LM49360 LM49360 Mono Class D Audio Codec PMU with Ground Referenced Headphone Amplifiers, Earpiece Driver, Audio DSP, 2 Step-Down DC-DC Converters, and 7 LDO Regulators Literature Number: SNAS501A December 1, 2011 Mono Class D Audio Codec PMU with Ground Referenced Headphone Amplifiers, Earpiece Driver, Audio DSP, 2 StepDown DC-DC Converters, and 7 LDO Regulators 1.0 General Description 4.0 Features The LM49360 combines a high performance mixed signal audio subsystem and power management unit (PMU) into a tiny 4.169mm x 3.99mm micro SMD package. The LM49360 includes a high quality stereo DAC, a high quality stereo ADC, a stereo headphone amplifier, which supports True Ground operation, a low EMI Class D loudspeaker amplifier, an earpiece speaker amplifier, two high efficiency buck converters, and seven LDO regulators. It combines advanced audio processing, conversion, mixing, amplification, and power management in the smallest possible footprint while extending the battery life of feature rich portable devices. The LM49360 features dual bi-directional I2S or PCM audio interfaces and an I2C compatible interface for control. This device can be configured as a sub-PMU for camera/multimedia modules or as a AP-PMU that powers the applications processor. The LM49360 employs advanced techniques to extend battery life, to reduce controller overhead, to speed development time, and to eliminate click and pop artifacts. Boomer audio power amplifiers are designed specifically for mobile devices and require minimal PCB area and external components. ■ Ultra efficient, spread spectrum Class D loudspeaker 2.0 Applications ■ ■ ■ ■ ■ Smart Phones Mobile Phones and VOIP Phones Portable GPS Navigator and Portable Gaming Devices Portable Media Players Digital Cameras/Camcorders 3.0 Key Specifications ■ PEP at A_VDD = 3.6V, 32Ω, 1% THD ■ PHP at HP_VDD = 2.8V, Stereo 32Ω, 60mW (typ) 70mW/ch (typ) 1% THD PLS at LS_VDD = 5V, 8Ω, 1% THD PLS at LS_VDD = 4.2V, 8Ω, 1% THD PLS at LS_VDD = 3.6V, 8Ω, 1% THD SNR (Stereo DAC at 48kHz) PSRR at 217 Hz, A_VDD = 3.6V, (HP from AUX) 1.3W (typ) 900mW (typ) 595mW (typ) 97dB (typ) 95dB (typ) ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ amplifier Low voltage, true ground headphone amplifier operation 2 high efficiency 700mA step-down DC/DC converters 2 low noise 400mA LDOs and 4 low noise 200mA LDOs 1 low noise 20mA High Input Low Output (HILO) LDO Programmable PMU startup sequence capability High performance 103dB SNR stereo DAC High performance 98dB SNR stereo ADC Up to 96kHz stereo audio playback Up to 48kHz stereo recording Dual bidirectional I2S or PCM compatible audio interfaces Read/write I2C compatible control interface Flexible digital mixer with sample rate conversion Sigma-delta PLL clock network that supports system clocks up to 50MHz including 13MHz, 19.2MHz, and 26MHz Stereo 5 band parametric equalizer Cascadable DSP effects that allow stereo 10 band parametric equalization ALC/Limiter/Compressor on both DAC and ADC paths Dedicated Earpiece Speaker Amplifier Stereo auxiliary inputs and mono differential input Differential microphone input with single-ended option Automatic level control for digital audio inputs, mono differential input, microphone input, and stereo auxiliary inputs Flexible audio routing from input to output 16 Step volume control for microphone with 2dB steps 32 Step volume control for auxiliary inputs in 1.5dB steps 4 Step volume control for class D loudspeaker amplifier 8 Step volume control for headphone amplifier Micro-power shutdown mode Available in the 4.169 x 3.99 mm 64 bump micro SMD package Boomer® is a registered trademark of National Semiconductor Corporation. © 2011 Texas Instruments Incorporated 301282 www.ti.com LM49360 Mono Class D Audio Codec PMU with Ground Referenced Headphone Amplifiers, Earpiece Driver, Audio DSP, 2 Step-Down DC-DC Converters, and 7 LDO Regulators LM49360 LM49360 5.0 LM49360 Overview 301282h8 FIGURE 1. LM49360 Block Diagram www.ti.com 2 LM49360 6.0 Typical Application 30128211 FIGURE 2. Sub PMU System Diagram 3 www.ti.com LM49360 30128216 FIGURE 3. AP PMU System Diagram www.ti.com 4 LM49360 LM49360 Default Voltage Options Outputs Max Output Current (mA) Buck1 Buck2 CONFIG = VBATT (SUB_PMU Mode) Default Voltage (V) Start-up Sequence Loads 700 1.0 t4(t0+32μs) CVDD _CORE 700 1.5 I2C CAM_CORE LDO1 400 1.8 t0 VDD_SDRAM LDO2 200 2.9 t0 VDD_I/O LDO3 400 3.3 t4(t0+32μs) VDD_PLL LDO4 200 1.8 I2C BT MODULE LDO5 200 2.6 I2C MINT LDO6 200 2.8 I2C CAM_I/O LDO7(HILO) 20 1.0 t4(t0+32μs) PW_CVDD Outputs Max Output Current (mA) Buck1 700 CONFIG = GND (AP-PMU Mode) Default Voltage (V) Start-up Sequence Loads 1.2 t0 TCC Core VT CAM I/O TCC 1.8 I/O Buck2 700 1.8 I2C LDO1 400 1.8 t4 (t0 + 256) MIC BIAS LDO2 200 2.6 I2C LDO3 400 2.8 t4 (t0 + 256) TCC 2.8 I/O LDO4 200 3.3 I2C DC MOTOR LDO5 200 3.3 t4 (t0 + 256) USB LDO6 200 2.8 t4 (t0 + 256) TFLASH LDO7(HILO) 20 1.5 t4 (t0 + 256) AP LDO ON(Memory) Outputs Max Output Current (mA) Buck1 Buck2 CONFIG = NC (CAM Application Mode) Default Voltage (V) Start-up Sequence 700 1.2 t0 ISP_CORE 700 1.2 t0 SENSOR_CORE LDO1 400 1.8 t5(t0 + 320) CAM SQRAM LDO2 200 2.8 t4 (t0 + 256) CAM DIGITAL & PLL LDO3 400 2.8 t3(t0 + 192) CAM AF (PIEZO) LDO4 200 1.8 t5(t0 + 320) CAM DIGITAL LDO5 200 2.8 t4 (t0 + 256) CAM ANALOG LDO6 200 2.8 t4 (t0 + 256) HOST I/F LDO7(HILO) 20 1.2 OVR OTHERS (1.2V) 5 Loads www.ti.com LM49360 Table of Contents 1.0 General Description ......................................................................................................................... 1 2.0 Applications .................................................................................................................................... 1 3.0 Key Specifications ........................................................................................................................... 1 4.0 Features ........................................................................................................................................ 1 5.0 LM49360 Overview .......................................................................................................................... 2 6.0 Typical Application ........................................................................................................................... 3 7.0 Connection Diagrams ..................................................................................................................... 10 7.1 PIN TYPE DEFINITIONS ........................................................................................................ 13 8.0 State Machine Description .............................................................................................................. 14 8.1 PMU STATE MACHINE DESCRIPTION .................................................................................... 14 8.2 AUDIO PMC STATE MACHINE DESCRIPTION ......................................................................... 16 8.2.1 State_0 (OFF) .............................................................................................................. 16 8.2.2 State_1 (BIAS) ............................................................................................................. 16 8.2.3 State_2 (AMPS ON) ..................................................................................................... 17 8.2.3.1 AMPLIFIER CONTROL FSM ............................................................................... 17 8.2.4 State_3 (UNMUTE) ...................................................................................................... 17 8.2.5 State_4 (ON) ............................................................................................................... 17 8.2.6 State_5 (MUTE) ........................................................................................................... 17 8.2.7 State_6 (AMPS_OFF) ................................................................................................... 17 8.2.8 State_7 (OFF) .............................................................................................................. 17 9.0 Absolute Maximum Ratings ............................................................................................................ 18 10.0 Operating Ratings ........................................................................................................................ 18 11.0 Total Shutdown Current Consumption ............................................................................................ 18 12.0 PMU Current Consumption ........................................................................................................... 18 13.0 Thermal Shutdown ....................................................................................................................... 19 14.0 Under Voltage Lock Out ............................................................................................................... 19 15.0 Logic and Control ........................................................................................................................ 19 16.0 Electrical Characteristics / Buck Converters ..................................................................................... 20 17.0 Electrical Characteristics / General LDOs 1 to 6 ............................................................................... 20 18.0 Electrical Characteristics / High Input Low Output LDO 7 .................................................................. 21 19.0 Electrical Characteristics / Audio CODEC: A_VDD = LS_VDD = 3.6V; HP_VDD = D_VDD = I/O_VDD = 1.8V .............................................................................................................................................. 22 20.0 Timing Characteristics: DVDD = I/OVDD = 1.8V ................................................................................ 27 21.0 Typical Performance Characteristics .............................................................................................. 29 22.0 System Control ............................................................................................................................ 38 22.1 INPUT POWER SEQUENCING .............................................................................................. 38 22.2 I2C SIGNALS ....................................................................................................................... 38 22.3 I2C DATA VALIDITY ............................................................................................................. 38 22.4 I2C START AND STOP CONDITIONS ..................................................................................... 38 22.5 TRANSFERRING DATA ........................................................................................................ 38 22.6 I2C TIMING PARAMETERS .................................................................................................. 40 22.7 POWER ON SEQUENCE ...................................................................................................... 40 23.0 Device Register Map .................................................................................................................... 46 24.0 Sleep Enables ............................................................................................................................ 51 25.0 LDO Flags and Bypass Pulse Control ............................................................................................. 52 26.0 Sequence and Voltage Programming (Banks 0 to 2) ........................................................................ 53 27.0 Basic PMC Setup Register ........................................................................................................... 64 28.0 PMC Clocks Register ................................................................................................................... 65 29.0 PMC Clock Divide Register ........................................................................................................... 65 30.0 LM49360 Clock Network .............................................................................................................. 66 31.0 PLL Setup Registers .................................................................................................................... 68 32.0 Analog Mixer Control Registers ..................................................................................................... 72 33.0 ADC Control Registers ................................................................................................................. 80 34.0 DAC Control Registers ................................................................................................................. 82 35.0 Digital Mixer Control Registers ...................................................................................................... 83 36.0 Audio Port Control Registers ......................................................................................................... 87 37.0 Digital Effects Engine ................................................................................................................... 94 38.0 DAC Effects Registers ................................................................................................................ 110 39.0 GPIO Registers ......................................................................................................................... 125 40.0 Schematic Diagram .................................................................................................................... 127 41.0 Demonstration Board Layout ....................................................................................................... 129 42.0 Revision History ........................................................................................................................ 133 43.0 Physical Dimensions .................................................................................................................. 134 www.ti.com 6 FIGURE 1. LM49360 Block Diagram ............................................................................................................. 2 FIGURE 2. Sub PMU System Diagram .......................................................................................................... 3 FIGURE 3. AP PMU System Diagram ........................................................................................................... 4 FIGURE 4. PMU State Machine .................................................................................................................. 15 FIGURE 5. LM49360 Audio PMC Sequencer Overview with Typical Timing. ............................................................ 16 FIGURE 6. Zero Cross Detect Comparator (ZXD) ............................................................................................ 17 FIGURE 7. I2C Signals: Data Validity ............................................................................................................ 38 FIGURE 8. I2C Start and Stop Conditions ...................................................................................................... 38 FIGURE 9. I2C Chip Address ..................................................................................................................... 38 FIGURE 10. Example I2C Write Cycle .......................................................................................................... 39 FIGURE 11. Example I2C Read Cycle .......................................................................................................... 39 FIGURE 12. I2C Timing Diagram ................................................................................................................ 39 FIGURE 13. Simplified Startup Sequence if CONFIG = H or Z (SUB_PMU) ............................................................. 40 FIGURE 14. Simplified Startup Sequence if CONFIG = L (PMU) .......................................................................... 41 FIGURE 15. LM493060A CONFIG = H Start-up Sequence ................................................................................. 42 FIGURE 16. LM49360A CONFIG = L Start-up Sequence ................................................................................... 43 FIGURE 17. LM49360A CONFIG = Z Start-up Sequence ................................................................................... 44 FIGURE 18. Typical PWM Operation ............................................................................................................ 54 FIGURE 19. Typical ECO Operation ............................................................................................................ 55 FIGURE 20. Internal Clock Network ............................................................................................................. 67 FIGURE 21. PLL Loop ............................................................................................................................ 68 FIGURE 22. Application Circuit for Headphone Detection ................................................................................... 78 FIGURE 23. Digital Mixer .......................................................................................................................... 83 FIGURE 24. I2S Serial Data Format (24 bit example) ........................................................................................ 87 FIGURE 25. Left Justified Data Format (24 bit example) .................................................................................... 87 FIGURE 26. Right Justified Data Format (24 bit example) .................................................................................. 87 FIGURE 27. PCM Serial Data Format (16 bit example) ...................................................................................... 87 FIGURE 28. Timing for I2S Master ............................................................................................................... 88 FIGURE 29. Timing for I2S Slave ................................................................................................................ 88 FIGURE 30. ADC DSP Effects Chain ........................................................................................................... 94 FIGURE 31. DAC DSP Effects Chain ........................................................................................................... 94 FIGURE 32. ALC Example ........................................................................................................................ 96 FIGURE 33. ALC Limiter ........................................................................................................................... 97 FIGURE 34. Audio Compressor Effect ........................................................................................................ 105 FIGURE 35. Soft Knee Example with Compression Ratio Setting of 1:3.4 ............................................................. 106 FIGURE 36. Demo Board Schematic .......................................................................................................... 127 FIGURE 37. Demo Board Schematic .......................................................................................................... 128 FIGURE 38. Top Silkscreen ..................................................................................................................... 129 FIGURE 39. Top Layer ........................................................................................................................... 129 FIGURE 40. Inner Layer 2 ....................................................................................................................... 130 FIGURE 41. Inner Layer 3 ....................................................................................................................... 130 FIGURE 42. Inner Layer 4 ....................................................................................................................... 131 FIGURE 43. Inner Layer 5 ....................................................................................................................... 131 FIGURE 44. Bottom Layer ...................................................................................................................... 132 FIGURE 45. Bottom Silkscreen ................................................................................................................. 132 List of Tables TABLE 1. PMU Register Map .................................................................................................................... TABLE 2. Audio Register Map .................................................................................................................... TABLE 3. Nonzero I2C Default Registers ....................................................................................................... TABLE 4. 0x00h PMU Setup ...................................................................................................................... TABLE 5. NV BANK (0x01h) ...................................................................................................................... TABLE 6. SLEEP 1 (0x02h) ....................................................................................................................... TABLE 7. FLAGS 1 (0x03h) ....................................................................................................................... TABLE 8. FLAGS 2 (0x04h) ....................................................................................................................... TABLE 9. BYPASS (0x05h) ....................................................................................................................... TABLE 10. SWOVR 1 (0x06h) .................................................................................................................... TABLE 11. SWOVR 2 (0x07h) .................................................................................................................... TABLE 12. ENB1Bank 0: CONFIG = Z (0x10h) Bank 1: CONFIG = H (0x20h)Bank 2: CONFIG = L (0x30h) ...................... TABLE 13. Buck 1 and Buck 2 Operation ...................................................................................................... TABLE 14. ENB2 Bank 0: CONFIG = Z (0x11h) Bank 1: CONFIG = H (0x21h)Bank 2: CONFIG = L (0x31h) ..................... TABLE 15. BK1VBank 0: CONFIG = Z (0x12h)Bank 1: CONFIG = H (0x22h)Bank 2: CONFIG = L (0x32h) ....................... TABLE 16. BK2V Bank 0: CONFIG = Z (0x13h)Bank 1: CONFIG = H (0x23h)Bank 2: CONFIG = L (0x33h) ...................... TABLE 17. LDO1 — 6 Bank 0: CONFIG = Z (0x14h:LDO1) → (0x19h:LDO6)Bank 1: CONFIG = H (0x24h:LDO1) → (0x29h:LDO6)Bank 2: CONFIG = L (0x34h:LDO1) → (0x39h:LDO6) ............................................................... TABLE 18. LDO7 Bank 0: CONFIG = Z (0x1Ah) Bank 1: CONFIG = H (0x2Ah)Bank 2: CONFIG = L (0x3Ah) .................... 7 46 47 50 51 51 51 52 52 52 52 53 53 55 55 56 56 59 60 www.ti.com LM49360 List of Figures LM49360 TABLE 19. THRESBank 0: CONFIG = Z (0x1Bh)Bank 1: CONFIG = H (0x2Bh)Bank 2: CONFIG = L (0x3Bh) ................... 61 TABLE 20. PLDWNBank 0: CONFIG = Z (0x1Ch)Bank 1: CONFIG = H (0x2Ch)Bank 2: CONFIG = L (0x3Ch) .................. 61 TABLE 21. OVRBank 0: CONFIG = Z (0x1Dh)Bank 1: CONFIG = H (0x2Dh)Bank 2: CONFIG = L (0x3Dh) ...................... 61 TABLE 22. SUBOVRBank 0: CONFIG = Z (0x1Eh)Bank 1: CONFIG = H (0x2Eh) ..................................................... 62 TABLE 23. I2C1 (0x40h) ........................................................................................................................... 62 TABLE 24. I2C2 (0x41h) ........................................................................................................................... 63 TABLE 25. BK1_FPWM (0x5Ah) ................................................................................................................. 63 TABLE 26. BK2_FPWM (0x5Eh) ................................................................................................................. 64 TABLE 27. PMC_SETUP (0x00h) ............................................................................................................... 64 TABLE 28. PMC_SETUP (0x01h) ............................................................................................................... 65 TABLE 29. PMC_SETUP (0x02h) ............................................................................................................... 65 TABLE 30. DAC Clock Requirements ........................................................................................................... 66 TABLE 31. ADC Clock Requirements ........................................................................................................... 66 TABLE 32. PLL Settings for Common System Clock Frequencies ......................................................................... 69 TABLE 33. PLL_CLOCK_SOURCE (0x03h) ................................................................................................... 70 TABLE 34. PLL_M (0x04h) ........................................................................................................................ 70 TABLE 35. PLL_N (0x05h) ........................................................................................................................ 70 TABLE 36. PLL_N_MOD (0x06h) ................................................................................................................ 71 TABLE 37. PLL_P1 (0x07h) ....................................................................................................................... 71 TABLE 38. PLL_P2 (0x08h) ....................................................................................................................... 71 TABLE 39. CLASS_D_OUTPUT (0x10h) ....................................................................................................... 72 TABLE 40. LEFT HEADPHONE_OUTPUT (0x11h) .......................................................................................... 72 TABLE 41. RIGHT HEADPHONE_OUTPUT (0x12h) ........................................................................................ 73 TABLE 42. AUX_OUTPUT (0x13h) .............................................................................................................. 73 TABLE 43. OUTPUT_OPTIONS (0x14h) ....................................................................................................... 74 TABLE 44. ADC_INPUT (0x15h) ................................................................................................................. 74 TABLE 45. MIC_INPUT (0x16h) ................................................................................................................. 75 TABLE 46. AUX_LEVEL (0x18h) ................................................................................................................. 76 TABLE 47. MONO_LEVEL (0x19h) .............................................................................................................. 77 TABLE 48. HP_SENSE (0x1Bh) ................................................................................................................. 79 TABLE 49. ADC Basic (0x20h) ................................................................................................................... 80 TABLE 50. ADC_CLK_DIV (0x21h) ............................................................................................................. 80 TABLE 51. ADC_MIXER (0x23h) ................................................................................................................ 81 TABLE 52. DAC Basic (0x30h) .................................................................................................................. 82 TABLE 53. DAC_CLK_DIV (0x31h) ............................................................................................................. 82 TABLE 54. Input Levels 1 (0x40h) ............................................................................................................... 84 TABLE 55. Input Levels 2 (0x41h) ............................................................................................................... 84 TABLE 56. Audio Port 1 Input (0x42h) .......................................................................................................... 85 TABLE 57. Audio Port 2 Input (0x43h) .......................................................................................................... 85 TABLE 58. DAC Input Select (0x44h) ........................................................................................................... 86 TABLE 59. Decimator Input Select (0x45h) .................................................................................................... 86 TABLE 60. BASIC_SETUP (0x50h/0x60h) ..................................................................................................... 89 TABLE 61. CLK_GEN_1 (0x51h/0x61h) ........................................................................................................ 89 TABLE 62. CLK_GEN_1 (0x52h/62h) ........................................................................................................... 90 TABLE 63. CLK_GEN_1 (0x53h/63h) ........................................................................................................... 90 TABLE 64. DATA_WIDTHS (0x54h/64h) ....................................................................................................... 91 TABLE 65. RX_MODE (0x55h/x65h) ............................................................................................................ 92 TABLE 66. TX_MODE (0x56h/x66h) ............................................................................................................ 93 TABLE 67. ADC EFFECTS (0x70h) ............................................................................................................. 95 TABLE 68. DAC EFFECTS (0x71h) ............................................................................................................. 95 TABLE 69. HPF MODE (0x80h) .................................................................................................................. 95 TABLE 70. ADC_ALC_1 (0x81h) ................................................................................................................. 98 TABLE 71. ADC_ALC_2 (0x82h) ................................................................................................................. 98 TABLE 72. ADC_ALC_3 (0x83h) ................................................................................................................. 99 TABLE 73. ADC_ALC_4 (0x84h) ............................................................................................................... 100 TABLE 74. ADC_ALC_5 (0x85h) ............................................................................................................... 101 TABLE 75. ADC_ALC_6 (0x86h) .............................................................................................................. 102 TABLE 76. ADC_ALC_7 (0x87h) .............................................................................................................. 102 TABLE 77. ADC_ALC_8 (0x88h) ............................................................................................................... 102 TABLE 78. ADC_L_LEVEL (0x89h) .......................................................................................................... 103 TABLE 79. ADC_R_LEVEL (0x8Ah) ........................................................................................................... 104 TABLE 80. SOFTCLIP1 (0x90h) ............................................................................................................... 107 TABLE 81. SOFTCLIP2 (0x91h) ............................................................................................................... 108 TABLE 82. SOFTCLIP3 (0x92h) ............................................................................................................... 109 TABLE 83. DAC_ALC_1 (0xA0h) .............................................................................................................. 109 TABLE 84. DAC_ALC_2 (0xA1h) .............................................................................................................. 110 TABLE 85. DAC_ALC_3 (0xA2h) .............................................................................................................. 111 TABLE 86. DAC_ALC_4 (0xA3h) ............................................................................................................. 112 TABLE 87. DAC_ALC_5 (0xA4h) ............................................................................................................. 113 www.ti.com 8 9 114 114 114 115 116 117 118 119 120 121 122 123 124 125 126 126 126 126 www.ti.com LM49360 TABLE 88. DAC_ALC_6 (0xA5h) ............................................................................................................. TABLE 89. DAC_ALC_7 (0xA6h) ............................................................................................................. TABLE 90. DAC_ALC_8 (0xA7h) .............................................................................................................. TABLE 91. DAC_L_LEVEL (0xA8h) .......................................................................................................... TABLE 92. DAC_R_LEVEL (0xA9h) .......................................................................................................... TABLE 93. EQ_BAND_1 (0xABh) ............................................................................................................. TABLE 94. EQ_BAND_2 (0xACh) ............................................................................................................. TABLE 95. EQ_BAND_3 (0xADh) ............................................................................................................. TABLE 96. EQ_BAND_4 (0xAEh) ............................................................................................................. TABLE 97. EQ_BAND_5 (0xAFh) .............................................................................................................. TABLE 98. SOFTCLIP1 (0xB0h) ............................................................................................................... TABLE 99. SOFTCLIP2 (0xB1h) ............................................................................................................... TABLE 100. SOFTCLIP3 (0xB2h) ............................................................................................................. TABLE 101. GPIO1 (0xE0h) .................................................................................................................... TABLE 102. GPIO2 (0xE1h) .................................................................................................................... TABLE 103. RESET (0xF0h) .................................................................................................................... TABLE 104. Spread Spectrum (0xF1h) ....................................................................................................... TABLE 105. FORCE (0xFE) .................................................................................................................... LM49360 7.0 Connection Diagrams 64 Bump micro SMD 64 Bump micro SMD Marking Order Number LM49360RL See NS Package Number RLA64JBA Top View XY — Date Code TT — Die Traceability G — Boomer N6 — LM49360RL 301282q7 30128250 LM49360RL Pinout Diagram 30128251 Top View (Bump Side Down) www.ti.com 10 Order Number Package Package DWG # Transport Media MSL Level Green Status LM49360RL 64 Bump micro SMDxt RLA64JBA 250 units on tape and reel 1 RoHS and no Sb/Br LM49360RLX 64 Bump micro SMDxt RLA64JBA 1000 units on tape and reel 1 RoHS and no Sb/Br 11 www.ti.com LM49360 Ordering Information LM49360 Pin Descriptions Pin Pin Name Type Direction A1 VINL1 Supply Input A2 LDO3 Supply Output A3 Description Input for LDO1 and LDO2 LDO3 Output OVR allows hardware override of the enabling of LDO1 thru LDO7, Buck 1 and Buck 2. The OVR control is enabled in the OVR and ENB2 registers. When bits in these registers are set, a high on OVR enables the corresponding voltage source. If CONFIG pin is high, the Bank 1 OVR register has LDO4_OVR bit set, via the EEPROM after power-up, allowing OVR enabling of LDO4. The functionality of OVR override is available in all modes (ie CONFIG pin L, H or Z). The OVR pin has an internal 500KΩ pull-down resistor. OVR Digital Input A4 LDO5 Supply Output A5 VINL3 Supply Input Inputs for LDO5, LDO6, LDO7(HILO) A6 PGND Supply Input PMU and LDO ground A7 PS_HOLD/SUBOVR Digital Input LDO5 Output CONFIG = Low: In AP_PMU mode, PS_HOLD is a power control input from an external processor. CONFIG = High or High Z: In sub-PMU mode, setting the SUBOVR/(BUCK2_EN) pin high enables BUCK2 and any combination of LDO1, 4, 5, 7 or Buck 1 that has its SUBOVR I2C register bit set to 1. In this configuration the SUBOVR(BUCK2_EN) pin has an internal 500kΩ pull-down resistor. A8 μPWR Supply Input Filter point for internal μPWR LDO B1 LDO1 Supply Output LDO1 Output B2 LDO2 Supply Output LDO2 Output B3 VINL2 Supply Input B4 LDO4 Supply Output LDO4 Output B5 LDO6 Supply Output LDO6 Output B6 LDO7 Supply Output LDO7 low current output used primarily for powering an external module's standby power input. Input for LDO3 and LDO4 B7 PWR_ON / EN Supply Input CONFIG = Low: In AP-PMU mode, PWR_ON = low enables standby mode and PWR_ON = high turns on the BUCK and LDO outputs. The PWR_ON pin expects to be driven by Vbatt via an external switch. CONFIG = High or High Z: In sub-PMU mode EN = low enables standby mode and EN = high turns on the BUCK and LDO outputs. The EN pin expects to be driven by an external processor. PWR_ON/EN has an internal 500kΩ pull-down resistor. B8 RESET_N / GPO Digital Output RESET_N is an open drain output that indicates that the BUCK and LDO supplies are stable. This pin can also be programmed as a general purpose output, GPO, in sub-PMU mode when CONFIG = High or High Z. C1 HPR Analog Output Headphone right output C2 A_VDD Supply Input DAC (Analog), ADC (Analog), PLL (Analog), input stages, analog mixer (AUX and class D), and Earpiece amplifier power supply input C3 AGND Supply Input DAC (Analog), ADC (Analog), PLL (Analog), input stages, analog mixer (AUX and class D), and Earpiece amplifier ground C4 DAC REF Analog Input/Output Filter point for the DAC reference C5 ADC REF Analog C6 SDA Digital C7 CONFIG Supply C8 DGND D1 HPL D2 AUX_R/AUX+ Analog Input Right analog input or positive differential auxiliary input D3 AUX_L/AUX- Analog Input Left analog input or negative differential auxiliary input D4 PORT2_SYNC Digital D5 PORT2_SDI Digital www.ti.com Input Filter point for the ADC reference. Connect this pin to A_VDD. Input/Output I2C interface data line Input Hardwire to DGND for Bank 2 AP-PMU operation. Hardwire to Vbatt for Bank 1 subPMU operation. Leave floating for Bank 0 sub-PMU operation. Supply Input Reserved pin, connect to DGND Analog Output Headphone left output Input/Output Audio Port 2 sync signal (can be master or slave) Input Audio Port 2 serial data input 12 Pin Name Type Direction Description D6 SCL Digital Input I2C D7 PVDD Supply Input PMU power supply input Reserved pin, connect to DGND D8 DGND Supply Input E1 HP_VSS Analog Output E2 HP_VDD Supply Input E3 EP-/AUXOUT- Analog Output LM49360 Pin interface clock line Negative power supply pin for the headphone amplifier Headphone amplifier power supply pin Earpiece negative output or Auxiliary negative output E4 PORT2_SDO / GPIO Digital Input / Output Audio port 2 serial data output or General Purpose Input Output E5 PORT2_CLK Digital Input/Output Audio port 2 clock signal (can be master or slave) E6 MCLK Digital Input E7 FB2 Supply Output E8 VINB2 Supply Input Input clock from 0.5MHz to 50 MHz Buck2 feedback. Active pull-down when Buck2 is off. Input for Buck2 F1 CP- Analog Input/Output Fly capacitor negative input F2 CP+ Analog Input/Output Fly capacitor positive input F3 EP+/AUXOUT+ Analog F4 PORT1_SYNC Digital F5 PORT1_SDO Digital Output F6 DGND Supply Input Digital ground F7 B2_GND Supply Input Buck2 ground Output Earpiece positive output or Auxiliary positive output Input/Output Audio Port 1 sync signal (can be master or slave) Audio Port 1 serial data output F8 SW2 Supply Output Buck2 switch output G1 LSGND Supply Input Loudspeaker ground G2 LSVDD Supply Input Loudspeaker amplifier supply input G3 MONO- Analog Input Mono differential negative input G4 MIC- Analog Input Microphone negative input G5 PORT1_SDI Digital Input Audio Port 1 serial data input G6 D_VDD Supply Input DAC (Digital), ADC (Digital), PLL (Digital), digital mixer, DSP core, and I2C register power supply input G7 FB1 Supply Output G8 VINB1 Supply Input H1 LS - Analog Output Loudspeaker negative output H2 LS + Analog Output Loudspeaker positive output H3 MONO+ Analog Input Mono differential positive input H4 MIC + Analog Input Microphone positive input H5 PORT1_CLK Digital H6 I/O_VDD Supply H7 B1_GND H8 SW1 Buck1 feedback. Active pull-down when Buck1 is off. Input for Buck1 Input/Output Audio Port 1 clock signal (can be master or slave) Input Digital I/O (MCLK, I2S/PCM, I2C) interface power supply input Supply Input Buck1 ground Supply Output Buck1 switch output 7.1 PIN TYPE DEFINITIONS Analog Input — A pin that is used by the analog and is never driven by the device. Supplies are part of this classification. Analog Output — A pin that is driven by the device and should not be driven by external sources. Analog Input/Output — A pin that is typically used for filtering a DC signal within the device. Pas- Digital Input — Digital Output — Digital Input/Output — 13 sive components can be connected to these pins. A pin that is used by the digital but is never driven by the device. A pin that is driven by the device and should not be driven by another device to avoid contention. A pin that is either open drain (SDA) or a bidirectional CMOS in/out. In the latter case the direction is selected by a control register within the LM49360. www.ti.com LM49360 is programmable, 8μs, 64μs, 128μs, and 256μs. The timing for each output can be set individually and can be different for each of the 3 modes. The output voltage is also programmable for each power output and can also be different for each of the 3 modes. In addition, the device supports various override modes if the user wants to optionally control an output or leave an output on when the rest of the device is disabled: 8.0 State Machine Description 8.1 PMU STATE MACHINE DESCRIPTION The device is based around a power sequencer with 8 selectable stages for powering up and down outputs. There are 3 modes of operation that use this sequencer with different settings, set by the config pin. Outputs are powered down in the opposite order from power up. The time between stages www.ti.com 14 LM49360 301282h9 FIGURE 4. PMU State Machine 15 www.ti.com LM49360 device to reach the ON state. A command to disable the device takes 0.75k clock cycles (2.2ms) to reach the OFF state. The stated times are based on using the low power internal oscillator, which is typically 350kHz but can vary by as much as 30%. The ENABLE bit drives a sequencer that is responsible for controlling bias circuits, clocking, click and pop and clean operation of the volume controls without requiring manual I2C commands, a simplified overview is shown below: 8.2 AUDIO PMC STATE MACHINE DESCRIPTION The basic premise of the audio section is that it should be configured in shutdown and enabled via the ENABLE register in 0x00h bit[0]. Once it has been enabled the CHIP_ACTIVE bit is set in 0x00h bit[7]. To disable the device the user should clear the ENABLE bit (0x00h bit[0]) and wait for the CHIP_ACTIVE(0x00h bit [7]) bit to clear before re-enabling the device. Sufficient time must be given for the state transitions to complete before issuing another command via I2C. A device enable command takes 8.5k clock cycles (typically 25ms) for the 30128259 FIGURE 5. LM49360 Audio PMC Sequencer Overview with Typical Timing. The Finite State Machine (FSM) can be clocked from a divided down MCLK, an I2S PORT or an internal 350kHz oscillator. The device will automatically control the internal clock gating of the MCLK and Oscillator clocks. The I2S clock inputs are not automatically gated to allow to digital bypass modes when the analog codec circuits are disabled. The FSM can be clocked faster if required - the maximum clock speed to the PMC is 14MHz. The user can use the internal oscillator for the PMC and it will only enable the oscillator when required (the low power oscillator is reused by many circuits in the device that require delays, the PMC controls when it should be enabled). If the PMC is not using the oscillator (i.e. PMC_CLK_SEL is set to MCLK) it will remain off unless another circuit requires it. The PMC will also automatically control the MCLK input buffer to reduce power on chip but the power spent driving the PCB trace to the MCLK pin makes the oscillator the preferred solution. The only advantage to using an external pin is where precise timing of the sequencer is needed. When an external clock is required it should not be removed until the device has reached the OFF condition. The function and timing of each stage is detailed below: www.ti.com 8.2.1 State_0 (OFF) In this state the internal clocks and oscillators are disabled (unless an OVR bit in register 0x00 is set). The device is unbiased and only leakage current is drawn from the supplies. The I2C port is controllable and all control registers are free to be changed. When the ENABLE bit is set the device enables either the MCLK pad or low power oscillator and waits 2 clock cycles before rechecking the ENABLE bit. If it is still set the device proceeds to STATE_1, otherwise the device remains in STATE_0 and the deglitching digital flip-flops are disabled and reset. 8.2.2 State_1 (BIAS) In state 1 the device enables its internal references and common mode points. The preamplifiers to analog inputs are enabled and the PMC starts to inject current into decoupling caps. The PMC clock is started and the clocking circuits are readied. The mixer and amplifiers remain muted. The device waits 8192 clock cycles (typically 23 to 24ms using the internal oscillator, enough time for the common mode points to reach vcm and start to settle without any audible click and pop or coupling back to driving circuits) before moving to the next stage. 16 8.2.3.1 AMPLIFIER CONTROL FSM The muting, unmuting and volume control is always handled by a separate state machine for each amplifier. This sec- 301282i0 FIGURE 6. Zero Cross Detect Comparator (ZXD) The controller waits 1ms for this comparator to stabilize then monitors the output of the comparator for a Zero Crossing Event. At this exact moment the new gain or mute/unmute condition is applied to the amplifier (in conjunction with any changes required to the rest of the analog mixer to ensure click and pop free operation). The comparator is then powered down. If no zero crossing occurs after 11ms (assume audio content at frequencies above 36Hz) the changes are applied regardless and the controller returns to a zero power state. The PMC leaves STATE_2 after 256 clock cycles (about 1ms). monitored for a falling edge. Once a deglitched falling edge is seen the FSM moves to state 5. 8.2.6 State_5 (MUTE) The output stages are muted first using the amplifier control FSM for each channel. The digital logic circuits are also muted and cleared at this stage. Once the amplifiers are muted and 1ms has passed (256 clock cycles) the PMU moves to state 6. CHIP_ACTIVE is cleared at this stage. 8.2.7 State_6 (AMPS_OFF) With the output stages muted the I/O amplifiers can be disabled, only the ADCs and DACs remain enabled, flushing out any residual data from their filters. The device waits another 256 clock cycles. 8.2.4 State_3 (UNMUTE) In state 3 the audio DACs and ADCs have been cleared and are unmuted then the digital and analog mixers are unmuted. The PMC leaves STATE_3 after 256 clock cycles (about 1ms). 8.2.8 State_7 (OFF) The Bias circuits are disabled and the common mode and reference bypass points are allowed to discharge. The MCLK and oscillator are disabled and power is leakage only. 8.2.5 State_4 (ON) The PMC now sets the CHIP_ACTIVE flag (0x00h bit[7]). The internal timers are all powered down. The ENABLE pin is 17 www.ti.com LM49360 ondary state machine notes a change in the requested state for each amplifier and requests a clock and a 10ms countdown from the PMC clock domain so it can proceed to safely change the gain of the amplifier. The amp control FSM checks the current gain and signal routing and if required (if zipper or click and pop is a risk) enables a small differential comparator on the output of the amp. 8.2.3 State_2 (AMPS ON) Once the common mode points have settled, the amplifiers power up with their inputs muted. Any calibration takes place at this stage. Protection circuits enable and the I/O amplifiers (not the analog mixer yet) are allowed to unmute once vcm has settled, ensuring better settling of the common mode throughout the muted mixer. LM49360 Human Body Model (Note 4) Machine Model (Note 5) Charged Device Model Junction Temperature Thermal Resistance θJA – RLA64 (soldered down to PCB with 2in2 1oz. copper plane) Soldering Information See Applications Note AN-1112. 9.0 Absolute Maximum Ratings (Note 1, Note 2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications. Analog Supply Voltage (A_VDD and LS_VDD) Digital Supply Voltage D_VDD I/O Supply Voltage I/O_VDD Headphone Supply Voltage HP_VDD Buck Input Supply Voltage VINB1, VINB2 LDO Input Supply Voltage VINL1, VINL2, VINL3 Storage Temperature Maximum Continuous Power Dissipation (Note 3) ESD Ratings 6.0V 2kV 150V 500V 150°C 60°C/W 2.2V 10.0 Operating Ratings 5.5V Ambient Temperature Range TA Supply Voltage A_VDD, ADCREF D_VDD I/O_VDD HP_VDD PVDD, LSVDD, VINB1 VINB2,VINL1,VINL2,VINL3 3.0V 6.0V 6.0V −65°C to +150°C 2.0W −40°C to +85°C 2.8V to 5.5V 1.6V to 2.0V 1.6V to 4.5V 1.7V to 2.8V 3.0V to 5.5V 11.0 Total Shutdown Current Consumption Unless otherwise noted, PVDD = VIN1 = VIN2 = VIN3 = VINB1 = VINB2 = 3.6V, CVINB1 = CVINB2 = 4.7µF, CVIN1 = CVIN2 = CVIN3 = 10µF, A_VDD = LS_VDD = 3.6V, HP_VDD = D_VDD = IO_VDD = 1.8V. Typical values and limits appearing in boldface type apply over the entire ambient temperature range for operation, TA = –40 to +85°C. (Note 7). Symbol Parameter Total Total Shutdown Current IQ (SHUTDOWN) Condition Min Typ Max Units 9.1 20 μA PMU Standby Conditions: All outputs disabled, (Note 12) Audio CODEC Conditions: Shutdown Mode, fMCLK = 13MHz, PLL Off 12.0 PMU Current Consumption Unless otherwise noted, PVDD = VIN1 = VIN2 = VIN3 = VINB1 = VINB2 = 3.6V, CVINB1 = CVINB2 = 4.7µF, CVIN1 = CVIN2 = CVIN3 = 10µF. Typical values and limits appearing in normal type apply for TJ = 25°C. Limits appearing in boldface type apply over the ambient junction temperature range for operation, TA = –40 to +85°C. (Note 7). Typ Max Units IQ (STANDBY) Symbol Standby Current All outputs disabled, (Note 12) 4.5 10.2 µA IQ(SLEEP) Current in SLEEP Mode at no load All outputs enabled 105 150 µA IQ (IDLE) Current at no load All outputs enabled 365 450 µA IQ (IDLE 1) Current at no load Only Buck 1 enabled 145 170 μA IQ (IDLE 2) Current at no load Only Buck 1, LDO1, LDO2, LDO3, and LDO6 enabled 250 300 μA www.ti.com Parameter Condition 18 Min The Thermal Shutdown (TSD) function monitors the chip temperature to protect the chip from temperature damage caused by excessive power dissipation. There are a total of three thermal monitors on the LM49360, with one monitoring the upper limit audio section, another acting as an early warning flag for the PMU section, and a third monitoring the upper limit of the PMU section. (Note 7). Symbol Parameter Condition Min Typ Max Units Upper Limit (Automatic) 160 °C Lower Limit (Acts as an early warning flag) 120 °C TSDPMU PMU Thermal Shutdown TSDAUDIO Audio Codec Thermal Shutdown (Automatic) 155 °C TSDHYST TSD Hysteresis 20 °C 14.0 Under Voltage Lock Out This device has Under Voltage Lock Out (UVLO) that checks the PVDD pin voltage before enabling any of the PMU outputs (LDO’s 1 thru 7, Buck 1 and Buck 2), this occurs during the PMU state machine DELAY (state 6). If the PVDD is below the UVLO threshold the PMU state machine returns to the STANDBY (state 3) and the PMU outputs remain disabled. If PVDD is greater than the UVLO threshold than the selected PMU outputs are enabled. Upon enabling the PMU outputs the PVDD pin voltage is continuously monitored to determine if it is above the UVLO threshold. If the PVDD drops below the UVLO threshold an UVLO_EVENT occurs and the PMU state machine returns to the STANDBY state and the PMU outputs are disabled. Symbol Parameter UVLO threshold Condition Min UVLO_VSEL = 1010b Hysteresis Typ Max Units 2.8 V 80 mV 15.0 Logic and Control Unless otherwise noted, PVDD = VIN1 = VIN2 = VIN3 = VINB1 = VINB2 = 3.6V, CVINB1 = CVINB2 = 4.7µF, CVIN1 = CVIN2 = CVIN3 = 10µF. Typical values and limits appearing in normal type apply for TJ = 25°C. Limits appearing in boldface type apply over the entire ambient temperature range for operation, TA = –40 to +85°C. (Note 7). Symbol Parameter Condition Min Typ Max Units MCLK, PORT1_CLK, PORT1_WS, PORT1 _SDI, PORT2_CLK, PORT2_WS, PORT2_SDI, PORT2_SDO/GPIO 0.3 x I/ O_VDD V SCL, SDA CONFIG 0.3 x VBATT V Logic and Control Inputs VIL VIH IIL Input Low Level Input High Level Input Low Level Current SCL, SDA, MCLK, PORT1_CLK, PORT1_WS, PORT1 _SDI, PORT2_CLK, PORT2_WS, PORT2_SDI, PORT2_SDO/GPIO 0.7x I/ O_VDD V CONFIG 0.7 x VBATT V SCL, SDA, PS_HOLD / SUBOVR (BUCK2_EN), PWR_ON / EN, OVR (LDO4_EN), CONFIG 0.1 0.5 µA 4.7 6.0 µA VIL = 0V IIH Input High Level Current PS_HOLD / SUBOVR (BUCK2_EN), PWR_ON VIH = VIN1 RPD Pull Down Resistance From PWR_ON / EN, PS_HOLD / SUBOVR (BUCK2_EN), OVR (LDO4_EN) 800 kΩ Logic and Control Outputs 19 www.ti.com LM49360 13.0 Thermal Shutdown LM49360 Symbol Parameter Condition Min Typ SDA, RESET_N, IOUT = 2mA VOL Output Low Level PORT1_SDO, PORT2_SDO/GPIO Units 0.4 V 0.3 x I/ O_VDD V Open Drain SDA, RESET_N VOH Max Output High Level PORT1_SDO, PORT2_SDO/GPIO 0.7 x I/O_VDD V 16.0 Electrical Characteristics / Buck Converters Unless otherwise noted, PVDD= VINB1 = VINB2 = 3.6V, CVINB1 = CVINB2 = 4.7µF. Typical values and limits appearing in normal type apply for TJ = 25°C. Limits appearing in boldface type apply over the entire ambient temperature range for operation, TA = –40 to +85°C. (Note 7, Note 8) Symbol Parameter Condition Min Max Units -3 3 % -3.7 3.7 % PWM Mode, No load VFB Feedback Voltage VOUT = 1.1V to 1.8V PWM Mode, No load VOUT = 0.6V to 1.0V Typ IQ_ECO ECO Mode IQ ECO Mode, FB = VIN, No Switching 60 229 µA IQ_PWM PWM Mode IQ PWM Mode, FB = VIN, No Switching 465 630 µA RDSON(P) Pin-Pin resistance for NMOS 170 200 mΩ RDSON(N) Pin-Pin resistance for NMOS 100 120 mΩ ILIM 1200 1360 mA 4.2 MHz VIN = VGS = 3.6V IOUT = 200mA VIN = VGS = 3.6V IOUT = -200mA Switch Peak Current Limit Open-loop, programmable tSTARTUP Start Up Time IOUT = 0mA to 100mA fSW Switching frequency PWM Mode 1020 50 3.8 4 µs 17.0 Electrical Characteristics / General LDOs 1 to 6 Unless otherwise noted, PVDD = VIN1 = VIN2 = VIN3 = 3.6V, GND = 0V, CVIN1 = CVIN2 = CVIN3 = 10µF. Typical values and limits appearing in normal type apply for TJ = 25°C. Limits appearing in boldface type apply over the entire ambient temperature range for operation, TA = –40 to +85°C. (Note 7) Symbol VOUT Parameter Output Voltage Accuracy Condition IOUT = 1mA, VOUT = 2.85V Min Max Units -2 2 % -3 3 % VOUT = 0V ISC Output Current Limit LDO1, LDO3 VOUT = 0V LDO2, LDO4, LDO5, LDO6 VDO Dropout Voltage IOUT = IMAX (Note 9) Typ 780 mA 400 mA 140 250 mV VOUT + 0.5V ≤ VIN ≤ 4.5V ΔVOUT Line Regulation IOUT = IMAX (Note 10) Load Regulation 1mA < IOUT < IMAX IMAX Max Output Current ISLEEP Max Output Current in sleep Mode www.ti.com 1.0 mV 4 mV LDO1, LDO3 400 440 mA LDO2, LDO4, LDO5, LDO6 200 250 mA 20 mA 20 Parameter Condition Min Typ Max Units 10Hz < f < 100kHz eN Output Voltage Noise IOUT = IMAX 13 µVRMS 36 dB IOUT = IMAX, COUT = 1µF 25 µs IOUT = IMAX (Note 11) 20 mV COUT = 1µF PSRR Power Supply Rejection Ratio tSTARTUP Start-up Time from Shutdown VTRANSIENT Start-up Transient Overshoot COUT External Output Capacitance for Stability f = 10KHz, COUT = 1µF IOUT = 20mA (Note 11) 0.6 1 20 µF 18.0 Electrical Characteristics / High Input Low Output LDO 7 Unless otherwise noted, PVDD = VIN3 = 3.6V, GND = 0V, CVIN3 = 10µF. Typical values and limits appearing in normal type apply for TJ = 25°C. Limits appearing in boldface type apply over the entire ambient temperature range for operation, TA = –40 to +85° C. (Note 7) Symbol Parameter Max Units IOUT = 1mA, VOUT = 1.2V Condition Min -2 2 % 3 % VOUT Output Voltage Accuracy IOUT = 1mA, VOUT = 1.2V, over temperature -3 IOUT Max Output Current VOUT + 0.5V < VIN3 < 5.5V 20 ISC Output Current Limit VOUT = 0V VDO Dropout Voltage ΔVOUT IOUT = 20mA mA 65 mV VOUT + 0.5V ≤ VIN3 ≤ 5.5V, IOUT = 20mA (Note 10) 0.5 mV Load Regulation 1mA < IOUT < 20mA 0.5 mV 53 µVRMS 90 µVRMS 35 dB 35 dB Output Voltage Noise IOUT = 20mA; No COUT 10Hz = f = 100kHz f = 10kHz, COUT = 1µF Power Supply Rejection Ratio IOUT = 2mA f = 10kHz, COUT = 1µF IOUT = 20mA tSTARTUP mA Line Regulation IOUT = 20mA; COUT = 10µF PSRR 40 110 54 (Note 9) 10Hz = f = 100kHz eN Typ Start-up Time from Shutdown IOUT = 20mA ; COUT = 1µF 60 µs IOUT = 0mA to 2mA –55 mV IOUT = 2mA to 0mA 55 mV IOUT = 20mA; COUT = 1μF(Note 11) 20 mV VLOADTRANS Load Transient Overshoot VTRANSIENT Start-up Transient Overshoot COUT External Output Capacitance for (Note 11) Stability 0.6 21 1 20 µF www.ti.com LM49360 Symbol LM49360 19.0 Electrical Characteristics / Audio CODEC: A_VDD = LS_VDD = 3.6V; HP_VDD = D_VDD = I/O_VDD = 1.8V (Note 1, Note 2) The following specifications apply for RL(LS) = 8Ω, RL(HP) = 32Ω, f = 1kHz, unless otherwise specified. Limits apply for TA = 25°C. LM49360 Symbol Parameter Conditions Typical (Note 6) Limit (Note 7) Units (Limit) DC CHARACTERISTICS (Digital current combines D_VDD and I/O_VDD. Analog current combines A_VDD, HP_VDD, and LS_VDD) DISD DIDD AISD Digital Shutdown Current Shutdown Mode, fMCLK = 13MHz, PLL Off Digital Active Current (MP3 Mode) 4 10 µA fMCLK = 11.2896MHz, fS = 44.1kHz, Stereo DAC On, OSRDAC = 64, PLL Off, HP On 1.2 1.4 mA (max) Digital Active Current (FM Mode) fMCLK = 13MHz Analog Audio modes 0.2 0.5 mA (max) Digital Active Current (FM Record Mode) fMCLK = 12.288MHz, fS = 48kHz, Stereo ADC On, OSRADC = 128, PLL Off, Stereo Analog Inputs On 1.3 1.5 mA (max) Digital Active Current (CODEC Mode) fMCLK = 12.288MHz, fS = 8kHz, Mono ADC On, Mono DAC On, OSRDAC = 64 OSRADC = 128, PLL Off, MIC On 0.7 0.8 mA (max) Analog Shutdown Current Shutdown Mode 0.1 9 μA (max) Analog Supply Current (MP3 Mode) fMCLK = 11.2896MHz, fS = 44.1kHz, Stereo DAC On, OSRDAC = 64, PLL Off, Stereo HP On From A_VDD 4.6 6 mA (max) From HP_VDD 1.7 2.7 mA (max) From A_VDD 1.8 2.6 mA (max) From HP_VDD 1.6 2.7 mA (max) Analog Supply Current (FM Record Mode) fMCLK = 12.288MHz, fS = 48kHz, Stereo ADC On, OSRADC = 128, PLL Off, Stereo Analog Inputs On 7.3 9.3 mA (max) Analog Supply Current (CODEC Mode) fMCLK = 12.288MHz, fS = 8kHz, Mono ADC On, Mono DAC On, OSRDAC = 64 OSRADC = 128, PLL Off, MIC On, EP On 7.0 8.7 mA (max) Analog Supply Current (FM Mode) AIDD fMCLK = 13MHz, PLL Off Stereo Auxiliary Inputs On, PLL Off, Stereo HP On fMCLK = 13MHz, fPLLOUT = 12MHz, PLL On only PLLIDD PLL Total Active Current From A_VDD 1.9 2.7 mA (max) From D_VDD 1.4 2 mA (max) HPIDD Headphone Quiescent Current Stereo HP On only 1.6 mA LSIDD Loudspeaker Quiescent Current LS On only 2.4 mA MICIDD Microphone Quiescent Current Mono MIC 0.4 mA From A_VDD 6.5 mA From D_VDD 1.4 mA From A_VDD 3.5 mA From D_VDD 1.0 mA fs = 48kHz, Stereo ADCIDD ADC Total Active Current fS = 48kHz, Stereo DACIDD www.ti.com DAC Total Active Current 22 Parameter Conditions AUXINIDD Mono/Auxiliary Input Amplifier Quiescent Current Mono and AUX Input Amplifiers enabled AUXOUTIDD Auxiliary Output Amplifier Quiescent AUXOUT enabled Current Earpiece Mode Typical (Note 6) Limit (Note 7) Units (Limit) 0.6 mA 0.5 mA 1.2 mA 87 % 0.06 % LOUDSPEAKER AMPLIFIER LSEFF Loudspeaker Efficiency THD+N Total Harmonic Distortion + Noise PO = 940mW, RL = 8Ω, LS_VDD = 4.2V PO = 300mW, f = 1kHz, RL = 8Ω, Mono Input Signal RL = 8Ω, f = 1kHz, THD+N = 1%, Mono Input Signal PO Output Power LS_VDD = 5V 1.3 LS_VDD = 4.2V 900 LS_VDD = 3.6V 595 Power Supply Rejection Ratio mW 555 mW (min) RL = 4Ω, f = 1kHz, THD+N = 1%, Mono Input Signal LS_VDD = 5V PSRR W 2.2 W LS_VDD = 4.2V 1.6 W LS_VDD = 3.6V 950 mW VRIPPLE = 200mVP-P fRIPPLE = 217Hz Mono Input Terminated VREF = 1.0μF, Input Referred LS Gain = 12dB 82 VRIPPLE = 200mVP-P fRIPPLE = 217Hz From DAC, DAC gain = 0dB 80 65 dB (min) dB Reference = VOUT (1% THD+N ), Mono gain = 0dB A-weighted, Mono Input Terminated, LS Gain = 8dB SNR Signal-to-Noise Ratio LS_VDD = 4.2V 92 LS_VDD = 3.6V 91 dB 85 dB (min) Reference = VOUT (1% THD+N ), DAC Gain = 0dB, A-weighted fS = 48kHz, OSR = 128 LS Gain = 8dB LS_VDD = 4.2V 84 dB LS_VDD = 3.6V 83 dB µV eOS Output Noise Mono gain = 0dB, A-weighted, Mono Input Terminated, Input Referred 90 VOS Offset Voltage Mono gain = 0dB, from Mono Input 10 50 mV (max) 0.03 0.1 % (max) 18.5 mW (min) HEADPHONE AMPLIFIERS PO = 15mW, f = 1kHz, THD+N Total Harmonic Distortion + Noise RL = 32Ω Stereo Analog Input Signal RL = 32Ω, f = 1kHz, THD+N = 1%, Stereo Analog Input Signal, In phase PO Headphone Output Power HP_VDD = 2.8V 70 HP_VDD = 1.8V 23 mW RL = 16Ω, f = 1kHz, THD+N = 1%, Stereo Analog Input Signal, In phase HP_VDD = 2.8V 70 mW HP_VDD = 1.8V 25 mW 23 www.ti.com LM49360 LM49360 Symbol LM49360 LM49360 Symbol Parameter Conditions Typical (Note 6) Limit (Note 7) Units (Limit) VRIPPLE = 200mVP-P, fRIPPLE = 217Hz, Mono Input Terminated Mono gain = 0dB VREF = 1.0μF, Mono Differential Input Mode, PSRR Power Supply Rejection Ratio Ripple applied to AVDD only 100 Ripple applied to AVDD and HPVDD 92 dB Ripple applied to AVDD HPVDD, and DVDD 90 dB Reference = VOUT (1% THD+N ) Gain = 0dB, A-weighted Stereo Inputs Terminated 95 90 dB (min) Reference = VOUT (1% THD+N), Gain = 0dB, A-weighted, I2S Input = Digital Zero 97 92 dB (min) Gain = 0dB, A-weighted, Stereo Inputs Terminated 12 µV Gain = 0dB, A-weighted, I2S Input = Digital Zero 13 µV PO = 7.5mW, f = 1kHz, RL = 32Ω Stereo Analog Input Signal 85 dB 0.03 dB 82 dB (min) VRIPPLE = 200mVP-P, fRIPPLE = 217Hz From DAC, DAC gain = 0dB SNR eOS Signal to Noise Ratio Output Noise XTALK Crosstalk ΔACH-CH Channel-to-Channel Gain Matching VOS Output Offset Voltage (Note 13) AUX Gain = 0dB From mono Input 0.25 1 mV (max) DAC Gain = 0dB From DAC Input, fMCLK = 12.288MHz 0.25 1 mV (max) AUX_LINE_OUT, f = 1kHz From Mono In RL = 5kΩ, VOUT = 1VRMS 0.006 % Earpiece mode, f = 1kHz, From Mono In RL = 32Ω BTL, POUT = 20mW 0.03 % Earpiece mode, f = 1kHz RL = 32Ω BTL, THD+N = 1% 60 AUXILIARY OUTPUT/EARPIECE AMPLIFIER THD+N POUT Total Harmonic Distortion Output Power 50 mW (min) VRIPPLE = 200mVP-P, fRIPPLE = 217Hz Mono Input terminated, CREF = 1.0μF AUX_LINE_OUT PSRR Power Supply Rejection Ratio 80 dB VRIPPLE = 200mVP-P, fRIPPLE = 217Hz Mono Input terminated, CREF = 1.0μF Earpiece mode, –6dB cut enabled 100 85 dB SNR Signal to Noise Ratio Gain = 0dB, VREF = VOUT (1% THD+N) A-weighted, Mono Input Terminated 101 dB ∈OUT Output Noise Gain = 0dB, VREF = VOUT (1% THD+N) A-weighted, Mono Input Terminated 11.4 μV MONO gain = 0dB, From Mono Input AUX_LINE_OUT 4.2 mV VOS TWU www.ti.com Output Offset Voltage Turn-On time Gain = 0dB, From Mono Input Earpiece mode 3 PMC Clock = 300kHz 29 24 10 mV (max) ms Parameter Conditions Typical (Note 6) Limit (Note 7) Units (Limit) STEREO ADC THD+NADC ADC Total Harmonic Distortion + Noise PBADC ADC Passband RADC ADC Ripple Mono Differential Input VIN = 1VRMS, f = 1kHz Gain = 0dB, fS = 48kHz HPF On, fS = 48kHz Lower -3dB Point ADCLEVEL ADC Signal to Noise Ratio % 220 Hz 0.41*fS kHz OSRDAC = 128 0.1 dB Reference = VOUT (0dBFS ) Gain = 6dB A-weighted From MIC, fS = 8kHz 96 dB Reference = VOUT (0dBFS ) Gain = 0dB A-weighted From Stereo Input, fS = 48kHz 98 dB 1.65 VRMS 0.015 % HPF On, Upper -3dB Point SNRADC 0.008 ADC Full Scale Input Level STEREO DAC I2S Input, AUXOUT, OSRDAC = 64 VIN = 500mFFSRMS, f = 1kHz Gain = 0dB THD+NDAC DAC Total Harmonic Distortion + Noise DACLEVEL DAC Full Scale Output Level 1.1 VRMS RDAC DAC Ripple 0.1 dB PBDAC DAC Passband Upper –3dB Point 0.45*fS kHz SNRDAC DAC Signal to Noise Ratio fS = 48kHz, A-weighted, AUXOUT 96 dB Minimum Gain –46.5 dB Maximum Gain 18 dB Minimum Gain –46.5 dB Maximum Gain 18 dB Minimum Gain –76.5 dB Maximum Gain 18 dB Minimum Gain –76.5 dB Maximum Gain 18 dB Minimum Gain 6 dB VOLUME CONTROL VCRAUX VCRMONO Stereo Input Volume Control Range MONO Input Volume Control Range VCRDAC DAC Volume Control Range VCRADC ADC Volume Control Range VCRMIC MIC Volume Control Range Maximum Gain 36 dB VCRLS Loudspeaker Amplifier Volume Control Range Minimum Gain 0 dB Maximum Gain 12 dB VCRHP Headphone Amplifier Volume Control Range Minimum Gain –18 dB Maximum Gain 0 dB SSLS Loudspeaker Amplifier Volume Control Stepsize 4 dB SSHP Headphone Amplifier Volume Control Stepsize Refer to Table 45 dB SSAUX AUX Input Volume Control Stepsize 1.5 dB SSMONO MONO Input Volume Control Stepsize 1.5 dB SSDAC DAC Volume Control Stepsize 1.5 dB SSADC ADC Volume Control Stepsize 1.5 dB SSMIC MIC Volume Control Stepsize 2 dB 25 www.ti.com LM49360 LM49360 Symbol LM49360 LM49360 Symbol Parameter Conditions Typical (Note 6) Limit (Note 7) Units (Limit) SVAUX AUX Volume Setting Variation ±1 dB (max) SVMONO MONO Volume Setting Variation ±1 dB (min) SVMIC MIC Volume Setting Variation ±1 dB (max) AUX Gain = 18dB 10 kΩ AUX Gain = 0dB 38 kΩ AUX Gain = –46.5dB 64 kΩ MONO Gain = 18dB 10 kΩ MONO Gain = 0dB 38 kΩ MONO Gain = –46.5dB 64 kΩ All MIC gain settings 50 kΩ ANALOG INPUTS AUX_RIN MONO_RIN MIC_RIN Auxiliary Input Impedance Mono Input Impedance Microphone Input Impedance Note 1: “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. All voltages are measured with respect to the ground pin, unless otherwise specified. LSVDD must always be the highest input power supply, LSVDD ≥ PVDD, AVDD, IOVDD, Vin and must be supplied first during initial power-up. Note 2: The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed. Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX, θJA, and the ambient temperature, TA. The maximum allowable power dissipation is PDMAX = (TJMAX - TA) / θJA or the number given in Absolute Maximum Ratings, whichever is lower. Note 4: Human body model, applicable std. JESD22-A114C. Note 5: Machine model, applicable std. JESD22-A115-A. Note 6: Typical values represent most likely parametric norms at TA = +25ºC, and at the Recommended Operation Conditions at the time of product characterization and are not guaranteed. Note 7: Datasheet min/max specification limits are guaranteed by test or statistical analysis. Note 8: The parameters in the electrical characteristic table are tested under open loop conditions at VIN = 3.6V unless otherwise specified. For performance over the input voltage range and closed loop condition, refer to the datasheet curves. Note 9: Dropout voltage is the voltage difference between the input and the output at which the output voltage drops to 100 mV below its nominal value. Note 10: The minimum input voltage equals Vout (nom) + 0.5V or 3.0V, which ever is greater. Note 11: This specification is guaranteed by design. Note 12: If CONFIG = L, the device can be placed in the standby state by de-asserting the PS_HOLD and PWR_ON pins as shown in Figure 14. If CONFIG = H or Z, the device can be placed in the standby state by de-asserting the EN pin as shown in Figure 13. None of the software Override (SWOVR) bits can be set or the device will not be in the standby state. Note 13: VOS is reduced through auto-calibration. The procedure to start auto-calibration is to make sure the audio section is disabled by setting chip enable = 0 in audio register 0x00. Select the audio path. Enable audio with chip enable = 1. Wait 500 microseconds for the calibration to complete. www.ti.com 26 LM49360 Symbol Parameter Conditions Typical (Note 6) Limit (Note 7) Units (Limit) PLL fIN PLL Input Frequency Range Minimum MCLK Frequency 0.5 MHz (min) Maximum MCLK Frequency 50 MHz (max) I2S MASTER TIMING I2S_CLKPER I2S_CLK Period I2S Master 81.38 ns tCLK_L I2S_CLK Low Time I2S Master 37 ns tCLK_H I2S_CLK High Time I2S Master 37 ns tWS_DLY WS Propagation Delay from I2S_CLK falling edge I2S Master 21 ns tSDO_DLY SDO Propagation Delay from I2S_CLK falling edge I2S Master 21 ns tDST SDI Setup Time to I2S_CLK Rising Edge I2S Master 20 ns tDHT SDI Hold Time to I2S_CLK Rising Edge I2S Master 20 ns I2S SLAVE TIMING I2S_CLKPER I2S_CLK Period I2S Slave tCLK_L I2S_CLK Low Time I2S tCLK_H I2S_CLK High Time tSDO_DLY SDO Propagation Delay from I2S_CLK falling edge I2S Slave tDST SDI Setup Time to I2S_CLK Rising Edge I2S Slave 20 ns (min) tDHT SDI Hold Time to I2S_CLK Rising Edge I2S Slave 20 ns (min) tWS_ST WS Setup Time to I2S_CLK Rising Edge I2S Slave 20 ns (min) tWS_HT WS Hold Time to I2S_CLK Rising Edge I2S Slave 20 ns (min) SCL Frequency 400 kHz (max) 1 Hold Time (repeated START Condition) 0.6 μs (min) 2 Clock Low Time 1.3 μs (min) 3 Clock High Time 600 ns (min) 4 Setup Time for a Repeated START Condition 600 ns (min) Output (LM49360 generated) 50 ns (min) Input (Master generated) 50 ns (min) 81.38 ns (min) Slave 37 ns (min) I2S Slave 37 ns (min) 21 ns CONTROL INTERFACE TIMING 5 Data Hold Time 6 Data Setup Time 100 ns (min) 7 Rise Time of SDA and SCL 300 ns (max) 8 Fall Time SDA and SCL 300 ns (max) 9 Setup Time for STOP Condition 600 ns (min) 27 www.ti.com LM49360 20.0 Timing Characteristics: DVDD = I/OVDD = 1.8V (Note 1, Note 2) The following specifications apply for RL(SP) = 8Ω, RL(HP) = 32Ω, f = 1kHz, unless otherwise specified. Limits apply for TA = 25°C. LM49360 LM49360 Parameter 10 Bus Free Time Between a STOP and START Condition 1.3 μs (min) CB Bus Capacitance 200 pF (max) www.ti.com Conditions Units (Limit) Symbol 28 Typical (Note 6) Limit (Note 7) LM49360 21.0 Typical Performance Characteristics Class D Loudspeaker Amplifier Efficiency vs Output Power THD+N < 10%, RL = 8Ω Green >> LSVDD = 3.6V Gray >> LSVDD = 4.2V Blue >> LSVDD = 5V DAC Frequency Response fS = 48kHz Blue >> OSR = 64 Light Blue >> OSR = 128 100 90 EFFICIENCY (%) 80 70 60 50 40 30 20 10 0 301282b3 0 400 800 1200 1600 2000 OUTPUT POWER (mW) 301282b2 DAC THD+N vs Frequency fS = 48kHz, OSR = 128 I2S Input = 500mFFS DAC Frequency Response fS = 8kHz Blue >> OSR = 64 Light Blue >> OSR = 128 30128277 301282b4 29 www.ti.com LM49360 DAC THD+N vs Frequency fS = 48kHz, OSR = 64 I2S Input = 500mFFS DAC THD+N vs Input Level fS = 48kHz, OSR = 64 I2S Input = 1kHz 30128285 301282b8 Stereo Audio ADC Frequency Response fS = 48kHz, OSR = 64 From MIC, MIC Gain = 6dB, CIN = 1µF Stereo Audio ADC Frequency Response fS = 8kHz, OSR = 128 From MIC, MIC Gain = 6dB, CIN = 1µF 301282b9 301282c0 Mono Voice ADC Frequency Response fS = 48kHz, OSR = 128 From MIC, MIC Gain = 6dB, CIN = 1µF Mono Voice ADC Frequency Response fS = 8kHz, OSR = 128 From MIC, MIC Gain = 6dB, CIN = 1µF 301282a0 www.ti.com 30128222 30 LM49360 Stereo Audio HPF ADC Frequency Response fS = 48kHz, OSR = 128 From MONO/AUX, MONO>AUX Gain = 0dB, CIN = 1µF Gray >> No HPF Green >> HPF Mode = '101' Light Blue >> HPF Mode = '110' Blue >> HPF Mode = '111' Mono Voice HPF ADC Frequency Response fS = 48kHz, OSR = 128 From MIC, MIC Gain = 6dB, CIN = 1µF Gray >> No HPF Yellow >> HPF Mode = '000' Light Green >> HPF Mode = '001' Green >> HPF Mode = '010' Light Blue >> HPF Mode = '011' Blue >> HPF Mode = '100' 301282a4 301282a5 Mono Voice HPF ADC Frequency Response fS = 8kHz, OSR = 128 From MIC, MIC Gain = 6dB, CIN = 1µF Gray >> No HPF Yellow >> HPF Mode = '000' Light Green >> HPF Mode = '001' Green >> HPF Mode = '010' Light Blue >> HPF Mode = '011' Blue >> HPF Mode = '100' ADC THD+N vs Frequency fS = 48kHz, OSR = 128 From MONO/AUX, MONO/AUX Gain = 0dB, VIN = 1VRMS 301282c5 301282a6 31 www.ti.com LM49360 ADC THD+N vs Frequency fS = 48kHz, OSR = 128 From MIC, MIC Gain = 6dB, VIN = 500mVRMS ADC THD+N vs Input Voltage fS = 48kHz, OSR = 128 From MONO/AUX, MONO/AUX Gain = 0dB, fIN = 1kHz 301282h6 301282a2 ADC THD+N vs Input Voltage fS = 48kHz, OSR = 128 From MIC, MIC Gain = 6dB, fIN = 1kHz Loudspeaker THD+N vs Frequency From MONO/AUX Input, MONO/AUX Gain = 0dB LS Gain = 8dB, POUT = 400mW, RL = 8Ω Blue >> LSVDD = 3.6V Light Blue >> LSVDD = 4.2V Green >> LSVDD = 5V 301282a3 301282h0 Loudspeaker THD+N vs Frequency From MONO/AUX Input, MONO/AUX Gain = 0dB LS Gain = 8dB, POUT = 400mW, RL = 4Ω Blue >> LSVDD = 3.6V Light Blue >> LSVDD = 4.2V Green >> LSVDD = 5V Loudspeaker THD+N vs Output Power From MONO/AUX Input, MONO/AUX Gain = 0dB LS Gain = 8dB, fIN = 1kHz, RL = 8Ω Blue >> LSVDD = 3.6V Light Blue >> LSVDD = 4.2V Green >> LSVDD = 5V 301282h1 www.ti.com 301282h2 32 Loudspeaker PSRR vs Frequency MONO/AUX Input, MONO/AUX Gain = 0dB, LS Gain = 12dB LSVDD = 3.6V, VRIPPLE = 200mVPP, Input Referred 30128274 301282h3 Loudspeaker PSRR vs Frequency Loudspeaker PSRR vs Frequency fS = 48kHz, OSR = 128 MONO/AUX Input, MONO/AUX Gain = 0dB, LS Gain = 12dB LSVDD = 5V, VRIPPLE = 200mVPP, Input Referred MONO/AUX Input, MONO/AUX Gain = 0dB, LS Gain = 12dB LSVDD = 4.2V, VRIPPLE = 200mVPP, Input Referred 30128276 30128275 HeadphoneTHD+N vs Frequency MONO/AUX, MONO/AUX Gain = 0dB, HP Gain = 0dB HPVDD = 3.3V, POUT = 15mW, RL = 32Ω Stereo In Phase Headphone PSRR vs Frequency DAC Input, DAC Gain = 0dB, LS Gain = 12dB LSVDD = 3.6V, AVDD = 3.6V, DVDD = 1.8V, VRIPPLE = 200mVPP Ripple on LSVDD, AVDD, DVDD, Input Referred 30128267 30128261 33 www.ti.com LM49360 Loudspeaker THD+N vs Output Power From MONO/AUX Input, MONO/AUX Gain = 0dB LS Gain = 8dB, fIN = 1kHz, RL = 4Ω Blue >> LSVDD = 3.6V Light Blue >> LSVDD = 4.2V Green >> LSVDD = 5V LM49360 Headphone THD+N vs Frequency MONO/AUX, MONO/AUX Gain = 0dB, HP Gain = 0dB HPVDD = 2.8V, POUT = 15mW, RL = 32Ω Stereo In Phase Headphone THD+N vs Frequency MONO/AUX, MONO/AUX Gain = 0dB, HP Gain = 0dB HPVDD = 1.8V, POUT = 15mW, RL = 16Ω Stereo In Phase 30128262 30128263 Headphone THD+N vs Frequency MONO/AUX, MONO/AUX Gain = 0dB, HP Gain = 0dB HPVDD = 2.8V, POUT = 15mW, RL = 16Ω Stereo in Phase Headphone PSRR vs Frequency MONO/AUX Input, MONO/AUX Gain = 0dB, HP Gain = 0dB HPVDD = 1.8V, AVDD = 3.6V, VRIPPLE = 200mVPP Ripple on HPVDD, AVDD 30128268 30128264 Headphone PSRR vs Frequency MONO/AUX Input, MONO/AUX Gain = 0dB, HP Gain = 0dB HPVDD = 1.8V, AVDD = 3.6V, VRIPPLE = 200mVPP Ripple on AVDD only Headphone PSRR vs Frequency DAC Input, DAC Gain = 0dB, HP Gain = 0dB HPVDD = 1.8V, AVDD = 3.6V, DVDD = 1.8V, VRIPPLE = 200mVPP Ripple on HPVDD, AVDD, DVDD 30128269 30128273 www.ti.com 34 Earpiece THD+N vs Frequency MONO/AUX Input, MONO/AUX Gain = 0dB, EP Gain = 0dB AVDD = 3.6V, POUT = 20mW, RL = 32Ω Earpiece Mode 301282e4 30128265 Earpiece PSRR vs Frequency Auxiliary Output THD+N vs Frequency MONO/AUX Input, MONO/AUX Gain = 0dB, EP Gain = –6dB MONO/AUX Input, MONO/AUX Gain = 0dB, EP Gain = 0dB AVDD = 3.6V, VRIPPLE = 200mVPP, Earpiece Mode AVDD = 3.6V, VOUT = 1VRMS, RL = 5kΩ AUXOUT Mode 301282e6 301282e7 Auxiliary Output THD+N vs Output Voltage MONO/AUX Input, MONO/AUX Gain = 0dB, EP Gain = 0dB AVDD = 3.6V, fIN = 1kHz, RL = 5kΩ AUXOUT Mode Auxiliary Output PSRR vs Frequency MONO/AUX Input, MONO/AUX Gain = 0dB, EP Gain = 0dB AVDD = 3.6V, VRIPPLE = 200mVPP, AUXOUT Mode 301282e8 30128266 35 www.ti.com LM49360 Headphone Crosstalk vs Frequency MONO/AUX Input, MONO/AUX Gain = 0dB, HP Gain = 0dB HPVDD = 1.8V, AVDD = 3.6V, POUT = 15mW, RL = 32Ω LM49360 Buck Load Transient VIN = 3.6V, VOUT = 2.0V, 1–400mA Load LDO Load Transient VIN = 3.6V, VOUT = 2.0V, 1–400mA Load COUT = 1μF LDO1, LDO3 301282g0 301282g1 LDO Load Transient VIN = 3.6V, VOUT = 2.0V, 1–400mA Load COUT = 10μF LDO1, LDO3 LDO Load Transient VIN = 3.6V, VOUT = 2.0V, 1–200mA Load COUT = 1μF LDO2, LDO4, LDO5, LDO6 301282g2 301282g3 LDO Load Transient VIN = 3.6V, VOUT = 2.0V, 1–200mA Load COUT = 10μF LDO2, LDO4, LDO5, LDO6 Buck Turn On Time VIN = 3.6V, Config = VBATT 301282g5 301282g4 www.ti.com 36 LM49360 Reset Timing VIN = 3.6V LDO Turn On Time VIN = 3.6V, Config = VBATT 301282g6 301282g7 LDO Output Ripple VIN = 3.6V, Buck 1 and 2 On LDO Output Ripple VIN = 3.6V, Buck 1 and 2 Off 301282g9 301282g8 37 www.ti.com LM49360 22.4 I2C START AND STOP CONDITIONS START and STOP conditions classify the beginning and the end of the I2C session. START condition is defined as SDA signal transitioning from HIGH to LOW while SCL line is HIGH. STOP condition is defined as the SDA transitioning from LOW to HIGH while SCL is HIGH. The I2C master always generates START and STOP bits. The I2C bus is considered to be busy after START condition and free after STOP condition. During data transmission, I2C master can generate repeated START conditions. First START and repeated START conditions are equivalent, function-wise. 22.0 System Control 22.1 INPUT POWER SEQUENCING The following input power supplies are normally connected to the battery voltage VBAT: LS_VDD, P_VDD, VIN_B1, VIN_B2, VIN_L1, VIN_L2, VIN_L3. The power to these supplies should always be the highest voltage and applied first. The remaining supplies: A_VDD, HP_VDD, D_VDD, and I/ O_VDD must be powered after the VBAT supplies or excessive current may be consumed. 22.2 I2C SIGNALS For I2C control the LM49360's SCL pin is used for the I2C clock and the SDA pin is used for the I2C data signal. Both of these signals require a pull-up resistor according to the I2C specification. The LM49360 requires two unique I2C slave addresses, with one address accessing the PMU related I2C registers and the other address accessing the audio related I2C registers. Since the LM49360 has three modes of PMU operation depending on the status of the CONFIG pin, the I2C address that accesses the PMU related I2C registers also depends on the status of the CONFIG pin. If CONFIG is tied to ground, the LM49360 operates in APPMU mode and the PMU related registers are accessed via the I2C chip address that is defined by 'PMU_L_I2C_ADDR' of I2C register 0x41h with a default address of 11111012. If CONFIG is tied to VBATTERY, the LM49360 operates in subPMU mode and the PMU related registers are accessed via the I2C address that is defined by 'PMU_H_I2C_ADDR' of I2C register 0x40h with a default address of 11111112. If CONFIG is left floating, the LM49360 operates in CAM mode and the PMU related registers are accessed via the I2C chip address that is defined by 'PMU_Z_I2C_ADDR' of I2C register 0x40h with a default address of 11111002. The audio related I2C registers are accessed via the I2C chip address that is defined by 'AUD_I2C_ADDR' of I2C register 0x41h with a default address of 00110102, independent of the status of the CONFIG pin. All of the LM49360's I2C chip addresses are selectable via I2C registers 0x40h and 0x41h in the PMU register space. 30128224 FIGURE 8. I2C Start and Stop Conditions 22.5 TRANSFERRING DATA Every byte put on the SDA line must be eight bits long, with the most significant bit (MSB) being transferred first. Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated by the master. The transmitter releases the SDA line (HIGH) during the acknowledge clock pulse. The receiver pulls down the SDA line during the 9th clock pulse, signifying an acknowledge. A receiver which has been addressed must generate an acknowledge after each byte has been received. After the START condition, the I2C master sends a chip address. This address is seven bits long followed by an eighth bit which is a data direction bit (R/W). For the eighth bit, a “0” indicates a WRITE and a “1” indicates a READ. The second byte selects the register to which the data will be written. The third byte contains data to write to the selected register. 22.3 I2C DATA VALIDITY The data on SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, state of the data line can only be changed when SCL is LOW. 30128225 FIGURE 9. I2C Chip Address 30128223 FIGURE 7. I2C Signals: Data Validity www.ti.com 38 LM49360 Register changes take effect at the SCL rising edge during the last ACK from slave. 30128226 w = write (SDA = “0”) r = read (SDA = “1”) ack = acknowledge (SDA pulled down by slave) rs = repeated start FIGURE 10. Example I2C Write Cycle When a READ function is to be accomplished, a WRITE function must precede the READ function, as shown in the Read Cycle waveform. 30128227 FIGURE 11. Example I2C Read Cycle 30128228 FIGURE 12. I2C Timing Diagram 39 www.ti.com LM49360 22.6 I2C TIMING PARAMETERS Symbol Parameter Limit Min Units Max 1 Hold Time (repeated) START Condition 0.6 µs 2 Clock Low Time 1.3 µs 3 Clock High Time 600 ns 4 Setup Time for a Repeated START Condition 600 5 Data Hold Time (Output direction, delay generated by LM49360) 300 900 ns 5 Data Hold Time (Input direction, delay generated by the Master) 0 900 ns 6 Data Setup Time 7 Rise Time of SDA and SCL 20+0.1CB 300 ns 8 Fall Time of SDA and SCL 15+0.1CB 300 ns 9 Set-up Time for STOP condition 600 10 Bus Free Time between a STOP and a START Condition 1.3 CB Capacitive Load for Each Bus Line 10 ns 100 ns ns µs 200 pF NOTE: Data guaranteed by design 22.7 POWER ON SEQUENCE 30128206 FIGURE 13. Simplified Startup Sequence if CONFIG = H or Z (SUB_PMU) www.ti.com 40 LM49360 30128207 FIGURE 14. Simplified Startup Sequence if CONFIG = L (PMU) • • • Note 1 : See detailed on/off sequence diagrams for the CONFIG options. Note 2 : To initiate the shutdown sequence PS_HOLD needs to be held low greater than 30ms before RESET_N is asserted low. The PMU then starts the shutdown sequence in the opposite order of the startup sequence. Note 3 : If PS_HOLD is not asserted within 1.5 seconds of the assertion of PWR_ON, the PMU will start the shutdown sequence and assert RESET_N. 41 www.ti.com LM49360 30128253 FIGURE 15. LM493060A CONFIG = H Start-up Sequence • • • • • • • tON : 256μs – Reference and bias turn ON. tS : Programmable time steps. (Typically 8μs.) time step accuracy is defined by OSC frequency accuracy. Note 1: START UP and SHUTDOWN sequences are defined by registers. Sequences given here are valid if there the registers are not rewritten via I2C. Note 2: The timing showed here define time points when LDOs and BUCK are enabled/disabled. Enabling / disabling process duration depends on voltages and loading conditions. Buck startup duration is typically 40μs, LDO startup duration is typically 50μs, and LDO7(HILO) startup duration is typically 70μs. For details please see LDOs and BUCK electrical specifications. Note 3: LDO4, LDO5 and LDO6 are enabled via I2C. These outputs will be disabled at ts = 0, when EN goes from High to Low. Note 4: Buck 2 is enabled by SUBOVR or I2C. If this input is high when EN goes to high then this output turns on after tS7. Note 5: Upon initial power-up the PMU registers are loaded with default values. Changes to the default values will be retained until device power is removed. Register values are retained when PMU outputs are disabled via EN going low. www.ti.com 42 LM49360 30128256 FIGURE 16. LM49360A CONFIG = L Start-up Sequence • • • • • • tBON : 256μs – Reference and bias turn ON. tS : Programmable time steps. (Typically 64μs) time step accuracy is defined by OSC frequency accuracy. Note 1: START UP and SHUTDOWN sequences are defined by registers. Sequences given here are valid if there the registers are not rewritten via I2C. Note 2: The timing showed here define time points when LDOs and BUCK are enabled/disabled. Enabling / disabling process duration depends on voltages and loading conditions. Buck startup duration is typically 40μs, LDO startup duration is typically 50μs, and LDO7(HILO) startup duration is typically 70μs. For details please see LDOs and BUCK electrical specifications. Note 3: Buck 2, LDO2, and LDO4 are enabled via I2C. Note 4: Upon initial power-up the PMU registers are loaded with default values. Changes to the default values will be retained until device power is removed. Register values are retained when PMU outputs are disabled via PS_HOLD going low. 43 www.ti.com LM49360 30128255 FIGURE 17. LM49360A CONFIG = Z Start-up Sequence • • • • • tBON : 256μs – Reference and bias turn ON tS : Programmable time steps. (Typically 64μs.) time step accuracy is defined by OSC frequency accuracy. Note 1: START UP and SHUTDOWN sequences are defined by registers. Sequences given here are valid if there the registers are not rewritten via I2C. Note 2: The timing showed here define time points when LDOs and BUCK are enabled/disabled. Enabling / disabling process duration depends on voltages and loading conditions. Buck startup duration is typically 40μs, LDO startup duration is typically 50μs, and LDO7(HILO) startup duration is typically 70μs. For details please see LDOs and BUCK electrical specifications. Note 3: LDO7 is enabled via I2C. www.ti.com 44 Note 4: Buck 2 is enabled by SUBOVR or I2C. If this input is high when EN goes to high then this output turn on after tS = 7. Note 5: Upon initial power-up the PMU registers are loaded with default values. Changes to the default values will be retained until device power is removed. Register values are retained when PMU outputs are disabled via EN going low. 45 www.ti.com LM49360 • • LM49360 23.0 Device Register Map TABLE 1. PMU Register Map Address Register Default Value 7 6 5 4 3 2 1 0 Basic Setup 0x00h PMU SETUP 0x01h NV BANKS SWOVR FORCE_ENABLE RESERVED RESERVED 0x02h SLEEP1 LDO4SLP LDO3SLP LDO2SLP LDO1SLP BK2SLP BK1SLP 0x03h FLAGS1 LDO6SLP LDO5SLP LDO6 LDO5 LDO4 LDO3 LDO2 LDO1 0x04h FLAGS2 UVLO _EVENT UVLO BK2 WAKE BK1 WAKE TSDL TSDH 0x05h BYPASS LDO6_BY LDO5_BY LDO4_BY LDO3_BY LDO2_BY LDO1_BY 0x06h SWOVR1 LDO6 SWOVR LDO5 SWOVR LDO4 SWOVR LDO3 SWOVR LDO2 SWOVR LDO1 SWOVR 0x07h SWOVR2 RSVD RSVD RSVD RSVD BK2 _SWOVR BK1 _SWOVR 0x10h ENB1 0xFFh LDO6_EN LDO5_EN LDO1_EN BK2_EN BK1_EN 0x11h ENB2 0x00h 0x12h BK1V 0x67h BK1_VSEL 0x13h BK2V 0x67h BK2_VSEL 0x14h LDO1 0xACh LDO1_DLY LDO1_VSEL 0x15h LDO2 0x99h LDO2_DLY LDO2_VSEL 0x16h LDO3 0x79h LDO3_DLY LDO3_VSEL 0x17h LDO4 0xACh LDO4_DLY LDO4_VSEL 0x18h LDO5 0x99h LDO5_DLY LDO5_VSEL 0x19h LDO6 0x99h LDO6_DLY 0x1Ah LDO7 0x07h LDO7_DLY BK2_RDY BK1_RDY UVLO _MASK RSVD SW LDO7 PSHOLD SWOVR BANK 0 CONFIG = Z (subPMU) BK2OVR LDO4_EN LDO7_EN 0x1Bh THRES 0x9Ah LDO7_PD RSVD 0x1Ch PLDWN 0xFFh LDO6_PD LDO5_PD LDO3_EN LDO2_EN BK2_DLY BK1_DLY LDO6_VSEL RSVD LDO7_VSEL TIMESTEP UVLO_VSEL LDO4_PD LDO3_PD LDO2_PD LDO1_PD LDO6OVR LDO5OVR LDO4OVR LDO3OVR LDO2OVR LDO1OVR LDO5 SubOVR LDO1 SubOVR 0x1Dh OVR 0x80h LDO7OV R 0x1Eh SubOVR 0x00h LDO7 SubOVR 0x20h ENB1 0x1Dh LDO6_EN LDO5_EN 0x21h ENB2 0x41h 0x22h BK1V 0x45h LDO4 SubOVR BK1 SubOVR BK2_PD BK1_PD BK1OVR RESET_MODE BANK 1 CONFIG = H (subPMU) BK2OVR LDO4_EN LDO7_EN LDO3_EN LDO2_EN LDO1_EN BK2_DLY BK1_DLY BK1_VSEL 0x23h BK2V 0x9Ah 0x24h LDO1 0x0Ch LDO1_DLY LDO1_VSEL 0x25h LDO2 0x1Bh LDO2_DLY LDO2_VSEL 0x26h LDO3 0x3Fh LDO3_DLY LDO3_VSEL 0x27h LDO4 0x0Ch LDO4_DLY LDO4_VSEL 0x28h LDO5 0x15h LDO5_DLY LDO5_VSEL 0x29h LDO6 0x19h LDO6_DLY 0x2Ah LDO7 0x2Bh LDO7_DLY 0x2Bh THRES www.ti.com BK2_EN BK2_VSEL 0x8Ah LDO7_PD RSVD LDO6_VSEL RSVD TIMESTEP 46 LDO7_VSEL UVLO_VSEL BK1_EN 7 0x2Ch PLDWN 0x2Dh OVR 0x00h 0x2Eh SubOVR /RESET 0x00h 6 5 0xFFh LDO6_PD LDO5_PD 4 3 2 1 LDO4_PD LDO3_PD LDO2_PD LDO1_PD LDO7 OVR LDO6OVR LDO5OVR LDO4OVR LDO3OVR LDO2OVR LDO1OVR LDO7 SubOVR LDO5 SubOVR LDO1 SubOVR LDO4 SubOVR BK1 SubOVR BK2PD 0 BK1PD BK1OVR RESET_MODE BANK 2 CONFIG = L (PMU Mode) 0x30h ENB1 0xD5h LDO6_EN LDO5_EN 0x31h ENB2 0x40h 0x32h BK1V 0x67h BK1_VSEL 0x33h BK2V 0xCDh BK2_VSEL 0x34h LDO1 0x8Ch LDO1_DLY LDO1_VSEL 0x35h LDO2 0x15h LDO2_DLY LDO2_VSEL 0x36h LDO3 0x99h LDO3_DLY LDO3_VSEL 0x37h LDO4 0x1Fh LDO4_DLY LDO4_VSEL 0x38h LDO5 0x9Fh LDO5_DLY LDO5_VSEL 0x39h LDO6 0x99h LDO6_DLY LDO6_VSEL 0x81h LDO7_DLY BK2OVR 0x3Ah LDO7 0x3Bh THRES 0x9Ah LDO7_PD RSVD 0x3Ch PLDWN 0xFFh LDO6_PD LDO5_PD 0x3Dh OVR 0x00h LDO7OV R LDO4_EN LDO3_EN LDO2_EN LDO7_EN LDO1_EN BK2_DLY BK2_EN BK1_EN BK1_DLY RSVD LDO7_VSEL TIMESTEP UVLO_VSEL LDO4_PD LDO3_PD LDO2_PD LDO1_PD BK2PD LDO6OVR LDO5OVR LDO4OVR LDO3OVR LDO2OVR LDO1OVR BK1PD BK1OVR I2C DEVICE ADDRESSES 0x40h I2C1 RSVD RSVD 0x41h I2C2 RSVD RSVD PMU_Z_I2C_ADDR PMU_H_I2C_ADDR AUD_I2C_ADDR PMU_L_I2C_ADDR BUCK MODE SELECTION 0x5Ah BK1_ FPWM FORCE_ PWM RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED 0x5Eh BK2_ FPWM FORCE_ PWM RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED TABLE 2. Audio Register Map Address Register 7 6 5 4 3 2 1 0 OSC ENB PLL_P2 ENB PLL ENB CHIP ENABLE BASIC SETUP 0x00h PMC SETUP 0x01h PMC CLOCKS 0x02h PMC CLK_DIV CHIP ACTIVE PORT2 CLK OVR PORT1 CLK OVR MCLK OVR PMC_CLK_SEL PMC_CLK_DIV(R) PLL 0x03h PLL_CLK_SEL 0x04h PLL M 0x05h PLL N 0x06h PLL N_MOD 0x07h PLL P 0x08h PLL P2 PLL M PLL N PLL P2[8] PLL P1[8] PLL N_MOD PLL P1 [7:0] PLL P2[7:0] ANALOG MIXER 0x10h CLASSD AUX_LS MONO_LS 47 DACL_LS DACR_LS www.ti.com LM49360 Default Value Address Register LM49360 Address Register 0x11h 7 6 5 4 HEAD PHONESL AUX_HPL MONO _HPL 0x12h HEAD PHONESR AUX_HPR MONO _HPR 0x13h AUX_OUT AUX_AUX MONO _AUX MIC_AUX 0x14h OUTPUT OPTIONS AUX_LINE _OUT AUX_NEG _6dB LR_HP_LEVEL 0x15h ADC MONO _ADCL AUX _ADCR MUTE SE/DIFF LS_LEVEL 0x16h MIC_LVL 0x18h AUXL_LVL SE/DIFF 0x19h MONO_LV AUXL_MON SE/DIFF O_IN 0x1Bh HP _SENSE 3 2 1 0 DACL_HPL DACR_HPL MIC_ADCL MIC_ADCR DACL _HPR DACR _HPR DACL_AUX DACR _AUX RSVD DACL _ADCL DACR _ADCR MIC_LEVEL AUX_LEVEL MONO_LEVEL HP SENSE HP SENSE _AUX_D _AUX HP SENSE_D HP SENSE ADC_OSR MONO ADC 0x20h ADC BASIC DSPONLY ADC_CLK_SEL MUTE_R MUTE_L 0x21h ADC CLOCK 0x23h ADC _MIXER 0x30h DAC _BASIC 0x31h DAC _CLOCK 0x40h IPLVL1 PORT2_RX_R_LVL PORT2_RX_L_LVL PORT1_RX_R_LVL PORT1_RX_L_LVL 0x41h IPLVL2 INTERP_L_LVL INTERP_R_LVL ADC_R_LVL ADC_L_LVL 0x42h OPPORT1 MONO SWAP R_SEL L_SEL 0x43h OPPORT2 MONO SWAP R_SEL 0x44h OPDAC ADCR PORT2R 0x45h OPDECI ADC_CLK_DIV (T) STEREO _LINK ADC_MIX_LEVEL_R ADC_MIX_LEVEL_L DAC DSPONLY DAC_CLK_SEL MUTE_R MUTE_L DAC_OSR DAC_CLK_DIV (S) DIGITAL MIXER SWAP PORT1R MXRCLK_SEL L_SEL ADCL R_SEL PORT2L PORT1L L_SEL AUDIO PORT 1 STEREO _SYNC _MODE STEREO _SYNC _PHASE 0x50h BASIC CLK_PH SYNC_MS 0x51h CLK_GEN1 0x52h CLK_GEN2 0x53h SYNC _GEN 0x54h DATA _WIDTH 0x55h RX_MODE A/ULAW COMPAND MSB_POSITION RX_MODE 0x56h TX_MODE A/ULAW COMPAND MSB_POSITION TX_MODE 0x60h BASIC STEREO _SYNC _MODE STEREO _SYNC _PHASE 0x61h CLK_GEN1 CLK_SEL CLK_MS TX_ENB RX_ENB STEREO HALF_CYCLE_DIVIDER SYNTH _DENOM SYNTH_NUM SYNC_WIDTH(MONO MODE) SYNC_RATE TX_WIDTH RX_WIDTH TX_EXTRA_BITS AUDIO PORT 2 www.ti.com CLK_PH SYNC_MS CLK_SEL CLK_MS TX_ENB HALF_CYCLE_DIVDER 48 RX_ENB STEREO Register 7 6 0x62h CLK_GEN2 0x63h SYNC _GEN 0x64h DATA _WIDTH 0x65h RX_MODE A/ULAW COMPAND 0x66h TX_MODE A/ULAW COMPAND 5 4 3 2 1 SYNTH_ DENOM SYNTH_NUM SYNC_WIDTH(MONO MODE) SYNC_RATE TX_WIDTH RX_WIDTH TX_EXTRA_BITS 0 MSB_POSITION RX_MODE MSB_POSITION TX_MODE EFFECTS ENGINE 0x70h ADC FX ADC SCLP ENB RSVD ADC PK ENB ADC ALC ENB ADC HPF_ENB 0x71h DAC FX DAC SCLP ENB RSVD DAC EQ ENB DAC PK ENB DAC ALC ENB 0x80h HPF 0x81h ADC ALC 1 0x82h ADC ALC 2 0x83h ADC ALC 3 ALC_TARGET_LEVEL 0x84h ADC ALC 4 ATTACK_RATE 0x85h ADC ALC 5 0x86h ADC ALC 6 0x87h ADC ALC 7 MAX_LEVEL 0x88h ADC ALC 8 MIN_LEVEL 0x89h ADC L LEVEL 0x8Ah ADC R LEVEL 0x90h SOFTCLIP 1 0x91h SOFTCLIP 2 RATIO 0x92h SOFTCLIP 3 LEVEL ADC EFFECTS HPF MODE SOURCE OVR SOURCE RSEL SOURCE LSEL STEREO LINK LIMITER ADC_SAMPLE NG_ENB NOISE_FLOOR PK_DECAY_RATE DECAY_RATE/RELEASE_RATE HOLDTIME STEREO LINK ADC_L_LEVEL ADC_R_LEVEL SOFT KNEE THRESHOLD ADC EFFECT MONITORS 0x98h LVLMONL ADC LEFT LEVEL MONITOR 0x99h LVLMONR ADC RIGHT LEVEL MONITOR 0x9Ah FXCLIP SCLP_R CLIP SCLP_L CLIP 0x9Bh ALCMONL SCLP_R DISTORT SCLP_L DISTORT ADC LEFT ALC MONITOR 0x9Ch ALCMONR SCLP_L DISTORT SCLP_R DISTORT ADC RIGHT ALC MONITOR GAIN _R CLIP GAIN _L CLIP ADC_R CLIP ADC_L CLIP DAC EFFECTS 49 www.ti.com LM49360 Address LM49360 Address Register 0xA0h 7 6 5 4 3 2 1 DAC ALC 1 STEREO LINK LIMITER 0xA1h DAC ALC 2 NG_ENB 0xA2h DAC ALC 3 AGC_TARGET_LEVEL 0xA3h DAC ALC 4 ATTACK_RATE 0xA4h DAC ALC 5 0xA5h DAC ALC 6 0xA6h DAC ALC 7 MAX_LEVEL 0xA7h DAC ALC 8 MIN_LEVEL 0xA8h DAC L LEVEL 0xA9h DAC R LEVEL 0 DAC_SAMPLE NOISE_FLOOR PK_DECAY_RATE DECAY_RATE/RELEASE_RATE HOLDTIME STEREO LINK DAC_L_LEVEL DAC_R_LEVEL 0xABh EQ BAND 1 LEVEL FREQ 0xACh EQ BAND 2 Q LEVEL FREQ 0xADh EQ BAND 3 Q LEVEL FREQ 0xAEh EQ BAND 4 Q LEVEL FREQ 0xAFh EQ BAND 5 LEVEL FREQ 0xB0h SOFTCLIP 1 SOFT KNEE 0xB1h SOFTCLIP 2 RATIO 0xB2h SOFTCLIP 3 LEVEL 0xB8h LVLMONL 0xB9h LVLMONR THRESHOLD DAC EFFECT MONITORS DAC LEFT LEVEL MONITOR DAC RIGHT LEVEL MONITOR 0xBAh FXCLIP SCLP_R CLIP SCLP_L CLIP EQ_R CLIP EQ_L CLIP 0xBBh ALCMONL SCLP_R DISTORT SCLP_L DISTORT DAC LEFT ALC MONITOR 0xBCh ALCMONR SCLP_L DISTORT SCLP_R DISTORT DAC RIGHT ALC MONITOR 0xE0h GPIO1 GPIO_RX GPIO_TX 0xE1h GPIO2 RSVD GAIN _R CLIP GAIN _L CLIP TEMP SHORT RSVD RSVD RSVD SS _DISABLE RSVD RSVD DACREF RSVD RSVD GPIO GPIO_MODE SPREAD SPECTRUM 0xF0h RESET 0xF1h SS 0xFEh FORCE SOFT _RESET RSVD CPFORCE Unless otherwise specified, the default values of the I2C registers is 0x00H. www.ti.com RSVD 50 LM49360 TABLE 3. Nonzero I2C Default Registers Address Register Default Data Value 0x02h PMC_CLK_DIV 0x50h 0x30h DAC_BASIC 0x02h 0x31h DAC_CLOCK 0x03h 0x84h ADC_ALC_4 0x0Ah 0x85h ADC_ALC_5 0x0Ah 0x86h ADC_ALC_6 0x0Ah 0x87h ADC_ALC_7 0x1Fh 0x89h ADC_L_LEVEL 0x33h 0x8Ah ADC_R_LEVEL 0x33h 0xA3h DAC_ALC_4 0x0Ah 0xA4h DAC_ALC_5 0x0Ah 0xA5h DAC_ALC_6 0x0Ah 0xA6h DAC_ALC_7 0x33h 0xA8h DAC_L_LEVEL 0x33h 0xA9h DAC_R_LEVEL 0x33h 0xF0h RESET 0x02h TABLE 4. 0x00h PMU Setup Bits Field 4:0 RSVD 6:5 FORCE _ENABLE 7 Description Reserved This determines the startup mode of the LM49360. FORCE_ENABLE SWOVR MODE 00 Selected by the CONFIG pin 01 Force Bank 0 (CAM) 10 Force Bank 1 (SUB_PMU) 11 Force Bank 2 (AP_PMU) If SWOVR (Software Override) is set, it allows PMU outputs to be enabled under I2C control of the SWOVR (Software Override) bits in I2C registers SWOVR 1 (0x06h) and SWOVR 2 (0x07h) TABLE 5. NV BANK (0x01h) Bits Field 7:0 RSVD Description Reserved 24.0 Sleep Enables TABLE 6. SLEEP 1 (0x02h) Bits Field 0 BK1_SLEEP If set, Buck 1 is set to sleep state. BK2_SLEEP If set, Buck 2 is set to sleep state. 1 Description 2 LDO1_SLEEP If set, LDO 1 is set to sleep state. 3 LDO2_SLEEP If set, LDO 2 is set to sleep state. 4 LDO3_SLEEP If set, LDO 3 is set to sleep state. 5 LDO4_SLEEP If set, LDO 4 is set to sleep state. 6 LDO5_SLEEP If set, LDO 5 is set to sleep state. 7 LDO6_SLEEP If set, LDO 6 is set to sleep state. 51 www.ti.com LM49360 25.0 LDO Flags and Bypass Pulse Control TABLE 7. FLAGS 1 (0x03h) Bits Field 0 LDO1_ERROR If 1 an error is present on this LDO. Description 1 LDO2_ERROR If 1 an error is present on this LDO. 2 LDO3_ERROR If 1 an error is present on this LDO. 3 LDO4_ERROR If 1 an error is present on this LDO. 4 LDO5_ERROR If 1 an error is present on this LDO. 5 LDO6_ERROR If 1 an error is present on this LDO. TABLE 8. FLAGS 2 (0x04h) Bits Field Description 0 TSDH Set if TSDH is reported from the analog. >160 degrees 1 TSDL Set if TSDL is reported from the analog. >120 degrees 2 BK1_WAKEUP Output from BK1 - should toggle in sleep mode when the BUCK wakes up momentarily to step back above the threshold. 3 BK2_WAKEUP Output from BK2 - should toggle in sleep mode when the BUCK wakes up momentarily to step back above the threshold. 4 RESERVED 5 UVLO_EVENT Reserved bit 6 BK1_RDY Reports if BK1 is above 90% of it's programmed output voltage. 7 BK2_RDY Reports if BK2 is above 90% of it's programmed output voltage. 1 = debounced UVLO event detected, 0 = UVLO not currently triggered. TABLE 9. BYPASS (0x05h) Bits Field 0 LDO1_BY 1 LDO2_BY 2 LDO3_BY 3 LDO4_BY 4 LDO5_BY 5 LDO6_BY 6 RSVD 7 UVLO_MASK Description If set, the internal reference filter is bypassed. Set this bit high for 1ms after changing VSEL if the output voltage needs to be adjusted while the LDO is enabled. Otherwise the internal filter will slow the transition time to over a second. This is performed automatically every time the LDO is enabled, only use the filter bypass when adjusting VSEL when the LDO is enabled." Reserved If set, the effects of the UVLO trigger are Ignored by the state machine. This can be useful if the user wishes to determine the current battery voltage without powering up an ADC. The UVLO trigger level can be increased until the I2C reports a UVLO event, the level can then be changed back and the mask cleared to return to normal operation. TABLE 10. SWOVR 1 (0x06h) Bits www.ti.com Field Description 0 LDO1_SWOVR If set, LDO1 will enable when SWOVR is set and the device is in Standby state or above. 1 LDO2_SWOVR If set, LDO2 will enable when SWOVR is set and the device is in Standby state or above. 2 LDO3_SWOVR If set, LDO3 will enable when SWOVR is set and the device is in Standby state or above. 3 LDO4_SWOVR If set, LDO4 will enable when SWOVR is set and the device is in Standby state or above. 4 LDO5_SWOVR If set, LDO5 will enable when SWOVR is set and the device is in Standby state or above. 52 Field Description 5 LDO6_SWOVR If set, LDO6 will enable when SWOVR is set and the device is in Standby state or above. 6 LDO7_SWOVR If set, the LDO7 will enable when SWOVR is set and the device is in Standby state or above. 7 SW_PSHOLD Can be used in AP_PMU mode as an alternative to raising the PS_HOLD pin. TABLE 11. SWOVR 2 (0x07h) Bits Field Description 0 BK1_SWOVR If set, Buck 1 will enable when SWOVR is set and the device is in Standby state or above. 1 BK2_SWOVR If set, Buck 2 will enable when SWOVR is set and the device is in Standby state or above. 5:2 RSVD Reserved 26.0 Sequence and Voltage Programming (Banks 0 to 2) TABLE 12. ENB1 Bank 0: CONFIG = Z (0x10h) Bank 1: CONFIG = H (0x20h) Bank 2: CONFIG = L (0x30h) Bits Field 0 BK1_ENABLE If set, Buck 1 is enabled at timestep BUCK1_DLY. Description 1 BK2_ENABLE If set, Buck 2 is enabled at timestep BUCK2_DLY. 2 LDO1_ENABLE If set, LDO 1 is enabled at timestep LDO1_DLY. 3 LDO2_ENABLE If set, LDO 2 is enabled at timestep LDO2_DLY. 4 LDO3_ENABLE If set, LDO 3 is enabled at timestep LDO3_DLY. 5 LDO4_ENABLE If set, LDO 4 is enabled at timestep LDO4_DLY. 6 LDO5_ENABLE If set, LDO 5 is enabled at timestep LDO5_DLY. 7 LDO6_ENABLE If set, LDO 6 is enabled at timestep LDO6_DLY. Note: Do not set these registers to 0x00. At least one regulator must remain enabled for proper operation. BUCK INFORMATION The LM49360 has two integrated high efficiency step-down DC-DC switching buck converters that deliver a constant voltage from a single cell battery to portable devices. Using voltage mode architecture with synchronous rectification, the buck has the ability to deliver up to 800mA depending on the input voltage and output voltage, ambient temperature, and the inductor chosen. There are two modes of operation depending on the current required - PWM (Pulse Width Modulation), ECO (ECOnomy) mode. The device operates in PWM mode at load currents of approximately 50mA (typ.) or higher. Lighter output current loads cause the device to automatically switch into ECO mode for reduced current consumption and a longer battery life. Additional features include soft-start, under voltage protection, current overload protection, and thermal shutdown protection. Only three external power components are required for implementation. Buck Circuit Operation The switching buck converter operates as follows. During the first portion of each switching cycle, the control block in the LM49360 turns on the internal PMOS switch. This allows current to flow from the input through the inductor to the output filter capacitor and load. The inductor limits the current to a ramp with a slope of (VIN–VOUT)/L, by storing energy in a magnetic field. During the second portion of each cycle, the controller turns the PMOS switch off, blocking current flow from the input, and then turns the NMOS synchronous rectifier on. The inductor draws current from ground through the NMOS to the output filter capacitor and load, which ramps the inductor current down with a slope of –VOUT/L. The output filter stores charge when the inductor current is high, and releases it when low, smoothing the voltage across the load. The output voltage is regulated by modulating the PMOS switch on time to control the average current sent to the load. The effect is identical to sending a duty-cycle modulated rectangular wave formed by the switch and synchronous rectifier at the SW pin to a low-pass filter formed by the inductor and output filter capacitor. The output voltage is equal to the average voltage at the SW pin. 53 www.ti.com LM49360 Bits LM49360 ENABLING AND DISABLING VOUT Do not power down all voltage outputs via the I2C register ENB1 (LDO1, 2, 3, 4, 5, 6, Buck 1 and Buck 2) and I2C register ENB2 (LDO 7). It is recommended to place the LM49360 in the standby mode to disable all the VOUT outputs. If CONFIG = L the device can be placed in the standby state by de-asserting the PS_HOLD and PWR_ON pins as shown in Figure 14. If CONFIG = H or Z the device can be placed in the standby state by de-asserting the EN pin as shown in Figure 13. Each individual VOUT can be disabled and enabled via the I2C registers ENB1 and ENB2, however one VOUT must remained enabled for the proper device operation. Prior to change a VOUT voltage selection (ie. VSEL) it is recommended to disable the VOUT voltage prior to the VOUT voltage selection change, then re-enable after making the VOUT voltage selection. PWM Operation During PWM operation the converter operates as a voltage-mode controller with input voltage feed forward. This allows the converter to achieve excellent load and line regulation. The DC gain of the power stage is proportional to the input voltage. To eliminate this dependence, feed forward inversely proportional to the input voltage is introduced. While in PWM mode, the output voltage is regulated by switching at a constant frequency and then modulating the energy per cycle to control power to the load. At the beginning of each clock cycle the PMOS switch is turned on and the inductor current ramps up until the comparator trips and the control logic turns off the switch. The current limit comparator can also turn off the switch in case the current limit of the PMOS is exceeded. Then the NMOS switch is turned on and the inductor current ramps down. The next cycle is initiated by the clock turning off the NMOS and turning on the PMOS. 30128232 FIGURE 18. Typical PWM Operation Internal Synchronous Operation While in PWM mode, the buck uses an internal NMOS as a synchronous rectifier to reduce rectifier forward voltage drop and associated power loss. Synchronous rectification provides a significant improvement in efficiency whenever the output voltage is relatively low compared to the voltage drop across an ordinary rectifier diode. Current Limiting A current limit feature allows the device to protect itself and external components during overload conditions. PWM mode implements current limit using an internal comparator that trips at 1200mA (typ.). If the output is shorted to ground and output voltage becomes lower than 0.3V (typ.), the device enters a timed current limit mode where the switching frequency will be one fourth, and NMOS synchronous rectifier is disabled, thereby preventing excess current and thermal runaway. ECO Mode Operation The buck switches from ECO state to PWM state based on output load current. At light loads (less than 50mA), the converter enters ECO mode. In this mode the part operates with low Iq. During ECO operation, the converter positions the output voltage slightly higher (+30mV typ.) than the nominal output voltage in PWM operation. Because the reference is set higher, the output voltage increases to reach the target voltage when the part goes from idle state to switching state. Once this voltage is reached the converter stops switching, thereby reducing switching losses and improving light load efficiency. The output voltage ripple is slightly higher in ECO mode (30mV peak–peak ripple typ.). www.ti.com 54 LM49360 30128233 FIGURE 19. Typical ECO Operation Inductor Selection for Buck 1 and Buck 2 Operation A 1.0μH inductor should be selected. The inductor should be able to handle the maximum current without significant degradation on inductance and it’s saturation current should not be significantly lower than 1.2A. Additionally the inductors DC Resistance should not be greater than 100mΩ. The table below shows the possible selection of inductor types and suppliers. TABLE 13. Buck 1 and Buck 2 Operation Model Vendor Dimensions LxWXH (mm) MIPSZ2012D1R0 FDK 2.0 x 1.25 x 1 90 CBC2016T1R0M Taiyo Yuden 2.0 x 1.6 x 1.6 100 EPL2010-102ML Coilcraft 2.0 x 2.0 x 1.05 99 DCR (mΩ) Buck Output Voltage Selection The selection of the bucks’ output voltages can be done by writing a specific code into the control registers (addr. 0x12, 0x22, 0x32 for Buck1… addr. 0x13, 0x23, 0x33 for Buck2). The required voltage can be calculated from the following equation. VOUT (V) = 0.6V + code(dec) x 0.00588V TABLE 14. ENB2 Bank 0: CONFIG = Z (0x11h) Bank 1: CONFIG = H (0x21h) Bank 2: CONFIG = L (0x31h) Bits Field 2:0 BK1_DELAY Description This sets the time slot when Buck1 enables and disables. 000 Power up in slot 0, Power down in slot 0 001 Power up in slot 1, Power down in slot 1 010 Power up in slot 2, Power down in slot 2 011 Power up in slot 3, Power down in slot 3 100 Power up in slot 4, Power down in slot 4 101 Power up in slot 5, Power down in slot 5 110 Power up in slot 6, Power down in slot 6 111 Power up in slot 7, Power down in slot 7 55 www.ti.com LM49360 Bits Field 5:3 BK2_DELAY 6 LDO7_ENABLE 7 BK2_OVR Description This sets the time slot when Buck2 enables and disables. 000 Power up in slot 0, Power down in slot 0 001 Power up in slot 1, Power down in slot 1 010 Power up in slot 2, Power down in slot 2 011 Power up in slot 3, Power down in slot 3 100 Power up in slot 4, Power down in slot 4 101 Power up in slot 5, Power down in slot 5 110 Power up in slot 6, Power down in slot 6 111 Power up in slot 7, Power down in slot 7 If set, LDO 7 is enabled and disabled at time slot LDO7_DLY. If set, BUCK2 will enable when the OVR pin is asserted. TABLE 15. BK1V Bank 0: CONFIG = Z (0x12h) Bank 1: CONFIG = H (0x22h) Bank 2: CONFIG = L (0x32h) Bits 7:0 Field BK1_VSEL Description Sets the Buck 1 output voltage. Vout(V) = 0.6 + (BK1_VSEL*0.00588) TABLE 16. BK2V Bank 0: CONFIG = Z (0x13h) Bank 1: CONFIG = H (0x23h) Bank 2: CONFIG = L (0x33h) Bits Field 7:0 BK2_VSEL Description Sets the Buck 2 output voltage. Vout(V) = 0.6 + (BK2_VSEL*0.00588) LDO INFORMATION There are 8 LDOs in LM49360 grouped as: 6 General type “PERFECT” LDOs 1 HILO LDO 1 µPWR LDO All LDOs can be programmed through serial interface for different output voltage values, which are summarized in the LDO output voltage selection register tables. For stability all LDOs need to have an external capacitor Cout connected to the output with the recommended value of 1μF. It is important that the capacitance is within the specified value across voltage and temperature. PMU Enabled The PMU allows four major methods of enabling and disabling the PMU outputs. The first method is to use the I2C registers ENB1 and ENB2. Then set the Timestep and Delay for the required power sequence. The second method is via the OVR pin and the OVR register bits to enable any of the PMU outputs under hardware control. This mode is available in AP_PMU, SUB-PMU and CAM modes. The third method is via the SUBOVR pin and the SUBOVR register bits to enable any of the SUB-PMU outputs Buck 1, LDO1, LDO4, LDO5 and LDO7 under hardware control. This mode is available in SUB-PMU and CAM modes. A subset of this mode is that the SUBOVR pin can be used to enable Buck 2 without setting a SUBOVR register bit. This means that Buck 2 will always be enabled when the SUBOVR pin is high. The fourth method is software control via I2C access to the ENB2, SWOVR 1 and SWOVR 2 registers. This mode is available in AP_PMU, SUB-PMU and CAM modes. The PMU outputs are enabled on an “OR” condition of the 4 methods. If the enable bits in the I2C registers ENB1 and ENB2 are cleared, one of the other three methods can be used to enable and disable the PMU outputs. If the Timestep and Delays are programmed but the Enables (ENB1, ENB2) are cleared, then the initial enabling of the PMU output via hardware and software www.ti.com 56 CONFIG Pin Sate PMU Enabled OVR Hardware Override SUBOVR Hardware Override L, H, Z Buck1, Buck2, LDO1, LDO2, LDO3, LDO4, LDO5, LDO6, LDO7 OVR Pin = H && OVR Reg bit = 1b H, Z Buck1, LDO1, LDO4, LDO5, LDO7 SUBOVR Pin = H && SUBOVR Reg bit = 1b H, Z Buck2 Only SUBOVR Pin = H L, H, Z Buck 1, Buck 2, LDO1, LDO2, LDO3, LDO4, LDO5, LDO6, LDO7 L, H, Z Buck 1, Buck 2, LDO1, LDO2, LDO3, LDO4, LDO5, LDO6, LDO7 SWOVR Software Override ENB1 & ENB2 Default Mode PMU Setup Reg SWOVR = 1b && {SWOVR 1 Reg bit = 1b || SWOVR 2 Reg bit = 1b} ENABLE = 1b, PMU enabled at the specified timestep. The OVR register bits for Buck 1 and LDO1 thru LDO7 are located in the following I2C OVR registers: - Bank 0: CONFIG = Z (0x1Dh), bits 0 – 7. - Bank 1: CONFIG = H (0x2Dh), bits 0 – 7. - Bank 2: CONFIG = L (0x3Dh), bits 0 – 7. The OVR register bit for Buck 2 is located in the following ENB2 registers: - Bank 0: CONFIG = Z (0x11h), bit 7. - Bank 1: CONFIG = H (0x21h), bit 7. - Bank 2: CONFIG = L (0x31h), bit 7. The SUBOVR register bits for Buck 1, LDO1, LDO4, LDO5 and LDO7 are located in the following I2C SUBOVR registers - Bank 0: CONFIG = Z (0x1Eh), bits 3 – 7. - Bank 0: CONFIG = Z (0x1Eh), bits 3 – 7. The SWOVR register bits for LDO1, LDO2, LDO3, LDO4, LDO5 and LDO7 (HILO) are located in the I2C SWOVR 1(0x06h). The SWOVR register bits for Buck 1 and Buck 2 are located I2C SWOVR 2(0x07h). The SWOVR register bit in the I2C PMU Setup (0x00h) must be set for the register bits in SWOVR 1 and SWOVR 2 to be enabled. The I2C SWOVR 1(0x06h) register also supports a software PS_HOLD, bit 7. The enable register bits for Buck 1, Buck 2, LDO1, LDO2, LDO3, LDO4, LDO5 and LDO6 are located in the following I2C ENB1 registers: - Bank 0: CONFIG = Z (0x10h), bits 0 – 7. - Bank 1: CONFIG = H (0x20h), bits 0 – 7. - Bank 2: CONFIG = L (0x30h), bits 0 – 7. The enable register bit for LDO7 is located in the following I2C ENB2 registers: - Bank 0: CONFIG = Z (0x11h), bit 6. - Bank 1: CONFIG = H (0x21h), bits 6. - Bank 2: CONFIG = L (0x31h), bits 6. 57 www.ti.com LM49360 occurs immediately upon the hardware or software override. Subsequently if the PMU is disabled via PWR_ON and PS_HOLD the (and the enable condition still exist, hardware or software) the subsequent powering of the PMU output will be based upon the programmed Timestep and Delays. LM49360 PMU Sleep The SLEEP state(s) can be enabled and disabled for each of the voltage outputs independently in the I2C register SLEEP (0x02h). PMU Under Voltage Lock Out (UVLO) The PMU registers that support the UVLO are listed in the table below. See individual register descriptions for the details. I2C Register Name I2C Register Address Bit # Bit Name FLAGS 2 0x04h 5 UVLO_EVENT 0x05h 7 UVLO_MASK [3:0] UVLO voltage selection [2:0] RESET_MODE. Allows UVLO or UVLO to be output onto RESET_N BYPASS CONFIG = Z (0x1Bh) THRES CONFIG = H (0x2Bh) CONFIG = L (0x3Bh) SUBOVR CONFIG = Z (0x1Eh) CONFIG = H (0x2Eh) PMU Thermal Shutdown (TSD) The PMU registers that support the TSD are listed in the table below. See individual register descriptions for the details. I2C Register Name I2C Register Address FLAGS 2 0x04h Bit # Bit Name 0 TSDH 1 TSDL [2:0] RESET_MODE. Allows TSDL, TSDH, TSDL or TSDH to be output onto RESET_N CONFIG = Z (0x1Eh) SUBOVR CONFIG = H (0x2Eh) Power Savings The PMU registers that support the power savings are listed in the table below. See individual register descriptions for the details. The power saving features are under software control, the setting and clearing of these bits are not control by hardware. www.ti.com I2C Register Name I2C Register Address Bit # Bit Name BK1_FPWM 0x5Ah 7 FORCE_PWM BK2_FPWM 0x5Eh 7 FORCE_PWM 58 The general “PERFECT” LDOs are optimized for supplying both analog and digital loads having ULTRA LOW NOISE (10µVRMS for IOUT>5mA) and excellent PSRR (75dB at 10kHz) performance. They can be programmed through the serial interface for different output voltage values. For fast discharging of output capacitors in shut down, the LDOs can connect a 300Ω pull-down resistor to the output. This resistor is only connected when the LDO is disabled. See Table 20 for the register description. In sleep mode, quiescent current is reduced to 30µA for energy saving. In this mode these LDOs should not be loaded with more than 3-5mA of output current. HILO LDO LDO7 (HILO) has lowered output voltage range from 0.8V to 1.55V (step 50mV) controlled by 4 bit control signal as shown in LDO7 (HILO) output voltage selection table below. Typical output current is 2mA but maximum current can reach 20mA. For proper operation, an input voltage of more than 2V is necessary. Hence, voltage drop on the pass transistor (dropout voltage) always exceeds 0.45V and is not dependent on output current (in specified current range). For fast discharging of output capacitors in shut down, the LDO7 (HILO) can connect a 300Ω pull-down resistor to the output. This resistor is only connected when the LDO is disabled. See Table 20 for the register description. Since the LDO7 (HILO) is based on the micro power LDO, no extra output capacitor is needed. However, for better dynamic performance it is recommended that a capacitor in the 100nF to 1μF range be used. µPWR LDO This LDO is primarily used for internal supply purposes and fixed to 1.8V, but may deliver up to 30mA of current also externally. This LDO is ON even in Standby mode (with total PMU current consumption about 2uA) and the user may use it to supply some backup/always on system(s). TABLE 17. LDO1 — 6 Bank 0: CONFIG = Z (0x14h:LDO1) → (0x19h:LDO6) Bank 1: CONFIG = H (0x24h:LDO1) → (0x29h:LDO6) Bank 2: CONFIG = L (0x34h:LDO1) → (0x39h:LDO6) Bits 4:0 Field LDO(1-6)*_VSEL Description This sets the output voltage of the corresponding LDO. LDO*_VSEL Vout (V) LDO*_VSEL Vout (V) 00000 1.2 10000 2.1 00001 1.25 10001 2.2 00010 1.3 10010 2.3 00011 1.35 10011 2.4 00100 1.4 10100 2.5 00101 1.45 10101 2.6 00110 1.5 10110 2.65 00111 1.55 10111 2.7 01000 1.6 11000 2.75 01001 1.65 11001 2.8 01010 1.7 11010 2.85 01011 1.75 11011 2.9 01100 1.8 11100 2.95 01101 1.85 11101 3 01110 1.9 11110 3.1 01111 2 11111 3.3 59 www.ti.com LM49360 General Type LDOS LM49360 Bits Field 7:5 LDO(1-6)_DLY Description This sets the time slot when the LDO enables and disables. LDO(1–6)_DLY Power Up/Down Time Slot 000 Power up in slot 0, Power down in slot 0 001 Power up in slot 1, Power down in slot 1 010 Power up in slot 2, Power down in slot 2 011 Power up in slot 3, Power down in slot 3 100 Power up in slot 4, Power down in slot 4 101 Power up in slot 5, Power down in slot 5 110 Power up in slot 6, Power down in slot 6 111 Power up in slot 7, Power down in slot 7 TABLE 18. LDO7 Bank 0: CONFIG = Z (0x1Ah) Bank 1: CONFIG = H (0x2Ah) Bank 2: CONFIG = L (0x3Ah) Bits Field 3:0 LDO7_VSEL Description Selects the output voltage. LDO*_VSEL Vout (V) LDO*_VSEL Vout (V) 0000 1.55 1000 1.15 0001 1.5 1001 1.1 0010 1.45 1010 1.05 0011 1.4 1011 1 0100 1.35 1100 0.95 0101 1.3 1101 0.9 0110 1.25 1110 0.85 0111 1.2 1111 0.8 4 RESERVED Reserved bit, this bit must remain cleared. 7:5 LDO7_DLY Sets the time slot when the LDO enables and disables. LDO7_DLY www.ti.com Power Up/Down Time Slot 000 Power up in slot 0, Power down in slot 0 001 Power up in slot 1, Power down in slot 1 010 Power up in slot 2, Power down in slot 2 011 Power up in slot 3, Power down in slot 3 100 Power up in slot 4, Power down in slot 4 101 Power up in slot 5, Power down in slot 5 110 Power up in slot 6, Power down in slot 6 111 Power up in slot 7, Power down in slot 7 60 LM49360 TABLE 19. THRES Bank 0: CONFIG = Z (0x1Bh) Bank 1: CONFIG = H (0x2Bh) Bank 2: CONFIG = L (0x3Bh) Bits Field 3:0 UVLO_VSEL Description Input on PVDD. The PVDD voltage level is monitored and if it falls below this value, the PMU will enter into the STANDBY state. 5:4 UVLO_VSEL PVDD (V) UVLO_VSEL 0000 2.3 1000 PVDD (V) 2.7 0001 2.35 1001 2.75 0010 2.4 1010 2.8 0011 2.45 1011 2.85 0100 2.5 1100 2.9 0101 2.55 1101 2.95 0110 2.6 1110 3 0111 2.65 1111 3.05 TIMESTEP Time per Step (microseconds) TIMESTEP 6 RESERVED 7 LDO7_PD 00 8 01 64 10 128 11 256 Reserved bit, this bit must remain cleared. If set, the LDO7 output will be pulled down by a 300Ω resistor when the LDO is disabled, speeding the discharge of attached decoupling capacitors. TABLE 20. PLDWN Bank 0: CONFIG = Z (0x1Ch) Bank 1: CONFIG = H (0x2Ch) Bank 2: CONFIG = L (0x3Ch) Bits Field 0 BK1_PD If set, the Buck1 output will be pulled down by a 300Ω resistor when disabled. Description 1 BK2_PD If set, the Buck2 output will be pulled down by a 300Ω resistor when disabled. 2 LDO1_PD If set, the LDO1 output will be pulled down by a 300Ω resistor when disabled. 3 LDO2_PD If set, the LDO2 output will be pulled down by a 300Ω resistor when disabled. 4 LDO3_PD If set, the LDO3 output will be pulled down by a 300Ω resistor when disabled. 5 LDO4_PD If set, the LDO4 output will be pulled down by a 300Ω resistor when disabled. 6 LDO5_PD If set, the LDO5 output will be pulled down by a 300Ω resistor when disabled. 7 LDO6_PD If set, the LDO6 output will be pulled down by a 300Ω resistor when disabled. TABLE 21. OVR Bank 0: CONFIG = Z (0x1Dh) Bank 1: CONFIG = H (0x2Dh) Bank 2: CONFIG = L (0x3Dh) This sets the Function of OVR pin mode. If all are zero only Buck2 is enabled by the pin (this pin always forces Buck2 on). Other outputs can be set by setting the relevant bit here. Bits Field 0 BK1_OVR If set, the Buck 1 output is enabled when OVR is set. Description 1 LDO1_OVR If set, the LDO 1 output is enabled when OVR is set. 2 LDO2_OVR If set, the LDO 2 output is enabled when OVR is set. 3 LDO3_OVR If set, the LDO 3 output is enabled when OVR is set. 61 www.ti.com LM49360 Bits Field Description 4 LDO4_OVR If set, the LDO 4 output is enabled when OVR is set. 5 LDO5_OVR If set, the LDO 5 output is enabled when OVR is set. 6 LDO6_OVR If set, the LDO 6 output is enabled when OVR is set. 7 LDO7_OVR If set, the LDO 7 output is enabled when OVR is set. TABLE 22. SUBOVR Bank 0: CONFIG = Z (0x1Eh) Bank 1: CONFIG = H (0x2Eh) Bits 2:0 Field RESERVED Description Reserved bits, this bit field must remain at 000b. RESERVED Function of RESET_N Pin 000 RESET_N (Default) 001 RESET 010 TSDL or UVLO 011 TSDL or UVLO 100 TSDH or TSDL 101 TSDH or TSDL 110 0 111 1 3 BK1_SUBOVR If set, the Buck1 output enables when SUBOVR is set (i.e. PS_HOLD in a subPMU mode). 4 LDO1_SUBOVR If set, the LDO1 output enables when SUBOVR is set (i.e. PS_HOLD in a subPMU mode). 5 LDO4_SUBOVR If set, the LDO4 output enables when SUBOVR is set (i.e. PS_HOLD in a subPMU mode). 6 LDO5_SUBOVR If set, the LDO5 output enables when SUBOVR is set (i.e. PS_HOLD in a subPMU mode). 7 LDO7_SUBOVR If set, the LDO7 output enables when SUBOVR is set (i.e. PS_HOLD in a subPMU mode). TABLE 23. I2C1 (0x40h) Bits 2:0 www.ti.com Field PMU_H_I2C_ADDR Description The I2C Address for the Power Management CONFIG “H” PMU_H_I2C _ADDR I2C_ADDR 000 1111111 001 1111110 010 1111101 011 1111100 100 1111011 101 1111010 110 1111001 111 1111000 62 5:3 Field PMU_Z_I2C_ADDR LM49360 Bits Description The I2C Address for the Power Management CONFIG “Z” PMU_Z_I2C_ADDR I2C_ADDR 000 1111100 001 1111101 010 1111110 011 1111111 100 1111000 101 1111001 110 1111010 111 1111011 6 RESEREVED Reserved bit, this bit must remain cleared. 7 RESEREVED Reserved bit, this bit must remain cleared. TABLE 24. I2C2 (0x41h) Bits 2:0 5:3 Field PMU_L_I2C_ADDR AUD_I2C_ADDR Description The I2C Address for the Power Management CONFIG “L” The I2C PMU_L_I2C _ADDR I2C_ADDR 000 1111101 001 1111100 010 1111111 011 1111110 100 1111001 101 1111000 110 1111011 111 1111010 Address for the Audio Subsystem AUD_I2C_ADDR I2C_ADDR 000 0011010 001 0011011 010 0011000 011 0011001 100 0011110 101 0011111 110 0011100 111 0011101 6 RESERVED Reserved bit, this bit must remain cleared. 7 RESERVED Reserved bit, this bit must remain cleared. TABLE 25. BK1_FPWM (0x5Ah) Bits 6:0 7 Field Description Reserved Do not change the value of these bits, read the value of these bits and write back when updating bit 7, FORCE_PWM. FORCE_PWM If set, forces the Buck 1 converter into PWM mode. If cleared, the Buck 1 converter will switch between ECO and PWM mode depending on the load current. 63 www.ti.com LM49360 TABLE 26. BK2_FPWM (0x5Eh) Bits 6:0 7 Field Description Reserved Do not change the value of these bits, read the value of these bits and write back when updating bit 7, FORCE_PWM. FORCE_PWM If set, forces the Buck 2 converter into PWM mode. If cleared, the Buck 2 converter will switch between ECO and PWM mode depending on the load current. 27.0 Basic PMC Setup Register The LM49360's Power Management Circuit (PMC) controls the basic power management setup for the audio section of the device. TABLE 27. PMC_SETUP (0x00h) Bits 0 Field Description CHIP_ENABLE When this bit is set, the power management will enable the MCLK I/O or internal oscillator1. It will then use this clock to sequence the enabling of the analog references and bias points. When this bit is cleared, the PMC will bring the analog down gently and disable the MCLK or oscillator. CHIP _ENABLE Chip Status 0 Turn Chip Off 1 Turn Chip On This enables the PLL. 1 PLL_ENB PLL_ENABLE PLL Status 0 PLL Off 1 PLL On This enables the P2 output of the PLL. 2 PLL_P2ENB PLL_P2ENB PLL P2 Status 0 PLL P2 Off 1 PLL P2 On This enables the internal 300kHz Oscillator. For analog only chip modes, the oscillator can be used instead of an external system clock to drive the chip's power management (PMC). 3 4 OSC_ENB MCLK_OVR OSC_ENABLE Oscillator Status 0 Oscillator Off 1 Oscillator On This forces the MCLK input to enable, regardless of requirement. If set, the audio ports and digital mixer can be activated even if the chip is in shutdown mode. This assumes that MCLK is selected as the PMC clock source (reg 0x01h) and that there is an active clock signal driving the MCLK pin. Setting this bit reduces power consumption by allowing audio ports and digital mixer to operate while the analog sections of the chip are powered down. MCLK_OVR Comment 0 I/O control is automatic 1 MCLK input forced on. This forces the clock input of Audio Port 1 input to enable, regardless of other port settings. 5 PORT1_CLK_OVR PORT1_CLK_OVR Comment 0 I/O control is automatic 1 PORT_CLK input forced on This forces the clock input of Audio Port 2 input to enable regardless of other port settings. 6 PORT2_CLK_OVR 7 CHIP_ACTIVE PORT2_CLK_OVR Comment 0 I/O control is automatic 1 PORT_CLK input forced on This bit is used to read back the enable status of the chip. 1. If the PMC is set to operate from one of the audio ports, then it will wait for the port to be enabled or the relevant override bit to be set, forcing the port clock input to enable. www.ti.com 64 LM49360 28.0 PMC Clocks Register This register is used to control the LM49360's Basic Power Management Clock. TABLE 28. PMC_SETUP (0x01h) Bits Field 1:0 PMC_CLK_SEL Description This selects the source of the PMC input clock. PMC_CLK_SEL PMC Input Clock Source 00 MCLK (Default divide is 40.5) 01 Internal 300kHz Oscillator 10 DAC SOURCE CLOCK 11 ADC SOURCE CLOCK 29.0 PMC Clock Divide Register This register is used to control the LM49360's Power Management Circuit Clock Divider. TABLE 29. PMC_SETUP (0x02h) Bits Field 7:0 PMC_CLK_DIV Description This programs the half cycle divider that precedes the PMC. The PMC should run from a 300kHz clock. The default of this divider is 0x50h (divide by 40.5) to get a ≈300kHz PMC clock from a 12MHz or 12.288MHz MCLK. Program this divider with the required division, multiplied by 2, and subtract 1. PMC_CLK_DIV Divide by 00000000 1 00000001 1 00000010 1.5 00000011 2 00000100 2.5 00000101 3 — — 11111101 126 11111110 127.5 11111111 128 65 www.ti.com LM49360 30.0 LM49360 Clock Network (Refer to Figure 20) The audio DAC and ADC operate at a clock frequency of 2*OSR*fS where OSR is the oversampling ratio and fS is the sampling frequency of the DAC or ADC. The DAC can operate at three different OSR settings (128, 125, 64). The ADC can operate at two different OSR settings (128, 125). For example, if the stereo DAC or ADC is set at OSR = 128, a 12.288MHz clock is required for 48kHz data. If a 12.288MHz clock is not available, then the internal PLL can be used to generate the desired clock frequency. Otherwise, if a 12.288MHz is available, the PLL can be bypassed to reduce power consumption. The DAC clock divider or ADC clock divider can also be used to generate the correct clock. If an 18.432 MHz clock is available, the DAC or ADC clock divider could be set to 1.5 in order to generate a 12.288MHz clock from 18.432MHz without using a PLL. The DAC path clock (DAC_SOURCE_CLK) and ADC path clock (ADC_SOURCE_CLK) can be driven directly by the MCLK input, the PORT1_CLK input, the PORT2_CLK input, or PLL output. For instances where a PLL must be used, the PLL input clock can come from three sources. The clock input to the PLL can come from the MCLK input, the PORT1_CLK input, or the PORT2_CLK input. The LM49360's Power Management Circuit (PMC) requires a clock of ≈300kHz that is independent from the DAC or ADC. The PMC clock divider is available to generate the correct clock to the PMC block. The PMC clock path can be driven directly by the MCLK input, the internal 300kHz oscillator, the DAC_SOURCE_CLK, or the ADC_SOURCE_CLK. TABLE 30. DAC Clock Requirements DAC Sample Rate (kHz) Clock Required at A (OSR = 128) Clock Required at A (OSR = 125) Clock Required at A (OSR = 64) 8 2.048 MHz 2 MHz 1.024 MHz 11.025 2.8224 MHz 2.75625 MHz 1.4112 MHz 12 3.072 MHz 3 MHz 1.536 MHz 16 4.096 MHz 4 MHz 2.048 MHz 22.05 5.6448 MHz 5.5125 MHz 2.8224 MHz 24 6.144 MHz 6 MHz 3.072 MHz 32 8.192 MHz 8 MHz 4.096 MHz 44.1 11.2896 MHz 11.025 MHz 5.6448 MHz 48 12.288 MHz 12 MHz 6.144 MHz 96 24.576 MHz 24 MHz 12.288 MHz TABLE 31. ADC Clock Requirements ADC Sample Rate (kHz) www.ti.com Clock Required at B (OSR = 128) Clock Required at B (OSR = 125) 8 2.048 MHz 2 MHz 11.025 2.8224 MHz 2.75625 MHz 12 3.072 MHz 3 MHz 16 4.096 MHz 4 MHz 22.05 5.6448 MHz 5.5125 MHz 24 6.144 MHz 6 MHz 32 8.192 MHz 8 MHz 44.1 11.2896 MHz 11.025 MHz 48 12.288 MHz 12 MHz 66 LM49360 30128213 FIGURE 20. Internal Clock Network 67 www.ti.com LM49360 31.0 PLL Setup Registers 30128230 FIGURE 21. PLL Loop The LM49360 contains a PLL for flexible operation of its dual audio ports. The PLL has a P1 and P2 output divider thereby allowing the PLL to generate two distinct clock outputs. The equations for the PLL's generated output clocks are as follows: fOUT1 = (fIN . N / M . P1) fOUT2 = (fIN . N / M . P2) where: N = PLL_N + PLL_N_MOD M = (PLL_M + 1) / 2 P1 = (PLL_P1 + 1) / 2 P2 = (PLL_P2 + 1) / 2 www.ti.com 68 LM49360 TABLE 32. PLL Settings for Common System Clock Frequencies fIN (MHz) M N N_MOD P fOUT (Hz) Error (Hz) 12 2.5 32 0 12.5 12288000 0 13 15.5 175 26 12 12287970 –30 14.4 12.5 128 0 12 12288000 0 16.2 13.5 128 0 12.5 12288000 0 16.8 3.5 32 0 12.5 12288000 0 19.2 12.5 96 0 12 12288000 0 19.68 20.5 160 0 12.5 12288000 0 19.8 16.5 128 0 12.5 12288000 0 26 32.5 192 0 12.5 12288000 0 27 22.5 128 0 12.5 12288000 0 0 12 12.5 147 0 12.5 11289600 12.288 10 147 0 16 11289600 0 13 9 144 19 18.5 11289603 +3 14.4 12.5 147 0 15 11289600 0 16.2 22.5 196 0 12.5 11289600 0 16.8 12.5 126 0 15 11289600 0 19.2 20 147 0 12.5 11289600 0 19.68 20.5 147 0 12.5 11289600 0 19.8 27.5 196 0 12.5 11289600 0 26 18.5 144 19 18 11289602.1 2.1 27 37.5 196 0 12.5 12289600 0 11.2896 10.5 195 0 17.5 12000000 0 12.288 8 125 0 16 12000000 0 13 6.5 102 0 17 12000000 0 13.5 4.5 68 0 17 12000000 0 14.4 6 85 0 17 12000000 0 16.2 13.5 170 0 17 12000000 0 16.8 7 85 0 17 12000000 0 19.2 8 85 0 17 12000000 0 19.68 20.5 200 0 16 12000000 0 19.8 16.5 170 0 17 12000000 0 26 6.5 36 0 12 12000000 0 11.2896 8 125 0 16 11025000 0 12 10 147 0 16 11025000 0 12.288 8 114 27 16 11025000 0 13 6.5 96 15 17.5 11025000 0 13.5 10 147 0 18 11025000 0 14.4 4 49 0 16 11025000 0 16.2 4 49 0 18 11025000 0 16.8 16 189 0 18 11025000 0 19.2 16 147 0 16 11025000 0 19.68 16 189 0 18 11025000 0 19.8 16 147 0 16.5 11025000 0 26 5 27 18 13 11025000 0 69 www.ti.com LM49360 TABLE 33. PLL_CLOCK_SOURCE (0x03h) Bits Field 1:0 PLL_CLK_SEL Description This selects the source of the input clock to the PLL. PLL_CLK_SEL PLL Input Clock Source 00 MCLK 01 PORT1_CLK 10 PORT2_CLK 11 RESERVED TABLE 34. PLL_M (0x04h) Bits Field 6:0 PLL_M Description This programs the PLL's M divider to divide from 1 to 64. PLL_M PLL Input Divider Value 000000 1 000001 1 000010 1.5 000011 2 000100 2.5 000101 3 — — 1111101 63 1111110 63.5 1111111 64 TABLE 35. PLL_N (0x05h) Bits Field 7:0 PLL_N www.ti.com Description This programs the PLL N divider to divide from 1 to 250. PLL_N Feedback Divider Value 00000000 to 00001010 10 00001011 11 00001100 12 00001101 13 00001110 14 00001111 15 — — 11111000 248 11111001 249 11111010 to 11111111 250 70 LM49360 TABLE 36. PLL_N_MOD (0x06h) Bits Field 4:0 PLL_N_MOD Description This programs the sigma-delta modulator in the PLL. PLL_N_MOD Fractional Part of N 00000 0 00001 1/32 00010 2/32 00011 3/32 00100 4/32 00101 5/32 — — 11101 20/32 11110 30/32 11111 31/32 5 PLL_P1[8] This sets the MSB of the 1st P Divider on the PLL which is part of a standard half-cycle divider control. 6 PLL_P2[8] This sets the MSB of the 2nd P Divider on PLL which is part of a standard half-cycle divider control. TABLE 37. PLL_P1 (0x07h) Bits Field Description 7:0 PLL_P1[7:0] This programs the 8 LSBs of the PLL's P1 Divider. These LSBs combine with PL1_P1[8] which allows the P1 divider to divide by up to 256. PLL_P1 [8:0] P1 Divider Value 000000000 1 000000001 1 000000010 1.5 000000011 2 000000100 2.5 000000101 3 — — 111111101 255 111111110 255.5 111111111 256 TABLE 38. PLL_P2 (0x08h) Bits Field 7:0 PLL_P2[7:0] Description This programs 8 LSBs of the PLL's P2 Divider. These LSBs combine with PLL_P2[8] which allows the P2 divider to divide by up to 256. PLL_P2 [8:0] P2 Divider Value 000000000 1 000000001 1 000000010 1.5 000000011 2 000000100 2.5 000000101 3 — — 111111101 255 111111110 255.5 111111111 256 71 www.ti.com LM49360 32.0 Analog Mixer Control Registers This register is used to control the LM49360's Analog Mixer: TABLE 39. CLASS_D_OUTPUT (0x10h) Bits Field 0 DACR_LS The right DAC output is added to the loudspeaker output. Description 1 DACL_LS The left DAC output is added to the loudspeaker output. 2 RSVD Reserved 3 RSVD Reserved 4 MONO_LS 5 AUX_LS The MONO input is added to the loudspeaker output. The AUX input is added to the loudspeaker output. Class D Loudspeaker Amplifier The LM49360 features a filterless modulation scheme. The differential outputs of the device switch at 300kHz from VDD to GND. When there is no input signal applied, the two outputs (LS+ and LS-) switch with a 50% duty cycle, with both outputs in phase. Because the outputs of the LM49360 are differential, the two signals cancel each other. This results in no net voltage across the speaker, thus there is no load current during an idle state, conserving power. With an input signal applied, the duty cycle (pulse width) of the LM49360 outputs changes. For increasing output voltages, the duty cycle of LS+ increases, while the duty cycle of LS- decreases. For decreasing output voltages, the converse occurs, the duty cycle of LS- increases while the duty cycle of LS+ decreases. The difference between the two pulse widths yields the differential output voltage. Spread Spectrum Modulation The LM49360 features a fitlerless spread spectrum modulation scheme that eliminates the need for output filters, ferrite beads or chokes. The switching frequency varies by ±30% about a 300kHz center frequency, reducing the wideband spectral content, improving EMI emissions radiated by the speaker and associated cables and traces. Where a fixed frequency class D exhibits large amounts of spectral energy at multiples of the switching frequency, the spread spectrum architecture of the LM49360 spreads that energy over a larger bandwidth. The cycle-to-cycle variation of the switching period does not affect the audio reproduction or efficiency. Class D Power Dissipation and Efficiency In general terms, efficiency is considered to be the ratio of useful work output divided by the total energy required to produce it with the difference being the power dissipated, typically, in the IC. The key here is “useful” work. For audio systems, the energy delivered in the audible bands is considered useful including the distortion products of the input signal. Sub-sonic (DC) and supersonic components (>22kHz) are not useful. The difference between the power flowing from the power supply and the audio band power being transduced is dissipated in the LM49360 and in the transducer load. The amount of power dissipation in the LM49360's class D amplifier is very low. This is because the ON resistance of the switches used to form the output waveforms is typically less than 0.25Ω. This leaves only the transducer load as a potential "sink" for the small excess of input power over audio band output power. The LM49360 dissipates only a fraction of the excess power requiring no additional PCB area or copper plane to act as a heat sink. TABLE 40. LEFT HEADPHONE_OUTPUT (0x11h) Bits Field 0 DACR_HPL The right DAC output is added to the left headphone output. 1 DACL_HPL The left DAC output is added to the left headphone output. 2 RSVD Reserved 3 RSVD Reserved 4 MONO_HPL 5 AUX_HPL www.ti.com Description The MONO input is added to the left headphone output. The AUX input is added to the left headphone output. 72 LM49360 TABLE 41. RIGHT HEADPHONE_OUTPUT (0x12h) Bits Field Description 0 DACR_HPR The right DAC output is added to the right headphone output. 1 DACL_HPR The left DAC output is added to the right headphone output. 2 RSVD Reserved 3 RSVD Reserved 4 MONO_HPR 5 AUX _HPR The MONO input is added to the right headphone output. The AUX input is added to the right headphone output. Headphone Amplifier Function The LM49360 headphone amplifier features National’s ground referenced architecture that eliminates the large DC-blocking capacitors required at the outputs of traditional headphone amplifiers. A low-noise inverting charge pump creates a negative supply (HP_VSS) from the positive supply voltage (LS_VDD). The headphone amplifiers operate from these bipolar supplies, with the amplifier outputs biased about GND, instead of a nominal DC voltage (typically VDD/2), like traditional amplifiers. Because there is no DC component to the headphone output signals, the large DC-blocking capacitors (typically 220μF) are not necessary, conserving board space and system cost, while improving frequency response. Charge Pump Capacitor Selection Use low ESR ceramic capacitors (less than 100mΩ) for optimum performance. Charge Pump Flying Capacitor (C38) The flying capacitor (C38) affects the load regulation and output impedance of the charge pump. A C38 value that is too low results in a loss of current drive, leading to a loss of amplifier headroom. A higher valued C38 improves load regulation and lowers charge pump output impedance to an extent. Above 2.2μF, the RDS(ON) of the charge pump switches and the ESR of C38 and C61 dominate the output impedance. A lower value capacitor can be used in systems with low maximum output power requirements. Please refer to the demonstration board schematic shown in Figure 36. Charge Pump Flying Capacitor (C61) The value and ESR of the hold capacitor (C61) directly affects the ripple on CPVSS. Increasing the value of C61 reduces output ripple. Decreasing the ESR of C61 reduces both output ripple and charge pump output impedance. A lower value capacitor can be used in systems with low maximum output power requirements. Please refer to the demonstration board schematic shown in Figure 36. TABLE 42. AUX_OUTPUT (0x13h) Bits Field 0 DACR_AUX The right DAC output is added to the AUX output. Description 1 DACL_AUX The left DAC output is added to the AUX output. 2 MIC_AUX 3 RSVD 4 MONO_AUX 5 AUX_AUX The MIC input is added to the AUX output. Reserved The MONO input is added to the AUX output. The AUX input is added to the AUX output. 73 www.ti.com LM49360 Auxiliary Output Amplifier The LM49360’s auxiliary output (AUXOUT) amplifier provides differential drive capability to loads that are connected across its outputs. This results in output signals at the AUX_OUT+ and AUX_OUT- pins that are 180 degrees out of phase with respect to each other. This effectively doubles the maximum possible output swing for a specific supply voltage when compared to singleended output configurations. The differential output configuration also allows the load to be isolated from ground since both the AUX_OUT+ and AUX_OUT- pins are biased at the same DC potential. This eliminates the need for any large and expensive DC blocking capacitors at the AUXOUT amplifier outputs. The load can then be directly connected to the positive and negative outputs of the AUXOUT amplifier which then isolates it from any ground noise, thereby improving signal-to-noise-ratio (SNR) and power supply rejection ratio (PSRR). The AUXOUT amplifier has two modes of operation. The primary mode of operation is high current drive mode (Earpiece Mode) where the AUXOUT amplifier can be used to differentially drive a mono earpiece speaker. The secondary mode of operation is low current drive mode where the AUXOUT amplifier operates in a power saving mode (AUX_LINE_OUT Mode) to provide a differential output that is used as a mono differential line level input to a standalone mono differential input class D amplifier (LM4675) for stereo loudspeaker applications. TABLE 43. OUTPUT_OPTIONS (0x14h) Bits Field 0 RSVD 3:1 LR_HP_LEVEL Description Reserved This sets the gain of the left and right headphone amplifiers. The gain of the left and right headphone amplifiers are always set to the same level. LR_HP_LEVEL 4 AUX_NEG_6dB Gain (dB) 000 0 001 –1.5 010 –3 011 –6 100 –9 101 –12 110 –15 111 –18 This sets the gain of the Auxiliary output amplifier. AUX_NEG_6dB 5 7:6 AUX_LINE_OUT LS_LEVEL Gain (dB) 0 0 1 –6 This sets the Auxiliary output amplifier mode of operation. AUX_LINE_OUT Auxiliary Output Mode 0 Earpiece Amplifier 1 AUX_LINE_OUT This sets the gain of the Class D loudspeaker amplifier. LS_LEVEL Gain (dB) 00 0 01 4 10 8 11 12 TABLE 44. ADC_INPUT (0x15h) Bits Field 0 DACR_ADCR The right DAC output is added to the ADC right input. 1 DACL_ADCL The left DAC output is added to the ADC left input. 2 MIC_ADCR The MIC input is added to the ADC right input. 3 MIC_ADCL The MIC input is added to the ADC left input. 4 AUX_ADCR The AUX input is added to the ADC right input. 5 MONO_ADCL The MONO input is added to the ADC left input. www.ti.com Description 74 LM49360 TABLE 45. MIC_INPUT (0x16h) Bits Field 3:0 MIC_LEVEL 4 SE_DIFF 5 MUTE Description This sets the gain of the microphone preamp. MIC_LEVEL Gain 0000 6dB 0001 8dB 0010 10dB 0011 12dB 0100 14dB 0101 16dB 0110 18dB 0111 20dB 1000 22dB 1001 24dB 1010 26dB 1011 28dB 1100 30dB 1101 32dB 1110 34dB 1111 36dB If set, the MIC negative input is ignored. In single-ended mode, the MIC negative input pin should be left floating. If set, the microphone preamp is muted. 75 www.ti.com LM49360 TABLE 46. AUX_LEVEL (0x18h) Bits 5:0 6 www.ti.com Field Description AUX_LEVEL This programs the AUX input level. All gain changes are performed at zero crossings. SE/DIFF AUX_LEVEL Level AUX_LEVEL Level 000000 –46.5dB 100000 1.5dB 000001 –45dB 100001 3dB 000010 –43.5dB 100010 4.5dB 000011 –42dB 100011 6dB 000100 –40.5dB 100100 7.5dB 000101 –39dB 100101 9dB 000110 –37.5dB 100110 10.5dB 000111 –36dB 100111 12dB 001000 –34.5dB 101000 13.5dB 001001 –33dB 101001 15dB 001010 –31.5dB 101010 16.5dB 001011 –30dB 101011 18dB 001100 –28.5dB 001101 –27dB 001110 –25.5dB 001111 –24dB 010000 –22.5dB 010001 –21dB 010010 –19.5dB 010011 –18dB 010100 –16.5dB 010101 –15dB 010110 –13.5dB 010111 –12dB 011000 –10.5dB 011000 –9dB 011001 –7.5dB 011010 –6dB 011100 –4.5dB 011101 –3dB 011110 –1.5dB 011111 0dB If set, the AUXL input is ignored. In single-ended mode, the AUXL input pin should be left floating. 76 LM49360 TABLE 47. MONO_LEVEL (0x19h) Bits 5:0 Field Description MONO_LEVEL This programs the MONO input level. All gain changes are performed at zero crossings. 6 SE/DIFF 7 AUXL_MONO MONO_LEVEL Level MONO_LEVEL Level 000000 –46.5dB 100000 1.5dB 000001 –45dB 100001 3dB 000010 –43.5dB 100010 4.5dB 000011 –42dB 100011 6dB 000100 –40.5dB 100100 7.5dB 000101 –39dB 100101 9dB 000110 –37.5dB 100110 10.5dB 000111 –36dB 100111 12dB 001000 –34.5dB 101000 13.5dB 001001 –33dB 101001 15dB 001010 –31.5dB 101010 16.5dB 001011 –30dB 101011 18dB 001100 –28.5dB 001101 –27dB 001110 –25.5dB 001111 –24dB 010000 –22.5dB 010001 –21dB 010010 –19.5dB 010011 –18dB 010100 –16.5dB 010101 –15dB 010110 –13.5dB 010111 –12dB 011000 –10.5dB 011000 –9dB 011001 –7.5dB 011010 –6dB 011100 –4.5dB 011101 –3dB 011110 –1.5dB 011111 0dB If set, the MONO– input is ignored. In single-ended mode, the MONO- input pin should be left floating. If set, AUXL is routed to the MONO Input Amplifier. 77 www.ti.com LM49360 Headphone Detection Circuit The LM49360 features a headphone detection circuit (HDC) that automatically enables the headphone amplifier whenever the insertion of a headphone plug is detected and disables the headphone amplifier during the removal of a headphone plug. The HDC optimizes power management by automatically disabling any output amplifier that is not in use. The HDC eliminates the necessity of polling the I2C bus for status changes. However, since the HDC requires the use of the GPIO pin, the PORT2_SDO functionality sensing is required. The HDC requires a headphone jack with a normally closed mechanical switch and a pull-up resistor, RPU, tied between the mechanical switch and I/O_VDD (refer to Figure 22). Choosing a RPU value of at least 500kΩ ensures minimal current draw through the pull-up resistor. When the headphone amplifier is disabled, an internal 50kΩ pull-down, RPD, is connected to each headphone amplifier output. Without the presence of a headphone plug, the headphone jack’s mechanical switch is closed thereby connecting the right headphone amplifier output to RPU. The GPIO pin detects a logic low level due to the voltage division between RPU and RPD. When the GPIO pin is set to HPSENSE mode, a logic low voltage reading causes the HDC to disable the headphone amplifier. When a headphone plug is inserted, the mechanical connection between RPU and RPD is broken, resulting in a logic high level detected by the GPIO pin. A logic high voltage reading causes the HDC to enable the headphone amplifier. The HDC has four modes of operation that automatically enable/disable different combinations of the audio output amplifiers contained within the LM49360. Having the choice of four different HDC settings maximizes power management flexibility to suit a particular application. Please refer to the HP_SENSE (reg 0x1Bh) register table for a detailed discussion on the different HDC modes of operation. 30128293 FIGURE 22. Application Circuit for Headphone Detection www.ti.com 78 LM49360 TABLE 48. HP_SENSE (0x1Bh) Bits Field Description 0 HP SENSE This bit enables the headphone sense circuit. If enabled, the headphone amplifier will automatically turn on/off based on the logic level of the GPIO pin whenever GPIO is selected as a headphone sense input. If the presence of a headphone insertion is detected, the headphone amplifier will automatically turn on. If a headphone removal is detected, the headphone amplifier will automatically turn off. HPSENSE 1 HPSENSE_D 0 Off 1 On This bit enables the headphone sense circuit. If enabled, the headphone amplifier will automatically turn on/off based on the logic level of the GPIO pin whenever GPIO is selected as a headphone sense input. If the presence of a headphone insertion is detected, the headphone amplifier will automatically turn on and the Class D loudspeaker amplifier will turn off. If a headphone removal is detected, the headphone amplifier will automatically turn off and the Class D loudspeaker amplifier will turn on. This bit overrides bit 0 of this register. HPSENSE_D 2 HPSENSE_AUX HPSENSE_AUX_D Headphone Sense Status 0 Off 1 On This bit enables the headphone sense circuit. If enabled, the headphone amplifier will automatically turn on/off based on the logic level of the GPIO pin whenever GPIO is selected as a headphone sense input. If the presence of a headphone insertion is detected, the headphone amplifier will automatically turn on and the Earpiece / Auxout amplifier will turn off. If a headphone removal is detected, the headphone amplifier will automatically turn off and the Earpiece / Auxout amplifier will turn on. This bit overrides bit 0 and bit 1 of this register. HPSENSE_AUX 3 Headphone Sense Status Headphone Sense Status 0 Off 1 On This bit enables the headphone sense circuit. If enabled, the headphone amplifier will automatically turn on/off based on the logic level of the GPIO pin whenever GPIO is selected as a headphone sense input. If the presence of a headphone insertion is detected, the headphone amplifier will automatically turn on and the Class D loudspeaker amplifier along with the Earpiece / Auxout amplifier will turn off. If a headphone removal is detected, the headphone amplifier will automatically turn off and the Class D loudspeaker amplifier along with the Earpiece / Auxout amplifier will turn on. This bit overrides bit 0, bit 1, and bit 2 of this register. HPSENSE_AUX_D Headphone Sense Status 0 Off 1 On 79 www.ti.com LM49360 33.0 ADC Control Registers This register is used to control the LM49360's ADC: TABLE 49. ADC Basic (0x20h) Bits Field 0 MONO Description This sets mono or stereo operation of the ADC. MONO 1 OSR ADC Operation 0 Stereo Audio 1 Mono Voice (Right ADC channel disabled, Left ADC channel active) This sets the oversampling ratio of the ADC. OSR Stereo Audio ADC Oversampling Ratio Mono Voice ADC Oversampling Ratio 0 128 125 1 128 128 2 MUTE_L If set, a digital mute is applied to the Left (or mono) ADC output. 3 MUTE_R If set, a digital mute is applied to the Right ADC output. 6:4 ADC_CLK_SEL This selects the source of the ADC clock domain, ADC_SOURCE_CLK. ADC_CLK_SEL 7 ADC_DSP_ONLY Source 000 MCLK 001 PORT1_RX_CLK 010 PORT2_RX_CLK 011 PLL_OUTPUT1 100 PLL_OUTPUT2 If set, the ADC's analog circuitry is disabled to reduce power consumption, however, ADC DSP functionality is maintained. This can be used to perform asynchronous re-sampling between audio rates of a common family. Setting this bit is also useful whenever applying Automatic Level Control (ALC) to an analog only audio path. TABLE 50. ADC_CLK_DIV (0x21h) Bits Field 7:0 ADC_CLK_DIV www.ti.com Description This programs the half cycle divider that precedes the ADC. The input of this divider should be around 12MHz. The default of this divider is 0x00. Program this divider with the division you want, multiplied by 2, and subtract 1. ADC_CLK_DIV Divides by 00000000 1 00000001 1 00000010 1.5 00000011 2 — — 11111101 127 11111110 127.5 11111111 128 80 LM49360 TABLE 51. ADC_MIXER (0x23h) Bits Field 1:0 ADC_MIX_LEVEL_L Description This sets the input level to the left ADC channel. ADC_MIX_LEVEL_L 3.2 ADC_MIX_LEVEL_R Level 00 0dB 01 1.35dB 10 3.5dB 11 6dB This sets the input level to the right ADC channel. ADC_MIX_LEVEL_R 4 STEREO_LINK Level 00 0dB 01 1.35dB 10 3.5dB 11 6dB If set, this links ADC_MIX_LEVEL_R with ADC_MIX_LEVEL_L. STEREO_LINK Status 0 Off 1 On 81 www.ti.com LM49360 34.0 DAC Control Registers This register is used to control the LM49360's DAC. TABLE 52. DAC Basic (0x30h) Bits Field 1:0 MODE Description This programs the over sampling ratio of the stereo DAC. MODE DAC Oversampling Ratio 00 125 01 128 10 64 (Default) 11 RSVD 2 MUTE_L This digitally mutes the Left DAC output. 3 MUTE_R This digitally mutes the Right DAC output. 6:4 DAC_CLK_SEL 7 DSP_ONLY This selects the source of the DAC clock domain, DAC_SOURCE_CLK. DAC_CLK_SEL Source 000 MCLK 001 PORT1_RX_CLK 010 PORT2_RX_CLK 011 PLL_OUTPUT1 100 PLL_OUTPUT2 If set, the DAC's analog circuitry is disabled to reduce power consumption, however DAC DSP functionality is maintained. This can be used to perform asynchronous re-sampling between audio rates of a common family. TABLE 53. DAC_CLK_DIV (0x31h) Bits Field 7:0 DAC_CLK_DIV www.ti.com Description This programs the half cycle divider that precedes the DAC. The input of this divider should be around 12MHz. The default of this divider is 0x03 which gives a division by 2. Program this divider with the division you want, multiplied by 2, and subtract 1. DAC_CLK_DIV Divides by 00000000 1 00000001 1 00000010 1.5 00000011 2 (Default) — — 11111101 127 11111110 127.5 11111111 128 82 LM49360 35.0 Digital Mixer Control Registers Digital Mixer The LM49360’s digital mixer allows for flexible routing of digital audio signals between both audio ports, DAC, and ADC. This mixer handles which digital data path (Port1 RX data, Port2 RX data, or ADC output) is routed to the DAC input. The digital mixer also selects the appropriate digital data path (Port1 RX data, Port2 RX data, ADC output, DAC DSP output, or ADC DSP output) that is used for data transmission on Audio Port 1 and 2. Audio inputs to the digital mixer can be attenuated down to -18dB to avoid clipping conditions. Another key feature of the digital mixer is sample rate conversion (SRC) between audio ports. This allows simultaneous operation of the dual audio ports even if each port is operating at a different sample rate. The LM49360 can be used as an audio port bridge with SRC capability. The digital mixer allows either straight pass through between audio ports or, if desired, DSP effects can be added to the digital audio signal during audio port bridge operation. The digital mixer automatically handles stereo I2S to mono PCM conversion between audio ports and vice versa. 30128237 FIGURE 23. Digital Mixer The LM49360 includes two separate and independent DSP blocks, one for the DAC and the other for the ADC. The digital mixer also allows both DSP blocks to be cascaded together in either order so that the DSP effects from both blocks can be combined into the same signal path. 83 www.ti.com LM49360 This register is used to control the LM49360's digital mixer. TABLE 54. Input Levels 1 (0x40h) Bits Field 1:0 PORT1_RX_L _LVL 3:2 5:4 7:6 PORT1_RX_R _LVL PORT2_RX_L _LVL PORT2_RX_R _LVL Description This programs the input level of the data arriving from the left receive channel of Audio Port 1. PORT1_RX_L_LVL Level 00 0dB 01 –6dB 10 –12dB 11 –18dB This programs the input level of the data arriving from the right receive channel of Audio Port 1. PORT1_RX_R_LVL Level 00 0dB 01 –6dB 10 –12dB 11 –18dB This programs the input level of the data arriving from the left receive channel of Audio Port 2. PORT2_RX_L_LVL Level 00 0dB 01 –6dB 10 –12dB 11 –18dB This programs the input level of the data arriving from the right receive channel of Audio Port 2. PORT2_RX_R_LVL Level 00 0dB 01 –6dB 10 –12dB 11 –18dB TABLE 55. Input Levels 2 (0x41h) Bits Field 1:0 ADC_L_LVL Description This programs the input level of the data arriving from the left ADC channel. ADC_L_LVL 3:2 ADC_R_LVL 0dB 01 –6dB 10 –12dB 11 –18dB This programs the input level of the data arriving from the right ADC channel. ADC_R_LVL 5:4 INTERP_L_LVL Level 00 0dB 01 –6dB 10 –12dB 11 –18dB This programs the input level of the data arriving from the left DAC's interpolator output. INTERP_L_LVL www.ti.com Level 00 Level 00 0dB 01 –6dB 10 –12dB 11 –18dB 84 Field 7:6 INTERP_R_LVL LM49360 Bits Description This programs the input level of the data arriving from the right DAC's interpolator output. INTERP_R_LVL Level 00 0dB 01 –6dB 10 –12dB 11 –18dB TABLE 56. Audio Port 1 Input (0x42h) Bits Field 1:0 L_SEL Description This selects which input is fed to the Left TX Channel of Audio Port 1. L_SEL 3:2 R_SEL Selected Input 00 None 01 ADC_L 10 PORT2_RX_L 11 DAC_INTERP_L This selects which input is fed to the Right TX Channel of Audio Port 1. R_SEL Selected Input 00 None 01 ADC_R 10 PORT2_RX_R 11 DAC_INTERP_R 4 SWAP If set, this swaps the Left and Right outputs to Audio Port 1. 5 MONO If set, the right channel is ignored and the left channel becomes (left+right) / 2. TABLE 57. Audio Port 2 Input (0x43h) Bits Field 1:0 L_SEL Description This selects which input is fed to Audio Port 2's Left TX Channel. L_SEL 3:2 R_SEL Selected Input 00 None 01 ADC_L 10 PORT1_RX_L 11 DAC_INTERP_L This selects which input is fed to Audio Port 2's Right TX Channel. R_SEL Selected Input 00 None 01 ADC_R 10 PORT1_RX_R 11 DAC_INTERP_R 4 SWAP If set, this swaps the Left and Right outputs to Audio Port 2. 5 MONO If set, the right channel is ignored and the left channel becomes (left+right) / 2. 85 www.ti.com LM49360 TABLE 58. DAC Input Select (0x44h) Bits Field Description 0 PORT1_L This adds Audio Port 1's left RX channel to the DAC's left input. 1 PORT2_L This adds Audio Port 2's left RX channel to the DAC's left input. 2 ADC_L 3 PORT1_R This adds Audio Port 1's right RX channel to the DAC's right input. 4 PORT2_R This adds Audio Port 2's right RX channel to the DAC's right input. 5 ADC_R This adds the ADC's right output to the DAC's right input. 6 SWAP If set, this swaps the Left and Right inputs to the DAC. This adds the ADC's left output to the DAC's left input TABLE 59. Decimator Input Select (0x45h) Bits Field 1:0 L_SEL Description This selects which input is fed to the left ADC's decimator input. L_SEL 3:2 R_SEL Selected Input 00 None 01 PORT1_RX_L 10 PORT2_RX_L 11 DAC_INTERP_L This selects which input is fed to the right ADC's decimator input. R_SEL 5:4 www.ti.com MXR_CLK_SEL Selected Input 00 None 01 PORT1_RX_R 10 PORT2_RX_R 11 DAC_INTERP_R This selects the source of the Digital Mixer Clock. The 'Auto' setting will automatically select the source with the highest clock frequency. If the DAC interpolator output (DAC_OSR_L or DAC_OSR_R) is selected, then MXR_CLK_SEL should be set to '10'. MXR_CLK_SEL Selected Input 00 Auto 01 MCLK 10 DAC 11 ADC 86 LM49360 36.0 Audio Port Control Registers 30128271 FIGURE 24. I2S Serial Data Format (24 bit example) 30128272 FIGURE 25. Left Justified Data Format (24 bit example) 30128270 FIGURE 26. Right Justified Data Format (24 bit example) 30128234 FIGURE 27. PCM Serial Data Format (16 bit example) 87 www.ti.com LM49360 301282i1 FIGURE 28. Timing for I2S Master 301282i2 FIGURE 29. Timing for I2S Slave www.ti.com 88 TABLE 60. BASIC_SETUP (0x50h/0x60h) Bits Field 0 STEREO 1 RX_ENABLE If set, the input is enabled (enables the SDI port and input shift register and any clock generation required). 2 TX_ENABLE If set, the output is enabled (enables the SDO port and output shift register and any clock generation required). 3 CLOCK_MS If set, the audio port will transmit the clock when either the RX or TX is enabled. 4 SYNC_MS 5 CLOCK_PHASE 6 7 Description If set, the audio port will receive and transmit stereo data. If set, the audio port will transmit the sync signal when either the RX or TX is enabled. STEREO_SYNC_PHASE SYNC_INVERT This sets how data is clocked by the Audio Port. CLOCK_PHASE Audio Data Mode 0 I2S (TX on falling edge, RX on rising edge) 1 PCM (TX on rising edge, RX on falling edge) If set, this reverses the left and right channel data of the Audio Port. STEREO_SYNC_PHASE Audio Port Data Orientation 0 Left channel data goes to left channel output. Right channel data goes to right channel output. 1 Right channel data goes to left channel output. Left channel data goes to right channel output. If this bit is set, the SYNC is inverted before the receiver and transmitter. SYNC_INVERT SYNC ORIENTATION 0 SYNC Low = Left, SYNC High = Right 1 SYNC Low = Right, SYNC High = Left TABLE 61. CLK_GEN_1 (0x51h/0x61h) Bits 5:0 6 Field Description HALF_CYCLE_CLK_ This programs the half-cycle divider that generates the master clocks in the audio port. The default DIV of this divider is 0x00, i.e. bypassed. Program this divider with the required division multiplied by 2, and subtract 1. CLOCK_SEL HALF_CYCLE_CLK_DIV Divides By 000000 BYPASS 000001 1 000010 1.5 000011 2 — — 111101 31 111110 31.5 11111 32 This selects the clock source of the master mode Audio Port Clock generator's half-cycle divider. 0 = DAC_SOURCE_CLK 1 = ADC_SOURCE_CLK 89 www.ti.com LM49360 The following registers are used to control the LM49360's audio ports. Audio Port 1 and Audio Port 2 are identical. Port 1 is programmed through the (0x5Xh) registers. Port 2 is programmed through the (0x6Xh) registers. LM49360 TABLE 62. CLK_GEN_1 (0x52h/62h) Bits Field 2:0 SYNTH_NUM 3 SYNTH_DENOM Description Along with SYNTH_DENOM, this sets the clock divider that generates the Port 1 or Port 2 clock in master mode. SYNTH_NUM Numerator 000 SYNTH_DENOM (1/1) 001 100/SYNTH_DENOM 010 96/SYNTH_DENOM 011 80/SYNTH_DENOM 100 72/SYNTH_DENOM 101 64/SYNTH_DENOM 110 48/SYNTH_DENOM 111 0/SYNTH_DENOM Along with SYNTH_NUM, this sets the clock divider that generates the Port 1 or Port 2 clock in master mode. SYNTH_DENOM Denominator 0 128 1 125 TABLE 63. CLK_GEN_1 (0x53h/63h) Bits Field Description 2:0 SYNC_RATE This sets the number of clock cycles before the sync pattern repeats. This depends if the audio port data is mono or stereo. In MONO mode: SYNC_RATE Number of Clock Cycles 000 8 001 12 010 16 011 18 100 20 101 24 110 25 111 32 In STEREO mode: www.ti.com SYNC_RATE Number of Clock Cycles 000 16 001 24 010 32 011 36 100 40 101 48 110 50 111 64 90 Field 5:3 SYNC_WIDTH LM49360 Bits Description In MONO mode, this programs the width (in number of bits) of the SYNC signal. SYNC_WIDTH Width of SYNC (in bits) 000 1 001 2 010 4 011 7 100 8 101 11 110 15 111 16 TABLE 64. DATA_WIDTHS (0x54h/64h) Bits Field 2:0 RX_WIDTH 5:3 7:6 TX_WIDTH TX_EXTRA_BITS Description This programs the expected bits per word of the serial data input SDI. RX_WIDTH Bits 000 24 001 20 010 18 011 16 100 14 101 13 110 12 111 8 This programs the bits per word of the serial data output SDO. TX_WIDTH Description 000 24 001 20 010 18 011 16 100 14 101 13 110 12 111 8 This programs the TX data output padding. TX_EXTRA_BITS Description 00 0 01 1 10 High-Z 11 High-Z 91 www.ti.com LM49360 TABLE 65. RX_MODE (0x55h/x65h) Bits Field 0 RX_MODE 5:1 MSB_POSITION Description This sets the RX data input justification with respect to the SYNC signal. RX_MODE Description 0 MSB Justified 1 LSB Justified This specifies the bit location of the MSB from the start of the frame (MSB Justified) or from the end of the frame (LSB Justified). MSB_POSITION Description 00000 0(Left Justified/PCM Long) 00001 1(I2S/PCM Short) 00010 2 00011 3 00100 4 00101 5 00110 6 00111 7 01000 8 01001 9 01010 10 01011 11 01100 12 01101 13 01110 14 01111 15 10000 16 10001 17 10010 18 10011 19 10100 20 10101 21 10110 22 10111 23 11000 24 11001 25 11010 26 11011 27 11100 28 11101 29 11110 30 11111 31 6 COMPAND If set, received audio data will be companded. 7 μLaw/A-Law This sets the audio companding mode. μLaw/A-Law www.ti.com Compand Mode 0 μLaw 1 A-Law 92 LM49360 TABLE 66. TX_MODE (0x56h/x66h) Bits Field 0 TX_MODE 5:1 MSB_POSITION Description This sets the TX data input justification with respect to the SYNC signal. TX_MODE Description 0 MSB Justified 1 LSB Justified This specifies the bit location of the MSB from the start of the frame (MSB Justified) or from the end of the frame (LSB Justified). MSB_POSITION Description 00000 0(Left Justified/PCM Long) 00001 1(I2S/PCM Short) 00010 2 00011 3 00100 4 00101 5 00110 6 00111 7 01000 8 01001 9 01010 10 01011 11 01100 12 01101 13 01110 14 01111 15 10000 16 10001 17 10010 18 10011 19 10100 20 10101 21 10110 22 10111 23 11000 24 11001 25 11010 26 11011 27 11100 28 11101 29 11110 30 11111 31 6 COMPAND If set, transmitted audio data will be companded. 7 μLaw/A-Law This sets the audio companding mode. μLaw/A-Law Compand Mode 0 μLaw 1 A-Law 93 www.ti.com LM49360 37.0 Digital Effects Engine Digital Signal Processor (DSP) The LM49360 is designed to handle the entire audio signal conditioning and processing within the audio system, thereby freeing up the workload of any other applications processor contained within the system. The LM49360 features two independent DSPs, one for the DAC and the other for the ADC. The DAC DSP features digital volume control, automatic level control (ALC), digital soft clip compression and a 5-band parametric EQ. The ADC DSP features digital volume control, automatic level control (ALC) and digital soft clip compression. The effects chain of each DSP engine is shown by the diagrams below. 30128257 FIGURE 30. ADC DSP Effects Chain 30128236 FIGURE 31. DAC DSP Effects Chain The ADC and DAC DSP engines can be cascaded together in any order via the digital mixer to combine different audio effects to the same signal path. For example, a signal can be processed with high-pass filtering from the ADC effects engine with ALC from the DAC effects engine. www.ti.com 94 LM49360 TABLE 67. ADC EFFECTS (0x70h) Bits Field Description 0 ADC_HPF_ENB This enables the ADC's High Pass Filter. 1 ADC_ALC_ENB This enables the ADC's Automatic Level Control. 2 ADC_PK_ENB 3 RSVD 4 ADC_SCLP_ENB This enables the ADC's Peak Detector. Reserved This enables the ADC's Soft Clip Feature. TABLE 68. DAC EFFECTS (0x71h) Bits Field 0 DAC_ALC_ENB 1 DAC_PK_ENB This enables the DAC's Peak Detector. 2 DAC_EQ_ENB This enables the DAC's 5-band Parametric EQ. 3 RSVD 4 ADC_SCLP_ENB Description This enables the DAC's Automatic Level Control. Reserved This enables the DAC's Soft Clip Feature. TABLE 69. HPF MODE (0x80h) Bits Field 2:0 HPF_MODE Description This configures the ADC's High Pass Filter. HPF_MODE FILTER CHARACTERISTICS 000 8kHz Voice 001 12kHz Voice 010 16kHz Voice 011 24kHz Voice 100 32kHz Voice 101 32kHz Audio 110 48kHz Audio 111 96kHz Audio 95 www.ti.com LM49360 ALC Overview The Automatic Level Control (ALC) system can be used to regulate the audio output level to a user defined target level. The ALC feature is especially useful whenever the level of the audio input is unknown, unpredictable, or has a large dynamic range. The main purpose of the ALC is to optimize the dynamic range of the audio input to audio output path. There are two separate and independent ALC circuits in the LM49360. One of the ALC circuits is located within the DAC DSP effects block. The other ALC circuit is integrated into the ADC DSP effects block. The DAC ALC controls the DAC digital gain. The ADC ALC controls the mono/auxiliary input amplifier gain or microphone preamplifier gain. The dual ALCs can be used to regulate the level of the analog (AUX, MONO, MIC) and digital (Port1 Data In, Port2 Data In) audio inputs. The ALC regulated output can be routed to any of the LM49360’s amplifier outputs for playback. The ALC regulated output can also be routed to Audio Port1 or Audio Port2 for digital data transmission via I2S or PCM. Only audio inputs that are considered signals (rather than noise) are sent to the ALC’s peak detector block. The peak detector compares the level of the audio input versus the ALC target level (TARGET_LEVEL). Signals lower than the target level will be amplified and signals higher than the target level will be attenuated. Any audio input that is lower than the level specified by the noise floor level (NOISE_FLOOR) will be considered as noise and will be gated from the ALC’s peak detector in order to avoid noise pumping. So it is important to set NOISE_FLOOR to correlate with the signal to noise ratio of the corresponding audio path. In some instances (ie. Conference calls), it may be desirable to mute audio input signals that consist solely of background noise from the audio output. This is accomplished by enabling the ALC’s noise gate (NG_ENB). When the noise gate is enabled, signals lower than the noise floor level will be muted from the audio output. If the audio input signal is below the target level, the ALC will increase the gain of the corresponding volume control until the signal reaches the target level. The rate at which the ALC performs gain increases is known as decay rate (DECAY RATE). But before each ALC gain increase the ALC must wait a predetermined amount of time (HOLD TIME). If the audio input signal is above the target level, the ALC will decrease the gain of the corresponding volume control until the signal reaches the target level. The rate at which the ALC performs attenuation is known as attack rate (ATTACK RATE). The ALC’s peak detector tracks increases in audio input signal amplitude instantaneously, but tracks decreases in audio input signal amplitude at programmable rate (PEAK DECAY TIME). ATTACK RATE, DECAY RATE, HOLD TIME, and PEAK DECAY TIME are fully adjustable which allows flexible operation of the ALC circuit. The ALC’s timers are based on the sample rate of the DAC or ADC, so the closest corresponding sample rate must be programmed into the DAC SAMPLE setting (for DAC ALC) or the ADC SAMPLE (for ADC ALC). 30128291 FIGURE 32. ALC Example www.ti.com 96 The LM49360’s ALC features a limiter function. The purpose of the limiter is to limit the maximum level of the audio signal to the specified ALC target level. When the limiter is enabled, the ALC will decrease the gain of the volume control whenever the audio signal is higher than the specified target level. The programmed I2C gain setting when the limiter is first enabled is the maximum gain setting that the ALC limiter will apply to the audio signal. Gain increases beyond the original I2C gain setting are disabled. This is in contrast to ALC operation with the limiter disabled, where the ALC may increase gain of audio signals below target level using gain settings beyond the original I2C gain setting. Therefore, it is important to set the gain of the audio path to the desired setting before enabling the ALC limiter function. The limiter’s target level can be set just below the clipping level of the output amplifier or ADC in order to prevent harsh distortions delivered to the loudspeaker or headphone on the receiving end. This method of ALC limiter operation is also known as “no clip” mode. Operating the ALC limiter in “no clip” mode maximizes the dynamic range of the audio amplifier or ADC while ensuring that the audio signal will never clip. Utilizing the ALC limiter in “no clip” mode also protects the loudspeaker from damage due to harmful overdriven conditions. The ALC limiter’s target level can also be set for a predetermined maximum output power or voltage level. This method of ALC limiter operation is known as “power limit” mode. Operating the ALC limiter in “power limit” mode prevents the speaker or headphone from playing at unsafe hearing levels that can permanently damage the end user’s ears. “Power limit” operation is especially useful for applications such as listening to music through a set of headphones. Another benefit of using the ALC limit in “power limit” mode is to extend battery life by reducing power consumption of the output amplifiers during audio playback. 30128292 FIGURE 33. ALC Limiter 97 www.ti.com LM49360 Limiter LM49360 TABLE 70. ADC_ALC_1 (0x81h) Bits Field 2:0 ADC_SAMPLE Description This programs the timers on the ALC with the closest sample rate of the ADC. ADC_SAMPLE Expected ADC fS 000 8kHz 001 12kHz 010 16kHz 011 24kHz 100 32kHz 101 48kHz 110 96kHz 111 192kHz 3 LIMITER If set, the circuit will never apply gain to the signal, no matter how small, but it will attenuate the signal as soon as it reaches target and release it at the decay rate, once signal level reduces below target. The I2C gain setting (at the time the LIMITER is enabled) is the maximum gain that the ALC will apply. Care should be taken when choosing the optimum I2C gain setting whenever enabling the Limiter. 4 STEREO LINK If set, the ALC circuit uses the stereo average of the input signals to control the gain of the stereo output. This maintains stereo imaging. If this bit is cleared, then both channels operate as dual mono. 5 SOURCE_RSEL If both SOURCE_OVR and this bit is set, the right ADC ALC channel will be active. 6 SOURCE_LSEL If both SOURCE_OVR and this bit is set, the left ADC ALC channel will be active. 7 SOURCE_OVR If set, the active channel of the ADC ALC is determined by SOURCE_RSEL and SOURCE_LSEL. If cleared, the active channel of the ADC ALC is determined by the selected input to the ADC. MONO enables left ALC, AUX enables right ALC, MIC enables left and / or right ALC depending on which ADC channel MIC is selected to. TABLE 71. ADC_ALC_2 (0x82h) Bits Field Description 3:0 NOISE_FLOOR This sets the anticipated noise floor. Signals lower than the noise floor specified will be gated from the ALC to avoid noise pumping. 4 www.ti.com NG_ENB NOISE_FLOOR Noise Floor (dB) 0000 –39 0001 –42 0010 –45 0011 –48 0100 –51 0101 –54 0110 –57 0111 –60 1000 –63 1001 –66 1010 –69 1011 –72 1100 –75 1101 –78 1110 –81 1111 –84 This enables the Noise Gate. 98 Bits Field Description 4:0 TARGET_LEVEL This sets the desired target output level. Signals lower than this will be amplified and signals larger than this will be attenuated. TARGET_LEVEL Target Level (dB) 00000 –1.5 00001 –3 00010 –4.5 00011 –6 00100 –7.5 00101 –9 00110 –10.5 00111 –12 01000 –13.5 01001 –15 01010 –16.5 01011 –18 01100 –19.5 01101 –21 01110 –22.5 01111 –24 10000 –25.5 10001 –27 10010 –28.5 10011 –30 10100 –31.5 10101 –33 10110 –34.5 10111 –36 11000 –37.5 11001 –39 11010 –40.5 11011 –42 11100 –43.5 11101 –45 11110 –46.5 11111 –48 99 www.ti.com LM49360 TABLE 72. ADC_ALC_3 (0x83h) LM49360 TABLE 73. ADC_ALC_4 (0x84h) Bits Field 4:0 ATTACK_RATE www.ti.com Description This sets the rate at which the ALC will reduce gain if it detects the input signal is large. ATTACK_RATE Time between gain steps (μs) 00000 21 00001 42 00010 83 00011 167 00100 250 00101 333 00110 417 00111 542 01000 729 01001 958 01010 1250 (Default) 01011 1604 01100 1896 01101 2208 01110 2792 01111 3708 10000 4792 10001 5688 10010 6563 10011 8396 10100 11000 10101 14167 10110 17083 10111 20000 11000 25000 11001 32000 11010 45000 11011 60000 11100 75000 11101 87500 11110 100000 11111 114583 100 Bits Field 4:0 DECAY_RATE 7:5 PK_DECAY_RATE Description This sets the rate at which the ALC will increase gain if it detects the input signal is too small. DECAY_RATE Time between gain steps (μs) 00000 104 00001 125 00010 167 00011 250 00100 292 00101 396 00110 500 00111 708 01000 896 01001 1250 01010 1396 (Default) 01011 2000 01100 2708 01101 3500 01110 4750 01111 6250 10000 8000 10001 11000 10010 14000 10011 18500 10100 25000 10101 32000 10110 42000 10111 55000 11000 72500 11001 100000 11010 125000 11011 160000 11100 225000 11101 300000 11110 375000 11111 500000 (0.5s) PK_DECAY_RATE Max Time to track decay 000 1.3ms (Default) 001 2.6ms 010 5.3ms 011 10.6ms 100 21.3ms 101 42.6.3ms 110 85.5ms 111 2.73 secs 101 www.ti.com LM49360 TABLE 74. ADC_ALC_5 (0x85h) LM49360 TABLE 75. ADC_ALC_6 (0x86h) Bits Field 4:0 HOLD_TIME Description This sets how long the ALC circuit waits before increasing the gain. HOLD_TIME Time (ms) 00000 1 00001 1.25 00010 1.6 00011 2 00100 2.5 00101 3.2 00110 4 00111 5 01000 6.25 01001 8 01010 10 (Default) 01011 12.5 01100 16 01101 20 01110 25 01111 32 10000 40 10001 50 10010 64 10011 80 10100 100 10101 125 10110 160 10111 200 11000 250 11001 320 11010 400 11011 500 11100 640 11101 800 11110 1000 11111 1250 TABLE 76. ADC_ALC_7 (0x87h) Bits Field Description 5:0 MAX_LEVEL This sets the maximum allowed gain of the volume control to the output amplifier whenever the ALC is use. If the volume control is less than 6 bits, the relevant LSBs are used as the limit and the MSBs are ignored. TABLE 77. ADC_ALC_8 (0x88h) www.ti.com Bits Field Description 5:0 MIN_LEVEL This sets the minimum allowed gain of the volume control to the output amplifier whenever the ALC is use. If the volume control is less than 6 bits, the relevant LSBs are used as the limit and the MSBs are ignored. 102 LM49360 TABLE 78. ADC_L_LEVEL (0x89h) Bits Field 5:0 ADC_L_LEVEL 6 STEREO_LINK Description This sets the post ADC digital gain of the left channel. ADC_L_LEVEL Level ADC_L_LEVEL Level 000000 -76.5dB 100000 -28.5dB 000001 -75dB 100001 -27dB 000010 -73.5dB 100010 -25.5dB 000011 -72dB 100011 -24dB 000100 -70.5dB 100100 -22.5dB 000101 -69dB 100101 -21dB 000110 -67.5dB 100110 -20.5dB 000111 -66dB 100111 -18dB 001000 -64.5dB 101000 -16.5dB 001001 -63dB 101001 -15dB 001010 -61.5dB 101010 -13.5dB 001011 -60dB 101011 -12dB 001100 -58.5dB 101100 -10.5dB 001101 -57dB 101101 -9dB 001110 -55.5dB 101110 -7.5dB 001111 -54dB 101111 -6dB 010000 -52.5dB 110000 -4.5dB 010001 -51dB 110001 -3dB 010010 -49.5dB 110010 -1.5dB 010011 -48dB 110011 0dB 010100 -46.5dB 110100 1.5dB 010101 -45dB 110101 3dB 010110 -43.5dB 110110 4.5dB 010111 -42dB 110111 6dB 011000 -40.5dB 111000 7.5dB 011001 -39dB 111001 9dB 011010 -37.5dB 111010 10.5dB 011011 -36dB 111011 12dB 011100 -34.5dB 111100 13.5dB 011101 -33dB 111101 15dB 011110 -31.5dB 111110 16.5dB 011111 -30dB 111111 18dB If set, this links the ADC_R_LEVEL with ADC_L_LEVEL. 103 www.ti.com LM49360 TABLE 79. ADC_R_LEVEL (0x8Ah) Bits Field 5:0 ADC_R_LEVEL www.ti.com Description This sets the post ADC digital gain of the right channel. ADC_R_LEVEL Level ADC_R_LEVEL Level 000000 -76.5dB 100000 -28.5dB 000001 -75dB 100001 -27dB 000010 -73.5dB 100010 -25.5dB 000011 -72dB 100011 -24dB 000100 -70.5dB 100100 -22.5dB 000101 -69dB 100101 -21dB 000110 -67.5dB 100110 -20.5dB 000111 -66dB 100111 -18dB 001000 -64.5dB 101000 -16.5dB 001001 -63dB 101001 -15dB 001010 -61.5dB 101010 -13.5dB 001011 -60dB 101011 -12dB 001100 -58.5dB 101100 -10.5dB 001101 -57dB 101101 -9dB 001110 -55.5dB 101110 -7.5dB 001111 -54dB 101111 -6dB 010000 -52.5dB 110000 -4.5dB 010001 -51dB 110001 -3dB 010010 -49.5dB 110010 -1.5dB 010011 -48dB 110011 0dB 010100 -46.5dB 110100 1.5dB 010101 -45dB 110101 3dB 010110 -43.5dB 110110 4.5dB 010111 -42dB 110111 6dB 011000 -40.5dB 111000 7.5dB 011001 -39dB 111001 9dB 011010 -37.5dB 111010 10.5dB 011011 -36dB 111011 12dB 011100 -34.5dB 111100 13.5dB 011101 -33dB 111101 15dB 011110 -31.5dB 111110 16.5dB 011111 -30dB 111111 18dB 104 The LM49360 features a digital audio compressor on both the DAC and ADC paths. The compressor works by reducing the level of the audio signal that is higher than the level set by the audio compressor threshold level (THRESHOLD) by a fixed ratio (compressor output / compressor input) that is set by a predetermined audio compression ratio (RATIO). Higher compression ratios result in more compression as shown in Figure 34. The audio compressor can be used in conjunction with the ALC to limit audio peaks that the ALC may not be fast enough to react to. 30128289 FIGURE 34. Audio Compressor Effect 105 www.ti.com LM49360 Digital Audio Compressor LM49360 Soft Knee Function The LM49360’s audio compressor also features a soft knee function that smooths the harsh edges found during clipping of an audio signal. For audio signals higher than the compressor threshold level, the soft knee function gradually increases the compression ratio for increasing levels of audio signal beyond the compressor threshold. To achieve the smoothing effect to prevent hard clipping, the soft knee function initially compresses the audio signal at the smallest ratio and then incrementally increases the compression ratio if required. The highest level of compression applied by the soft knee function is set by the compressor ratio. The effect of the soft knee function is shown in Figure 35. 30128290 FIGURE 35. Soft Knee Example with Compression Ratio Setting of 1:3.4 www.ti.com 106 Bits Field Description 3:0 THRESHOLD This sets the threshold level of the audio compressor. Audio signals above the threshold will be compressed. 4 SOFT_KNEE THRESHOLD Threshold Level (dB) 0000 -36dB 0001 -30dB 0010 -24dB 0011 -20dB 0100 -18dB 0101 -17dB 0110 -16dB 0111 -15dB 1000 -14dB 1001 -12dB 1010 -10dB 1011 -8dB 1100 -6dB 1101 -4dB 1110 -2.5dB 1111 -1dB If set, the audio compressor will automatically apply higher compression ratios to audio signals higher than the threshold level. As the audio signal approaches levels higher than the threshold, SOFT_KNEE will increase the compression RATIO. The highest compression that the SOFT_KNEE algorithm will apply is the compression that is set by RATIO. 107 www.ti.com LM49360 TABLE 80. SOFTCLIP1 (0x90h) LM49360 TABLE 81. SOFTCLIP2 (0x91h) www.ti.com Bits Field Description 4:0 RATIO This sets the ratio at which the audio is compressed to when it passes beyond the threshold. In SOFT_KNEE mode this is the final level of compression. 108 RATIO Ratio 00000 1:1 (Bypass) 00001 1:1.2 00010 1:1.4 00011 1:1.7 00100 1:2.0 00101 1:2.4 00110 1:2.8 00111 1:3.4 01000 1:4.0 01001 1:4.7 01010 1:5.7 01011 1:6.7 01100 1:8.0 01101 1:9.5 01110 1:11.3 01111 1:13.5 10000 1:16.0 10001 1:19.0 10010 1:22.8 10011 1:27.0 10100 1:32.0 10101 1:37.9 10110 1:45.5 10111 1:53.9 11000 1:64.0 11001 1:75.0 11010 1:91.0 11011 1:108 11100 1:128 11101 1:152 11110 1:182 11111 1:215 LM49360 TABLE 82. SOFTCLIP3 (0x92h) Bits Field 3:0 LEVEL Description This sets the post compressor gain level. 109 LEVEL Level (dB) 00000 -22.5dB 00001 -21dB 00010 -19.5dB 00011 -18dB 00100 -16.5dB 00101 -15dB 00110 -13.5dB 00111 -12dB 01000 -10.5dB 01001 -9dB 01010 -7.5dB 01011 -6dB 01100 -4.5dB 01101 -3dB 01110 -1.5dB 01111 0dB 10000 1.5dB 10001 3dB 10010 4.5dB 10011 6dB 10100 7.5dB 10101 9dB 10110 10.5dB 10111 12dB 11000 13.5dB 11001 15dB 11010 16.5dB 11011 18dB 11100 19.5dB 11101 21dB 11110 22.5dB 11111 24dB www.ti.com LM49360 38.0 DAC Effects Registers TABLE 83. DAC_ALC_1 (0xA0h) Bits Field Description 2:0 DAC_SAMPLE This programs the timers on the ALC with the closest DAC sample rate. DAC_SAMPLE Expected DAC fS 000 8kHz 001 12kHz 010 16kHz 011 24kHz 100 32kHz 101 48kHz 110 96kHz 111 192kHz 3 LIMITER If set, the circuit will never apply gain to the signal, no matter how small, but it will attenuate the signal as soon as it reaches target and release it at the decay rate, once signal level reduces below target. The I2C gain setting (at the time the LIMITER is enabled) is the maximum gain that the ALC will apply. Care should be taken when choosing the optimum I2C gain setting whenever enabling the Limiter. 4 STEREO LINK If set, the ALC circuit uses the stereo average of the input signals to control the gain of the stereo output. This maintains stereo imaging. If this bit is cleared, then both channels operate as dual mono. TABLE 84. DAC_ALC_2 (0xA1h) Bits Field 3:0 NOISE_FLOOR 4 www.ti.com NG_ENB Description This sets the anticipated noise floor. Signals lower than the specified noise floor will be gated from the ALC to avoid noise pumping. NOISE_FLOOR Noise Floor (dB) 0000 -39 0001 -42 0010 -45 0011 -48 0100 -51 0101 -54 0110 -57 0111 -60 1000 -63 1001 -66 1010 -69 1011 -72 1100 -75 1101 -78 1110 -81 1111 -84 This enables the Noise Gate. 110 Bits Field 4:0 TARGET_LEVEL Description This sets the desired output level. Signals lower than this will be amplified and signals larger than this will be attenuated. 111 TARGET_LEVEL Target Level (dB) 00000 -1.5 00001 -3 00010 -4.5 00011 -6 00100 -7.5 00101 -9 00110 -10.5 00111 -12 01000 -13.5 01001 -15 01010 -16.5 01011 -18 01100 -19.5 01101 -21 01110 -22.5 01111 -24 10000 -25.5 10001 -27 10010 -28.5 10011 -30 10100 -31.5 10101 -33 10110 -34.5 10111 -36 11000 -37.5 11001 -39 11010 -40.5 11011 -42 11100 -43.5 11101 -45 11110 -46.5 11111 -48 www.ti.com LM49360 TABLE 85. DAC_ALC_3 (0xA2h) LM49360 TABLE 86. DAC_ALC_4 (0xA3h) www.ti.com Bits Field Description 4:0 ATTACK_RATE This sets the rate at which the ALC will reduce gain if it detects the input signal is too large. 112 ATTACK_RATE Time between gain steps(us) 00000 21 00001 42 00010 83 00011 167 00100 250 00101 333 00110 417 00111 542 01000 729 01001 958 01010 1250 (Default) 01011 1604 01100 1896 01101 2208 01110 2792 01111 3708 10000 4792 10001 5688 10010 6563 10011 8396 10100 11000 10101 14167 10110 17083 10111 20000 11000 25000 11001 32000 11010 45000 11011 60000 11100 75000 11101 87500 11110 100000 11111 114583 Bits Field Description 4:0 DECAY_RATE This sets the rate at which the ALC will increase gain if it detects the input signal is too small. 7:5 PK_DECAY_RATE DECAY_RATE Time between gain steps(us) 00000 104 00001 125 00010 167 00011 250 00100 292 00101 396 00110 500 00111 708 01000 896 01001 1250 01010 1396 (Default) 01011 2000 01100 2708 01101 3500 01110 4750 01111 6250 10000 8000 10001 11000 10010 14000 10011 18500 10100 25000 10101 32000 10110 42000 10111 55000 11000 72500 11001 100000 11010 125000 11011 160000 11100 225000 11101 300000 11110 375000 11111 500000 (0.5s) This sets how precise the ALC will track amplitude reductions of the audio input. The shorter the length of time for PK_DECAY_RATE, the more responsive the ALC will be when applying gain increases whenever the audio falls below target level. 113 PK_DECAY_RATE Time 000 1.3ms (Default) 001 2.6ms 010 5.3ms 011 10.6ms 100 21.3ms 101 42.6ms 110 85.5ms 111 2.73secs www.ti.com LM49360 TABLE 87. DAC_ALC_5 (0xA4h) LM49360 TABLE 88. DAC_ALC_6 (0xA5h) Bits Field Description 4:0 HOLD_TIME This sets how long the ALC circuit waits before increasing the gain. HOLDTIME Time (ms) 00000 1 00001 1.25 00010 1.6 00011 2 00100 2.5 00101 3.2 00110 4 00111 5 01000 6.25 01001 8 01010 10 (Default) 01011 12.5 01100 16 01101 20 01110 25 01111 32 10000 40 10001 50 10010 64 10011 80 10100 100 10101 125 10110 160 10111 200 11000 250 11001 320 11010 400 11011 500 11100 640 11101 800 11110 1000 11111 1250 TABLE 89. DAC_ALC_7 (0xA6h) Bits Field 5:0 MAX_LEVEL Description This sets the maximum allowed gain to the digital level control when the ALC is used. TABLE 90. DAC_ALC_8 (0xA7h) www.ti.com Bits Field 5:0 MIN_LEVEL Description This sets the minimum allowed gain to the digital level control when the ALC is used. 114 LM49360 TABLE 91. DAC_L_LEVEL (0xA8h) Bits Field 5:0 DAC_L_LEVEL 6 STEREO_LINK Description This sets the pre DAC digital gain. DAC_L_LEVEL Level DAC_L_LEVEL Level 000000 -76.5dB 100000 -28.5dB 000001 -75dB 100001 -27dB 000010 -73.5dB 100010 -25.5dB 000011 -72dB 100011 -24dB 000100 -70.5dB 100100 -22.5dB 000101 -69dB 100101 -21dB 000110 -67.5dB 100110 -20.5dB 000111 -66dB 100111 -18dB 001000 -64.5dB 101000 -16.5dB 001001 -63dB 101001 -15dB 001010 -61.5dB 101010 -13.5dB 001011 -60dB 101011 -12dB 001100 -58.5dB 101100 -10.5dB 001101 -57dB 101101 -9dB 001110 -55.5dB 101110 -7.5dB 001111 -54dB 101111 -6dB 010000 -52.5dB 110000 -4.5dB 010001 -51dB 110001 -3dB 010010 -49.5dB 110010 -1.5dB 010011 -48dB 110011 0dB 010100 -46.5dB 110100 1.5dB 010101 -45dB 110101 3dB 010110 -43.5dB 110110 4.5dB 010111 -42dB 110111 6dB 011000 -40.5dB 111000 7.5dB 011001 -39dB 111001 9dB 011010 -37.5dB 111010 10.5dB 011011 -36dB 111011 12dB 011100 -34.5dB 111100 13.5dB 011101 -33dB 111101 15dB 011110 -31.5dB 111110 16.5dB 011111 -30dB 111111 18dB If set, this links DAC_R_LEVEL with DAC_L_LEVEL. 115 www.ti.com LM49360 TABLE 92. DAC_R_LEVEL (0xA9h) Bits Field 5:0 DAC_R_LEVEL www.ti.com Description This sets the pre DAC digital gain. DAC_R_LEVEL Level DAC_R_LEVEL Level 000000 -76.5dB 100000 -28.5dB 000001 -75dB 100001 -27dB 000010 -73.5dB 100010 -25.5dB 000011 -72dB 100011 -24dB 000100 -70.5dB 100100 -22.5dB 000101 -69dB 100101 -21dB 000110 -67.5dB 100110 -20.5dB 000111 -66dB 100111 -18dB 001000 -64.5dB 101000 -16.5dB 001001 -63dB 101001 -15dB 001010 -61.5dB 101010 -13.5dB 001011 -60dB 101011 -12dB 001100 -58.5dB 101100 -10.5dB 001101 -57dB 101101 -9dB 001110 -55.5dB 101110 -7.5dB 001111 -54dB 101111 -6dB 010000 -52.5dB 110000 -4.5dB 010001 -51dB 110001 -3dB 010010 -49.5dB 110010 -1.5dB 010011 -48dB 110011 0dB 010100 -46.5dB 110100 1.5dB 010101 -45dB 110101 3dB 010110 -43.5dB 110110 4.5dB 010111 -42dB 110111 6dB 011000 -40.5dB 111000 7.5dB 011001 -39dB 111001 9dB 011010 -37.5dB 111010 10.5dB 011011 -36dB 111011 12dB 011100 -34.5dB 111100 13.5dB 011101 -33dB 111101 15dB 011110 -31.5dB 111110 16.5dB 011111 -30dB 111111 18dB 116 LM49360 TABLE 93. EQ_BAND_1 (0xABh) Bits Field 1:0 FREQ 6:2 LEVEL Description This sets the Sub-bass shelving filter's cut-off frequency. FREQ Frequency (Hz) 00 60 01 80 10 100 11 120 This sets the gain at fC. 117 LEVEL Effect 00000 Off (0dB) 00001 -15dB 00010 -14dB 00011 -13dB 00100 -12dB 00101 -11dB 00110 -10dB 00111 -9dB 01000 -8dB 01001 -7dB 01010 -6dB 01011 -5dB 01100 -4dB 01101 -3dB 01110 -2dB 01111 -1dB 10000 0dB 10001 1dB 10010 2dB 10011 3dB 10100 4dB 10101 5dB 10110 6dB 10111 7dB 11000 8dB 11001 9dB 11010 10dB 11011 11dB 11100 12dB 11101 13dB 11110 14dB 11111 15dB www.ti.com LM49360 TABLE 94. EQ_BAND_2 (0xACh) Bits Field 1:0 FREQ 6:2 7 www.ti.com LEVEL Q Description This sets the Bass peak filter's center frequency. FREQ Frequency (Hz) 00 150 01 200 10 250 11 300 This sets the gain at fC. LEVEL Effect 00000 Off (0dB) 00001 -15dB 00010 -14dB 00011 -13dB 00100 -12dB 00101 -11dB 00110 -10dB 00111 -9dB 01000 -8dB 01001 -7dB 01010 -6dB 01011 -5dB 01100 -4dB 01101 -3dB 01110 -2dB 01111 -1dB 10000 0dB 10001 1dB 10010 2dB 10011 3dB 10100 4dB 10101 5dB 10110 6dB 10111 7dB 11000 8dB 11001 9dB 11010 10dB 11011 11dB 11100 12dB 11101 13dB 11110 14dB 11111 15dB This programs the width of the peak filter. 118 Q Bandwidth 0 2/3 Octave 1 4/3 Octave LM49360 TABLE 95. EQ_BAND_3 (0xADh) Bits Field 1:0 FREQ 6:2 7 LEVEL Q Description This sets the Mid peak filter's center frequency. FREQ Frequency (Hz) 00 600 01 800 10 1k 11 1.2k This sets the gain at fC. LEVEL Effect 00000 Off (0dB) 00001 -15dB 00010 -14dB 00011 -13dB 00100 -12dB 00101 -11dB 00110 -10dB 00111 -9dB 01000 -8dB 01001 -7dB 01010 -6dB 01011 -5dB 01100 -4dB 01101 -3dB 01110 -2dB 01111 -1dB 10000 0dB 10001 1dB 10010 2dB 10011 3dB 10100 4dB 10101 5dB 10110 6dB 10111 7dB 11000 8dB 11001 9dB 11010 10dB 11011 11dB 11100 12dB 11101 13dB 11110 14dB 11111 15dB This programs the width of the peak filter. 119 Q Bandwidth 0 2/3 Octave 1 4/3 Octave www.ti.com LM49360 TABLE 96. EQ_BAND_4 (0xAEh) Bits Field 1:0 FREQ Description This sets the Treble peak filter's center frequency. FREQ 6:2 7 www.ti.com LEVEL Q Frequency (Hz) 00 2k 01 2.7k 10 3.4k 11 4.1k This sets the gain at fC. LEVEL Effect 00000 Off (0dB) 00001 -15dB 00010 -14dB 00011 -13dB 00100 -12dB 00101 -11dB 00110 -10dB 00111 -9dB 01000 -8dB 01001 -7dB 01010 -6dB 01011 -5dB 01100 -4dB 01101 -3dB 01110 -2dB 01111 -1dB 10000 0dB 10001 1dB 10010 2dB 10011 3dB 10100 4dB 10101 5dB 10110 6dB 10111 7dB 11000 8dB 11001 9dB 11010 10dB 11011 11dB 11100 12dB 11101 13dB 11110 14dB 11111 15dB This programs the width of the peak filter. 120 Q Bandwidth 0 2/3 Octave 1 4/3 Octave LM49360 TABLE 97. EQ_BAND_5 (0xAFh) Bits Field 1:0 FREQ 6:2 LEVEL Description This sets the presence shelving filter's cut-off frequency. FREQ Frequency (Hz) 00 7k 01 9k 10 11k 11 20k This sets the gain at fC. 121 LEVEL Effect 00000 Off (0dB) 00001 -15dB 00010 -14dB 00011 -13dB 00100 -12dB 00101 -11dB 00110 -10dB 00111 -9dB 01000 -8dB 01001 -7dB 01010 -6dB 01011 -5dB 01100 -4dB 01101 -3dB 01110 -2dB 01111 -1dB 10000 0dB 10001 1dB 10010 2dB 10011 3dB 10100 4dB 10101 5dB 10110 6dB 10111 7dB 11000 8dB 11001 9dB 11010 10dB 11011 11dB 11100 12dB 11101 13dB 11110 14dB 11111 15dB www.ti.com LM49360 TABLE 98. SOFTCLIP1 (0xB0h) Bits Field Description 3:0 TRESHOLD This sets the threshold level of the audio compressor. Audio signals above the threshold will be compressed. 4 www.ti.com SOFT_KNEE THRESHOLD Threshold Level (dB) 0000 -36dB 0001 -30dB 0010 -24dB 0011 -20dB 0100 -18dB 0101 -17dB 0110 -16dB 0111 -15dB 1000 -14dB 1001 -12dB 1010 -10dB 1011 -8dB 1100 -6dB 1101 -4dB 1110 -2.5dB 1111 -1dB If set, the audio compressor will automatically apply higher compression ratios to audio signals higher than the threshold level. As the audio signal approaches levels higher than the threshold, SOFT_KNEE will increase the compression RATIO. The highest compression that the SOFT_KNEE algorithm will apply is the compression that is set by RATIO. 122 LM49360 TABLE 99. SOFTCLIP2 (0xB1h) Bits Field Description 4:0 RATIO This sets the ratio at which the audio is compressed to when it passes beyond the threshold. In soft clip mode, this is the final level of compression. 123 RATIO Ratio 00000 1:1 (Bypass) 00001 1:1.2 00010 1:1.4 00011 1:1.7 00100 1:2.0 00101 1:2.4 00110 1:2.8 00111 1:3.4 01000 1:4.0 01001 1:4.7 01010 1:5.7 01011 1:6.7 01100 1:8.0 01101 1:9.5 01110 1:11.3 01111 1:13.5 10000 1:16.0 10001 1:19.0 10010 1:22.8 10011 1:27.0 10100 1:32.0 10101 1:37.9 10110 1:45.5 10111 1:53.9 11000 1:64 11001 1:75.9 11010 1:91.0 11011 1:108 11100 1:128 11101 1:152 11110 1:182 11111 1:215 www.ti.com LM49360 TABLE 100. SOFTCLIP3 (0xB2h) www.ti.com Bits Field 4:0 LEVEL Description This sets the post compressor gain level. 124 LEVEL Level (dB) 00000 -22.5dB 00001 -21dB 00010 -19.5dB 00011 -18dB 00100 -16.5dB 00101 -15dB 00110 -13.5dB 00111 -12dB 01000 -10.5dB 01001 -9dB 01010 -7.5dB 01011 -6dB 01100 -4.5dB 01101 -3dB 01110 -1.5dB 01111 0dB 10000 1.5dB 10001 3dB 10010 4.5dB 10011 6dB 10100 7.5dB 10101 9dB 10110 10.5dB 10111 12dB 11000 13.5dB 11001 15dB 11010 16.5dB 11011 18dB 11100 19.5dB 11101 21dB 11110 22.5dB 11111 24dB LM49360 39.0 GPIO Registers TABLE 101. GPIO1 (0xE0h) Bits Field 5:0 GPIO_MODE 6 7 Description This sets the mode of the GPIO pin. GPIO_MODE GPIO STATUS 000000 If GPIO Mode is disabled, PORT2_SDO is controlled by the Port2 serial interface configuration. In all the other modes, PORT2_SDO is configured as the GPIO pin. 000001 GPIO_RX (in) 000010 CHIP ENABLE (in) 000011 CHIP ENABLE (in) 000100 ADC MUTE (in) 000101 ADC MUTE (in) 000110 HP SENSE (in) 000111 HP SENSE (in) 001000 SPARE (in) 001001 SPARE (in) 001010 GPIO TX (out) 001011 CHIP ACTIVE (out) 001100 CHIP ACTIVE (out) 001101 HP ENABLE (out) 001110 HP ENABLE (out) 001111 LS ENABLE (out) 010000 LS ENABLE (out) 010001 EP ENABLE (out) 010010 EP ENABLE (out) 010011 ADC CLIPPED (out) 010100 ADC CLIPPED (out) 010101 DAC CLIPPED (out) 010110 DAC CLIPPED (out) 010111 SOMETHING CLIPPED (out) 011000 SOMETHING CLIPPED (out) 011001 ADC NG ACTIVE (out) 011010 ADC NG ACTIVE (out) 011011 DAC NG ACTIVE (out) 011100 DAC NG ACTIVE (out) 011101 THERMAL (out) 011110 THERMAL (out) 011111 LS SHORT CCT (out) 100000 LS SHORT CCT (out) 100001 ANALOG ERROR Thermal or LS CCT condition (out) 100010 ANALOG ERROR (out) 100011 ERROR (out) Thermal or LS CCT or Clipping 100100 ERROR (out) 100101 – 111111 RESERVED GPIO_TX Whenever GPIO_MODE is set to '001010', the GPIO pin will output a logic level based on this bit setting. Setting this bit high will result in a logic high GPIO output. GPIO_RX This bit reports the logic level is present on the GPIO pin. 125 www.ti.com LM49360 TABLE 102. GPIO2 (0xE1h) Bits Field Description 0 SHORT This bit will go high whenever a short circuit condition occurs on the Class D loudspeaker amplifier outputs. Once triggered by a short circuit event, an I2C write of 1 to this bit clear this bit. 1 TEMP This bit will go high whenever the temperature of the LM49360 reaches a critical temperature. Once triggered by a thermal event, an I2C write of 1 to this bit clear this bit. TABLE 103. RESET (0xF0h) Bits Field Description 4:0 RSVD 5 SOFT_RESET Reserved. Setting this bit resets the digital core of LM49360. SOFT_RESET does not affect the current I2C register settings. TABLE 104. Spread Spectrum (0xF1h) Bits Field 1:0 RSVD 2 SS_DISABLE Description Reserved If this bit is set, Spread Spectrum mode will be disabled from the Class D amplifier. TABLE 105. FORCE (0xFE) Bits Field 0 RSVD 1 DACREF Description Reserved This bit determines whether the DAC reference voltage is internally generated or externally driven. DACREF 2 www.ti.com CP_FORCE STATUS 0 DACREF uses an internal bandgap reference. 1 DACREF is driven by an external voltage reference. If set, a -LS_VDD rail will be generated on HP_VSS, even if the headphone output stage is not required. 126 FIGURE 36. Demo Board Schematic 30128220 LM49360 40.0 Schematic Diagram 127 www.ti.com www.ti.com 128 FIGURE 37. Demo Board Schematic 30128245 LM49360 LM49360 41.0 Demonstration Board Layout 30128243 FIGURE 38. Top Silkscreen 30128244 FIGURE 39. Top Layer 129 www.ti.com LM49360 30128238 FIGURE 40. Inner Layer 2 30128239 FIGURE 41. Inner Layer 3 www.ti.com 130 LM49360 30128240 FIGURE 42. Inner Layer 4 30128241 FIGURE 43. Inner Layer 5 131 www.ti.com LM49360 30128231 FIGURE 44. Bottom Layer 30128242 FIGURE 45. Bottom Silkscreen www.ti.com 132 LM49360 42.0 Revision History Rev Date 1.0 11/14/11 Description Initial WEB released. 1.01 12/01/11 Changed the Vdo Max limit in the “EC LDOs 1 to 6” table from (200 to 250). 133 www.ti.com LM49360 43.0 Physical Dimensions inches (millimeters) unless otherwise noted micro SMD–64 Package Order Number LM49360RL NS Package Number RLA64JBA X1 = 4.169±.03mm, X2 = 3.99±.03mm, X3 = 0.65±.075mm www.ti.com 134 LM49360 Notes 135 www.ti.com IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Audio www.ti.com/audio Communications and Telecom www.ti.com/communications Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive Microcontrollers microcontroller.ti.com Video and Imaging RFID www.ti-rfid.com OMAP Mobile Processors www.ti.com/omap Wireless Connectivity www.ti.com/wirelessconnectivity TI E2E Community Home Page www.ti.com/video e2e.ti.com Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated