ST Sitronix ST7558 65 x 102 Dot Matrix LCD Controller/Driver 1. INTRODUCTION The ST7558 is a driver & controller LSI for graphic dot-matrix liquid crystal display systems. It contains 102 segment and 65 common with 1 ICOM driver circuits. This chip is connected directly to a microprocessor, accepts 4-line serial 2 interface (SPI), I C interface or 8-bit parallel interface, display data can stores in an on-chip display data RAM of 66 x 102 bits. It performs display data RAM read/write operation with no external operating clock to minimize power consumption. In addition, because it contains power supply circuits to drive liquid crystal, it is possible to make a display system with the fewest components. 2. FEATURES - Driver Output Circuits (external clock also possible) 102 segment outputs / 65 common outputs On-chip Display Data Ram - Capacity: 66X102=6732 bits - Voltage converter (x2, x3, x4, x5) - Voltage regulator (temperature gradient Microprocessor Interface - - -0.05%/°C) 8-bit parallel bi-directional interface with - Voltage follower 6800-series or 8080-series - On-chip electronic contrast control function (128 - 2 External RESB (reset) pin Generation of LCD supply voltage (externally Vout voltage supply is possible) - Logic supply voltage range VDD -VSS - Generation of intermediate LCD bias voltages 6800 , 8080 , 4-Line (without I2C interface) ST7558i I2C interface 1/56 1.8 to 3.3V Temperature range: -30 to +85 degree ST7558 Ver 2.3 Liquid crystal driving voltage : V0 -VSS = max 12 V (external power supply) I C (Inter-Integrated Circuit) Interface On-chip Low Power Analog Circuit - stepsX2) 4-line SPI (serial peripheral interface) available (only write operation) - Oscillator requires no external components 2005/10/05 ST7558 3. PAD Arrangement (COG) Chip Size: 10,220 um × 1000 um Bump Pitch: PAD NO 1 ~ 148 , 250 ~ 272 : 75.5 um (com/seg) PAD NO 248 ~ 249 : 93.5 um PAD NO 149 ~ 248 : 75 um (I/O) PAD NO 148 ~ 149 : 114 um PAD NO 249 ~ 250 : 95.9 um Bump Size: PAD NO 1 ~ 125 , 137 ~ 248 , 250 ~ 261 : 55(x) um × 60(y) um PAD NO 126 ~ 136 PAD NO 249 : 92(x) um × 60(y) um , 262 ~ 272 : 60(x)um × 55(y) um Bump Height: 17 um Chip Thickness: 635 um 60 6 15 75 75 6 Metal area Bump area (-4766,410) unit: um 15 6 6 30 30 15 30 60 15 30 (4766,410) unit:um Mark 1 125 126 272 Y X (0,0) 136 262 137 261 248 249 250 RES 30 15 30 15 55 10 15 60 55 60 30 75 Bump Size of Top & Bottom 30 75 92 60 Bump Size of Right & Left (-4763,-410) unit:um Ver 2.3 60 Bump Size of RES unit: um 2/56 10 15 60 (4763,-410) unit:um 2005/10/05 ST7558 Pad Center Coordinates(NORMAL,MY=0) PAD NO. PIN Name X Y PAD NO. PIN Name X Y 1 COM[42] 4681.0 389.0 36 SEG[23] 2038.5 389.0 2 COM[41] 4605.5 389.0 37 SEG[24] 1963.0 389.0 3 COM[40] 4530.0 389.0 38 SEG[25] 1887.5 389.0 4 COM[39] 4454.5 389.0 39 SEG[26] 1812.0 389.0 5 COM[38] 4379.0 389.0 40 SEG[27] 1736.5 389.0 6 COM[37] 4303.5 389.0 41 SEG[28] 1661.0 389.0 7 COM[36] 4228.0 389.0 42 SEG[29] 1585.5 389.0 8 COM[35] 4152.5 389.0 43 SEG[30] 1510.0 389.0 9 COM[34] 4077.0 389.0 44 SEG[31] 1434.5 389.0 10 COM[33] 4001.5 389.0 45 SEG[32] 1359.0 389.0 11 COM[32] 3926.0 389.0 46 SEG[33] 1283.5 389.0 12 Reserve 3850.5 389.0 47 SEG[34] 1208.0 389.0 13 SEG[0] 3775.0 389.0 48 SEG[35] 1132.5 389.0 14 SEG[1] 3699.5 389.0 49 SEG[36] 1057.0 389.0 15 SEG[2] 3624.0 389.0 50 SEG[37] 981.5 389.0 16 SEG[3] 3548.5 389.0 51 SEG[38] 906.0 389.0 17 SEG[4] 3473.0 389.0 52 SEG[39] 830.5 389.0 18 SEG[5] 3397.5 389.0 53 SEG[40] 755.0 389.0 19 SEG[6] 3322.0 389.0 54 SEG[41] 679.5 389.0 20 SEG[7] 3246.5 389.0 55 SEG[42] 604.0 389.0 21 SEG[8] 3171.0 389.0 56 SEG[43] 528.5 389.0 22 SEG[9] 3095.5 389.0 57 SEG[44] 453.0 389.0 23 SEG[10] 3020.0 389.0 58 SEG[45] 377.5 389.0 24 SEG[11] 2944.5 389.0 59 SEG[46] 302.0 389.0 25 SEG[12] 2869.0 389.0 60 SEG[47] 226.5 389.0 26 SEG[13] 2793.5 389.0 61 SEG[48] 151.0 389.0 27 SEG[14] 2718.0 389.0 62 SEG[49] 75.5 389.0 28 SEG[15] 2642.5 389.0 63 SEG[50] 0.0 389.0 29 SEG[16] 2567.0 389.0 64 SEG[51] -75.5 389.0 30 SEG[17] 2491.5 389.0 65 SEG[52] -151.0 389.0 31 SEG[18] 2416.0 389.0 66 SEG[53] -226.5 389.0 32 SEG[19] 2340.5 389.0 67 SEG[54] -302.0 389.0 33 SEG[20] 2265.0 389.0 68 SEG[55] -377.5 389.0 34 SEG[21] 2189.5 389.0 69 SEG[56] -453.0 389.0 35 SEG[22] 2114.0 389.0 70 SEG[57] -528.5 389.0 Ver 2.3 3/56 2005/10/05 ST7558 PAD NO. PIN Name X Y PAD NO. PIN Name X Y 71 SEG[58] -604.0 389.0 107 SEG[94] -3322.0 389.0 72 SEG[59] -679.5 389.0 108 SEG[95] -3397.5 389.0 73 SEG[60] -755.0 389.0 109 SEG[96] -3473.0 389.0 74 SEG[61] -830.5 389.0 110 SEG[97] -3548.5 389.0 75 SEG[62] -906.0 389.0 111 SEG[98] -3624.0 389.0 76 SEG[63] -981.5 389.0 112 SEG[99] -3699.5 389.0 77 SEG[64] -1057.0 389.0 113 SEG[100] -3775.0 389.0 78 SEG[65] -1132.5 389.0 114 SEG[101] -3850.5 389.0 79 SEG[66] -1208.0 389.0 115 COMS1 -3926.0 389.0 80 SEG[67] -1283.5 389.0 116 COM[0] -4001.5 389.0 81 SEG[68] -1359.0 389.0 117 COM[1] -4077.0 389.0 82 SEG[69] -1434.5 389.0 118 COM[2] -4152.5 389.0 83 SEG[70] -1510.0 389.0 119 COM[3] -4228.0 389.0 84 SEG[71] -1585.5 389.0 120 COM[4] -4303.5 389.0 85 SEG[72] -1661.0 389.0 121 COM[5] -4379.0 389.0 86 SEG[73] -1736.5 389.0 122 COM[6] -4454.5 389.0 87 SEG[74] -1812.0 389.0 123 COM[7] -4530.0 389.0 88 SEG[75] -1887.5 389.0 124 COM[8] -4605.5 389.0 89 SEG[76] -1963.0 389.0 125 COM[9] -4681.0 389.0 90 SEG[77] -2038.5 389.0 126 COM[10] -4998.5 381.5 91 SEG[78] -2114.0 389.0 127 COM[11] -4998.5 306.0 92 SEG[79] -2189.5 389.0 128 COM[12] -4998.5 230.5 93 SEG[80] -2265.0 389.0 129 COM[13] -4998.5 155.0 94 SEG[81] -2340.5 389.0 130 COM[14] -4998.5 79.5 95 SEG[82] -2416.0 389.0 131 COM[15] -4998.5 4.0 96 SEG[83] -2491.5 389.0 132 COM[16] -4998.5 -71.5 97 SEG[84] -2567.0 389.0 133 COM[17] -4998.5 -147.0 98 SEG[85] -2642.5 389.0 134 COM[18] -4998.5 -222.5 99 SEG[86] -2718.0 389.0 135 COM[19] -4998.5 -298.0 100 SEG[87] -2793.5 389.0 136 COM[20] -4998.5 -373.5 101 SEG[88] -2869.0 389.0 137 COM[21] -4694.5 -389.0 102 SEG[89] -2944.5 389.0 138 COM[22] -4619.0 -389.0 103 SEG[90] -3020.0 389.0 139 COM[23] -4543.5 -389.0 104 SEG[91] -3095.5 389.0 140 COM[24] -4468.0 -389.0 105 SEG[92] -3171.0 389.0 141 COM[25] -4392.5 -389.0 106 SEG[93] -3246.5 389.0 142 COM[26] -4317.0 -389.0 Ver 2.3 4/56 2005/10/05 ST7558 PAD NO. PIN Name X Y PAD NO. PIN Name X Y 143 COM[27] -4241.5 -389.0 179 D2 -1500.0 -389.0 144 COM[28] -4166.0 -389.0 180 D1 -1425.0 -389.0 145 COM[29] -4090.5 -389.0 181 D1 -1350.0 -389.0 146 COM[30] -4015.0 -389.0 182 D0 -1275.0 -389.0 147 COM[31] -3939.5 -389.0 183 D0 -1200.0 -389.0 148 Reserve -3864.0 -389.0 184 VDD -1125.0 -389.0 149 T9 -3750.0 -389.0 185 T0 -1050.0 -389.0 150 VDD -3675.0 -389.0 186 T1 -975.0 -389.0 151 VDD -3600.0 -389.0 187 T2 -900.0 -389.0 152 VDD -3525.0 -389.0 188 T3 -825.0 -389.0 153 VDD -3450.0 -389.0 189 T4 -750.0 -389.0 154 VDD -3375.0 -389.0 190 T5 -675.0 -389.0 155 VDD -3300.0 -389.0 191 T6 -600.0 -389.0 156 VDD2 -3225.0 -389.0 192 T7 -525.0 -389.0 157 VDD2 -3150.0 -389.0 193 T8 -450.0 -389.0 158 VDD2 -3075.0 -389.0 194 VRS -375.0 -389.0 159 VDD2 -3000.0 -389.0 195 ERD -300.0 -389.0 160 VDD2 -2925.0 -389.0 196 ERD -225.0 -389.0 161 VDD2 -2850.0 -389.0 197 RWR -150.0 -389.0 162 VDD2 -2775.0 -389.0 198 RWR -75.0 -389.0 163 VDD2 -2700.0 -389.0 199 A0 0.0 -389.0 164 VDD2 -2625.0 -389.0 200 A0 75.0 -389.0 165 VDD2 -2550.0 -389.0 201 CS 150.0 -389.0 166 VDD2 -2475.0 -389.0 202 CS 225.0 -389.0 167 VDD2 -2400.0 -389.0 203 IMS 300.0 -389.0 168 D7 -2325.0 -389.0 204 VDD 375.0 -389.0 169 D7 -2250.0 -389.0 205 PS 450.0 -389.0 170 D6 -2175.0 -389.0 206 T11 525.0 -389.0 171 D6 -2100.0 -389.0 207 T10 600.0 -389.0 172 D5 -2025.0 -389.0 208 VDD 675.0 -389.0 173 D5 -1950.0 -389.0 209 OSC 750.0 -389.0 174 D4 -1875.0 -389.0 210 OSC 825.0 -389.0 175 D4 -1800.0 -389.0 211 V0 900.0 -389.0 176 D3 -1725.0 -389.0 212 V0 975.0 -389.0 177 D3 -1650.0 -389.0 213 V0 1050.0 -389.0 178 D2 -1575.0 -389.0 214 V0 1125.0 -389.0 Ver 2.3 5/56 2005/10/05 ST7558 PAD NO. PIN Name X Y PAD NO. PIN Name X Y 215 V1 1200.0 -389.0 244 VLCDOUT 3375.0 -389.0 216 V2 1275.0 -389.0 245 VLCDOUT 3450.0 -389.0 217 V3 1350.0 -389.0 246 VLCDOUT 3525.0 -389.0 218 V4 1425.0 -389.0 247 VLCDOUT 3600.0 -389.0 219 VSS2 1500.0 -389.0 248 VLCDOUT 3675.0 -389.0 220 VSS2 1575.0 -389.0 249 RES 3768.5 -389.0 221 VSS2 1650.0 -389.0 250 COMS2 3864.5 -389.0 222 VSS2 1725.0 -389.0 251 COM[64] 3940.0 -389.0 223 VSS2 1800.0 -389.0 252 COM[63] 4015.5 -389.0 224 VSS2 1875.0 -389.0 253 COM[62] 4091.0 -389.0 225 VSS2 1950.0 -389.0 254 COM[61] 4166.5 -389.0 226 VSS2 2025.0 -389.0 255 COM[60] 4242.0 -389.0 227 VSS2 2100.0 -389.0 256 COM[59] 4317.5 -389.0 228 VSS2 2175.0 -389.0 257 COM[58] 4393.0 -389.0 229 VSS2 2250.0 -389.0 258 COM[57] 4468.5 -389.0 230 VSS2 2325.0 -389.0 259 COM[56] 4544.0 -389.0 231 VSS 2400.0 -389.0 260 COM[55] 4619.5 -389.0 232 VSS 2475.0 -389.0 261 COM[54] 4695.0 -389.0 233 VSS 2550.0 -389.0 262 COM[53] 4998.5 -373.5 234 VSS 2625.0 -389.0 263 COM[52] 4998.5 -298.0 235 VSS 2700.0 -389.0 264 COM[51] 4998.5 -222.5 236 VSS 2775.0 -389.0 265 COM[50] 4998.5 -147.0 237 VLCDIN 2850.0 -389.0 266 COM[49] 4998.5 -71.5 238 VLCDIN 2925.0 -389.0 267 COM[48] 4998.5 4.0 239 VLCDIN 3000.0 -389.0 268 COM[47] 4998.5 79.5 240 VLCDIN 3075.0 -389.0 269 COM[46] 4998.5 155.0 241 VLCDIN 3150.0 -389.0 270 COM[45] 4998.5 230.5 242 VLCDIN 3225.0 -389.0 271 COM[44] 4998.5 306.0 243 VLCDOUT 3300.0 -389.0 272 COM[43] 4998.5 381.5 Ver 2.3 6/56 2005/10/05 ST7558 Pad Center Coordinates(REVERSE,MY=1) PAD NO. PIN Name X Y PAD NO. PIN Name X Y 1 COM[22] 4681.0 389.0 36 SEG[23] 2038.5 389.0 2 COM[23] 4605.5 389.0 37 SEG[24] 1963.0 389.0 3 COM[24] 4530.0 389.0 38 SEG[25] 1887.5 389.0 4 COM[25] 4454.5 389.0 39 SEG[26] 1812.0 389.0 5 COM[26] 4379.0 389.0 40 SEG[27] 1736.5 389.0 6 COM[27] 4303.5 389.0 41 SEG[28] 1661.0 389.0 7 COM[28] 4228.0 389.0 42 SEG[29] 1585.5 389.0 8 COM[29] 4152.5 389.0 43 SEG[30] 1510.0 389.0 9 COM[30] 4077.0 389.0 44 SEG[31] 1434.5 389.0 10 COM[31] 4001.5 389.0 45 SEG[32] 1359.0 389.0 11 Reserve 3926.0 389.0 46 SEG[33] 1283.5 389.0 12 Reserve 3850.5 389.0 47 SEG[34] 1208.0 389.0 13 SEG[0] 3775.0 389.0 48 SEG[35] 1132.5 389.0 14 SEG[1] 3699.5 389.0 49 SEG[36] 1057.0 389.0 15 SEG[2] 3624.0 389.0 50 SEG[37] 981.5 389.0 16 SEG[3] 3548.5 389.0 51 SEG[38] 906.0 389.0 17 SEG[4] 3473.0 389.0 52 SEG[39] 830.5 389.0 18 SEG[5] 3397.5 389.0 53 SEG[40] 755.0 389.0 19 SEG[6] 3322.0 389.0 54 SEG[41] 679.5 389.0 20 SEG[7] 3246.5 389.0 55 SEG[42] 604.0 389.0 21 SEG[8] 3171.0 389.0 56 SEG[43] 528.5 389.0 22 SEG[9] 3095.5 389.0 57 SEG[44] 453.0 389.0 23 SEG[10] 3020.0 389.0 58 SEG[45] 377.5 389.0 24 SEG[11] 2944.5 389.0 59 SEG[46] 302.0 389.0 25 SEG[12] 2869.0 389.0 60 SEG[47] 226.5 389.0 26 SEG[13] 2793.5 389.0 61 SEG[48] 151.0 389.0 27 SEG[14] 2718.0 389.0 62 SEG[49] 75.5 389.0 28 SEG[15] 2642.5 389.0 63 SEG[50] 0.0 389.0 29 SEG[16] 2567.0 389.0 64 SEG[51] -75.5 389.0 30 SEG[17] 2491.5 389.0 65 SEG[52] -151.0 389.0 31 SEG[18] 2416.0 389.0 66 SEG[53] -226.5 389.0 32 SEG[19] 2340.5 389.0 67 SEG[54] -302.0 389.0 33 SEG[20] 2265.0 389.0 68 SEG[55] -377.5 389.0 34 SEG[21] 2189.5 389.0 69 SEG[56] -453.0 389.0 35 SEG[22] 2114.0 389.0 70 SEG[57] -528.5 389.0 Ver 2.3 7/56 2005/10/05 ST7558 PAD NO. PIN Name X Y PAD NO. PIN Name X Y 71 SEG[58] -604.0 389.0 107 SEG[94] -3322.0 389.0 72 SEG[59] -679.5 389.0 108 SEG[95] -3397.5 389.0 73 SEG[60] -755.0 389.0 109 SEG[96] -3473.0 389.0 74 SEG[61] -830.5 389.0 110 SEG[97] -3548.5 389.0 75 SEG[62] -906.0 389.0 111 SEG[98] -3624.0 389.0 76 SEG[63] -981.5 389.0 112 SEG[99] -3699.5 389.0 77 SEG[64] -1057.0 389.0 113 SEG[100] -3775.0 389.0 78 SEG[65] -1132.5 389.0 114 SEG[101] -3850.5 389.0 79 SEG[66] -1208.0 389.0 115 COMS1 -3926.0 389.0 80 SEG[67] -1283.5 389.0 116 COM[64] -4001.5 389.0 81 SEG[68] -1359.0 389.0 117 COM[63] -4077.0 389.0 82 SEG[69] -1434.5 389.0 118 COM[62] -4152.5 389.0 83 SEG[70] -1510.0 389.0 119 COM[61] -4228.0 389.0 84 SEG[71] -1585.5 389.0 120 COM[60] -4303.5 389.0 85 SEG[72] -1661.0 389.0 121 COM[59] -4379.0 389.0 86 SEG[73] -1736.5 389.0 122 COM[58] -4454.5 389.0 87 SEG[74] -1812.0 389.0 123 COM[57] -4530.0 389.0 88 SEG[75] -1887.5 389.0 124 COM[56] -4605.5 389.0 89 SEG[76] -1963.0 389.0 125 COM[55] -4681.0 389.0 90 SEG[77] -2038.5 389.0 126 COM[54] -4998.5 381.5 91 SEG[78] -2114.0 389.0 127 COM[53] -4998.5 306.0 92 SEG[79] -2189.5 389.0 128 COM[52] -4998.5 230.5 93 SEG[80] -2265.0 389.0 129 COM[51] -4998.5 155.0 94 SEG[81] -2340.5 389.0 130 COM[50] -4998.5 79.5 95 SEG[82] -2416.0 389.0 131 COM[49] -4998.5 4.0 96 SEG[83] -2491.5 389.0 132 COM[48] -4998.5 -71.5 97 SEG[84] -2567.0 389.0 133 COM[47] -4998.5 -147.0 98 SEG[85] -2642.5 389.0 134 COM[46] -4998.5 -222.5 99 SEG[86] -2718.0 389.0 135 COM[45] -4998.5 -298.0 100 SEG[87] -2793.5 389.0 136 COM[44] -4998.5 -373.5 101 SEG[88] -2869.0 389.0 137 COM[43] -4694.5 -389.0 102 SEG[89] -2944.5 389.0 138 COM[42] -4619.0 -389.0 103 SEG[90] -3020.0 389.0 139 COM[41] -4543.5 -389.0 104 SEG[91] -3095.5 389.0 140 COM[40] -4468.0 -389.0 105 SEG[92] -3171.0 389.0 141 COM[39] -4392.5 -389.0 106 SEG[93] -3246.5 389.0 142 COM[38] -4317.0 -389.0 Ver 2.3 8/56 2005/10/05 ST7558 PAD NO. PIN Name X Y PAD NO. PIN Name X Y 143 COM[37] -4241.5 -389.0 179 D2 -1500.0 -389.0 144 COM[36] -4166.0 -389.0 180 D1 -1425.0 -389.0 145 COM[35] -4090.5 -389.0 181 D1 -1350.0 -389.0 146 COM[34] -4015.0 -389.0 182 D0 -1275.0 -389.0 147 COM[33] -3939.5 -389.0 183 D0 -1200.0 -389.0 148 COM[32] -3864.0 -389.0 184 VDD -1125.0 -389.0 149 T9 -3750.0 -389.0 185 T0 -1050.0 -389.0 150 VDD -3675.0 -389.0 186 T1 -975.0 -389.0 151 VDD -3600.0 -389.0 187 T2 -900.0 -389.0 152 VDD -3525.0 -389.0 188 T3 -825.0 -389.0 153 VDD -3450.0 -389.0 189 T4 -750.0 -389.0 154 VDD -3375.0 -389.0 190 T5 -675.0 -389.0 155 VDD -3300.0 -389.0 191 T6 -600.0 -389.0 156 VDD2 -3225.0 -389.0 192 T7 -525.0 -389.0 157 VDD2 -3150.0 -389.0 193 T8 -450.0 -389.0 158 VDD2 -3075.0 -389.0 194 VRS -375.0 -389.0 159 VDD2 -3000.0 -389.0 195 ERD -300.0 -389.0 160 VDD2 -2925.0 -389.0 196 ERD -225.0 -389.0 161 VDD2 -2850.0 -389.0 197 RWR -150.0 -389.0 162 VDD2 -2775.0 -389.0 198 RWR -75.0 -389.0 163 VDD2 -2700.0 -389.0 199 A0 0.0 -389.0 164 VDD2 -2625.0 -389.0 200 A0 75.0 -389.0 165 VDD2 -2550.0 -389.0 201 CS 150.0 -389.0 166 VDD2 -2475.0 -389.0 202 CS 225.0 -389.0 167 VDD2 -2400.0 -389.0 203 IMS 300.0 -389.0 168 D7 -2325.0 -389.0 204 VDD 375.0 -389.0 169 D7 -2250.0 -389.0 205 PS 450.0 -389.0 170 D6 -2175.0 -389.0 206 T11 525.0 -389.0 171 D6 -2100.0 -389.0 207 T10 600.0 -389.0 172 D5 -2025.0 -389.0 208 VDD 675.0 -389.0 173 D5 -1950.0 -389.0 209 OSC 750.0 -389.0 174 D4 -1875.0 -389.0 210 OSC 825.0 -389.0 175 D4 -1800.0 -389.0 211 V0 900.0 -389.0 176 D3 -1725.0 -389.0 212 V0 975.0 -389.0 177 D3 -1650.0 -389.0 213 V0 1050.0 -389.0 178 D2 -1575.0 -389.0 214 V0 1125.0 -389.0 Ver 2.3 9/56 2005/10/05 ST7558 PAD NO. PIN Name X Y PAD NO. PIN Name X Y 215 V1 1200.0 -389.0 244 VLCDOUT 3375.0 -389.0 216 V2 1275.0 -389.0 245 VLCDOUT 3450.0 -389.0 217 V3 1350.0 -389.0 246 VLCDOUT 3525.0 -389.0 218 V4 1425.0 -389.0 247 VLCDOUT 3600.0 -389.0 219 VSS2 1500.0 -389.0 248 VLCDOUT 3675.0 -389.0 220 VSS2 1575.0 -389.0 249 RES 3768.5 -389.0 221 VSS2 1650.0 -389.0 250 COMS2 3864.5 -389.0 222 VSS2 1725.0 -389.0 251 COM[0] 3940.0 -389.0 223 VSS2 1800.0 -389.0 252 COM[1] 4015.5 -389.0 224 VSS2 1875.0 -389.0 253 COM[2] 4091.0 -389.0 225 VSS2 1950.0 -389.0 254 COM[3] 4166.5 -389.0 226 VSS2 2025.0 -389.0 255 COM[4] 4242.0 -389.0 227 VSS2 2100.0 -389.0 256 COM[5] 4317.5 -389.0 228 VSS2 2175.0 -389.0 257 COM[6] 4393.0 -389.0 229 VSS2 2250.0 -389.0 258 COM[7] 4468.5 -389.0 230 VSS2 2325.0 -389.0 259 COM[8] 4544.0 -389.0 231 VSS 2400.0 -389.0 260 COM[9] 4619.5 -389.0 232 VSS 2475.0 -389.0 261 COM[10] 4695.0 -389.0 233 VSS 2550.0 -389.0 262 COM[11] 4998.5 -373.5 234 VSS 2625.0 -389.0 263 COM[12] 4998.5 -298.0 235 VSS 2700.0 -389.0 264 COM[13] 4998.5 -222.5 236 VSS 2775.0 -389.0 265 COM[14] 4998.5 -147.0 237 VLCDIN 2850.0 -389.0 266 COM[15] 4998.5 -71.5 238 VLCDIN 2925.0 -389.0 267 COM[16] 4998.5 4.0 239 VLCDIN 3000.0 -389.0 268 COM[17] 4998.5 79.5 240 VLCDIN 3075.0 -389.0 269 COM[18] 4998.5 155.0 241 VLCDIN 3150.0 -389.0 270 COM[19] 4998.5 230.5 242 VLCDIN 3225.0 -389.0 271 COM[20] 4998.5 306.0 243 VLCDOUT 3300.0 -389.0 272 COM[21] 4998.5 381.5 Ver 2.3 10/56 2005/10/05 ST7558 4. BLOCK DIAGRAM DB0 DB1 DB2 DB3 DB4 DB5 DB6(SI) DB7(SCL) WR(R/W) RD(E) A0 /CS /RES Fig.1 block diagram Ver 2.3 11/56 2005/10/05 ST7558 5. PINNING DESCRIPTIONS Pin Name I/O Description No. of Pins Lcd driver outputs LCD segment driver outputs This display data and the M signal control the output voltage of segment driver. Segment driver output voltage Display data M (Internal) Normal display Reverse display SEG0 to SEG101 O H H H L L H L L Power save mode VLCD V2 VSS V2 V3 VSS V3 VLCD VSS VSS COM0 to COM64 O LCD column driver outputs This internal scanning data and M signal control the output voltage of common driver. Common driver output voltage Display data M(Internal) Normal display Reverse display H H VSS H L VLCD L H V1 L L V4 Power save mode VSS COMS O Common output for the icons The output signals of two pins are same. When not used, this pin should be left open. 102 65 2 MICROPROCESSOR INTERFACE Microprocessor interface select input pin P/S I P/S= " H “: parallel data input. P/S= " L “: serial data input. When P/S=" L ",D0 to D5 are fixed to " H ". RD (E) and WR(R/W) are fixed to " H ". 1 Input mode select Ver 2.3 IMS I CSB I RESB I A0 I P/S IMS State "H" " H " 6800-series parallel MPU interface "H" " L " 8080-series parallel MPU interface "L" " H " 4 Pin-SPI MPU interface " L " I2C interface "L" Chip select input pins Data/instruction I/O is enabled only when CSB is " L ". When chip select is non-active, DB0 to DB7 is high impedance. When CSB pin in two line interface, this pin should fix to ” H” Reset input pin When RESET is " L ", initialization is executed. It determines whether the data bits are data or a command. A0=" H “: Indicates that D0 to D7 are display data. A0=" L “: Indicates that D0 to D7 are control data. 2 A0 pin in I C interface, this pin should fix to ” H” 12/56 1 2 1 2 2005/10/05 ST7558 Read/Write execution control pin /WR(R/W) IMS MPU type /WR(R/W) H 6800-series R/W I L 8080-series /WR Description Read/Write control input pin R/W=" H “: read R/W=" L”: write Write enable clock input pin The data on D0 to D7 are latched at the rising edge of the /WR signal 2 When in the serial interface must fixed to " H ". Read/Write execution control pin IMS /RD (E) I MPU Type /RD (E) H 6800-series E L 8080-series /RD Description Read/Write control input pin R/W=" H “: When E is " H ", D0 to D7 are in an output status. R/W=" L “: The data on D0 to D7 are latched at the falling edge of the E signal. Read enable clock input pin When /RD is " L ", D0 to D7 are in an output status. 2 When in the serial interface must fixed to " H ". D5 to D0 D6 (SI) D7 (SCL) I/O D0 to D1 (SA) D2 to D3 (SDA_OUT) D4 to D6 (SDA_IN) D7 (SCL) Ver 2.3 When the parallel interface selected (P/S=" H " ): 8-bit interface 8-bit bi-directional data bus that is connected to the standard 8-bit microprocessor data bus. When chip select is not active, D0 to D7 is high impedance. When the serial interface selected (P/S=" L " & IMS=”H”):4-line D7: serial input clock (SCL) D6: serial input data (SI) D5, D4, D3, D2, D1, D0: must fix to “H”.. When chip select is not active, D0 to D7 is high impedance. 2 When the serial interface selected (P/S=" L " & IMS=”L”): I C D7: serial clock input (SCL) D6 , D5 , D4: serial input data (SDA_IN) 2 D3, D2: (SDA_OUT) serial data acknowledge for the I C interface. By connecting SDA_OUT to SDA_IN externally, the SDA line becomes fully 2 I C interface compatible. Having the acknowledge output separated from the serial data line is advantageous in chip on glass (COG) applications. In COG application where the track resistance from the SDA_OUT pad to the system SDA line can be significant, a potential divider is generated by the bus pull-up resistor and the ITO track resistance. It is possible the during the acknowledge cycle the ST7558 will not be able to create a valid logic 0 level. By splitting the SDA_IN input from the SDA_OUT output the device could be used in a mode that ignores the acknowledge bit. In COG applications where the acknowledge cycle is required, it is necessary to minimize the track resistance from the SDA_OUT pad to the system SDA line to guarantee a valid low level. D6, D5, ….D2 must be connected together (SDA) D1, D0: Is slave address (SA) bit1, 0, must fix to “H” or “L” Chip select input pins “CSB” not used must fix to “H” 13/56 16 2005/10/05 ST7558 LCD DRIVER SUPPLY OSC I When the on-chip oscillator is used, this input must be connected to VDD. An external clock signal, if used, is connected to this input. If the oscillator and external clock are both inhibited by connecting the OSC pin to VSS the display is not clocked and may be left in a DC state. To avoid this, the chip should always be put into Power Down Mode before stopping the clock. 2 Power Supply Pins VSS1 VSS2 VDD VDD2 VLCDOUT VLCDIN V0,V1, V2, V3, V4 VRS Power Supply Power Supply Power Supply Power Supply Power Supply Power Supply Power Supply Power Digital Ground. The 2 supply rails VSS1 and VSS2 must be connected together. 6 Analog Ground. The 2 supply rails VSS1 and VSS2 must be connected together. 12 Digital Supply voltage. The 2 supply rails VDD and VDD2 could be connected together. If Digital Option pin is high, must be this level Analog Supply voltage. The 2 supply rails VDD and VDD2 could be connected together. 9 12 If the internal voltage generator is used, the VLCDIN & VLCDOUT must be connected together and series one capacitor to VSS2. If an external supply is used this pin must be left open. If the internal voltage generator is used, the VLCDIN & VLCDOUT must be connected together. An external supply voltage can be supplied using the VLCDIN pad. This pad is for external multiple voltage input. In this case, VLCDOUT has to be left open, This is a multi-level power supply for the liquid crystal. VLCDIN ≥V0 ≥V1≥V2≥V3≥V4≥VSS 6 6 8 Monitor Voltage Regulator level, must be left open. 1 Supply Test Pin Test0~Test11 T Reserve Pin To test used. Test0~Test8 must floating Test9 could be connected out for monitor the VLCD(V0) voltage Test10 must connect to VSS Test11 must connect to VDD 11 ALL Reserve Pin must floating ST7558 I/O PIN ITO Resister Limitation PIN Name ITO Resister PS,IMS,OSC No Limitation T1~T8, VRS, V1 , V2 , V3 , V4 Floating VDD, Vdd2, Vss1, Vss2 , Vlcdin , Vlcdout <100Ω T9,V0 <500Ω A0,/WR,/RD,CSB, D0 …D7(68/80, 4L-SPI interface) <1KΩ RESB <10KΩ In IIC interface: SDA , SCL ITO resister recommend to less than 100 ohm Ver 2.3 14/56 2005/10/05 ST7558 6. FUNCTIONS DESCRIPTION MICROPROCESSOR INTERFACE Chip Select Input There is CSB pin for chip selection. The ST7558 can interface with an MPU when CSB is "L". When CSB is “H”, these pins are set to any other combination, A0, /RD(E), and /WR(R/W) inputs are disabled and D0 to D7 are to be high impedance. And, in case of serial interface, the internal shift register and the counter are reset. Parallel / Serial Interface ST7558 has four types of interface with an MPU, which are two serial and two parallel interfaces. This parallel or serial interface is determined by P/S pin as shown in table 1. Type Parallel Serial Table 1. Parallel/Serial Interface Mode P/S IMS CSB Interface mode H 6800-series MPU interface H CSB L 8080-series MPU interface H CSB 4-pin SPI interface L 2 L --I C interface Parallel Interface (P/S = "H") The 8-bit bi-directional data bus is used in parallel interface and the type of MPU is selected by IMS as shown in table 2. The type of data transfer is determined by signals at A0, /RD (E) and /WR(R/W) as shown in table 3. IMS H L Common RS H H L L Table 2. Microprocessor Selection for Parallel Interface CSB A0 /RD (E) /WR (R/W) DB0 to DB7 MPU bus CSB A0 E R/W DB0 to DB7 6800-series CSB A0 /RD /WR DB0 to DB7 8080-series Table 3. Parallel Data Transfer 8080-series Description /RD /WR (E) (R/W) L H Display data read out H L Display data write L H Register status read H L Writes to internal register (instruction) 6800-series E R/W (/RD) (/WR) H H H L H H H L NOTE: When /RD (E) pin is always pulled high for 6800-series interface, it can be used CSB for enable signal. In this case, interface data is latched at the rising edge of CSB and the type of data transfer is determined by signals at A0, /WR(R/W) as in case of 6800-series mode. Serial Interface (P/S=" L ") Serial Mode 4-line SPI interface 2 I C interface P/S IMS CSB A0 Description L H L Used Not Used Fix to “H” Write only L CSB Not Used Fix to “H” Write only IMS=” L “, P/S=” H “: 4-line SPI interface When the ST7558 is active (CSB=”L”), serial data (D6) and serial clock (D7) inputs are enabled. And not active, the internal 8-bit shift register and the 3-bit counter are reset. The display data/command indication may be controlled either via software or the Register Select (A0) Pin, based on the setting of P/S. When the A0 pin is used (IMS = “H”), data is display data when A0 is high, and command data when A0 is low. When A0 is not used (IMS = “L”), the LCD Driver will receive command from MCU by default. If messages on the data pin are data rather than command, MCU should send Data direction command to control the data direction and then one more command to define the number of data bytes will be write. After these two continuous commands are sending, the following messages will be data rather than command. Serial data can be read on the rising edge of serial clock going into D7 and processed as 8-bit parallel data on the eighth serial clock. And the DDRAM column address pointer will be increased by one automatically. The next bytes after the display data string are handled as command data. Ver 2.3 15/56 2005/10/05 ST7558 CSB SDA DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 DB7 DB6 SCL A0 Fig. 2 4-line SPI Timing 2 IMS=” L “, P/S=” L “: I C Interface It could not read Data or Instruction from ST7558 (except Acknowledge signal). SCL: serial clock input SDA_IN: serial data input SDA_OUT: acknowledge response output Slave address could set from “0111100” to “0111111”. 2 2 The I C interface send RAM data and executes the commands sent via the I C Interface. It could send data in to the RAM. 2 The I C Interface is two-line communication between different ICs or modules. The two lines are a Serial Data line (SDA) and a Serial Clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy. BIT TRANSFER One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse because changes in the data line at this time will be interpreted as a control signal. Bit transfer is illustrated in Fig.3. START AND STOP CONDITIONS Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P). The START and STOP conditions are illustrated in Fig.4. SYSTEM CONFIGURATION The system configuration is illustrated in Fig.5. · Transmitter: the device, which sends the data to the bus · Master: the device, which initiates a transfer, generates clock signals and terminates a transfer · Slave: the device addressed by a master · Multi-Master: more than one master can attempt to control the bus at the same time without corrupting the message · Arbitration: procedure to ensure that, if more than one master simultaneously tries to control the bus, only one is allowed to do so and the message is not corrupted · Synchronization: procedure to synchronize the clock signals of two or more devices. ACKNOWLEDGE Acknowledge signal (ACK) is not BF signal in parallel interface. Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH signal put on the bus by the transmitter during which time the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. A master receiver must also generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges must pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal an end-of-data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a 2 STOP condition. Acknowledgement on the I C Interface is illustrated in Fig.6. Ver 2.3 16/56 2005/10/05 ST7558 SDA SCL data line stable; data valid change of data allowed Fig .3 Bit transfer SDA SCL S P START condition STOP condition Fig .4 Definition of START and STOP conditions MASTER TRANSMITTER/ RECEIVER SLAVE RECEIVER (1) 0111100 SLAVE RECEIVER (2) 0111101 SLAVE RECEIVER (3) 0111110 SLAVE RECEIVER (4) 0111111 SDA SCL Fig .5 System configuration Ver 2.3 17/56 2005/10/05 ST7558 DATA OUTPUT BY TRANSMITTER not acknowledge DATA OUTPUT BY RECEIVER acknowledge SCL FROM MASTER 1 2 8 S 9 clock pulse for acknowledge ment START condition Fig .6 Acknowledgement on the I2C Interface 2 I C Interface protocol The ST7558 supports command, data write addressed slaves on the bus. 2 Before any data is transmitted on the I C Interface, the device, which should respond, is addressed first. Four 7-bit slave addresses (0111100 to 0111111) are reserved for the ST7558. The R/W is assigned to 0 for Write only. 2 The I C Interface protocol is illustrated in Fig.7. 2 The sequence is initiated with a START condition (S) from the I C Interface master, which is followed by the slave address. 2 All slaves with the corresponding address acknowledge in parallel, all the others will ignore the I C Interface transfer. After acknowledgement, one or more command words follow which define the status of the addressed slaves. A command word consists of a control byte, which defines Co and RS, plus a data byte. The last control byte is tagged with a cleared most significant bit (i.e. the continuation bit Co). After a control byte with a cleared Co bit, only data bytes will follow. The state of the RS bit defines whether the data byte is interpreted as a command or as RAM data. All addressed slaves on the bus also acknowledge the control and data bytes. After the last control byte, depending on the RS bit setting; either a series of display data bytes or command data bytes may follow. If the RS bit is set to logic 1, these display bytes are stored in the display RAM at the address specified by the data pointer. The data pointer is automatically updated and the data is directed to the intended ST558 device. If the RS bit of the last control byte is set to logic 0, these command bytes will be decoded and the setting of the device will be changed according to the received commands. Only the addressed slave makes the acknowledgement after each byte. At the end of the 2 transmission the I C INTERFACE-bus master issues a STOP condition (P).If the R/W bit is set to logic 1 the chip will output data immediately after the slave address if the RS bit, which was sent during the last write access, is set to logic 0. If no acknowledge is generated by the master after a byte, the driver stops transferring data to the master. Ver 2.3 18/56 2005/10/05 ST7558 Write mode acknowledgement from ST7558 S 0 1 1 1 1 1 0 0 A 1 slave address R S acknowledgement from ST7558 control byte acknowledgement from ST7558 data byte A A 0 control byte 1 byte R/W 2n>=0bytes command word Co 0 1 1 1 1 1 0 R S acknowledgement from ST7558 acknowledgement from ST7558 data byte A A P n>=0bytes MSB.......................LSB Co R / W Co slave address R S D D D D D D D D 7 6 5 4 3 2 1 0 0 0 0 0 0 0 data byte control byte Fig .7 I2C Interface protocol Co 0 Last control byte to be sent. Only a stream of data bytes is allowed to follow. This stream may only be terminated by a STOP condition. Busy Flag The Busy Flag indicates whether the ST7558 is operating or not. When D7 is "H" in read status operation, this device is in busy status and will accept only read status instruction. If the cycle time is correct, the microprocessor needs not to check this flag before each instruction, which improves the MPU performance. Data Transfer The ST7558 uses bus holder and internal data bus for data transfer with the MPU. When writing data from the MPU to on-chip RAM, data is automatically transferred from the bus holder to the RAM as shown in figure 8. And when reading data from on-chip RAM to the MPU, the data for the initial read cycle is stored in the bus holder (dummy read) and the MPU reads this stored data from bus holder for the next data read cycle as shown in figure 9. This means that a dummy read cycle must be inserted between each pair of address sets when a sequence of address sets is executed. Therefore, the data of the specified address cannot be output with the read display data instruction right after the address sets, but can be output at the second read of data. MPU signal A0 /WR D0 to D7 N D(N) D(N+1) D(N+2) D(N+3) N D(N) D(N+1) D(N+2) D(N+3) N N+1 N+2 N+3 Internal signals /WR BUS HOLDER COLUMN ADDRESS Fig.8 Write Timing Ver 2.3 19/56 2005/10/05 ST7558 MPU signal A0 /W R /RD D0 to D7 N Dummy D(N) D(N+1) Internal signals /W R /RD BUS HOLDER COLUMN ADDRESS N N D(N) D(N+1) D(N+2) D(N) D(N+1) D(N+2) Fig.9 Read Timing DISPLAY DATA RAM (DDRAM) The ST7558 contains a 65X102 bit static RAM that stores the display data. The display data RAM store the dot data for the LCD. It has a 65(8 pageX8 +1) X102, and extra ICOM. There is a direct correspondence between X-address and column output number. It is 65-row by 102-column addressable array. Each pixel can be selected when the page and column addresses are specified. The 65 rows are divided into 8 pages of 8 lines and 1 page of 1 line. Data is read from or written to the 8 lines of each page directly through D0 to D7. The display data of D0 to D7 from the microprocessor correspond to the LCD common lines. The microprocessor can read from and write to RAM through the I/O buffer. Since the LCD controller operates independently, data can be written into RAM at the same time as data is being displayed without causing the LCD flicker. Ver 2.3 20/56 2005/10/05 ST7558 Page Address Circuit This circuit is for providing a Page Address to Display Data RAM shown in figure 10. It incorporates 4-bit Page Address register changed by only the “Set Page” instruction. Page Address 9 is a special RAM area for the icons and display data D0 is only valid. Column Address Circuit Column Address Circuit has an 8-bit preset counter that provides Column Address to the Display Data RAM as shown in figure10. The display data RAM column address is specified by the Column Address Set command. The specified column address is incremented (+1) with each display data read/write command. This allows the MPU display data to be accessed continuously. Register MX and MY selection instruction makes it possible to invert the relationship between the Column Address and the segment outputs. It is necessary to rewrite the display data on built-in RAM after issuing MX select instruction. SEG Output SEG Output MX SEG0 SEG101 “0” seg0 Æ Segment Address Æ seg101 “1” seg101 Å Segment Address Å seg0 Com Output COM Output MY “0” “1” Com0 Com64 com0 Æ Common Address Æ com64 com64 Å Common Address Å com0 ADDRESSING Data is downloaded in bytes into the RAM matrix of ST7558 as indicated in Figs.10, 11,12. The display RAM has a matrix of 65 by 102 bits. The address pointer addresses the columns. The address ranges are: X 0 to 101 (1100101), Y 0 to 8 (1000). Addresses outside these ranges are not allowed. In vertical addressing mode (V=1) the Y address increments after each byte (see Fig.11). After the last Y address (Y = 8) Y wraps around to 0 and X increments to address the next column. In horizontal addressing mode (V=0) the X address increments after each byte (see Fig.12). After the last X address (X = 101) X wraps around to 0 and Y increments to address the next row. After the very last address (X = 101, Y = 8) the address pointers wrap around to address (X = 0, Y =0) Data structure LSB 0 1 2 3 4 5 6 7 8 9 D7 MSB D0 D7 D0 1 bit 1 bit Page 8 Page 9 0 X-address 101 ICOM D7 1 bit Fig.10 RAM format, addressing Ver 2.3 21/56 2005/10/05 Y-address D0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 0 X-address 917 101 0 1 2 3 4 5 6 7 8 Y-address ST7558 0 1 2 102103104 204205206 306307308 408409410 510511512 612613614 714715716 816817818 0 X-address 917 101 0 1 2 3 4 5 6 7 8 Y-address Fig.11 Sequence of writing data bytes into RAM with vertical addressing (V=1) Fig.12 sequence of writing data bytes into RAM with horizontal addressing (V=0) Ver 2.3 22/56 2005/10/05 ST7558 Page Address Data D3 D2 D1 D0 Line Address 64 65 0 00 1 S101 MX Column address 63 01 S100 D0 62 02 S99 D0 61 ICON(COMS) 03 43H S98 D0 60 1 04 0 COM64 S97 0 40H 5F 1 Page 8 Page 9 05 D0 S96 0 5E 0 06 0 S95 1 Page 7 5D 1 07 1 08 1 S94 0 Page 6 S93 0 08 1 07 1 5D 0 Page 5 S8 1 06 0 5E 1 S7 0 Page 4 05 0 5F 0 S6 1 04 0 Page 3 60 1 S5 1 03 0 61 0 Page 2 S4 0 02 1 62 0 S3 0 Page 1 01 1 63 0 S2 0 00 0 Page 0 64 0 65 0 S1 0 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 S0 0 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH LCD Out D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 COM Output Display Data RAM Map (65 Duty + ICOM) Ver 2.3 23/56 2005/10/05 ST7558 Oscillator The on-chip oscillator provides the clock signal for the display system. No external components are required and the OSC input must be connected to VDD. An external clock signal, if used, is connected to this input. Display Timing Generator Circuit This circuit generates some signals to be used for displaying LCD. The display clock, CL (internal), generated by oscillation clock, generates the clock for the line counter and the signal for the display data latch. The line address of on-chip RAM is generated in synchronization with the display clock and the display data latch circuit latches the 102-bit display data in synchronization with the display clock. The display data, which is read to the LCD driver, is completely independent of the access to the display data RAM from the microprocessor. The display clock generates an LCD AC signal (M) which enables the LCD driver to make a AC drive waveform, and also generates an internal common timing signal and start signal to the common driver. Driving waveform and internal timing signal are shown in Figure 13. 64 65 1 2 3 4 5 6 7 8 9 10 11 12 57 58 59 60 61 62 63 64 65 1 2 3 4 5 CL(Internal) FR(Internal) M(Internal) COM0 VLCD V1 V2 V3 V4 VSS COM1 VLCD V1 V2 V3 V4 VSS SEGn VLCD V1 V2 V3 V4 VSS Fig.13 2-frame AC Driving Waveform (Duty Ratio: 1/65) Ver 2.3 24/56 2005/10/05 ST7558 LCD DRIVER CIRCUIT 65-channel common drivers and 102-channel segment drivers configure this driver circuit. This LCD panel driver voltage depends on the combination of display data and M signal. V DD V SS V LCD V1 V2 V3 V4 V SS V LCD V1 V2 V3 V4 V SS V LCD V1 V2 V3 V4 V SS V LCD V1 V2 V3 V4 V SS V LCD V1 V2 V3 V4 V SS V LCD V4 V3 V2 V1 V SS -V 1 -V 2 -V 3 -V 4 -V LCD V L2 V1 V2 V3 V4 V SS -V 1 -V 2 -V 3 -V 4 -V LCD M COM0 COM1 COM0 COM2 COM3 COM4 COM5 COM6 COM1 COM7 COM8 COM9 COM2 COM10 COM11 COM12 COM13 COM14 SEG0 SEG 0 1 2 3 4 SEG1 COM0 to SET0 COM0 to SET1 Fig.15 Typical LCD driver waveforms Ver 2.3 25/56 2005/10/05 ST7558 7. RESET CIRCUIT Setting RESB to “L” or Reset instruction can initialize internal function. When RESB becomes “L”, following procedure is executed Page address: 0 Column address: 0 COM Scan Direction MY: 0 SEG Select Direction MX: 0 Oscillator: OFF Power down mode (PD = 1) Horizontal addressing (V = 0) normal instruction set (H = 0) Display OFF (D = E = 0) Address counter X [6:0] = 0, Y [2:0] = 0 Bias system (BS [2:0] = 0) VLCD is equal to 0; the HV generator is switched off (VOP [6:0] = 0) After power-on, RAM data are undefined While RESB is “L” or reset instruction is executed, no instruction except read status can be accepted. Reset status appears at DB6. After DB6 becomes ”L”, any instruction can be accepted. RESB must be connected to the reset pin of the MPU, and initialize the MPU and this LSI at the same time. The initialization by RESB is essential before used. Ver 2.3 26/56 2005/10/05 ST7558 8. INSTRUCTION TABLE COMMAND BYTE D4 D3 D2 A0 WR (R/W) D7 D6 D5 H=0 or 1 NOP Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Function set 0 0 0 0 1 0 Ext. display control 0 0 0 0 1 Read status byte Read data Write data 0 1 1 1 1 0 PD D7 D7 RST D6 D6 BUSY D5 D5 INSTRUCTION A0 WR (R/W) D7 D6 D5 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 X6 X5 Loading Control 0 0 0 0 0 0 H=1 Booster stages S/W Internal register initial Bias system Reserved Set VOP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 INSTRUCTION H=0 Set VLCD range Display control Set Y address of RAM Set X address of RAM Ver 2.3 DESCRIPTION D1 D0 0 0 0 1 0 1 0 PD V H 0 1 MX MY 0 Mirror X, Mirror Y D D4 D4 E D3 D3 1 D2 D2 0 D1 D1 1 D0 D0 Read status byte Read data from RAM Write data to RAM COMMAND BYTE D4 D3 D2 D1 D0 0 D 0 0 PRS E Y3 Y2 Y1 Y0 VLCD range L/H select Set display configuration Sets Y address of RAM 0≦Y≦9 X4 X3 X2 X1 X0 Sets X address of RAM 0≦X≦101 0 0 0 0 1 1 1 0 1 0 1 1 Loading Control 0 0 0 0 1 0 0 0 0 X 0 0 1 1 X 1 1 0 0 X VOP6 VOP5 VOP4 VOP3 0 1 0 BS2 X VOP2 PC1 1 1 BS1 X VOP1 PC0 0 0 BS0 X VOP0 27/56 No operation Internal reset Power-down; entry mode; Extended instruction control DESCRIPTION booster voltage multiplication S/W Internal register initial Sets bias system (BSx) Do not use Write VOP to register 2005/10/05 ST7558 9. INSTRUCTION DESCRIPTION H=”0” or “1” Reset This instruction resets initial display line, column address, page address, and common output status select to their initial status. This instruction cannot initialize the LCD power supply, which is initialized by the RESB pin. A0 D7 D6 D5 D4 D3 WR(R/W) 0 0 0 0 0 0 0 2 !!!caution: this instruction cannot be used when using I C interface Function Set A0 WR(R/W) 0 0 Flag PD V H MX MY D6 0 D5 1 D4 0 D3 0 D1 1 D0 1 D2 PD D1 V D0 H Description All LCD outputs at VSS (display off), bias generator and VLCD generator off, VLCD can be disconnected, oscillator off (external clock possible), RAM contents not cleared; RAM data can be written. PD=0:chip is active PD=1:chip is in power down mode When V = 0, the horizontal addressing is selected. The data is written into the DDRAM as shown in Fig13. When V = 1, the vertical addressing is selected. The data is written into the DDRAM as shown in Fig12 When H = 0 the commands ‘display control’, ‘set Y address’ and ‘set X address’ can be performed, when H = 1 the others can be executed. The commands ‘write data’ and ‘function set’ can be executed in both cases. H=0:use basic instruction set H=1:use extended instruction set Ext. display control A0 WR(R/W) 0 0 Flag D7 0 D2 0 D7 0 D6 0 D5 1 D4 0 D3 1 D2 MX D1 MY D0 0 Description SEG bi-direction selection MX=0:normal direction (SEG0ÆSEG101) MX=1:reverse direction (SEG101ÆSEG0) COM bi-direction selection See Pad Center Coordinates at page 3~10 when using this register !!!Caution:the common output pad should be care. The normal direction of common and reverse direction of common have different pad location, only one can be used. On the other hand, you must choose one kind, NORMAL or REVERSE, and these two have different ITO layout. Moreover, using the NORMAL layout, must set MY=0; using the REVERSE layout ,must set MY=1. PS. The NORMAL and REVERSE pad location table are at page3 ~ page10 Ver 2.3 28/56 2005/10/05 ST7558 Read status byte Indicates the internal status of the ST7558 A0 0 Flag PD RST BUSY D,E D2~D0 WR(R/W) 1 D7 PD D6 RST D5 BUSY D4 D D3 E D2 1 D1 0 D0 1 Description PD=0:chip is active PD=1:chip is in power down mode Indicates the initialization is in progress by RESET signal 0: chip is active,1:chip is being reset The device is busy when internal operation or reset. Any instruction is rejected until BUSY goes LOW. 0:chip is active 1:chip is being busy D E The bits D and E select the display mode. 0 0 Display blank 0 1 All display segments on 1 0 Normal mode 1 1 Inverse video mode ST7558 will return the fix data “101” as identification bit Write data 8-bit data of Display Data from the microprocessor can be written to the RAM location specified by the column address and page address. The column address is increased by 1 automatically so that the microprocessor can continuously write data to the addressed page. During auto-increment, the column address wraps to 0 after the last column is written. A0 1 WR(R/W) D7 D6 D5 D4 D3 Write data D2 D1 D0 D7 0 D6 0 D5 0 D4 1 D3 0 D2 0 D1 0 D0 PRS D5 0 D4 0 D3 1 D2 D D1 0 D0 E 0 H=”0” Set VLCD range VLCD range L/H select A0 0 WR(R/W) 0 PRS=0:VLCD programming range LOW PRS=1: VLCD programming range HIGH Display Control This bits D and E selects the display mode. A0 0 Flag D,E Ver 2.3 WR(R/W) 0 D7 0 D6 0 Description D E The bits D and E select the display mode. 0 0 Display off 1 0 Normal display 0 1 All display segments on 1 1 Inverse video mode 29/56 2005/10/05 ST7558 Set Y address of RAM Y [3:0] defines the Y address vector address of the display RAM. A0 0 WR(R/W) 0 X/Y Address range Y3 Y2 Y1 Y0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 D7 0 D6 1 D5 0 D4 0 D3 Y3 CONTENT Page0 (display RAM) Page1 (display RAM) Page2 (display RAM) Page3 (display RAM) Page4 (display RAM) Page5 (display RAM) Page6 (display RAM) Page7 (display RAM) Page8 (display RAM) Page9 (display RAM) D2 Y2 D1 Y1 D0 Y0 ALLOWED X-RANGE 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 Set X address of RAM The X address points to the columns. The range of X is 0…101. A0 0 X6 0 0 0 0 : 1 1 1 1 WR(R/W) 0 X5 0 0 0 0 : 1 1 1 1 D7 1 X4 0 0 0 0 : 0 0 0 0 D6 X6 X3 0 0 0 0 : 0 0 0 0 D5 X5 X2 0 0 0 0 : 0 0 1 1 D4 X4 D3 X3 X1 0 0 1 1 : 1 1 0 0 X0 0 1 0 1 : 0 1 0 1 D2 X2 D1 X1 D0 X0 Column address 0 1 2 3 : 98 99 100 101 Set Loading Control Improve Out Put Driving in Heavy Loading A0 0 WR(R/W) 0 D7 0 D6 0 D5 0 D4 0 D3 1 D2 1 D1 1 D0 1 0 0 0 0 0 0 1 0 0 1 Ver 2.3 30/56 2005/10/05 ST7558 H=”1” Booster stages The ST7558 incorporates a software configurable voltage multiplier. After reset (RESB), the default voltage multiplier is set to 2*VDD2. Other voltage multiplier factors are set via the command “Set Booster stages”. A0 0 D5 0 D4 0 D3 1 D2 0 D1 PC1 D0 PC0 D6 0 D5 0 D4 0 D3 1 D2 1 D1 1 D0 0 D6 0 D5 0 D4 1 D3 0 D2 0 D1 1 D0 0 System Bias Select LCD bias ratio of the voltage required for driving the LCD. A0 D7 D6 D5 D4 D3 WR(R/W) 0 0 0 0 0 1 0 D2 BS2 D1 BS1 D0 BS0 WR(R/W) 0 D7 0 D6 0 Flag Description PC1 PC0 0 0 2*voltage multiplier PC1, PC0 0 1 3*voltage multiplier 1 0 4*voltage multiplier 1 1 5*voltage multiplier S/W initial Internal register st The 1 Instruction A0 D7 WR(R/W) 0 0 0 nd The 2 Instruction A0 D7 WR(R/W) 0 0 0 BS2 0 0 0 0 1 1 1 1 LCD bias voltage Symbol VLCDIN V1 V2 Ver 2.3 BS1 0 0 1 1 0 0 1 1 BS0 0 1 0 1 0 1 0 1 Bias 11 10 9 8 7 6 5 4 Bias voltage for 1/8 bias VLCDIN 7/8 X VLCDIN 6/8 X VLCDIN Recommend Duty 1:100 1:80 1:65/1:68 1:48 1/40:1/34 1/24 1:18/1:16 1:10/1:9/1:8 Symbol V3 V4 VSS 31/56 Bias voltage for 1/8 bias 2/8 X VLCDIN 1/8 X VLCDIN VSS 2005/10/05 ST7558 Set VOP value: The operation voltage VLCD can be set by software. V0=( a + VOP×b ) (1) The parameters are explained in table 4.The maximum voltage that can be generated is depending on the VDD voltage and the display load current. Two overlapping VLCD ranges are selectable via the command “Booster control”. For the LOW (PS=0) range a=a1 and for the HIGH (PRS=1) range a=a2 with steps equal to “b” in both ranges. Note that the charge pump is turned off if VOP [6;0] and the bit PRS are all set to zero. Table 4 Typical values for parameter for the HV-Generator programming SYMBOL VALUE UNIT a1 2.94(PRS=0) V a2 6.75(PRS=1) V b 0.03 V VL2 Charge pump off b 00 a2 a1+b 01 02 03 04 05 06 ..... 7D 7E 7F 00 01 02 03 LOW(PRS=0) 04 05 06 ..... 7D 7E 7F HIGH(PRS=1) VOP [6:0](programmed) {00 hex… 7F hex} Fig.19 VOP programming of ST7558 Caution As the programming range for the internally generated VLCDIN allows values above the max allowed VLCDIN, the customer has to ensure while setting the VOP register that under all condition and including all tolerances the VLCD limit of max. 13V will never be exceeded. As VLCDIN increases with lower temperatures, care must be taken not to set a Vop generating a VLCDIN voltage that will exceed the maximum of 10.6V when operating at –40 ℃. Ver 2.3 32/56 2005/10/05 ST7558 10. COMMAND DESCRIPTION Referential Instruction Setup Flow: Initializing with the built-in Power Supply Circuits User System Setup by External Pins Start of Initialization Power ON(VDD-VSS) Keeping the /RES Pin="L" Waiting for Stabilizing the Power Release the reset state. (/RESB pin="H") Waiting reset circuit stablized(>1ms) Function set PD=0 ,V=0 , H=1 SET Bias system S/W Internal register initial (2-byte) SET Booster 2X Delay 50ms SET VOP HV_gen stages SET Booster 4X / 5X Function set PD=0 , V=0 , H=0 Ext.display control Set VLCD Range(PRS) Display control D=1 E=0 (Normal) Set X , Y address End of Initialization Fig.20 Initializing with the Built-in Power Supply Circuits Ver 2.3 33/56 2005/10/05 ST7558 Referential Instruction Setup Flow: Initializing without the built-in Power Supply Circuits User System Setup by External Pins Start of Initialization Power ON(VDD-VSS) Keeping the /RES Pin="L" Waiting for Stabilizing the Power Release the reset state. (/RESB pin="H") Waiting reset circuit stablized(>1ms) Set Power Save Function set PD=0 ,V=0 , H=1 SET Bias system S/W Internal register initial Function set PD=0 , V=0 , H=0 Ext.display control Display control D=1 E=0 (Normal) Set X , Y address Waiting for Stabilizing the LCD Power Levels End of Initialization Fig.21 Initializing without Built-in Power Supply Circuits Ver 2.3 34/56 2005/10/05 ST7558 Referential Instruction Setup Flow: Data Displaying End of Initialization Display Data RAM Addressing by Instruction [Set Page Address] [Set Column Address] Write Display Data by Instruction [Display Data Write] Turn Display ON/OFF Instruction [Display ON/OFF] End of Data Display Fig.22 Data Displaying Referential Instruction Setup Flow: Power OFF Optional Status Set Power Save by Instruction Power OFF(VDD-VSS) End of Power OFF Fig.23 Power OFF Ver 2.3 35/56 2005/10/05 ST7558 11. LIMITING VALUES In accordance with the Absolute Maximum Rating System; see notes 1 and 2. Parameter Symbol Conditions Unit Power Supply Voltage VDD –0.5 ~ +5.0 V Power supply voltage V0 3.0 ~ 12 V Power supply voltage VLCDIN –0.3 ~ +13.5 V Power supply voltage V1, V2, V3, V4 0.3 to VLCDIN V Input voltage VIN –0.5 to VDD+0.5 V Output voltage VO –0.5 to VDD+0.5 V Operating temperature TOPR –30 to +85 °C Storage temperature TSTR –65 to +150 °C VLCD V1 to V4 VDD VDD VSS VSS System (MPU) side VSS ST7558 chip side Notes 1. Stresses above those listed under Limiting Values may cause permanent damage to the device. 2. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless otherwise noted. 3. Insure that the voltage levels of V1, V2, V3, and V4 are always such that Vout ≧ V0 ≧ V1 ≧ V2 ≧ V3 ≧ V4 ≧ Vss Ver 2.3 36/56 2005/10/05 ST7558 12. DC CHARACTERISTICS VDD = 1.8 V to 3.3V; VSS = 0 V; VLCD = 3.0 to 13.0V; Tamb = -30℃ to +85℃; unless otherwise specified. Item Symbol Condition Operating Voltage (1) VDD Operating Voltage (2) VDD2 High-level Input Voltage VIHC Low-level Input Voltage Rating Units Applicable Pin Min. Typ. Max. 1.8 — 3.3 V Vss*1 1.8 — 3.3 V VSS2 0.7 x VDD — VDD V *2 VILC VSS 0.3 x VDD V *2 High-level Output Voltage VOHC 0.7 x VDD — VDD V *3 Low-level Output Voltage VOLC VSS — 0.3 x VDD V *3 Input leakage current ILI VIN = VDD or VSS –1.0 — 1.0 μA *4 Output leakage current ILO VIN = VDD or VSS –3.0 — 3.0 μA *5 — 2.0 3.5 Liquid Crystal Driver ON Resistance RON (Relative to VSS) Ta = VLCDIN = 25°C 13.0 V (Relative VLCDIN = 8.0 To VSS) V Internal Oscillator fOSC Oscillator External Frequency Input fCL 1/65 duty Ta = 25°C Frame frequency fFRAME Item Internal Power Input voltage Supply Step-up output voltage Circuit Symbol Condition VDD — KΩ SEGn COMn *6 — 3.2 5.4 — 80 84 kHz *7 — 80 84 kHz OSC — 77 80.3 Hz Rating Units Applicable Pin Min. Typ. Max. (Relative To VSS) 1.8 — 3.3 V VLCDOUT (Relative To VSS) — — 13.5 V VLCDOUT VLCDIN (Relative To VSS) — — 13.5 V VLCDIN Voltage regulator Circuit Operating Voltage Ver 2.3 37/56 2005/10/05 ST7558 Bare Dice Consumption Current : During Display, with the Internal Power Supply, Current consumed by total ICs when an external power supply(VDD,VDD2) is used . Test pattern Symbol Rating Condition Units Notes 400 μA *8 2 μA Min. Typ. Max. — 300 — 0.01 VDD,VDD2 = 3.0 V, Display Pattern SNOW ISS V0 – VSS = 9.0 V 4X Booster 1/9 Bias Power Down ISS VDD=3.0V Ta = 25°C Notes to the DC characteristics 1. The maximum possible VLCD voltage that may be generated is dependent on voltage, temperature and (display) load. 2. Internal clock 3. Power-down mode. During power down all static currents are switched off. 4. If external VLCDIN, the display load current is not transmitted to IDD. 5. VOUT external voltage applied to VLCDIN pin; VLCDIN disconnected from VLCDOUT (no connect) References for items market with * *1 While a broad range of operating voltages is guaranteed, performance cannot be guaranteed if there are sudden fluctuations to the voltage while the MPU is being accessed. *2 The A0, D0 to D5, D6 (SI), D7 (SCL), /RD (E), /WR ,/(R/W), CSB, IMS, OSC, P/S, /DOF, RESB ,and MODE terminals. *3 The D0 to D7, and OSC terminals. *4 The A0,/RD (E), /WR ,/(R/W), CSB, IMS, OSC, P/S, /DOF, RESB ,and MODE terminals. *5 Applies when the D0 to D5, D6 (SI), D7 (SCL) terminals are in a high impedance state. *6 These are the resistance values for when a 0.1 V voltage is applied between the output terminal SEGn or COMn and the various power supply terminals (V1, V2, V3, and V4). These are specified for the operating voltage range. RON = 0.1 V /∆I (Where ∆I is the current that flows when 0.1 V is applied while the power supply is ON.) *7 The relationship between the oscillator frequency and the frame rate frequency. *8,9It indicates the current consumed on ICs alone when the internal oscillator circuit and display are turned on. Ver 2.3 38/56 2005/10/05 ST7558 13. TIMING CHARACTERISTICS System Bus Read/Write Characteristics 1 (For the 8080 Series MPU) A0 tAW8 tAH8 /CS tCYC8 tCCLR,tCCLW WR,RD tCCHR,tCCHW tDS8 tDH8 D0 to D7 (Write) tACC8 tOH8 D0 to D7 (Read) Fig 24. (VDD = 3.3V , Ta =-30~85°C) Item Signal Address hold time Address setup time A0 System cycle time Enable L pulse width (WRITE) Enable H pulse width (WRITE) Enable L pulse width (READ) Enable H pulse width (READ) WR RD WRITE Data setup time WRITE Address hold time READ access time READ Output disable time Ver 2.3 D0 to D7 Symbol Condition Rating Min. Max. tAH8 10 — tAW8 0 — tCYC8 240 — tCCLW 80 — tCCHW 80 — tCCLR 140 — tCCHR 80 tDS8 40 — tDH8 0 — tACC8 CL = 100 pF — 70 tOH8 CL = 100 pF 5 50 39/56 Units ns 2005/10/05 ST7558 (VDD = 2.7 V , Ta = -30~85°C ) Item Signal Address hold time Address setup time A0 System cycle time Enable L pulse width (WRITE) Enable H pulse width (WRITE) Enable L pulse width (READ) Enable H pulse width (READ) WR RD WRITE Data setup time WRITE Address hold time READ access time D0 to D7 READ Output disable time Symbol Condition Rating Min. Max. tAH8 15 — tAW8 0 — tCYC8 400 — tCCLW 220 — tCCHW 180 — tCCLR 220 — tCCHR 180 — tDS8 40 — tDH8 0 — tACC8 CL = 100 pF — 140 tOH8 CL = 100 pF 10 100 Units ns (VDD = 1.8V , Ta = -30~85°C ) Item Signal Address hold time Address setup time A0 System cycle time Enable L pulse width (WRITE) Enable H pulse width (WRITE) Enable L pulse width (READ) Enable H pulse width (READ) WR RD WRITE Data setup time WRITE Address hold time READ access time READ Output disable time D0 to D7 Symbol Condition Rating Min. Max. tAH8 30 — tAW8 0 — tCYC8 640 — tCCLW 360 — tCCHW 280 — tCCLR 360 — tCCHR 280 tDS8 80 — tDH8 30 — tACC8 CL = 100 pF — 240 tOH8 CL = 100 pF 10 200 Units ns *1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) ≦ (tCYC8 – tCCLW – tCCHW) for (tr + tf) ≦ (tCYC8 – tCCLR – tCCHR) are specified. *2 All timing is specified using 20% and 80% of VDD as the reference. *3 tCCLW and tCCLR are specified as the overlap between CSB being “L” and WR and RD being at the “L” level. Ver 2.3 40/56 2005/10/05 ST7558 System Bus Read/Write Characteristics 1 (For the 6800 Series MPU) A0 R/W tAW6 tAH6 CS1 (CS2="1") tCYC6 tCCLR,tCCLW E tCCHR,tCCHW tDS6 tDH6 D0 to D7 (Write) tACC6 tOH6 D0 to D7 (Read) Fig 25. (VDD = 3.3 V , Ta = -30~85°C ) Item Signal Address hold time Address setup time A0 System cycle time Enable L pulse width (WRITE) Enable H pulse width (WRITE) Enable L pulse width (READ) Enable H pulse width (READ) WR RD WRITE Data setup time WRITE Address hold time READ access time READ Output disable time Ver 2.3 D0 to D7 Symbol Condition Rating Min. Max. tAH6 10 — tAW6 0 — tCYC6 240 — tEWLW 80 — tEWHW 80 — tEWLR 80 — tEWHR 140 tDS6 40 — tDH6 0 — tACC6 CL = 100 pF — 70 tOH6 CL = 100 pF 5 50 41/56 Units ns 2005/10/05 ST7558 (VDD = 2.7V , Ta =-30~85°C ) Item Signal Address hold time A0 Address setup time System cycle time Enable L pulse width (WRITE) WR Enable H pulse width (WRITE) Enable L pulse width (READ) RD Enable H pulse width (READ) WRITE Data setup time WRITE Address hold time READ access time D0 to D7 READ Output disable time Symbol Rating Condition Min. Max. tAH6 15 — tAW6 0 — tCYC6 400 — tEWLW 220 — tEWHW 180 — tEWLR 220 — tEWHR 180 — tDS6 40 — tDH6 0 — tACC6 CL = 100 pF — 140 tOH6 CL = 100 pF 10 100 (VDD =1.8V Item Signal Address hold time Address setup time A0 System cycle time Enable L pulse width (WRITE) Enable H pulse width (WRITE) Enable L pulse width (READ) Enable H pulse width (READ) WR RD WRITE Data setup time WRITE Address hold time READ access time READ Output disable time D0 to D7 Symbol Condition Units ns , Ta =-30~85°C ) Rating Min. Max. tAH6 30 — tAW6 0 — tCYC6 640 — tEWLW 360 — tEWHW 280 — tEWLR 360 — tEWHR 280 — tDS6 80 — tDH6 30 — tACC6 CL = 100 pF — 240 tOH6 CL = 100 pF 10 200 Units ns *1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) ≦ (tCYC6 – tEWLW – tEWHW) for (tr + tf) ≦ (tCYC6 – tEWLR – tEWHR) are specified. *2 All timing is specified using 20% and 80% of VDD as the reference. *3 tEWLW and tEWLR are specified as the overlap between CSB being “L” and E. Ver 2.3 42/56 2005/10/05 ST7558 SERIAL INTERFACE(4-Line Interface) tCCSS tCSH /CS1 (CS2="1") tSAS tSAH A0 tSCYC tSLW SCL tSHW tf tr tSDS tSDH SI Fig 26. (VDD=3.3V,Ta=-30~85℃) Item Signal Serial Clock Period SCL “H” pulse width SCL SCL “L” pulse width Address setup time Address hold time Data setup time A0 SI Data hold time CS-SCL time CSB CS-SCL time Symbol Condition Rating Min. Max. tSCYC 50 — tSHW 25 — tSLW 25 — tSAS 20 — tSAH 10 — tSDS 20 — tSDH 10 — tCSS 20 — tCSH 140 — Units ns (VDD=2.7V,Ta=-30~85℃) Item Signal Serial Clock Period SCL “H” pulse width SCL SCL “L” pulse width Address setup time Address hold time Data setup time Data hold time CS-SCL time CS-SCL time Ver 2.3 A0 SI CSB Symbol Condition Rating Min. Max. tSCYC 100 — tSHW 50 — tSLW 50 — tSAS 30 — tSAH 20 — tSDS 30 — tSDH 20 — tCSS 30 — tCSH 160 — 43/56 Units ns 2005/10/05 ST7558 (VDD=1.8V,Ta=-30~85℃) Item Signal Serial Clock Period SCL SCL “H” pulse width SCL “L” pulse width Address setup time A0 Address hold time Data setup time SI Data hold time CS-SCL time CSB CS-SCL time Symbol Rating Condition Min. Max. tSCYC 200 — tSHW 80 — tSLW 80 — tSAS 60 — tSAH 30 — tSDS 60 — tSDH 30 — tCSS 40 — tCSH 200 — Units ns *1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less. *2 All timing is specified using 20% and 80% of VDD as the standard. 2 SERIAL INTERFACE(I C Interface) SD A tBU F t H IG H tLO W SCL t D H ;S T A t H D ;D A T t S U ;D A T (VDD= 1.8V~3.3V,Ta=-30~85℃) Item Signal Symbol Rating Condition Min. Max. Units SCL clock frequency SCL FSCLK - 200 kHZ SCL clock low period SCL TLOW 2.5 - us SCL clock high period SCL THIGH 2.5 - us Data set-up time SI TSU;Data 0.1 - us Data hold time SI THD;Data 0 0.9 us SCL,SDA rise time SCL TR 20+0.1Cb 300 ns SCL,SDA fall time SCL TF 20+0.1Cb 300 ns Cb - 400 pF Capacitive load represented by each bus line Setup time for a repeated START condition SI TSU;SUA 0.6 - us Start condition hold time SI THD;STA 0.6 - us Setup time for STOP ondition TSU;STO 0.6 - us Tolerable spike width on bus TSW - 50 ns TBUF 2.5 BUS free time between a STOP and StART condition Ver 2.3 SCL 44/56 us 2005/10/05 ST7558 14. RESET TIMING tRW /RES tR Internal status During reset Reset complete Fig 27. (VDD = 3.3V , Ta = –30 to 85°C ) Item Signal Reset time Reset “L” pulse width RESB Symbol Condition Rating Units Min. Typ. Max. tR — — 1 us tRW 1 — — us (VDD = 2.7V , Ta = –30 to 85°C ) Item Signal Reset time Reset “L” pulse width RESB Symbol Condition Rating Units Min. Typ. Max. tR — — 1.5 us tRW 1.5 — — us (VDD = 1.8V , Ta = –30 to 85°C ) Item Signal Reset time Reset “L” pulse width Ver 2.3 RESB Symbol Condition Rating Units Min. Typ. Max. tR — — 2.0 us tRW 2.0 — — us 45/56 2005/10/05 ST7558 15. APPLICATION INFORMATION Table 5 programming example for ST7558 SETP SERIAL BUS BYTE DISPLAY OPERATION 1 Start CSB IS going low. 2 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Function Set. 0 PD=0,V=0,select extended 0 0 1 0 0 0 0 0 Instruction set(H=0 mode) 3 4 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Set VOP 0 VOP is set to a+16*b[V] 1 0 0 1 0 0 0 0 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Function Set. 0 PD=0,V=0,select normal 0 0 1 0 0 0 0 0 Instruction set(H=0 mode). 5 6 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Display control. 0 Set normal mode(D=1,E=0) 0 0 0 0 0 1 0 0 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Data Write. 1 Y,X are initialized to 0 by 0 0 1 0 0 1 1 0 default, so they aren’t set here… 7 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 8 0 1 0 0 1 0 1 0 0 1 0 0 Data Write. 1 0 1 0 0 1 0 0 Data Write. 1 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 11 0 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 10 1 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 9 0 Data Write. 0 0 1 1 0 0 1 Data Write. 0 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 Ver 2.3 0 0 0 0 0 0 0 Data Write. 0 46/56 2005/10/05 ST7558 12 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 13 0 0 0 0 0 1 0 1 1 1 1 1 1 Data Write. 1 Data Write. A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 15 1 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 14 0 Data Write. 0 1 0 0 0 0 0 1 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Display Control. 0 Set inverse video mode 0 0 0 0 1 1 0 1 (D=1,E=1). 16 17 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Set X address of RAM. 0 Set address to “0000000”. 1 0 0 0 0 0 0 0 A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 Ver 2.3 0 0 0 0 0 0 0 Data Write. 0 47/56 2005/10/05 ST7558 2 programming example for ST7558(Use I C Interface) SETP 1 2 3 SERIAL BUS BYTE DISPLAY OPERATION 2 I C INTERFACE Start DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Slave address for write DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Control byte with cleared Co bit 0 0 0 0 0 0 0 0 and A0 set to logic 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 4 0 0 1 0 0 0 0 Function Set. 1 PD=0,V=0,select extended Instruction set(H=1 mode) 5 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 1 0 0 1 Set bias system 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 6 1 0 0 1 0 0 0 Set VOP VOP is set to a+16*b[V] 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 7 0 0 1 0 0 0 0 Function Set. 0 PD=0,V=0,select normal Instruction set(H=0 mode). DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 8 9 10 11 0 0 0 0 0 1 0 Display control. 0 Set normal mode(D=1,E=0) 2 I C INTERFACE Start restart DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Slave address for write DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Control byte with set Co bit and 1 1 0 0 0 0 0 0 A0 set to logic 1 Data Write. DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 12 0 0 1 0 0 1 1 Y,X are initialized to 0 by 0 default, so they aren’t set here… DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 13 0 1 0 0 1 0 0 Data Write. 1 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 14 Ver 2.3 0 1 0 0 1 0 0 Data Write. 1 48/56 2005/10/05 ST7558 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 15 1 0 0 1 0 0 Data Write. 1 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 16 0 1 1 0 0 1 Data Write. 0 Data Write. DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 17 0 0 0 0 0 0 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 18 1 0 0 0 0 0 Data Write. 1 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 19 1 1 1 1 1 1 Data Write. 1 Data Write. DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 20 21 22 23 1 0 0 0 0 0 1 2 I C INTERFACE start restart DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Slave address for write DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Control byte with cleared Co bit 1 0 0 0 0 0 0 0 and A0 set to logic 1 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 24 25 0 0 0 1 1 0 Display Control. 1 Set inverse video mode (D=1,E=1). DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Ver 2.3 1 0 0 0 0 0 0 Control byte with cleared Co bit 0 and A0 set to logic 1 49/56 2005/10/05 ST7558 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 26 27 0 0 0 0 0 0 Set X address of RAM. 0 Set address to “0000000”. DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 1 0 0 0 0 0 Control byte with set Co bit and 0 A0 set to logic 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 28 29 30 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Data Write. 2 I C INTERFACE start restart DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Slave address for write DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Control byte with set Co bit and 1 1 0 0 0 0 0 0 A0 set to logic 1 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 32 33 0 0 0 0 0 0 Set X address of RAM. 0 Set address to “0000000”. DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Ver 2.3 1 0 0 0 0 0 0 Control byte with cleared Co bit 0 and A0 set to logic 0 50/56 2005/10/05 ST7558 The pinning of the ST7558 is optimized for single plane wiring e.g. for chip-on-glass display modules. Display size: 65x102 pixels. Display 102X 65 pixels 102 33 VLCDOUT VLCDIN 32 VDD2 VDD VSS1 VSS2 ST7558 VDD VSS 8 CLVCD I/O CVDD Fig 28. Application diagram: internal charge pump is used and single VDD Display 102 X 65 pixels 102 33 VLCDOUT VLCDIN 32 8 VSS1 VSS2 VDD2 VDD ST7558 VDD CVDD CLVCD I/OVDD2 CVDD2 VSS Fig 29. Application diagram: Internal charge pump is used and two separate VDD(VDD2) Ver 2.3 51/56 2005/10/05 ST7558 Display 102 X 65 pixels 102 33 VSS1 VSS2 VDD2 VDD ST7558 VLCDOUT VLCDIN 32 8 VL2 I/O VDD2 CVDD VSS Fig 30. application diagram : External high voltage generation is used The required minimum value for the external capacitors in an application with the ST7558 are: CVLCD = min. 100nF CVDD,2= min. 1.0 μF Higher capacitor values are recommended for ripple reduction. Ver 2.3 52/56 2005/10/05 ST7558 16.THE MPU INTERFACE (REFERENCE EXAMPLES) The ST7558 Series can be connected to either 80X86 Series MPUs or to 6800 Series MPUs. Moreover, using the serial interface it is possible to operate the ST7558 series chips with fewer signal lines. The display area can be enlarged by using multiple ST7558 Series chips. When this is done, the chip select signal can be used to select the individual Ics to access. (1) 8080 Series MPUs VDD VCC A0 /CS Decoder ST7558 A1 to A7 IORQ MPU VDD IMS A0 D0 to D7 E (/RD) R/W (/WR) /RES DO to D7 RD WR RES GND PS VSS RESET VSS (2) 6800 Series MPUs VDD VCC A0 /CS Decoder ST7558 A1 to A7 IORQ MPU VDD IMS A0 D0 to D7 /RD (E) /WR (R/W) /RES DO to D7 RD WR RES GND PS VSS RESET VSS (3) Using the Serial Interface (4-line interface) VDD VCC A0 VDD IMS ST7558 /CS Decoder MPU A1 to A7 A0 Port 1 Port 2 RES GND SI SCL /RES PS VSS RESET VSS Ver 2.3 53/56 2005/10/05 ST7558 2 (4) Using the Serial Interface (I C interface) VDD MPU Port 1 Port 2 RES ST7558 VDD IMS VCC SDA SCL /RES PS RESET GND VSS VSS Ver 2.3 54/56 2005/10/05 ST7558 65-duty/serial-4Line/VLCDIN-internal/VDD2=VDD/internal-OSC C O M 1 0 C O M 1 1 C O M 1 9 ……… C O M 2 0 C C O M 5 2 ……… C O M 5 3 C O M 4 4 C O M 4 3 65-duty/serial-I2C/VLCDIN-internal/VDD2=VDD/internal-OSC Ver 2.3 55/56 2005/10/05 ST7558 C C O O C O M 1 0 C O M 1 1 ……… 1 0 1 T11 PS T10 OS C -- VSS -- VDD -- VSS -- V S S (default) -- VDD (internal) ……… …… ……… ……… ……… …… ( serial ) ( I2C ) IMS S S C C C C E E O O O O G G M M M M 1 1 S 0 0 1 0 2 CS A0 RWR ERD D0 ~ D1 D2 ~ D6 D7 ST7558 -------S e s e r v e R VDD VDD VDD VDD VSS SDA SCL S 0 E E G G 1 C O M 2 0 R C L S C C C 3 4 O O O M M M 3 3 3 2 D D V S S V S R E … …… V L C D O U N T V L C D I O U T V S 6 2 4 C C O O M M 4 4 1 2 C C 5 5 5 4 O O O O MM…M M C C (no used) (no used) (no used) (no used) (addr ess) (need exter nal pull u pr esister) (need exter nal pull up resister) S D A V V VV V V T T V O V VE R I V D D DD S S V V T D D DD D D DD D DD DD T T T T T T T T T RR W A C M D P 1 1 D S VV V VV S S S S 9 2 2 7 6 5 4 3 2 1 0 D 0 1 2 3 4 5 6 7 8 S D R 0 S S D S 1 0 D C 0 1 2 3 4 2 2 S S R E S ……… C O M 1 9 C e r v e R e s …… C C O M M M 9 8 O O M M … 3 1 R VD D C O M 4 3 C O M 4 4 C O M 5 2 C O M 5 3 2005/10/05 56/56 Ver 2.3 2 2 1 2 ITO Pad for mo nit or V 0 te st V DD C