 167 VSS2 163 COM26 164~166 VDX2 157 COM32 ...... 130 COMS 131 COM0 156 COM25 . . . . . . . .. . . . . . . . .. . . . . . . .. . . . . . . .. . . . . . . .. . . . C = 1 .0 u F Fig 6 Bit transfer Fig 7 Definition of START and STOP conditions Ver 1.0 20/54 2007/01/29 ST7576 Fig 8 System configuration Fig 9 Acknowledgement on the I2C Interface I2C Interface protocol The ST7576 supports command, data write addressed slaves on the bus. Before any data is transmitted on the I2C Interface, the device, which should respond, is addressed first. Four 7-bit slave addresses (0111100,0111101, 0111110 and 0111111) are reserved for the ST7576. The least significant bit of the slave address is set by connecting the input SA0 and SA1 to either logic 0 or logic 1 (VDD1). The I2C Interface protocol is illustrated in Fig.10. The sequence is initiated with a START condition (S) from the I2C Interface master, which is followed by the slave address. All slaves with the corresponding address acknowledge in parallel, all the others will ignore the I2C Interface transfer. After acknowledgement, one or more command words follow which define the status of the addressed slaves. A command word consists of a control byte, which defines Co and A0, and a data byte. The last control byte is tagged with a cleared most significant bit (i.e. the continuation bit Co). After a control byte with a cleared Co bit, only data bytes will follow. The state of the A0 bit defines whether the data byte is interpreted as a command or as RAM data. All addressed slaves on the bus also acknowledge the control and data bytes. After the last control byte, depending on the A0 bit setting; either a series of display data bytes or command data bytes may follow. If the A0 bit is set to logic 1, these display bytes are stored in the display RAM at the address specified by the data pointer. The data pointer is automatically updated and the data is directed to the intended ST7576 device. If the A0 bit of the last control byte is set to logic 0, these command bytes will be decoded and the setting of the device will be changed according to the received commands. Only the addressed slave makes the acknowledgement after each byte. At the end of the transmission the bus master issues a STOP condition (P). If no acknowledge is generated by the master after a byte, the driver stops transferring data to the master. Ver 1.0 21/54 2007/01/29 Co 0 1 Co Co R/W ST7576 Fig 10 I2C Interface protocol Last control byte to be sent. Only a stream of data bytes is allowed to follow. This stream may only be terminated by s STOP or RE-START condition. Another control byte will follow the data byte unless a STOP or RE-START condition is received. Data Transfer The ST7576 uses bus holder and internal data bus for data transfer with the MPU. When writing data from the MPU to on-chip RAM, data is automatically transferred from the bus holder to the RAM as shown in Fig. 11. And when reading data from on-chip RAM to the MPU, the data for the initial read cycle is stored in the bus holder (dummy read) and the MPU reads this stored data from bus holder for the next data read cycle as shown in Fig. 12. This means that a dummy read cycle must be inserted between each pair of address sets when a sequence of address sets is executed. Therefore, the data of the specified address cannot be output with the read display data instruction right after the address sets, but can be output at the second read of data. MPU signal A0 /WR D0 to D7 N D(N) D(N+1) D(N+2) D(N+3) N D(N) D(N+1) D(N+2) D(N+3) N N+1 N+2 N+3 Internal signals /WR BUS HOLDER COLUMN ADDRESS Fig 11 Write Timing Ver 1.0 22/54 2007/01/29 ST7576 MPU signal A0 /W R /RD Dummy N D0 to D7 D(N) D(N+1) Internal signals /WR /RD BUS HOLDER COLUMN ADDRESS N N D(N) D(N+1) D(N+2) D(N) D(N+1) D(N+2) Fig 12 Read Timing DISPLAY DATA RAM (DDRAM) The ST7576 contains a 66X102 bit static RAM that stores the display data. The display data RAM store the dot data for the LCD. It has a 66(8 pageX8 bit +1 pageX1 bit +1 pageX1 bit) X 102 . There is a direct correspondence between X-address and column output number. It is 66-row by 102-column addressable array. Each pixel can be selected when the page and column addresses are specified. The 65 rows are divided into 8 pages of 8 lines (0~63 COM) and 8th page with single line (D0)(64COM) and 9th page with a single line (D0)(COMS (ICOM). Data is read from or written to the 8 lines of each page directly through D0 to D7. The display data of D0 to D7 from the microprocessor correspond to the LCD common lines. The microprocessor can read from and write to RAM through the I/O buffer. Since the LCD controller operates independently, data can be written into RAM at the same time as data is being displayed without causing the LCD flicker. Page Address Circuit This circuit is for providing a Page Address to Display Data RAM. It incorporates 4-bit Page Address register changed by only the “Set Page” instruction. Page Address 9 is a special RAM area for the icons and display data D0 is only valid. Line Address Circuit This circuit assigns DDRAM a Line Address corresponding to the first line (COM0) of the display. Therefore, by setting Line Address repeatedly, it is possible to realize the screen scrolling and page switching without changing the contents of on-chip RAM as shown in Fig. 10. It incorporates 7-bit Line Address register changed by only the initial display line instruction and 7-bit counter circuit. At the beginning of each LCD frame, the contents of register are copied to the line counter which is increased by CL signal and generates the line address for transferring the 102-bit RAM data to the display data latch circuit. When icon is selected by setting icon page address, display data of icons are not scrolled because the MPU cannot access Line Address of icons. Ver 1.0 23/54 2007/01/29 ST7576 Column Address Circuit Column Address Circuit has an 8-bit preset counter that provides Column Address to the Display Data RAM as shown in figure16. The display data RAM column address is specified by the Column Address Set command. The specified column address is incremented (+1) with each display data read/write command. This allows the MPU display data to be accessed continuously. ADDRESSING Data is downloaded in bytes into the RAM matrix of ST7576. The display RAM has a matrix of 66 by 102 bits. The address pointer addresses the columns. The address ranges are: X 0 to 101 (1100101),Y 0 to 9 (1001) .Addresses outside these ranges are not allowed.In vertical addressing mode (V=1) the Y address increments after each byte. After the last Y address (Y = 8), Y wraps around to 0 and X increments to address the next column.In horizontal addressing mode (V=0) the X address increments after each byte. After the last X address(X = 101) X wraps around to 0 and Y increments to address the next row.After the very last address (X = 101, Y = 8) the address pointers wrap around to address (X = 0, Y =0) D0 D7 LSB MSB LSB 1 bit Xaddress 0 10 1 0 1 2 3 4 5 6 7 8 9 Fig13 RAM format Ver 1.0 24/54 2007/01/29 Yaddress Data structure ST7576 Data structure 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0 1 2 3 4 5 18 19 20 21 22 23 24 25 26 0 6 7 8 9 917 X-address 101 0 1 2 102103104 204205206 306307308 408409410 510511512 612613614 714715716 816817818 0 917 X-address 0 1 2 3 4 5 6 7 8 9 Y-address Fig14 Sequence of writing data bytes into RAM with vertical addressing (V=1) 101 Fig15 Sequence of writing data bytes into RAM with horizontal addressing (V=0) Ver 1.0 25/54 2007/01/29 ST7576 Page Address Dat D3 D2 D1 D0 a MX Column address D0 64 0 5F S6 1 60 S5 D0 61 S4 Regardless of the display start line address, 1/65duty => 64th line, LCD Out 62 S3 65 63 S2 00 64 S1 COM64 S101 65 S0 COM Output COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 Page 8 D0 63 0 01 0 S100 0 62 1 Page 7 02 1 S99 1 61 1 03 0 Page 6 S98 0 60 1 04 1 S97 0 Page 5 5F 1 05 0 S96 1 5E 0 Page 4 06 0 S95 0 5D 1 07 0 Page 3 08 1 S94 1 S93 0 08 0 Page 2 07 0 5D 1 S8 0 06 0 Page 1 5E 1 S7 0 05 0 04 0 When the common output is normal 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH Page 0 03 0 02 0 01 0 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 00 0 Line Address Fig.16 Display Data RAM Map (66 COM) Ver 1.0 26/54 2007/01/29 ST7576 Partial Display on LCD The ST7576 realizes the Partial Display function on LCD with low-duty driving for saving power consumption and showing the various display duty. To show the various display duty on LCD, LCD driving duty and bias are programmable via the instruction. And, built-in power supply circuits are controlled by the instruction for adjusting the LCD driving voltages. Fig 17 Reference Example for Partial Display Fig 18 Partial Display (Partial Display Duty=17, initial COM0=0) Ver 1.0 27/54 2007/01/29 ST7576 -COM0 -COM1 -COM2 -COM3 -COM4 -COM5 -COM6 -COM7 -COM8 -COM9 -COM10 -COM11 -COM12 -COM13 -COM14 -COM15 -COM16 -COM17 -COM18 -COM19 -COM20 -COM21 -COM22 -COM23 Fig 19 Moving Display (Partial Display Duty=17, Initial COM0=8) Liquid Crystal Driver Power Circuit The Power Supply circuits generate the voltage levels necessary to drive liquid crystal driver circuits with low power consumption and the fewest components. There are voltage converter circuits, voltage regulator circuits, and voltage follower circuits. They are controlled by power control instruction. External Power Components Fig 20 Power Circuit Ver 1.0 28/54 2007/01/29 ST7576 7. RESET CIRCUIT Setting RESB to “L” or Reset instruction can initialize internal function. When RESB becomes “L”, following procedure is occurred. Page address: 0 Column address: 0 Display control: Display blank COM Scan Direction MY: 0 SEG Select Direction MX: 0 DO=0 Oscillator: OFF Power down mode (PD = 1) normal instruction set (H[1:0] = 00) Display blank (E = D = 0) Address counter X [6:0] = 0, Y [3:0] = 0 Bias system: depend on Hardware (BR) setting Booster stage: depend on Hardware (CP) setting V0 is equal to 0; the HV generator is switched off (VOP [6:0] = 0) After power-on, RAM data are undefined While RESB is “L” or reset instruction is executed, no instruction except read status can be accepted. Reset status appears at D0. After D0 becomes ”L”, any instruction can be accepted. RESB must be connected to the reset pin of the MPU, and initialize the MPU and this LSI at the same time. The initialization by RESB is essential before used. Ver 1.0 29/54 2007/01/29 ST7576 8. INSTRUCTION TABLE INSTRUCTION A0 WR (R/W) COMMAND BYTE DESCRIPTION D7 D6 D5 D4 D3 D2 D1 D0 H=0 or 1 NOP 0 0 0 0 0 0 0 0 0 0 No operation Function set 0 0 0 0 1 0 0 PD V H Power-down; entry mode; Partial screen mode 0 0 0 0 1 0 1 X X PS Partial screen enable Display part 0 0 0 0 1 1 1 DP2 DP1 DP0 Set display part for partial screen mode Write data 1 0 D7 D6 D5 D4 D3 D2 D1 D0 A0 WR (R/W) D0 INSTRUCTION Write data to RAM COMMAND BYTE DESCRIPTION D7 D6 D5 D4 D3 D2 D1 H=0 Set VLCD range Display control Set Y address of RAM Set X address of RAM H=1 Reserved Reserved Bias system Reserved Set VOP Ver 1.0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 D 0 E 0 0 0 1 0 0 Y3 Y2 Y1 Y0 0 0 1 X6 X5 X4 X3 X2 X1 X0 Sets Y address of RAM 0≦Y≦9 Sets X address of RAM 0≦X≦101 0 0 0 0 0 0 0 0 0 X Do not use 0 0 0 0 0 0 0 0 1 X Do not use 0 0 0 0 0 1 0 BS2 BS1 BS0 0 0 0 1 X X X X X X 0 0 1 VOP6 VOP5 VOP4 VOP3 VOP2 VOP1 30/54 PRS VLCD range L/H select Sets display configuration Sets bias system (BSx) Do not use(reserved for test) VOP0 Write VOP to register 2007/01/29 ST7576 9. INSTRUCTION DESCRIPTION Function Set A0 0 Flag PD H D7 0 WR(R/W) 0 D6 0 D5 1 D4 0 D3 0 D2 PD D1 V D0 H Description PD=0:chip is active PD=1:chip is in power down mode All LCD outputs at VSS (display off), bias generator and V0 generator off, VOUT can be disconnected, oscillator off (external clock possible), RAM contents not cleared; RAM data can be written. H are used to select different instruction block Follow the instruction table Partial screen mode A0 0 Flag PS D7 0 WR(R/W) 0 D5 1 D4 0 D3 1 D2 X D1 X D0 PS D3 1 D2 DP2 D1 DP1 D0 DP0 Description Full display mode or partial screen mode selection PS=0: Full display mode with MUX 1:66 PS=1: Partial screen mode with MUX 1:17 Display part A0 WR(R/W) 0 0 D7 0 Flag DP2 DP1 DP0 Ver 1.0 D6 0 D6 0 D5 1 Status 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 D4 1 Description Display common DDRAM position Start from common 0 Start from page 0 Start from common 8 Start from page 1 Start from common 16 Start from page 2 Start from common 24 Start from page 3 Start from common 32 Start from page 4 Start from common 40 Start from page 5 31/54 2007/01/29 ST7576 Read data 8-bit data of Display Data from the RAM location specified by the column address and page address can be read to the microprocessor. D7 D6 D5 D4 D3 D2 D1 D0 A0 WR(R/W) 1 1 Read data Write data 8-bit data of Display Data from the microprocessor can be written to the RAM location specified by the column address and page address. The column address is increased by 1 automatically so that the microprocessor can continuously write data to the addressed page. During auto-increment, the column address wraps to 0 after the last column is written. A0 1 D5 D4 D3 Write data D2 D1 D0 D5 0 D4 1 D3 0 D2 0 D1 0 D0 PRS D5 0 D4 0 D3 1 D2 D D1 0 D0 E Y [3:0] defines the Y address vector address of the display RAM. A0 WR(R/W) D7 D6 D5 D4 D3 0 0 0 1 0 0 Y3 D2 Y2 D1 Y1 D0 Y0 WR(R/W) D7 D6 0 H=”0” Set VOP range VOP range L/H select A0 WR(R/W) D7 D6 0 0 0 0 PRS=0: VOP programming range LOW PRS=1: VOP programming range HIGH Display Control This bits D and E selects the display mode. A0 0 Flag D,E WR(R/W) 0 D7 0 D6 0 Description D E The bits D and E select the display mode. 0 0 Display blank 1 0 Normal display 0 1 All display segments on 1 1 Inverse video mode Set Y address of RAM Y3 0 0 0 0 0 0 0 0 1 1 Y2 0 0 0 0 1 1 1 1 0 0 Ver 1.0 Y1 0 0 1 1 0 0 1 1 0 0 Y0 0 1 0 1 0 1 0 1 0 1 CONTENT Page0 (display RAM) Page1 (display RAM) Page2 (display RAM) Page3 (display RAM) Page4 (display RAM) Page5 (display RAM) Page6 (display RAM) Page7 (display RAM) Page8 (display RAM) Page9 (display RAM) ALLOWED X-RANGE 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 32/54 2007/01/29 ST7576 Set X address of RAM The X address points to the columns. The range of X is 0…101. D7 D6 D5 D4 A0 WR(R/W) 0 0 1 X6 X5 X4 X6 0 0 0 0 : 1 1 1 1 X5 0 0 0 0 : 1 1 1 1 X4 0 0 0 0 : 0 0 0 0 X3 0 0 0 0 : 0 0 0 0 X2 0 0 0 0 : 0 0 1 1 X1 0 0 1 1 : 1 1 0 0 D3 X3 X0 0 1 0 1 : 0 1 0 1 D2 X2 D1 X1 D0 X0 Column address 0 1 2 3 : 98 99 100 101 H=”1” System Bias Select LCD bias ratio of the voltage required for driving the LCD. A0 WR(R/W) D7 D6 D5 D4 D3 0 0 0 0 0 1 0 BS2 BS1 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1 LCD bias voltage Symbol V0 V3 V4 VGND XV0 BS0 0 1 0 1 0 1 0 1 Bias 11 10 9 8 7 6 5 4 D2 BS2 D1 BS1 D0 BS0 D1 VOP1 D0 VOP0 Recommend Duty 1:100 1:81 1:65/1:68 1:49 1/40:1/36 1/24 1:18/1:16 1:10/1:9/1:8 Bias voltage for 1/9 bias V0 2/9 X V0 2/9 X V0 VSS -V0 Set VO value A0 WR(R/W) D7 D6 D5 0 0 1 VOP6 VOP5 The operation voltage VLCD can be set by software. D4 VOP4 D3 VOP3 VOP=( a + VOPוb ) Ver 1.0 33/54 D2 VOP2 (1) 2007/01/29 ST7576 The maximum voltage that can be generated is depending on the VDD1 voltage and the display load current. Two overlapping VLCD ranges are selectable via the command “Booster control”. For the LOW (PRS=0) range a=a1 and for the HIGH (PRS=1) range a=a2 with steps equal to “b” in both ranges. Note that the charge pump is turned off if VOP [6;0] and the bit PRS are all set to zero * The Vop must be operated in the range of 4V to 9.5V for the normal or partial display mode application, so that customer have some range(<4V; >9.5V) to adjust contrast by themselves. Table 4 Typical values for parameter for the HV-Generator programming SYMBOL VALUE UNIT a1 2.94(PRS=0) V a2 6.75(PRS=1) V b 0.03 V Charge pump off VL2 00 b a2 a1+b 01 02 03 04 05 06 ..... 7D 7E 7F 00 01 02 03 LOW(PRS=0) 04 05 06 ..... 7D 7E 7F HIGH(PRS=1) VOP [6:0](programmed) {00 hex… 7F hex} Fig21 VOP programming of ST7576 Ver 1.0 34/54 2007/01/29 ST7576 10. COMMAND DESCRIPTION Referential Instruction Setup Flow: Initializing with the built-in Power Supply Circuits User System Setup by External Pins Start of Initialization Power ON(VDD-VSS) Keeping the /RESB Pin="L" Waiting for Stabilizing the Power Release the reset state. (/RESB pin="H") Waiting reset circuit stablized(>1ms) Function set PD=0 ,V=0 , H=1 SET Bias system SET V0 Function set PD=0 , V=0 , H=0 Set VLCD Range(PRS) Display control D=1 E=0 (Normal) Set X , Y address End of Initialization Fig 22 Initializing with the Built-in Power Supply Circuits Ver 1.0 35/54 2007/01/29 ST7576 11. LIMITING VALUES In accordance with the Absolute Maximum Rating System; see notes 1 and 2. Parameter Symbol Conditions Unit Power Supply Voltage VDD1 -0.3 ~ 3.6 V Power supply voltage VDD2 -0.3 ~ 3.6 V LCD Power supply voltage V0 -0.3~15 V LCD Power supply voltage XV0-VG -15~0.3 V LCD Power driving voltage VG, VM -0.3 ~ VDD2 V Operating temperature TOPR –30 to +85 °C Storage temperature TSTR –65 to +150 °C Fig 23 Notes 1. Stresses above those listed under Limiting Values may cause permanent damage to the device. 2. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless otherwise noted. 3. Insure that the voltage levels of VG, VM, VSS, and XV0 are always such that V0 ≧VDD2≧ VG > VM > VSS ≧ XV0 Ver 1.0 36/54 2007/01/29 ST7576 12. HANDLING Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see “Handling MOS devices”). 13. DC CHARACTERISTICS VDD1 = 1.8V to 3.3V; VSS = 0V; Tamb = -30℃ to +85℃; unless otherwise specified. Item Symbol Condition Operating Voltage (1) VDD1 Operating Voltage (2) VDD2 High-level Input Voltage Rating Units Applicable Pin Min. Typ. Max. 1.8 — 3.3 V VDD1 2.4 — 3.3 V VDD2 VIHC 0.7 x VDD1 — VDD1 V Low-level Input Voltage VILC VSS — 0.3 x VDD1 V High-level Output Voltage VOHC IOUT=1mA; VDD1=1.8V 0.8 x VDD1 — VDD1 V Low-level Output Voltage VOLC IOUT=1mA; VDD1=1.8V VSS — 0.2 x VDD1 V Input leakage current ILI –1.0 — 1.0 μA Output leakage current ILO –3.0 — 3.0 μA — 0.7 — (Relative to VSS) Vop= 9.0 V Liquid Crystal Driver ON Resistance RON Ta = 25°C ΔV=0.9V VG = 2.0 V ΔV=0.2V Frame frequency Internal Power Item Positive power for common driver Negative power for common driver FR FR default (1,0,0) Symbol Condition V0 XV0 KΩ — 0.7 — 71 75 79 Rating COMn SEGn Hz Units Applicable Pin Min. Typ. Max. (V0-XV0) 3 — 12 V V0 (XV0-V0) -3 — -12 V XV0 *Recommand: LCD Vop range is 4V-9.5V Ver 1.0 37/54 2007/01/29 ST7576 Dynamic consumption current: During Display, with Internal Power Supply ON, current consumed by whole IC (bare die). Test pattern Symbol ISS (static) Power Down (dynamic, 4-SPI) Ver 1.0 Typ. Max. — 110 150 uA — 0.7 10 uA Notes Booster X5 V0 – VSS = 9.0 V Bias=1/9 ISS Ta = 25°C VDD = 3.0 V, Display Pattern SNOW Units Min. VDD = 3.0 V, Display Pattern SNOW Rating Condition Booster X5 ISS V0 – VSS = 9.0 V — uA Bias=1/9 Data write frequency: 1M Hz 38/54 2007/01/29 ST7576 14. TIMING CHARACTERISTICS System Bus Read/Write Characteristics 1 (For the 8080 Series MPU) (VDD = 3.3V , Ta =-30~85°C) Item Address hold time Address setup time System cycle time Enable L pulse width (WRITE) Enable H pulse width (WRITE) Enable L pulse width (READ) Enable H pulse width (READ) Signal A0 WR WR RD WRITE Data setup time WRITE Data hold time READ access time READ Output disable time Ver 1.0 D0 to D7 Symbol Condition Rating Min. Max. tAH8 10 — tAW8 80 — tCYC8 350 — tCCLW 70 — tCCHW 50 — tCCLR 120 — tCCHR 50 tDS8 60 — tDH8 10 — tACC8 CL = 100 pF — 70 tOH8 CL = 100 pF 10 50 39/54 Units ns 2007/01/29 ST7576 (VDD = 2.8V , Ta =-30~85°C) Item Address hold time Address setup time System cycle time Enable L pulse width (WRITE) Enable H pulse width (WRITE) Enable L pulse width (READ) Enable H pulse width (READ) Signal A0 WR WR RD WRITE Data setup time WRITE Address hold time READ access time D0 to D7 READ Output disable time Symbol Condition Rating Min. Max. tAH8 15 — tAW8 120 — tCYC8 450 — tCCLW 120 — tCCHW 100 — tCCLR 120 — tCCHR 100 — tDS8 90 — tDH8 15 — tACC8 CL = 100 pF — 140 tOH8 CL = 100 pF 10 100 Units ns (VDD = 1.8V , Ta =-30~85°C) Item Address hold time Address setup time System cycle time Enable L pulse width (WRITE) Enable H pulse width (WRITE) Enable L pulse width (READ) Enable H pulse width (READ) Signal A0 WR WR RD WRITE Data setup time WRITE Address hold time READ access time READ Output disable time D0 to D7 Symbol Condition Rating Min. Max. tAH8 30 — tAW8 150 — tCYC8 550 — tCCLW 170 — tCCHW 150 — tCCLR 170 — tCCHR 150 tDS8 120 — tDH8 30 — tACC8 CL = 100 pF — 240 tOH8 CL = 100 pF 10 200 Units ns *1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) ≦ (tCYC8 – tCCLW – tCCHW) for (tr + tf) ≦ (tCYC8 – tCCLR – tCCHR) are specified. *2 All timing is specified using 20% and 80% of VDD1 as the reference. *3 tCCLW and tCCLR are specified as the overlap between CSB being “L” and WR and RD being at the “L” level. Ver 1.0 40/54 2007/01/29 ST7576 System Bus Read/Write Characteristics 1 (For the 6800 Series MPU) (VDD = 3.3V , Ta =-30~85°C) Item Signal Address hold time Address setup time A0 System cycle time Enable L pulse width (WRITE) Enable H pulse width (WRITE) Enable L pulse width (READ) Enable H pulse width (READ) WR RD WRITE Data setup time WRITE Data hold time READ access time READ Output disable time Ver 1.0 D0 to D7 Symbol Condition Rating Min. Max. tAH6 10 — tAW6 80 — tCYC6 240 — tEWLW 70 — tEWHW 50 — tEWLR 70 — tEWHR 130 tDS6 60 — tDH6 10 — tACC6 CL = 100 pF — 70 tOH6 CL = 100 pF 10 50 41/54 Units ns 2007/01/29 ST7576 (VDD = 2.8V , Ta =-30~85°C) Item Signal Address hold time A0 Address setup time System cycle time Enable L pulse width (WRITE) WR Enable H pulse width (WRITE) Enable L pulse width (READ) RD Enable H pulse width (READ) WRITE Data setup time WRITE Address hold time READ access time D0 to D7 READ Output disable time Symbol Rating Condition Min. Max. tAH6 15 — tAW6 100 — tCYC6 340 — tEWLW 120 — tEWHW 100 — tEWLR 120 — tEWHR 100 — tDS6 120 — tDH6 15 — tACC6 CL = 100 pF — 140 tOH6 CL = 100 pF 10 100 Units ns (VDD = 1.8V , Ta =-30~85°C) Item Signal Address hold time Address setup time A0 System cycle time Enable L pulse width (WRITE) Enable H pulse width (WRITE) Enable L pulse width (READ) Enable H pulse width (READ) WR RD WRITE Data setup time WRITE Data hold time READ access time READ Output disable time D0 to D7 Symbol Condition Rating Min. Max. tAH6 30 — tAW6 150 — tCYC6 440 — tEWLW 170 — tEWHW 150 — tEWLR 170 — tEWHR 150 — tDS6 180 — tDH6 30 — tACC6 CL = 100 pF — 240 tOH6 CL = 100 pF 10 200 Units ns *1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) ≦ (tCYC6 – tEWLW – tEWHW) for (tr + tf) ≦ (tCYC6 – tEWLR – tEWHR) are specified. *2 All timing is specified using 20% and 80% of VDD1 as the reference. *3 tEWLW and tEWLR are specified as the overlap between CSB being “L” and E. Ver 1.0 42/54 2007/01/29 ST7576 SERIAL INTERFACE(4-Line Interface) (VDD = 3.3V , Ta =-30~85°C) Item Signal Serial Clock Period SCL “H” pulse width SCL SCL “L” pulse width Address setup time Address hold time Data setup time A0 SI Data hold time CS-SCL time CSB CS-SCL time Symbol Condition Rating Min. Max. tSCYC 120 — tSHW 60 — tSLW 60 — tSAS 20 — tSAH 90 — tSDS 20 — tSDH 10 — tCSS 20 — tCSH 120 — Units ns (VDD = 2.8V , Ta =-30~85°C) Item Signal Serial Clock Period SCL “H” pulse width SCL SCL “L” pulse width Address setup time Address hold time Data setup time Data hold time CS-SCL time CS-SCL time Ver 1.0 A0 SI CSB Symbol Condition Rating Min. Max. tSCYC 200 — tSHW 100 — tSLW 100 — tSAS 30 — tSAH 120 — tSDS 30 — tSDH 20 — tCSS 30 — tCSH 150 — 43/54 Units ns 2007/01/29 ST7576 (VDD=1.8V,Ta=-30~85℃) Item Signal Serial Clock Period SCL “H” pulse width SCL SCL “L” pulse width Address setup time Address hold time Data setup time Data hold time CS-SCL time CS-SCL time A0 SI CSB Symbol Condition Rating Min. Max. tSCYC 280 — tSHW 140 — tSLW 140 — tSAS 50 — tSAH 150 — tSDS 50 — tSDH 50 — tCSS 40 — tCSH 180 — Units ns *1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less. *2 All timing is specified using 20% and 80% of VDD1 as the standard. Ver 1.0 44/54 2007/01/29 ST7576 SERIAL INTERFACE (3-Line Interface) First bit Last bit (VDD=3.3V,Ta=-30~85℃) Item Signal Serial Clock Period SCL “H” pulse width SCL SCL “L” pulse width Data setup time SI Data hold time CS-SCL time CSB CS-SCL time Symbol Condition Rating Min. Max. tSCYC 120 — tSHW 60 — tSLW 60 — tSDS 20 — tSDH 10 — tCSS 20 — tCSH 130 — Units ns (VDD=2.8V,Ta=-30~85℃) Item Signal Serial Clock Period SCL “H” pulse width SCL SCL “L” pulse width Data setup time Data hold time CS-SCL time CS-SCL time Ver 1.0 SI CSB Symbol Condition Rating Min. Max. tSCYC 180 — tSHW 90 — tSLW 90 — tSDS 30 — tSDH 20 — tCSS 30 — tCSH 160 — 45/54 Units ns 2007/01/29 ST7576 (VDD=1.8V,Ta=-30~85℃) Item Signal Serial Clock Period SCL SCL “H” pulse width SCL “L” pulse width Data setup time SI Data hold time CS-SCL time CSB CS-SCL time Symbol Rating Condition Min. Max. tSCYC 240 — tSHW 120 — tSLW 120 — tSDS 60 — tSDH 50 — tCSS 40 — tCSH 190 — Units ns *1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less. *2 All timing is specified using 20% and 80% of VDD1 as the standard. SERIAL INTERFACE(I2C Interface) (VDD=3.3V,Ta=-30~85℃) Item Signal Symbol Rating Condition Min. Max. Units SCL clock frequency SCL FSCLK - 400 KHz SCL clock low period SCL TLOW 1.3 - us SCL clock high period SCL THIGH 0.6 - us Data set-up time SI TSU;Data 100 - ns Data hold time SI THD;Data 0 0.9 us SCL,SDA rise time SCL TR 20+0.1Cb 300 ns SCL,SDA fall time SCL TF 20+0.1Cb 300 ns Cb - 400 pF Capacitive load represented by each bus line Setup time for a repeated START condition SI TSU;SUA 0.6 - us Start condition hold time SI THD;STA 0.6 - us Setup time for STOP condition TSU;STO 0.6 - us Tolerable spike width on bus TSW - 50 ns BUS free time between a STOP and START condition SCL TBUF 1.3 Ver 1.0 46/54 us 2007/01/29 ST7576 15. RESET TIMING tRW /RES tR Internal status During reset Reset complete (VDD = 3.3V , Ta = –30 to 85°C ) Item Signal Reset time Reset “L” pulse width RESB Symbol Condition Rating Units Min. Typ. Max. tR — — 1.5 us tRW 1.5 — — us (VDD = 2.8V , Ta = –30 to 85°C ) Item Signal Reset time Reset “L” pulse width RESB Symbol Condition Rating Units Min. Typ. Max. tR — — 2.0 us tRW 2.0 — — us (VDD = 1.8V , Ta = –30 to 85°C ) Item Signal Reset time Reset “L” pulse width Ver 1.0 RESB Symbol Condition Rating Units Min. Typ. Max. tR — — 3.0 us tRW 3.0 — — us 47/54 2007/01/29 ST7576 APPLICATION NOTE 250 RESERVATIO N XV0 V0 18 17 Vss VG 15 16 14 13 12 11 10 D0 D1 D2 D3 D4 D5 D6 D7 VDD A0 /RD /WR CSB RESB C=1.0uF 249 RESERVATIO N 244 COM60 243 COMS FPC SIDE 1 COM59 27 COM33 28 SEG0 129 SEG101 242 XV0S 238~241 XV0I 236~237 XV0O 235 V0S 231~234 V0I 229~230 V0O 228 VGS 224~227 VGI 222~223 VGO 221 T8 220 T7 219 T6 218 T5 217 T0 216 T4 215 T3 214 T2 213 T1 212 VRS 208~211 VSS1 204~207 VSS2 203 OSC 202 D0 201 D1 200 D2 199 D3 198 D4 197 D5 196 D6 195 D7 194 VDD1 193 A0 192 RD 191 WR 190 CSB 189 RESB 185~188 VDD2 181~184 VDD1 180 VSS2 179 VMO 178 VMO 177 VMO 176 PS0 175 PS1 174 PS2 173 TMY 172 TMX 171 CP 170 BR 169 T12 168 T11 167 VSS2 164~166 VDX2 163 COM26 157 COM32 2007/01/29 48/54 Ver 1.0 2 3 4 5 6 7 8 9 1 SYSTEM SIDE 130 COMS 131 COM0 156 COM25 ITO SIDE ...... ...... .......................................... ............................................. ............................................. ST7576 1 COM59 27 COM33 28 SEG0 129 SEG101 130 COMS 131 COM0 156 COM25 ITO SIDE FPC SIDE 17 18 V0 XV0 Vss VG 15 16 14 13 12 11 10 D0 D1 D2 D3 D4 D5 D6 D7 VDD A0 /RD /WR CSB RESB C=1.0uF 250 RESERVATIO N 249 RESERVATIO N 244 COM60 243 COMS 242 XV0S 238~241 XV0I 236~237 XV0O 235 V0S 231~234 V0I 229~230 V0O 228 VGS 224~227 VGI 222~223 VGO 221 T8 220 T7 219 T6 218 T5 217 T0 216 T4 215 T3 214 T2 213 T1 212 VRS 208~211 VSS1 204~207 VSS2 203 OSC 202 D0 201 D1 200 D2 199 D3 198 D4 197 D5 196 D6 195 D7 194 VDD1 193 A0 192 RD 191 WR 190 CSB 189 RESB 185~188 VDD2 181~184 VDD1 180 VSS2 179 VMO 178 VMO 177 VMO 176 PS0 175 PS1 174 PS2 173 TMY 172 TMX 171 CP 170 BR 169 T12 168 T11 167 VSS2 164~166 VDX2 163 COM26 157 COM32 2007/01/29 49/54 Ver 1.0 2 3 4 5 6 7 8 9 1 SYSTEM SIDE ...... ...... .......................................... ............................................. ............................................. ST7576 1 COM59 249 RESERVATIO N 250 RESERVATIO N 244 COM60 243 COMS 10 XV0 Vss V0 CSB A0 SDA SCLK 9 RESB VG VDD 8 7 27 COM33 202 X 242 XV0S 238~241 XV0I 236~237 XV0O 235 V0S 231~234 V0I 229~230 V0O 228 VGS 224~227 VGI 222~223 VGO 221 T8 220 T7 219 T6 218 T5 217 T0 216 T4 215 T3 214 T2 213 T1 212 VRS 208~211 VSS1 204~207 VSS2 203 OSC 195 SCLK(D7) 201 X 200 X 199 X 198 CSB(D4) 197 A0(D5) 196 SDA(D6) 194 VDD1 193 X 192 RD 191 WR 190 X 189 RESB 185~188 VDD2 181~184 VDD1 180 VSS2 179 VMO 178 VMO 177 VMO 176 PS0 175 PS1 174 PS2 173 TMY 172 TMX 171 CP 170 BR 169 T12 168 T11 167 VSS2 164~166 VDX2 163 COM26 157 COM32 3 4 5 6 28 SEG0 129 SEG101 130 COMS 131 COM0 156 COM25 2 2007/01/29 50/54 Ver 1.0 1 SYSTEM SIDE ...... ...... .......................................... ............................................. ............................................. ITO SIDE FPC SIDE C=1.0uF ST7576 1 COM59 27 COM33 28 SEG0 129 SEG101 130 COMS 131 COM0 156 COM25 249 RESERVATIO N 250 RESERVATIO N 244 COM60 243 COMS 202 X 242 XV0S 238~241 XV0I 236~237 XV0O 235 V0S 231~234 V0I 229~230 V0O 228 VGS 224~227 VGI 222~223 VGO 221 T8 220 T7 219 T6 218 T5 217 T0 216 T4 215 T3 214 T2 213 T1 212 VRS 208~211 VSS1 204~207 VSS2 203 OSC 195 SCLK(D7) 201 X 200 X 199 X 198 CSB(D4) 197 X 196 SDA(D6) 194 VDD1 193 X 192 RD 191 WR 190 X 189 RESB 185~188 VDD2 181~184 VDD1 180 VSS2 179 VMO 178 VMO 177 VMO 176 PS0 175 PS1 174 PS2 173 TMY 172 TMX 171 CP 170 BR 169 T12 168 T11 167 VSS2 164~166 VDX2 163 COM26 157 COM32 SDA SCLK CSB Vss XV0 RESB V0 VDD VG 6 2007/01/29 51/54 Ver 1.0 5 9 3 4 8 2 7 1 SYSTEM SIDE ...... ...... .......................................... ............................................. ............................................. ITO SIDE FPC SIDE C=1.0uF ST7576 1 COM59 27 COM33 28 SEG0 129 SEG101 130 COMS 131 COM0 156 COM25 249 RESERVATIO N 250 RESERVATIO N 244 COM60 243 COMS 202 SA0(D0) 242 XV0S 238~241 XV0I 236~237 XV0O 235 V0S 231~234 V0I 229~230 V0O 228 VGS 224~227 VGI 222~223 VGO 221 T8 220 T7 219 T6 218 T5 217 T0 216 T4 215 T3 214 T2 213 T1 212 VRS 208~211 VSS1 204~207 VSS2 203 OSC 201 SA1(D1) 200 SDA_OUT(D2) 198 X 197 X 199 SDA_OUT(D3) 195 SCLK(D7) 196 SDA_IN(D6) 194 VDD1 193 X 192 RD 191 WR 190 X 189 RESB 185~188 VDD2 181~184 VDD1 180 VSS2 179 VMO 178 VMO 177 VMO 176 PS0 175 PS1 174 PS2 173 TMY 172 TMX 171 CP 170 BR 169 T12 168 T11 167 VSS2 164~166 VDX2 163 COM26 157 COM32 Vss XV0 SDA SCLK V0 RESB VG VDD 2007/01/29 52/54 Ver 1.0 6 9 3 4 8 2 7 1 SYSTEM SIDE ...... ...... .......................................... ............................................. ............................................. ITO SIDE FPC SIDE C=1.0uF ST7576 Reference to ITO Layout XV0I XV0O VGS VGI VGO VDD1 VDD2 XV0S V0O V0I V0S VSS1 VSS2 Ver 1.0 53/54 2007/01/29 ST7576 ST7576 Serial Specification Revision History Version Date Description 1 All layer change 0.6a 2006/05/10 2 Fig arrange 3 Add reference to ITO layout 4 Test pin size is reduced 0.6b 2006/05/24 P11 0.6c 2006/06/01 To remove the capacitor between V0 and XV0 0.6d 2006/06/19 Modify function set P1 : Voltage converter ; display supply voltage range P16: VSS1, VSS2 0.7a 2006/08/14 P17: Mode0, Mode1=>T11,T12 P34 : limit Vop application range P36-P47: take off TBD Remove external V0 0.7b 2006/10/05 0.7c 2006/12/15 Modify P3 Modify P37 DC characteristic Modify display supply voltage range at P1 Modify VDX2O pin description at P16 1.0 2007/01/25 Modify TEN to X in instruction table at P30 Modify V0, XV0 limit value to 15V at P36 Modify Max value of internal of DC characteristic at P37 Ver 1.0 54/54 2007/01/29