PCM4104-EP www.ti.com SBAS419 – JUNE 2007 High-Performance, 24-Bit, 216-kHz Sampling, Four-Channel Audio Digital-to-Analog Converter FEATURES • • • • • • • • • • • • • (1) Controlled Baseline – One Assembly/Test Site, One Fabrication Site Extended Temperature Performance of –40°C to 85°C Enhanced Diminishing Manufacturing Sources (DMS) Support Enhanced Product-Change Notification Qualification Pedigree (1) Four High-Performance, Multi-Level, Delta-Sigma Digital-to-Analog Converters Differential Voltage Outputs – Full-Scale Output (Differential): 6.15 VPP Supports Sampling Frequencies up to 216 kHz Typical Dynamic Performance (24-Bit Data) – Dynamic Range (A-Weighted): 118 dB – THD+N: –100 dB Linear Phase, 8× Oversampling Digital Interpolation Filter Digital De-Emphasis Filters for 32-kHz, 44.1-kHz, and 48-kHz Sampling Rates Soft Mute Function – All-Channel Mute via the MUTE Input Pin – Per-Channel Mute Available in Software Mode Digital Attenuation (Software Mode Only) – Attenuation Range: 0 dB to –119.5 dB • • • • • • • • • – 256 Steps with 0.5 dB per Step Output Phase Inversion (Software Mode Only) Zero Data Mute (Software Mode Only) Audio Serial Port – Supports Left-Justified, Right-Justified, I2S™, and TDM Data Formats – Accepts 16-, 18-, 20-, and 24-Bit Two's Complement PCM Audio Data Standalone or Software-Controlled Configuration Modes Four-Wire Serial Peripheral Interface (SPI™) Port Provides Control Register Access in Software Mode Power Supplies: 5 V Analog, 3.3 V Digital Power Dissipation – 203 mW typical with fs = 48 kHz – 220 mW typical with fs = 96 kHz – 236 mW typical with fs = 192 kHz Power-Down Modes Small 48-Lead TQFP Package APPLICATIONS • • • • • • Digital Mixing Consoles Digital Audio Workstations Digital Audio Effects Processors Broadcast Studio Equipment Surround-Sound Processors High-End A/V Receivers Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2007, Texas Instruments Incorporated PCM4104-EP www.ti.com SBAS419 – JUNE 2007 DESCRIPTION The PCM4104 is a high-performance, four-channel digital-to-analog (D/A) converter designed for use in professional audio applications. The PCM4104 supports 16- to 24-bit linear PCM input data, with sampling frequencies up to 216 kHz. The PCM4104 features lower power consumption than most comparable stereo audio D/A converters, making it ideal for use in high channel count applications by lowering the overall power budget required for the D/A conversion subsystem. The PCM4104 features delta-sigma architecture, employing a high-performance multi-level modulator combined with a switched capacitor output filter. This architecture yields lower out-of-band noise and a high tolerance to system clock phase jitter. Differential voltage outputs are provided for each channel and are well-suited to high-performance audio applications. The differential outputs are easily converted to a single-ended output using an external op amp IC. The PCM4104 includes a flexible audio serial port interface, which supports standard and time division multiplexed (TDM) formats. Support for TDM formats simplifies interfacing to DSP serial ports, while supporting a cascade connection for two PCM4104 devices. In addition, the PCM4104 offers two configuration modes: Standalone and Software-Controlled. The Standalone mode provides dedicated control pins for configuring a subset of the available PCM4104 functions, while Software mode utilizes a serial peripheral interface (SPI) port for accessing the complete feature set via internal control registers. The PCM4104 operates from a 5-V analog power supply and a 3.3-V digital power supply. The digital I/O is compatible with 3.3-V logic families. The PCM4104 is available in a TQFP-48 package. ORDERING INFORMATION (1) PRODUCT PACKAGELEAD PACKAGE DESIGNATOR (2) SPECIFIED TEMPERATURE RANGE PACKAGE MARKING ORDERING NUMBER TRANSPORT MEDIA, QUANTITY PCM4104 TQFP-48 PFB –40°C to 85°C PCM4104EP PCM4104IPFBREP Tape and Reel, 2000 (1) (2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com. Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. ABSOLUTE MAXIMUM RATINGS over operating free-air temperature range (unless otherwise noted) (1) PCM4104 UNIT VCC 6.0 V VDD 3.6 V Ground voltage difference Any AGND-to-AGND and AGND-to-DGND ±0.1 V Digital input voltage FS0, FS1, FMT0, FMT1, FMT2, CDOUT, CDIN, CCLK, CS, DATA0, DATA1, BCK, LRCK, SCKI, SUB, DEM0, DEM1, MUTE, RST, MODE –0.3 to (VDD + 0.3) V Supply voltage ±10 mA Operating temperature range –40 to 85 °C Storage temperature range, TSTG –65 to 150 °C Input current (any pin except supplies) (1) 2 Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied. Submit Documentation Feedback PCM4104-EP www.ti.com SBAS419 – JUNE 2007 ELECTRICAL CHARACTERISTICS All parameters are specified at TA = 25°C with VCC = 5 V, VDD = 3.3 V, (unless otherwise noted) and a measurement bandwidth from 10 Hz to 20 kHz, unless otherwise noted. System clock frequency is equal to 256fS for Single and Dual Rate sampling modes, and 128fS for Quad Rate sampling mode. PARAMETER CONDITIONS PCM4104 MIN RESOLUTION TYP MAX 24 UNITS Bits DATA FORMAT Left or Right Justified, I2S, and TDM Audio data formats Audio data word length 16 Binary data format 24 Bits Two’s Complement Binary, MSB First CLOCK RATES AND TIMING Single rate sampling mode System clock frequency Sampling frequency fSCLK fS 6.144 36.864 Dual rate sampling mode 13.824 36.864 Quad rate sampling mode 13.824 36.864 Single rate sampling mode 24 54 Dual rate sampling mode 54 108 Quad rate sampling mode 108 216 24 MHz kHz SPI port data clock fCCLK SPI port data clock high time tCCLKH 15 MHz ns SPI port data clock low time tCCLKL 15 ns VIH 2.0 DIGITAL INPUT/OUTPUT Input logic level Input logic current Output logic level V VIL IIH VIN = 2.64 V (for –40°C to 85°C) IIL VIN = 0.66 V (for –40°C to 85°C) VOH IOH = –2 mA (for –40°C to 85°C) VOL IOL = +2 mA (for –40°C to 85°C) 0.8 V 1 10 μA 1 –10 μA 2.4 V 0.4 V ANALOG OUTPUTS Full-scale output voltage, differential RL = 600 Ω Bipolar zero voltage Vpp 2.5 Output impedance Switched capacitor filter frequency response 6.15 V 5 f = 20 kHz, all sampling modes Ohms –0.2 dB Gain error 0.5 % FSR Gain mismatch, channel-to-channel 0.6 % FSR Bipolar zero error VCOM1 and VCOM2 output voltage 1 VCC = 5 V VCOM1 and VCOM2 output current mV 2.5 V 200 Submit Documentation Feedback μA 3 PCM4104-EP www.ti.com SBAS419 – JUNE 2007 ELECTRICAL CHARACTERISTICS (continued) All parameters are specified at TA = 25°C with VCC = 5 V, VDD = 3.3 V, (unless otherwise noted) and a measurement bandwidth from 10 Hz to 20 kHz, unless otherwise noted. System clock frequency is equal to 256fS for Single and Dual Rate sampling modes, and 128fS for Quad Rate sampling mode. PARAMETER CONDITIONS PCM4104 MIN TYP MAX –100 –94 UNITS DYNAMIC PERFORMANCE WITH 24-BIT DATA (1) fS = 48 kHz f = 1 kHz at 0 dBFS Total harmonic distortion + noise THD+N f = 1 kHz at 0 dBFS (for –40°C to 85°C) -91 f = 1 kHz at –60 dBFS Dynamic range, A-weighted dB –56 f = 1 kHz at –60 dBFS 112 f = 1 kHz at –60 dBFS (for –40C to 85°C) 109 118 dB dB Idle channel SNR, A-weighted All zero input data 119 dB Idle channel SNR, unweighted All zero input data 116 dB 110 dB f = 1 kHz at 0 dBFS for active channel Channel separation f = 1 kHz at 0 dBFS for active channel (for –40C to 85°C) 100 98 dB fS = 96 kHz f = 1 kHz at 0 dBFS, BW = 10 Hz to 40 kHz –100 f = 1 kHz at –60 dBFS, BW = 10 Hz to 40 kHz –53 Dynamic range, A-weighted f = 1 kHz at –60 dBFS 118 dB Idle channel SNR, A-weighted All zero input data 119 dB Idle channel SNR, unweighted All zero input data, BW = 10 Hz to 40 kHz 113 dB Channel separation f = 1 kHz at 0 dBFS for active channel 110 dB f = 1 kHz at 0 dBFS, BW = 10 Hz to 40 kHz –97 f = 1 kHz at –60 dBFS, BW = 10 Hz to 40 kHz –53 Dynamic range, A-weighted f = 1 kHz at –60 dBFS 118 dB Idle channel SNR, A-weighted All zero input data 118 dB Idle channel SNR, unweighted All zero input data, BW = 10 Hz to 40 kHz 113 dB Channel separation f = 1 kHz at 0 dBFS for active channel 110 dB Total harmonic distortion + noise THD+N dB fS = 192 kHz Total harmonic distortion + noise THD+N dB DYNAMIC PERFORMANCE WITH 16-BIT DATA fS = 44.1 kHz Total harmonic distortion + noise THD+N f = 1 kHz at 0 dBFS –92 f = 1 kHz at –60 dBFS –33 dB Dynamic Range, A-weighted f = 1 kHz at –60 dBFS 96 dB Idle channel SNR, A-weighted (2) All zero input data 118 dB (2) All zero input data 115 dB Idle channel SNR, unweighted DIGITAL FILTERS (1) (2) 4 Dynamic performance parameters are measured using an Audio Precision System Two Cascade or Cascade Plus test system. Input data word length is 24 bits with triangular PDF dither added for dynamic range and THD+N tests. Idle channel SNR is measured with both the soft and zero data mute functions disabled and 0% full–scale input data with no dither applied. The measurement bandwidth is limited by using the Audio Precision 10 Hz high–pass filter in combination with either the AES17 20 kHz low-pass filter or AES17 40 kHz low-pass filter. All A-weighted measurements are performed using the Audio Precision A-weighting filter in combination with either the 22 kHz or 80 kHz low-pass filter. Measurement mode is set to RMS for all parameters. The AVERAGE measurement mode will yield better typical performance numbers. Idle Channel SNR is not limited by word length. Submit Documentation Feedback PCM4104-EP www.ti.com SBAS419 – JUNE 2007 ELECTRICAL CHARACTERISTICS (continued) All parameters are specified at TA = 25°C with VCC = 5 V, VDD = 3.3 V, (unless otherwise noted) and a measurement bandwidth from 10 Hz to 20 kHz, unless otherwise noted. System clock frequency is equal to 256fS for Single and Dual Rate sampling modes, and 128fS for Quad Rate sampling mode. PARAMETER Passband CONDITIONS PCM4104 MIN TYP UNITS ±0.002 dB 0.454fS Hz –3 dB 0.487fS Hz Stop Band 0.546fS Hz ±0.002 Passband ripple Stopband attenuation MAX 0.546fs –75 0.567fs –82 Group delay dB dB dB 29/fS De-emphasis filter error sec 0.1 dB POWER SUPPLY Supply Range Analog supply, VCC 4.75 5.0 5.25 V Digital supply, VDD 3.0 3.3 3.6 V Power down current VCC = 5 V, VDD = 3.3 V Power-down supply current, ICC + IDD RST = low, system and audio clocks off Quiescent current System and audio clocks applied, all 0s data Analog supply, ICC Digital supply, IDD 1 VCC = 5 V, fS = 48 kHz ( for –40°C to 85°C) 32 VCC = 5 V, fS = 96 kHz 32 VCC = 5 V, fS = 192 kHz 32 VDD = 3.3 V, fS = 48 kHz ( for –40°C to 85°C) 13 VDD = 3.3 V, fS = 96 kHz 18 VDD = 3.3 V, fS = 192 kHz 23 mA 45 mA 17 mA VCC = 5 V, VDD = 3.3 V Total power dissipation fS = 48 kHz ( for –40°C to 85°C) 203 fS = 96 kHz 220 fS = 192 kHz 236 Submit Documentation Feedback 286 mW 5 PCM4104-EP www.ti.com SBAS419 – JUNE 2007 PIN ASSIGNMENTS VCOM1 VOUT2+ VOUT2− VCC1 VREF2+ VREF2− VREF3− VREF3+ VCC2 VOUT3− VOUT3+ VCOM2 TQFP PACKAGE (TOP VIEW) 48 47 46 45 44 43 42 41 40 39 38 37 VOUT1+ 1 36 VOUT4+ VOUT1− 2 35 VOUT4− AGND1 3 34 AGND2 VREF1− 4 33 VREF4− VREF1+ 5 32 VREF4+ NC 6 NC 7 30 NC MODE 8 29 FS1 RST 9 28 FS0 31 NC PCM4104 16 17 18 19 20 21 VDD DGND CS 22 23 24 CDOUT 15 CDIN 14 CCLK 13 DATA1 25 FMT0 DATA0 DEM0 12 LRCK 26 FMT1 BCK DEM1 11 SCKI 27 FMT2 SUB MUTE 10 TERMINAL FUNCTIONS TERMINAL 6 I/O DESCRIPTION NAME NO. VOUT1+ 1 Output Channel 1 Analog Output, Noninverted VOUT1– 2 Output Channel 1 Analog Output, Inverted AGND1 3 Ground Analog Ground VREF1– 4 Input Channel 1 Low Reference Voltage; Connect to AGND VREF1+ 5 Input Channel 1 High Reference Voltage; Connect to VCC NC 6 NC 7 MODE 8 Input Operating Mode (0 = Standalone, 1= Software Controlled) RST 9 Input Reset/Power Down (Active Low) MUTE 10 Input All-Channel Soft Mute (Active High) DEM1 11 Input Digital De-Emphasis Filter Configuration DEM0 12 Input Digital De-Emphasis Filter Configuration SUB 13 Input Sub-Frame Assignment (TDM Formats Only) SCKI 14 Input System Clock BCK 15 Input Audio Bit (or Data) Clock LRCK 16 Input Audio Left/Right (or Word) Clock DATA0 17 Input Audio Data for Channels 1 and 2 (I2S, Left/Right Justified formats) or Audio Data for Channels 1 Through 4 for TDM Formats DATA1 18 Input Audio Data for Channels 3 and 4 (I2S, Left/Right Justified formats) No Internal Connection No Internal Connection Submit Documentation Feedback PCM4104-EP www.ti.com SBAS419 – JUNE 2007 PIN ASSIGNMENTS (continued) TERMINAL FUNCTIONS (continued) TERMINAL NAME NO. I/O DESCRIPTION VDD 19 Power Digital Power Supply, 3.3 V DGND 20 Ground Digital Ground CS 21 Input Serial Peripheral Interface (SPI) Chip Select (Active Low) CCLK 22 Input Serial Peripheral Interface (SPI) Data Clock CDIN 23 Input Serial Peripheral Interface (SPI) Data Input CDOUT 24 Output FMT0 25 Input Audio Data Format Configuration FMT1 26 Input Audio Data Format Configuration FMT2 27 Input Audio Data Format Configuration FS0 28 Input Sampling Mode Configuration FS1 29 Input Sampling Mode Configuration NC 30 NC 31 VREF4+ 32 VREF4– AGND2 Serial Peripheral Interface (SPI) Data Output No Internal Connection No Internal Connection Input Channel 4 High Reference Voltage; Connect to VCC 33 Input Channel 4 Low Reference Voltage; Connect to AGND 34 Ground Analog Ground VOUT4– 35 Output Channel 4 Analog Output, Inverted VOUT4+ 36 Output Channel 4 Analog Output, Noninverted VCOM2 37 Output DC Common-Mode Voltage for Channels 3 and 4, 2.5 V nominal VOUT3+ 38 Output Channel 3 Analog Output, Noninverted VOUT3– 39 Output Channel 3 Analog Output, Inverted VCC2 40 Power Analog Power Supply, 5 V VREF3+ 41 Input Channel 3 High Reference Voltage; Connect to VCC VREF3– 42 Input Channel 3 Low Reference Voltage; Connect to AGND VREF2– 43 Input Channel 2 Low Reference Voltage; Connect to AGND VREF2+ 44 Input Channel 2 High Reference Voltage; Connect to VCC VCC1 45 Power Analog Power Supply, 5 V VOUT2– 46 Output Channel 2 Analog Output, Inverted VOUT2+ 47 Output Channel 2 Analog Output, Noninverted VCOM1 48 Output DC Common-Mode Voltage for Channels 1 and 2, 2.5 V nominal Submit Documentation Feedback 7 PCM4104-EP www.ti.com SBAS419 – JUNE 2007 TYPICAL CHARACTERISTICS All parameters are specified at TA = 25°C with VCC = 5 V, VDD = 3.3 V, and a measurement bandwidth from 10 Hz to 20 kHz, unless otherwise noted. System clock frequency is equal to 256fS for Single and Dual Rate sampling modes, and 128fS for Quad Rate sampling mode. FFT PLOT fS = 48kHz fIN = 1kHz 0dBFS Amplitude 24−Bit Data Amplitude (dB) Amplitude (dB) FFT PLOT 0 −10 −20 −30 −40 −50 −60 −70 −80 −90 −100 −110 −120 −130 −140 −150 −160 20 100 1k 0 −10 −20 −30 −40 −50 −60 −70 −80 −90 −100 −110 −120 −130 −140 −150 −160 10k 20k fS = 48kHz fIN = 1kHz −20dBFS Amplitude 24−Bit Data 20 100 Frequency (Hz) Amplitude (dB) Amplitude (dB) fS = 48kHz fIN = 1kHz −60dBFS Amplitude 24−Bit Data 20 100 1k 10k 0 −10 −20 −30 −40 −50 −60 −70 −80 −90 −100 −110 −120 −130 −140 −150 −160 20 20k 100 Amplitude (dB) Amplitude (dB) 1k 10k 40k 0 −10 −20 −30 −40 −50 −60 −70 −80 −90 −100 −110 −120 −130 −140 −150 −160 20k fS = 96kHz fIN = 1kHz −20dBFS Amplitude 24−Bit Data 20 Frequency (Hz) 8 10k FFT PLOT fS = 96kHz fIN = 1kHz 0dBFS Amplitude 24−Bit Data 100 1k Frequency (Hz) FFT PLOT 20 20k fS = 48kHz Idle Channel Input 24−Bit Data Frequency (Hz) 0 −10 −20 −30 −40 −50 −60 −70 −80 −90 −100 −110 −120 −130 −140 −150 −160 10k FFT PLOT FFT PLOT 0 −10 −20 −30 −40 −50 −60 −70 −80 −90 −100 −110 −120 −130 −140 −150 −160 1k Frequency (Hz) 100 1k Frequency (Hz) Submit Documentation Feedback 10k 40k PCM4104-EP www.ti.com SBAS419 – JUNE 2007 TYPICAL CHARACTERISTICS (continued) All parameters are specified at TA = 25°C with VCC = 5 V, VDD = 3.3 V, and a measurement bandwidth from 10 Hz to 20 kHz, unless otherwise noted. System clock frequency is equal to 256fS for Single and Dual Rate sampling modes, and 128fS for Quad Rate sampling mode. FFT PLOT fS = 96kHz fIN = 1kHz −60dBFS Amplitude 24−Bit Data Amplitude (dB) Amplitude (dB) FFT PLOT 0 −10 −20 −30 −40 −50 −60 −70 −80 −90 −100 −110 −120 −130 −140 −150 −160 20 100 1k 10k 0 −10 −20 −30 −40 −50 −60 −70 −80 −90 −100 −110 −120 −130 −140 −150 −160 40k fS = 96kHz Idle Channel Input 24−Bit Data 20 100 Frequency (Hz) fS = 192kHz fIN = 1kHz 0dBFS Amplitude 24−Bit Data 20 100 1k 10k 0 −10 −20 −30 −40 −50 −60 −70 −80 −90 −100 −110 −120 −130 −140 −150 −160 40k 20 100 Amplitude (dB) Amplitude (dB) 1k 10k 40k 10k 40k FFT PLOT fS = 192kHz fIN = 1kHz −60dBFS Amplitude 24−Bit Data 100 1k Frequency (Hz) FFT PLOT 20 40k fS = 192kHz fIN = 1kHz −20dBFS Amplitude 24−Bit Data Frequency (Hz) 0 −10 −20 −30 −40 −50 −60 −70 −80 −90 −100 −110 −120 −130 −140 −150 −160 10k FFT PLOT Amplitude (dB) Amplitude (dB) FFT PLOT 0 −10 −20 −30 −40 −50 −60 −70 −80 −90 −100 −110 −120 −130 −140 −150 −160 1k Frequency (Hz) 10k 40k 0 −10 −20 −30 −40 −50 −60 −70 −80 −90 −100 −110 −120 −130 −140 −150 −160 fS = 192kHz Idle Channel Input 24−Bit Data 20 Frequency (Hz) 100 1k Frequency (Hz) Submit Documentation Feedback 9 PCM4104-EP www.ti.com SBAS419 – JUNE 2007 TYPICAL CHARACTERISTICS (continued) All parameters are specified at TA = 25°C with VCC = 5 V, VDD = 3.3 V, and a measurement bandwidth from 10 Hz to 20 kHz, unless otherwise noted. System clock frequency is equal to 256fS for Single and Dual Rate sampling modes, and 128fS for Quad Rate sampling mode. FFT PLOT fS = 44.1kHz fIN = 1kHz 0dBFS Amplitude 16−Bit Data Amplitude (dB) 20 100 1k 10k 0 −10 −20 −30 −40 −50 −60 −70 −80 −90 −100 −110 −120 −130 −140 −150 −160 20k fS = 44.1kHz fIN = 1kHz −20dBFS Amplitude 16−Bit Data 20 100 1k Frequency (Hz) fS = 44.1kHz fIN = 1kHz −60dBFS Amplitude 16−Bit Data 20 100 1k 10k 0 −10 −20 −30 −40 −50 −60 −70 −80 −90 −100 −110 −120 −130 −140 −150 −160 20k 20 100 1k THD+N vs AMPLITUDE −80 fS = 48kHz fIN = 1kHz 24−Bit Data −85 −90 fS = 96kHz fIN = 1kHz 24−Bit Data −95 Amplitude (dBFS) 10 Amplitude (dBFS) Submit Documentation Feedback 0 −20 −10 −40 −30 −60 −50 −80 −70 −110 0 −20 −10 −40 −30 −60 −50 −80 −70 −90 −110 −100 −130 −120 −120 −120 −150 −115 −140 −115 −100 −110 −130 −110 −105 −120 −105 −100 −150 −100 −140 −95 THD+N (dB) THD+N (dB) −90 20k Frequency (Hz) THD+N vs AMPLITUDE −85 10k fS = 44.1kHz Idle Channel Input 16−Bit Data Frequency (Hz) −80 20k FFT PLOT Amplitude (dB) Amplitude (dB) FFT PLOT 0 −10 −20 −30 −40 −50 −60 −70 −80 −90 −100 −110 −120 −130 −140 −150 −160 10k Frequency (Hz) −90 Amplitude (dB) FFT PLOT 0 −10 −20 −30 −40 −50 −60 −70 −80 −90 −100 −110 −120 −130 −140 −150 −160 PCM4104-EP www.ti.com SBAS419 – JUNE 2007 TYPICAL CHARACTERISTICS (continued) All parameters are specified at TA = 25°C with VCC = 5 V, VDD = 3.3 V, and a measurement bandwidth from 10 Hz to 20 kHz, unless otherwise noted. System clock frequency is equal to 256fS for Single and Dual Rate sampling modes, and 128fS for Quad Rate sampling mode. THD+N vs AMPLITUDE −80 THD+N vs AMPLITUDE −80 fS = 192kHz fIN = 1kHz 24−Bit Data −85 −90 −90 −95 Amplitude (dBFS) 0 −20 −10 −40 −30 −60 −50 −80 −70 −90 −150 0 −10 −30 −20 −50 −40 −70 −60 −90 −80 −110 −100 −130 −120 −120 −120 −150 −115 −140 −115 −110 −110 −100 −110 −105 −130 −105 −100 −120 −100 −140 THD+N (dB) −95 THD+N (dB) fS = 44.1kHz fIN = 1kHz 16−Bit Data −85 Amplitude (dBFS) FREQUENCY RESPONSE PASSBAND RIPPLE 0 0.003 −20 0.002 −60 Amplitude (dB) Amplitude (dB) −40 −80 −100 −120 0.001 0 −0.001 −0.002 −140 −160 −0.003 0 1 2 3 4 0 0.1 0.2 Frequency (x fS) DE−EMPHASIS FILTER RESPONSE (fS = 32kHz) 0.4 0.5 DE−EMPHASIS ERROR (f S = 32kHz) 0.0 0.5 −1.0 0.4 −2.0 0.3 −3.0 0.2 −4.0 0.1 Error (dB) Level (dB) 0.3 Frequency (x fS) −5.0 −6.0 0.0 −0.1 −7.0 −0.2 −8.0 −0.3 −9.0 −0.4 −10.0 −0.5 0 2 4 6 8 10 12 14 0 Frequency (kHz) 2 4 6 8 10 12 14 Frequency (kHz) Submit Documentation Feedback 11 PCM4104-EP www.ti.com SBAS419 – JUNE 2007 TYPICAL CHARACTERISTICS (continued) All parameters are specified at TA = 25°C with VCC = 5 V, VDD = 3.3 V, and a measurement bandwidth from 10 Hz to 20 kHz, unless otherwise noted. System clock frequency is equal to 256fS for Single and Dual Rate sampling modes, and 128fS for Quad Rate sampling mode. DE−EMPHASIS ERROR (f S = 44.1kHz) 0.5 −1.0 0.4 −2.0 0.3 −3.0 0.2 −4.0 0.1 Error (dB) Level (dB) DE−EMPHASIS FILTER RESPONSE (fS = 44.1kHz) 0.0 −5.0 −6.0 0.0 −0.1 −7.0 −0.2 −8.0 −0.3 −9.0 −0.4 −10.0 −0.5 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 Frequency (kHz) 10 12 14 16 18 20 18 22 DE− EMPHASIS ERROR (fS = 48kHz) 0.0 0.5 −1.0 0.4 −2.0 0.3 −3.0 0.2 −4.0 0.1 Error (dB) Level (dB) DE− EMPHASIS FILTER RESPONSE (fS = 48kHz) −5.0 −6.0 0.0 −0.1 −7.0 −0.2 −8.0 −0.3 −9.0 −0.4 −10.0 −0.5 0 2 4 6 8 10 12 14 16 18 22 0 Frequency (kHz) 12 8 Frequency (kHz) 2 4 6 8 10 12 Frequency (kHz) Submit Documentation Feedback 14 16 PCM4104-EP www.ti.com SBAS419 – JUNE 2007 PRODUCT OVERVIEW The PCM4104 is a high-performance, four-channel D/A converter designed for professional audio systems. The PCM4104 supports 16- to 24-bit linear PCM input data and sampling frequencies up to 216 kHz. The PCM4104 utilizes an 8× oversampling digital interpolation filter, followed by a multi-level delta-sigma modulator with a single pole switched capacitor output filter. This architecture provides excellent dynamic and sonic performance, as well as high tolerance to clock phase jitter. Functional block diagrams, showing both Standalone and Software modes, are shown in Figure 1 and Figure 2. The PCM4104 incorporates a flexible audio serial port, which accepts 16- to 24-bit PCM audio data in both standard audio formats (Left Justified, Right Justified, and Philips I2S) and TDM data formats. The TDM formats are especially useful for interfacing to the synchronous serial ports of digital signal processors. The TDM formats support daisy-chaining of two PCM4104 devices on a single three-wire serial interface (for sampling frequencies up to 108 kHz), forming a high-performance eight-channel D/A conversion system. The PCM4104 offers two modes for configuration control: Software and Standalone. Software mode makes use of a four-wire SPI port to access internal control registers, allowing configuration of the full PCM4104 feature set. Standalone mode offers a more limited subset of the functions available in Software mode, while allowing for a simplified pin-programmed configuration mode. VREF1+ LRCK BCK DATA0 DATA1 D/A Converter and Output Filter Audio Serial Port VOUT1+ VOUT1− VREF1− VCOM1 VREF2+ RST MUTE DEM0 DEM1 SUB FMT0 FMT1 FMT2 FS0 FS1 MODE D/A Converter and Output Filter Control VOUT2+ VOUT2− VREF2− Digital Filtering and Functions VREF3+ D/A Converter and Output Filter VOUT3+ VOUT3− VREF3− VCOM2 VREF4+ SCKI System Clock and Timing D/A Converter and Output Filter VOUT4+ VOUT4− VREF4− VDD DGND Digital Power Analog Power VCC 1 AGND1 VCC21 AGND2 Figure 1. Functional Block Diagram for Standalone Mode Submit Documentation Feedback 13 PCM4104-EP www.ti.com SBAS419 – JUNE 2007 PRODUCT OVERVIEW (continued) VREF1+ LRCK BCK DATA0 DATA1 D/A Converter and Output Filter Audio Serial Port VOUT1+ VOUT1− VREF1− VCOM1 VREF2+ D/A Converter and Output Filter RST MUTE SUB CS CCLK CDIN CDOUT MODE Control and SPI Port Digital Filtering and Functions VOUT2+ VOUT2− VREF2− VREF3+ D/A Converter and Output Filter VOUT3+ VOUT3− VREF3− VDD VCOM2 VREF4+ System Clock and Timing SCKI D/A Converter and Output Filter VOUT4+ VOUT4− VREF4− VDD DGND Digital Power Analog Power VCC1 AGND1 VCC21 AGND2 Figure 2. PCM4104 Functional Block Diagram for Software Mode ANALOG OUTPUTS The PCM4104 provides four differential voltage outputs, corresponding to audio channels 1 through 4. VOUT1+ (pin 1) and VOUT1– (pin 2) correspond to Channel 1. VOUT2+ (pin 47) and VOUT2– (pin 46) correspond to Channel 2. VOUT3+ (pin 38) and VOUT3– (pin 39) correspond to Channel 3. VOUT4+ (pin 36) and VOUT4– (pin 35) correspond to Channel 4. Each differential output is typically capable of providing 6.15-V full-scale (differential) into a 600 Ω output load. The output pins are internally biased to the common-mode (or bipolar zero) voltage, which is nominally VCC/2. The output section of each D/A converter channel includes a single-pole, switched capacitor low-pass filter circuit. The switched capacitor filter response tracks with the sampling frequency of the D/A converter and provides attenuation of the out-of-band noise produced by the delta-sigma modulator. An external two-pole continuous time filter is recommended to further reduce the out-of-band noise energy and to band limit the output spectrum to frequencies suitable for audio reproduction. Refer to the Applications Information section of this data sheet for recommended output filter circuits. 14 Submit Documentation Feedback PCM4104-EP www.ti.com SBAS419 – JUNE 2007 PRODUCT OVERVIEW (continued) VOLTAGE REFERENCES The PCM4104 includes high and low reference pins for each output channel. VREF1+ (pin 5) and VREF1– (pin 4) correspond to Channel 1. VREF2+ (pin 44) and VREF2– (pin 43) correspond to Channel 2. VREF3+ (pin 41) and VREF3– (pin 42) correspond to Channel 3. VREF4+ (pin 32) and VREF4– (pin 33) correspond to Channel 4. The high reference (+) pin may be connected to the corresponding VCC supply or an external 5-V reference, while the low reference (–) pin is connected to analog ground. A 0.01-μF bypass capacitor should be placed between the corresponding high and low reference pins. An X7R ceramic chip capacitor is recommended for this purpose. In some cases, a larger capacitor may need to be placed in parallel with the 0.01-μF capacitor, with the value of the larger capacitor being dependent upon the low-frequency power-supply noise present in the system. Typical values may range from 1 μF to 10 μF. Low ESR tantalum or multilayer ceramic chip capacitors are recommended. Figure 3 illustrates the recommended connections for the reference pins. VCC VREF+(1) 0.01µF 0.1µF to 10µF VREF− (1) VCOM1 VCOM2 0.1µF 0.1µF (1) Capacitor(s) required for each of the four reference pairs. Figure 3. Recommended Connections for Voltage Reference and Common-Mode Output Pins In addition to the reference pins, there are two common-mode voltage output pins, VCOM1 (pin 48) and VCOM2 (pin 37). These pins are nominally set to a value equal to VCC/2 by internal voltage dividers. The VCOM1 pin is common to both Channels 1 and 2, while the VCOM2 pin is common to Channels 3 and 4. A 0.1-μF X7R ceramic chip capacitor should be connected between the common-mode output pin and analog ground. The common-mode outputs are used primarily to bias external output circuitry. SAMPLING MODES The PCM4104 can operate in one of three sampling modes: Single Rate, Dual Rate, or Quad Rate. Sampling modes are selected by using the FS[1:0] bits in Control Register 6 in Software mode, or by using the FS0 (pin 28) and FS1 (pin 29) inputs in Standalone mode. The Single Rate mode allows sampling frequencies up to and including 54 kHz. The D/A converter performs 128× oversampling of the input data in Single Rate mode. The Dual Rate mode allows sampling frequencies greater than 54 kHz, up to and including 108 kHz. The D/A converter performs 64× oversampling of the input data in Dual Rate mode. The Quad Rate mode allows sampling frequencies greater than 108 kHz, up to and including 216 kHz. The D/A converter performs 32× oversampling of the input data in Quad Rate mode. Refer to Table 1 for examples of system clock requirements for common sampling frequencies. Submit Documentation Feedback 15 PCM4104-EP www.ti.com SBAS419 – JUNE 2007 PRODUCT OVERVIEW (continued) SYSTEM CLOCK REQUIREMENTS The PCM4104 requires a system clock, applied at the SCKI (pin 14) input. The system clock operates at an integer multiple of the input sampling frequency, or fS. The multiples supported include 128fS, 192fS, 256fS, 384fS, 512fS, or 768fS. The system clock frequency is dependent upon the sampling mode. Table 1 shows the required system clock frequencies for common audio sampling frequencies. Figure 4 shows the system clock timing requirements. Although the architecture of the PCM4104 is tolerant to phase jitter on the system clock, it is recommended that the user provide a low jitter clock (100 picoseconds or less) for optimal performance. Table 1. Sampling Modes and System Clock Frequencies for Common Audio Sampling Rates SAMPLING MODE SAMPLING FREQUENCY,=fS (kHz) SYSTEM CLOCK FREQUENCY (MHz) 128fS 192fS 256fS 384fS 512fS 768fS Single Rate 32 n/a n/a 8.192 12.288 16.384 24.576 Single Rate 44.1 n/a n/a 11.2896 16.9344 22.5792 33.8688 Single Rate 48 n/a n/a 12.288 18.432 24.576 36.864 Dual Rate 88.2 n/a n/a 22.5792 33.8688 n/a n/a Dual Rate 96 n/a n/a 24.576 36.864 n/a n/a Quad Rate 176.4 22.5792 33.8688 n/a n/a n/a n/a Quad Rate 192 24.576 36.864 n/a n/a n/a n/a t SCKIH SCKI t SCKIL t SCKI PARAMETER DESCRIPTION MIN t SCKI System Clock Period 26 ns t SCKIH System Clock High Pulse Time 12 ns t SCKIL System Clock Low Pulse Time 12 ns MAX Figure 4. System Clock Timing Requirements 16 Submit Documentation Feedback UNITS PCM4104-EP www.ti.com SBAS419 – JUNE 2007 RESET OPERATION The PCM4104 includes three reset functions: power-on, external, and software-controlled. This section describes each of the three reset functions. On power up, the internal reset signal is forced low, forcing the PCM4104 into a reset state. The power-on reset circuit monitors the VDD, VCC1, and VCC2 power supplies. When VDD exceeds 2 V (margin of error is ±400 mV) and VCC1 and VCC2 exceed 4 V (margin of error is ±400 mV), the internal reset signal is forced high. The PCM4104 then waits for the system clock input (SCKI) to become active. Once the system clock has been detected, the initialization sequence begins. The initialization sequence requires 1024 system clock periods for completion. When the initialization sequence is completed, the PCM4104 is ready to accept audio data at the audio serial port. Figure 5 shows the power-on reset sequence timing. If the PCM4104 is configured for Software mode control via the SPI port, all control registers will be reset to their default state during the initialization sequence. In both Standalone and Software modes, the analog outputs for all four channels are muted during the reset and initialization sequence. While in mute state, the analog output pins are driven to the bipolar zero voltage, or VCC/2. The user may force a reset initialization sequence at any time while the system clock input is active by utilizing the RST input (pin 9). The RST input is active low, and requires a minimum low pulse width of 40 nanoseconds. The low-to-high transition of the applied reset signal will force an initialization sequence to begin. As in the case of the power-on reset, the initialization sequence requires 1024 system clock periods for completion. Figure 6 illustrates the reset sequence initiated when using the RST input. A reset initialization sequence is available in Software mode, using the RST bit in Control Register 6. The RST bit is active high. When RST is set to 1, a reset sequence is initiated in the same fashion as an external reset applied at the RST input. Figure 7 shows the state of the analog outputs for the PCM4104 before, during and after the reset operations. ~ 4.0V VCC1 VCC2 0V VDD ~ 2.0V 0V Internal Reset 1024 System Clock Periods Required for Initialization 0V SCKI 0V System Clock Indeterminate or Inactive Figure 5. Power-Up Reset Timing Submit Documentation Feedback 17 PCM4104-EP www.ti.com SBAS419 – JUNE 2007 t RSTL > 40ns RST 0V Internal Reset 1024 System Clock Periods Required for Initialization 0V SCKI 0V Figure 6. External Reset Timing Internal Reset Analog Outputs HI LO Outputs are On Outputs are Muted Outputs are Muted for 1024 SCKI Periods Outputs are On Initialization Period Figure 7. Analog Output State for Reset Operations POWER-DOWN OPERATION The PCM4104 can be forced to a power-down state by applying a low level to the RST input for a minimum of 65,536 system clock cycles. In power-down mode, all internal clocks are stopped, and analog outputs are set to a high-impedance state. The system clock can then be removed to conserve additional power. In the case of system clock restart when exiting the power-down state, the clock should be restarted prior to a low-to-high transition of the reset signal at the RST input. The low-to-high transition of the reset signal initiates a reset sequence, as described in the Reset Operation section of this data sheet. In Software mode, two additional power-down controls are provided. The PDN12 and PDN34 bits are located in Control Register 6 and may be used to power-down channel pairs, with PDN12 corresponding to channels 1 and 2, and PDN34 corresponding to channels 3 and 4. This allows the user to conserve power when a channel pair is not in use. The power-down function is the same as described in the previous paragraph for the corresponding channel pair. Unlike the power-down function implemented using the RST input, setting a power-down bit will immediately power down the corresponding channel pair. When exiting power-down mode, either by forcing the RST input high or by setting the PDN12 or PDN34 bits low, the analog outputs will transition from the high-impedance state to the mute state, with the output level set to the bipolar zero voltage. There may be a small transient created by this transition, since internal capacitor charge can initially force the output to a voltage above or below bipolar zero, or external circuitry can pull the outputs to some other voltage level. Figure 8 illustrates the state of the analog outputs before, during, and after a power-down event. 18 Submit Documentation Feedback PCM4104-EP www.ti.com SBAS419 – JUNE 2007 VDD RST 0V Analog Outputs Outputs are On Outputs are Muted Outputs Transition from High Impedance to Muted State Outputs are High Impedance Outputs are On 1024 SCKI Periods Required for Initialization 65,536 SCKI Periods HI PDN12 PDN34 Analog Outputs LO Outputs Transition from High Impedance to Muted State Outputs are High Impedance Outputs are On 1024 SCKI Periods Required for Initialization Outputs are On Outputs are On Transitioning to Driven State Figure 8. Analog Output State for Power-Down Operations AUDIO SERIAL PORT The audio serial port provides a common interface to digital signal processors, digital interface receivers (AES3, S/PDIF), and other digital audio devices. The port operates as a slave to the processor, receiver, or other clock generation circuitry. Figure 9 illustrates a typical audio serial port connection to a processor or receiver. The audio serial port is comprised of four signal pins: BCK (pin 15), LRCK (pin 16), DATA0 (pin 17), and DATA1 (pin 18). DSP FSX CLKX PCM4104 LRCK BCK DX0 DATA0 DX1 DATA1 SCKI System Clock Figure 9. Audio Serial Port Connections for Left Justified, Right Justified, and I2S Formats Submit Documentation Feedback 19 PCM4104-EP www.ti.com SBAS419 – JUNE 2007 The LRCK pin functions as either the left/right word clock or the frame synchronization clock, depending upon the data format selected. The LRCK frequency is equal to the input sampling frequency (44.1 kHz, 48 kHz, 96 kHz, etc.). The BCK pin functions as the serial data clock input. This input is referred to as the bit clock. The bit clock runs at an integer multiple of the input sampling frequency. Typical multiples include 32, 48, 64, 96, 128, 192, and 256, depending upon the data format, word length, and system clock frequency selected. The DATA0 and DATA1 pins are the audio data inputs. When using Left Justified, Right Justified, or I2S data formats, the DATA0 pin carries the audio data for channels 1 and 2, while the DATA1 pin carries the audio data for channels 3 and 4. When using TDM data formats, DATA0 carries the audio data for all four channels, while the DATA1 input is ignored. The audio serial port data formats are shown in Figure 10, Figure 13, and Figure 14. Data formats are selected by using the FMT[2:0] bits in Control Register 7 in Software mode, or by using the FMT0 (pin 25), FMT1 (pin 26), and FMT2 (pin 27) inputs in Standalone mode. In Software mode, the user may also select the phase (normal or inverted) for the LRCK input, as well as the data sampling edge for the BCK input (either rising or falling edge). The reset default conditions for the Software mode are normal phase for LRCK and rising edge data sampling for BCK. The Left Justified, Right Justified, and I2S data formats are similar to one another, with differences in data justification and word length. The PCM audio data must be two's complement binary, MSB first. Figure 10 provides illustrations for these data formats. The TDM formats carry the information for four or eight channels on a single data line. The DATA0 input (pin 17) is used as the data input for the TDM formats. The data is carried in a time division multiplexed fashion; hence, the TDM acronym used to describe this format. Figure 12 shows the TDM connection of two PCM4104 devices. The data for each channel is assigned one of the time slots in the TDM frame, as shown in Figure 13 and Figure 14. The sub-frame assignment for each PCM4104 is determined by the state of the SUB input (pin 13). When SUB is forced low, the device is assigned to sub-frame 0. When SUB is forced high, the device is assigned to sub-frame 1. Ch. 1 (DATA0) or Ch. 3 (DATA1) Ch. 2 (DATA0) or Ch. 4 (DATA1) LRCK BCK DATA0 DATA1 MSB LSB MSB LSB (a) Left−Justified Data Format LRCK BCK DATA0 DATA1 MSB LSB MSB LSB (b) Right−Justified Data Format LRCK BCK DATA0 DATA1 MSB LSB MSB LSB (c) I2S Data Format 1/fS Figure 10. Left Justified, Right Justified, and I2S Data Formats 20 Submit Documentation Feedback PCM4104-EP www.ti.com SBAS419 – JUNE 2007 LRCK t LRBKD t BKLRD BCK (BCKE = 0) t BCKP t BCKHL BCK (BCKE = 1) DATA0 DATA1 t DS t DH PA R A M E TER t BCKP t BCKHL t LRBKD t BKLRD t DS t DH − D ES C R IP T IO N M IN MAX U N ITS BCK Cycle Time 70 ns BCK High/Low Time LRCK Edge to BCK Sampling Edge Delay BCK Sampling Edge to LRCK Edge Delay 30 10 10 ns ns ns Data Setup Time Data Hold Time LRCK Duty Cycle 10 10 50 ns ns % Figure 11. Audio Serial Port Timing for Left Justified, Right Justified, and I2S Data Formats Submit Documentation Feedback 21 PCM4104-EP www.ti.com SBAS419 – JUNE 2007 Device #1 (Sub−Frame 0) DSP PCM4104 FSX LRCK CLKX BCK DX DATA0 SUB SCKI Device #2 (Sub−Frame 1) PCM4104 LRCK BCK DATA0 SUB SCKI VCC System Clock Figure 12. TDM Connection TDM Data Formats − Long Frame Supported for Single and Dual Rate Sampling Modes Only LRCK Normal, Zero BCK Delay LRCK Normal, One BCK Delay LRCK Inverted, Zero BCK Delay LRCK Inverted, One BCK Delay DATA0 Supports 8 Channels, or two PCM4104 devices. Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8 Ch. 1 Ch. 2 Ch. 3 Ch. 4 Ch. 1 Ch. 2 Ch. 3 Ch. 4 Sub−Frame 0 (SUB = 0) Sub−Frame 1 (SUB = 1) One Frame BCK = 192f S or 256fS In the case of BCK = 192fS , each time slot is 24 bits long and contains the 24−bit audio data for the corresponding channel. In the case of BCK = 256fS , each time slot is 32 bits long and contains the 24−bit audio data for the corresponding channel. The audio data is left justified in the time slot, with the the least significant 8 bits of each time slot being don’t care bits. Audio data is always presented in two’s complement, MSB−first format. Figure 13. TDM Data Formats: Long Frame 22 Submit Documentation Feedback PCM4104-EP www.ti.com SBAS419 – JUNE 2007 TDM Data Formats − Short Frame All Sampling Modes Supported LRCK Normal, Zero BCK Delay LRCK Normal, One BCK Delay LRCK Inverted, Zero BCK Delay LRCK Inverted, One BCK Delay DATA0 Supports 4 Channels, or one PCM4104 device. Slot 1 Slot 2 Slot 3 Slot 4 Ch. 1 Ch. 2 Ch. 3 Ch. 4 One Frame BCK = 96fS or 128fS (the SUB pin is ignored when using a Short Frame) In the case of BCK = 96fS, each time slot is 24 bits long and contains the 24−bit audio data for the corresponding channel. In the case of BCK = 128fS, each time slot is 32 bits long and contains the 24−bit audio data for the corresponding channel. The audio data is left justified in the time slot, with the the least significant 8 bits of each time slot being don’t care bits. Audio data is always presented in two’s complement, MSB−first format. Figure 14. TDM Data Formats: Short Frame One Frame t LRCKP t BNF LRCK t BKBF t LRBKD BCK (BCKE = 0) BCK (BCKE = 1) DATA0 t DS t DH PA R A M E T ER D E SC R IPT IO N M IN MAX U N IT S t LRCKP LRCK pulse width 1/fBCK ns t LRBKD LRCK active edge to BCK sampling edge delay 12 ns t DS Data setup time 10 ns t DH Data hold time ns t BNF LRCK transition before new frame 10 1/fBCK t BKBF BCK sampling edge to new frame delay 12 ns ns Figure 15. TDM Timing Submit Documentation Feedback 23 PCM4104-EP www.ti.com SBAS419 – JUNE 2007 STANDALONE MODE CONFIGURATION Standalone mode is selected by forcing the MODE input (pin 8) low. Standalone mode operation provides a subset of the functions available in Software mode, while providing an option for a simplified control model. Standalone configuration is accomplished by either hardwiring or driving a small set of input pins with external logic or switches. Standalone mode functions include sampling mode and audio data format selection, an all-channel soft mute function, and digital de-emphasis filtering. The following paragraphs provide a brief description of each function available when using Standalone mode. Sampling Mode The sampling mode is selected using the FS0 (pin 28) and FS1 (pin 29) inputs. A more detailed discussion of the sampling modes was provided in an earlier section of this data sheet. Table 2 summarizes the sampling mode configuration for Standalone mode. Table 2. Sampling Mode Configuration FS1 FS0 SAMPLING MODE 0 0 Single Rate 0 1 Dual Rate 1 0 Quad Rate 1 1 - Not Used - Audio Data Format The audio data format is selected using the FMT0 (pin 25), FMT1 (pin 26), and FMT2 (pin 27) inputs. A detailed discussion of the audio serial port operation and the corresponding data formats was provided in the Audio Serial Port section on page 19. For Standalone mode, the LRCK polarity is always normal, while the serial audio data is always sampled on the rising edge of the BCK clock. Table 3 shows the audio data format configuration for Standalone mode. Table 3. Audio Data Format Configuration FMT2 FMT1 FMT0 AUDIO DATA FORMAT 0 0 0 24-bit left justified 0 0 1 24-bit I2S 0 1 0 TDM with zero BCK delay 0 1 1 TDM with one BCK delay 1 0 0 24-bit right justified 1 0 1 20-bit right justified 1 1 0 18-bit right justified 1 1 1 16-bit right justified Soft Mute Function The MUTE input (pin 10) may be used in either the Standalone or Software modes to simultaneously mute the four output channels. The soft mute function slowly ramps the digital output attenuation from its current setting to the mute level, minimizing or eliminating audible artifacts. Table 4 summarizes MUTE function operation. Table 4. Mute Function Configuration 24 MUTE ANALOG OUTPUTS 0 On (mute disabled) 1 Muted Submit Documentation Feedback PCM4104-EP www.ti.com SBAS419 – JUNE 2007 Digital De-Emphasis This is a global digital function (common to all four channels) and provides de-emphasis of the higher frequency content within the 20-kHz audio band. De-emphasis is required when the input audio data has been pre-emphasized. Pre-emphasis entails increasing the amplitude of the higher frequency components in the 20-kHz audio band using a standardized filter function in order to enhance the high-frequency response. The PCM4104 de-emphasis filters implement the standard 50/15 μs de-emphasis transfer function commonly used in digital audio applications. De-emphasis filtering is available for three input sampling frequencies in Single Rate sampling mode: 32 kHz, 44.1 kHz, and 48 kHz. De-emphasis is not available when operating in Dual or Quad Rate sampling modes. The de-emphasis filter is selected using the DEM0 (pin 12) and DEM1 (pin 11) inputs. Table 5 illustrates the de-emphasis filter configuration for Standalone mode. Table 5. Digital De-Emphasis Configuration DEM1 DEM0 DIGITAL DE-EMPHASIS MODE 0 0 Off (de-emphasis disabled) 0 1 48 kHz 1 0 44.1 kHz 1 1 32 kHz SOFTWARE MODE CONFIGURATION Software mode is selected by forcing the MODE input(pin 8) high. Software mode operation provides full access to the features of the PCM4104 by allowing the writing and reading of on-chip control registers. This is accomplished using the four-wire SPI port. The following paragraphs provide a brief description of each function available when using Software mode. Digital Attenuation The audio signal for each channel can be attenuated in the digital domain using this function. Attenuation settings from 0 dB (unity gain) to –119.5 dB are provided in 0.5 dB steps. In addition, the attenuation level may be set to the mute state. The rate of change for the digital attenuation function is one 0.5 dB step for every eight LRCK periods. Each channel has its own independent attenuation control, accessed using control registers 1 through 4. The reset default setting for all channels is 0 dB, or unity gain (no attenuation applied). Digital De-Emphasis The de-emphasis function is accessed through Control Register 5 using the DEM[1:0] bits. The reset default setting is that the de-emphasis is disabled for all four channels. De-emphasis filter operation is described in the Standalone Mode Configuration section of this data sheet. Soft Mute Each of the four D/A converter channels has its own independent soft mute control, located in Control Register 5. The reset default is normal output for all four channels with the soft mute function disabled. The MUTE input (pin 10) also functions in Software mode, with a high input forcing soft mute on all four channels. Zero Data Mute The PCM4104 includes a zero data detection and mute function in Software mode. This function automatically mutes a given channel when 1024 consecutive LRCK periods of all zero data are detected for that channel. The zero data mute function is enabled and disabled using the ZDM bit in Control Register 5. The zero data mute function is disabled by default on power up or reset. Submit Documentation Feedback 25 PCM4104-EP www.ti.com SBAS419 – JUNE 2007 Output Phase Reversal The PCM4104 includes an output phase reversal function, which provides the ability to invert the output phase for all four channels, either for testing or for matching various output circuit configurations. This function is controlled using the PHASE bit, located within Control Register 5. The output phase is set to noninverted by default on power up or reset. Sampling Mode Sampling mode configuration was discussed earlier in this data sheet, with Table 1 providing a reference for common sampling and system clock frequencies. The FS0 and FS1 bits located in Control Register 6 are used to set the sampling mode. The sampling mode defaults to Single Rate on power up or reset. Power-Down Modes The power-down control bits are located in Control Register 6. These bits are used to power down pairs of D/A converters within the PCM4104. The PDN12 bit is used to power down channels 1 and 2, while the PDN34 bit is used to power down channels 3 and 4. When a channel pair is powered down, it ignores the audio data inputs and sets its outputs to a high-impedance state. By default, the power-down bits are disabled on power up or reset. Software Reset This reset function allows a reset sequence to be initiated under software control. All control registers are reset to their default state. The reset bit, RST, is located in Control Register 6. Setting this bit to 1 initiates a one-time reset sequence. The RST bit is cleared by the initialization sequence. Audio Data Formats, LRCK Polarity, and BCK Sampling Edge Control Register 7 is used to configure the PCM4104 audio serial port. Audio serial port operation was discussed previously in this data sheet; refer to that section for more details regarding the functions controlled by this register. The control register definitions provide additional information regarding the register functions and their default settings. SERIAL PERIPHERAL INTERFACE (SPI) PORT OPERATION The SPI port is a four-wire synchronous serial interface that is used to access the on-chip control registers when the PCM4104 is configured for Software mode operation. The CDIN input (pin 23) is the serial data input for the port, while CDOUT (pin 24) is used for reading back control register contents in a serial fashion. The CS input (pin 21) functions as the chip select input, and must be forced low for register write or read access. The CCLK input (pin 22) functions as the serial data clock, used to clock data in and out of the port. Data is clocked into the port on the rising edge of CCLK, while data is clocked out of the port on the falling edge of CCLK. There are three modes of operation supported for the SPI port: Single Register, Continuous, and Auto-Increment. The Single Register and Continuous modes are similar to one another. In Continuous mode, instead of bringing the CS input high after writing or reading a single register, the CS input is held low and a new control byte is issued with a new address for the next write or read operation. Continuous mode allows multiple, sequential or nonsequential register addresses to be read or written in succession, as shown in Figure 16. Auto-Increment mode is designed for writing or reading multiple sequential register addresses. After the first register is written or read, the register address is automatically incremented by 1, so the next write or read operation is performed without issuing another control byte, as shown in Figure 17. Control Byte (or Byte 0) The control byte, or byte 0, is the first byte written to the PCM4104 SPI port when performing a write or read operation. The control byte includes bits that define the operation to be performed (read or write), the auto-increment mode status, and the control register address. The Read/Write bit, R/W, is set to 0 to indicate a register write operation, or set to 1 for a register read operation. 26 Submit Documentation Feedback PCM4104-EP www.ti.com SBAS419 – JUNE 2007 The Increment bit, INC, enables or disables the Auto-Increment mode of operation. When this bit is set to a 0, auto-increment operation is disabled, and the operation performed is either Single Register or Continuous. Setting the INC bit to 1 enables Auto-Increment operation. A two-bit key code, 10B, follows the INC bit and must be present in order for any operation to take place on the control port. Any other combination for these bits will result in the port ignoring the write or read request. The four-bit address field, A[3:0], is used to specify the control register address for the read or write operation, or the starting address for an Auto-Increment write or read operation. Set CS = 1 here for Single Register Operations Keep CS = 0 for writing or reading multiple registers in Continuous mode CS CDIN Control Byte Register Data Control Byte byte 0 byte 1 byte 0 Register Data CDOUT High Impedance byte 1 Register Data byte 1 byte N Register Data High Impedance byte 2 byte N CCLK Control Byte Definition (Byte 0) MSB R/W INC LSB 1 0 A3 A2 A1 A0 Register Address Auto −Increment Control: Set to 0 for Single Register or Continuous Operation Read/WriteControl: 0 = Write 1 = Read Figure 16. Single Register and Continuous Write or Read Operation Submit Documentation Feedback 27 PCM4104-EP www.ti.com SBAS419 – JUNE 2007 Keep CS = 0 for Auto−Increment Operation CS Control Byte Register Data byte 0 CDIN byte 1 byte 2 byte 3 byte N byte 2 byte 3 byte N Register Data CDOUT byte 1 High Impedance CCLK Control Byte Definition (Byte 0) MSB LSB R/W INC 1 0 A3 A2 A1 A0 Register Address Auto−Increment Control: Set to 1 for Auto−Increment Operation Read/WriteControl: 0 = Write 1 = Read Figure 17. Auto-Increment Write or Read Operation tDS tDH tCH CS CCLK CDIN CDOUT MSB High Impedance (Hi Z) LSB MSB t DO tCSZ PARAMETER DESCRIPTION MIN tDS CDIN Data Setup Time 5 ns tDH CDIN Data Hold Time 2 ns tCH CS Hold Time 2 ns t DO CDOUT Data Delay Time 5 ns tCSZ CS High to CDOUT Hi Z 5 ns Figure 18. SPI Port Timing 28 Submit Documentation Feedback MAX UNIT Hi Z PCM4104-EP www.ti.com SBAS419 – JUNE 2007 CONTROL REGISTER DEFINITIONS (Software Mode Only) The PCM4104 includes a small set of control registers, which are utilized to configure the full set of on-chip functions in Software mode. The register map is shown in Table 6. Register 0 is reserved for factory use and should not be written to for normal operation. Register 0 defaults to all zero data on power up or reset. Table 6. Control Register Map CONTROL REGISTER ADDRESS (Hex) MSB BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 LSB BIT 0 0 0 0 0 0 0 0 0 0 1 AT17 AT16 AT15 AT14 AT13 AT12 AT11 AT10 2 AT27 AT26 AT25 AT24 AT23 AT22 AT21 AT20 3 AT37 AT36 AT35 AT34 AT33 AT32 AT31 AT30 4 AT47 AT46 AT45 AT44 AT43 AT42 AT41 AT40 5 MUT4 MUT3 MUT2 MUT1 ZDM PHASE DEM1 DEM0 6 RST 0 0 0 PDN34 PDN12 FS1 FS0 7 0 0 BCKE LRCKP 0 FMT2 FMT1 FMT0 Register 1: Attenuation Control Register – Channel 1 BIT 7 (MSB) BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 (LSB) AT17 AT16 AT15 AT14 AT13 AT12 AT11 AT10 This register controls the digital output attenuation for Channel 1. Default: AT1[7:0] = 255, or 0 dB Let N = AT1[7:0]. For N = 16 to 255, Attenuation (dB) = 0.5 × (255 – N) or N = 0 to 15, Attenuation (dB) = Infinite (Muted) Register 2: Attenuation Control Register – Channel 2 BIT 7 (MSB) BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 (LSB) AT27 AT26 AT25 AT24 AT23 AT22 AT21 AT20 This register controls the digital output attenuation for Channel 2. Default: AT2[7:0] = 255, or 0 dB Let N = AT2[7:0]. For N = 16 to 255, Attenuation (dB) = 0.5 × (255 – N) or N = 0 to 15, Attenuation (dB) = Infinite (Muted) Register 3: Attenuation Control Register – Channel 3 BIT 7 (MSB) BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 (LSB) AT37 AT36 AT35 AT34 AT33 AT32 AT31 AT30 This register controls the digital output attenuation for Channel 3. Default: AT3[7:0] = 255, or 0 dB Let N = AT3[7:0]. For N = 16 to 255, Attenuation (dB) = 0.5 × (255 – N) or N = 0 to 15, Attenuation (dB) = Infinite (Muted) Submit Documentation Feedback 29 PCM4104-EP www.ti.com SBAS419 – JUNE 2007 Register 4: Attenuation Control Register – Channel 4 BIT 7 (MSB) BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 (LSB) AT47 AT46 AT45 AT44 AT43 AT42 AT41 AT40 This register controls the digital output attenuation for Channel 4. Default: AT4[7:0] = 255, or 0 dB Let N = AT4[7:0]. For N = 16 to 255, Attenuation (dB) = 0.5 × (255 – N) or N = 0 to 15, Attenuation (dB) = Infinite (Muted) Register 5: Function Control Register BIT 7 (MSB) BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 (LSB) MUT4 MUT3 MUT2 MUT1 ZDM PHASE DEM1 DEM0 This register controls various D/A converter functions, including de-emphasis filtering, output phase reversal, zero data mute, and per-channel soft muting. DEM[1:0] – Digital De-Emphasis De-emphasis is available for Single Rate mode only. De-emphasis is disabled for Dual and Quad Rate modes. DEM1 DEM0 De-Emphasis Selection 0 0 De-emphasis disabled (default) 0 1 De-emphasis for fS = 48 kHz 1 0 De-emphasis for fS = 44.1 kHz 1 1 De-emphasis for fS = 32 kHz PHASE – Output Phase PHASE Output Phase 0 Noninverted (default) 1 Inverted ZDM – Zero Data Mute ZDM Zero Mute 0 Disabled (default) 1 Enabled MUT[4:1] – Soft Mute MUTx D/A Converter Output 0 On (default) 1 Muted NOTE: x = channel number. 30 Submit Documentation Feedback PCM4104-EP www.ti.com SBAS419 – JUNE 2007 Register 6: System Control Register BIT 7 (MSB) BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 (LSB) RST 0 0 0 PDN34 PDN12 FS1 FS0 This register controls various system level functions of the PCM4104, including sampling mode, power down, and soft reset. FS[1:0] – Sampling Mode FS1 FS0 Sampling Mode 0 0 Single Rate (default) 0 1 Dual Rate 1 0 Quad Rate 1 1 - Not Used - PDN12 – Power-Down for Channels 1 and 2 PDN12 Power Down For Channels 1 And 2 0 Disabled (default) 1 Enabled PDN34 – Power-Down for Channels 3 and 4 PDN34 Power Down For Channels 3 And 4 0 Disabled (default) 1 Enabled RST – Software Reset (value defaults to 0) Setting this bit to 1 will initiate a logic reset of the PCM4104. This bit functions the same as an external reset applied at the RST input (pin 9). Submit Documentation Feedback 31 PCM4104-EP www.ti.com SBAS419 – JUNE 2007 Register 7: Audio Serial Port Control Register BIT 7 (MSB) BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 (LSB) 0 0 BCKE LRCKP 0 FMT2 FMT1 FMT0 This register is used to control the data format and clock polarity for the PCM4104 audio serial port. FMT[2:0] – Audio Data Format FMT2 FMT1 DEM0 Data Format 0 0 0 24-bit left justified (default) 0 0 1 24-bit I2S 0 1 0 TDM with zero BCK delay 0 1 1 TDM with one BCK delay 1 0 0 24-bit right justified 1 0 1 20-bit right justified 1 1 0 18-bit right justified 1 1 1 16-bit right justified LRCKP – LRCK Polarity (0 = Normal, 1 = Inverted). Defaults to 0. BCKE – BCK Sampling Edge (0 = Rising Edge, 1 = Falling Edge), Defaults to 0. 32 Submit Documentation Feedback PCM4104-EP www.ti.com SBAS419 – JUNE 2007 APPLICATION INFORMATION This section provides practical information for system and hardware engineers that are designing in the PCM4104. Basic Circuit Configurations Figure 19 and Figure 20 show typical circuit configurations for the PCM4104 operated in Standalone and Software modes. Power supply bypass and reference decoupling capacitors should be placed as close to the corresponding PCM4104 pins as possible. A common ground is shown in both figures, with the analog and digital ground pins connected to a common plane. Separate power supplies are utilized for the analog and digital sections, with 5 V required for the PCM4104 analog supplies and 3.3 V required for the digital supply. The 5 V analog supply may be derived from a higher valued, positive analog power supply using a linear voltage regulator, such as the REG103 available from Texas Instruments. The 3.3 V digital supply can be derived from a primary 5 V digital supply using a linear voltage regulator, such as the REG1117, also from TI. The PCM4104EVM evaluation module provides an example of how the common ground with separate supply approach can be successfully implemented. The PCM4104EVM User's Guide includes schematics and PCB layout plots for reference. The evaluation module is available through Texas Instruments' distributors and sales representatives, or may be ordered online through the TI eStore, which can be accessed through the TI home page at http://www.ti.com. The master clock generator supplies the system clock for the PCM4104, as well as the audio data source, such as a digital signal processor. The LRCK and BCK audio clocks should be derived from the system clock, in order to ensure synchronous operation. Analog Output Filter Circuits An external output filter is recommended for each differential output pair. The external output filter further reduces the out-of-band noise energy produced by the delta-sigma modulator, while providing band limiting suitable for audio reproduction. A 2nd-order Butterworth low-pass filter circuit with a –3 dB corner frequency from 50 kHz to 180 kHz is recommended. The configuration of the output filter circuit is dependent upon whether a single-ended or differential output is required. Single-ended outputs are commonly used in consumer playback systems, while differential or balanced outputs are used in many professional audio applications, such as recording or broadcast studios and live sound systems. Figure 21 illustrates an active filter circuit that uses a single op amp to provide both 2nd-order low-pass filtering and differential to single-ended signal conversion. This circuit is used on the PCM4104EVM evaluation circuit and meets the published typical Electrical Characteristics for dynamic performance. The single-ended output is convenient for connecting to both headphone and power amplifiers when used for listening tests. The quality of the op amp used is this circuit is important, as many devices will degrade the dynamic range and/or total harmonic distortion plus noise (THD+N) specifications for the PCM4104. An NE5534A is shown in Figure 21 and provides both low noise and distortion. Bipolar input op amps with equivalent specifications should produce similar measurement results. Devices that exhibit higher equivalent input noise voltage, such as the Texas Instruments OPA134 or OPA604 families, will produce lower dynamic range measurements (approximately 1 dB to 2 dB lower than the typical PCM4104 specification), while having little or no impact on the THD+N specification when measuring a full-scale output level. Figure 22 illustrates a fully-differential output filter circuit suitable for use with the PCM4104. The OPA1632 from Texas Instruments provides the fully differential signal path in this circuit. The OPA1632 features very low noise and distortion, making it suitable for high-end audio applications. Texas Instruments provides a free software tool, FilterProt, used to assist in the design of active filter circuits. The software supports design of multiple feedback (MFB), Sallen-Key, and fully differential filter circuits. FilterPro is available from the TI web site. Additionally, TI document number SBAF001A, also available from the TI web site, provides pertinent application information regarding the proper usage of the FilterPro program. Submit Documentation Feedback 33 PCM4104-EP www.ti.com SBAS419 – JUNE 2007 APPLICATION INFORMATION (continued) To Analog Output Filters(1) 48 VOUT1+ VOUT1− 47 46 45 44 43 42 41 40 39 38 VCOM2 VOUT3+ VOUT3− VCC2 VREF3+ VREF3− VREF2− VREF2+ VCC1 VOUT2− VOUT2+ VCOM1 (2) 37 1 36 2 35 3 34 4 33 5 32 AGND1 VREF1− (2) VREF1+ VOUT4− AGND2 NC VREF4− VREF4+ (2) NC 6 31 PCM4104 NC NC 7 30 8 29 9 28 10 27 11 26 12 25 MODE FS1 FS0 RST FMT2 MUTE FMT1 DEM1 DEM0 From Logic, µP, or DSP FMT0 23 24 CDOUT 22 CDIN 21 CCLK 20 CS 19 DGND 18 VDD 17 DATA1 16 DATA0 15 LRCK 14 BCK SUB 13 SCKI From Logic, µP, or DSP VOUT4+ +5.0V +3.3V Pin 19 0.1µF + 10µF Master Clock Generator Pin 40 Audio Data Source 0.1µF (1) Refer to NO TAG and NO TAG in this document. (2) Refer to NO TAG in this document for external connection requirements. Figure 19. Typical Standalone Mode Configuration 34 Submit Documentation Feedback + Pin 45 10µF 0.1µF + 10µF PCM4104-EP www.ti.com SBAS419 – JUNE 2007 APPLICATION INFORMATION (continued) To Analog Output Filters(1) 48 VOUT1+ VOUT1− 47 46 45 43 42 41 40 39 VCOM2 VOUT3+ VOUT3− VCC2 VREF3+ VREF3− VREF2+ 44 VREF2− VCC1 VOUT2− VOUT2+ VCOM1 (2) 38 37 1 36 2 35 3 34 4 33 5 32 6 31 AGND1 VREF1− (2) VREF1+ VREF4− VREF4+ (2) NC PCM4104 NC NC 7 30 8 29 9 28 10 27 11 26 12 25 FS1 MODE FS0 RST FMT2 MUTE FMT1 DEM1 DEM0 FMT0 Master Clock Generator Audio Data Source 23 24 CDOUT 22 CDIN 21 CCLK 20 CS 19 DGND 18 VDD 17 DATA0 16 DATA1 15 LRCK 14 BCK SUB 13 SCKI From Logic or Host Control VOUT4− AGND2 NC +3.3V VOUT4+ Host Control +5.0V +3.3V Pin 19 0.1µF + Pin 40 0.1µF 10µF + Pin 45 10µF 0.1µF + 10µF (1) Refer to NO TAG and NO TAG in this document. (2) Refer to NO TAG in this document for external connection requirements. Figure 20. Typical Software Mode Configuration Submit Documentation Feedback 35 PCM4104-EP www.ti.com SBAS419 – JUNE 2007 APPLICATION INFORMATION (continued) 1kΩ 560pF +12V 10µF + 0.1µF PCM4104 VOUTn− 100µF + VOUTn+ 22pF 100µF + 604Ω 499Ω 2 7 100Ω 604Ω 2200pF 499Ω NE5534A 3 4 1kΩ 6 0.1µF 560pF 10µF n = 1, 2, 3, or 4 + −12V Figure 21. Single-Ended Output Filter Circuit 36 Submit Documentation Feedback Filtered Output RCA or 1/4−inch Phone Jack PCM4104-EP www.ti.com SBAS419 – JUNE 2007 APPLICATION INFORMATION (continued) 1kΩ 560pF −15V 10µF + 0.1µF PCM4104 VOUTn+ VOUTn− Filtered Output 6 7 100µF + 604Ω 22pF 100µF + 604Ω 499Ω 8 EN 2200pF 5 1 VOCM 3 1 OPA1632 499Ω 100Ω 100Ω 4 2 3 2 Male XLR Connector 10µF n = 1, 2, 3, or 4 0.1µF + +15V 560pF 1kΩ Figure 22. Differential Output Filter Circuit Submit Documentation Feedback 37 PACKAGE OPTION ADDENDUM www.ti.com 18-Sep-2008 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty PCM4104IPFBREP ACTIVE TQFP PFB 48 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR V62/07643-01XE ACTIVE TQFP PFB 48 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR Lead/Ball Finish MSL Peak Temp (3) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF PCM4104-EP : • Catalog: PCM4104 NOTE: Qualified Version Definitions: • Catalog - TI's standard catalog product Addendum-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 18-Aug-2008 TAPE AND REEL INFORMATION *All dimensions are nominal Device PCM4104IPFBREP Package Package Pins Type Drawing TQFP PFB 48 SPQ Reel Reel Diameter Width (mm) W1 (mm) 1000 330.0 16.8 Pack Materials-Page 1 A0 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant 9.6 9.6 1.5 12.0 16.0 Q2 PACKAGE MATERIALS INFORMATION www.ti.com 18-Aug-2008 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) PCM4104IPFBREP TQFP PFB 48 1000 346.0 346.0 33.0 Pack Materials-Page 2 MECHANICAL DATA MTQF019A – JANUARY 1995 – REVISED JANUARY 1998 PFB (S-PQFP-G48) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 36 0,08 M 25 37 24 48 13 0,13 NOM 1 12 5,50 TYP 7,20 SQ 6,80 9,20 SQ 8,80 Gage Plane 0,25 0,05 MIN 0°– 7° 1,05 0,95 Seating Plane 0,75 0,45 0,08 1,20 MAX 4073176 / B 10/96 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Falls within JEDEC MS-026 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Amplifiers Data Converters DSP Clocks and Timers Interface Logic Power Mgmt Microcontrollers RFID RF/IF and ZigBee® Solutions amplifier.ti.com dataconverter.ti.com dsp.ti.com www.ti.com/clocks interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti-rfid.com www.ti.com/lprf Applications Audio Automotive Broadband Digital Control Medical Military Optical Networking Security Telephony Video & Imaging Wireless www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/medical www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/telephony www.ti.com/video www.ti.com/wireless Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated