TI LMV1032URX-15

LMV1032
LMV1032-06/LMV1032-15/LMV1032-25 Amplifiers for 3-Wire Analog Electret
Microphones
Literature Number: SNAS233F
LMV1032-06/LMV1032-15/LMV1032-25
Amplifiers for 3-Wire Analog Electret Microphones
General Description
Features
The LMV1032s are an audio amplifier series for small form
factor electret microphones. They are designed to replace
the JFET preamp currently being used. The LMV1032 series
is ideal for extended battery life applications, such as a
Bluetooth communication link. The addition of a third pin to
an electret microphones that incorporates an LMV1032 allows for a dramatic reduction in supply current as compared
to the JFET equipped electret microphone. Microphone supply current is thus reduced to 60 µA, assuring longer battery
life. The LMV1032 series is guaranteed for supply voltages
from 1.7V to 5V, and has fixed voltage gains of 6 dB, 15 dB
and 25 dB.
(Typical LMV1032-15, 1.7V Supply; Unless Otherwise
Noted)
n Output voltage noise (A-weighted)
−89 dBV
n Low supply current
60 µA
n Supply voltage
1.7V to 5V
n PSRR
70 dB
n Signal to noise ratio
61 dB
n Input capacitance
2 pF
> 100 MΩ
n Input impedance
< 200Ω
n Output impedance
n Max input signal
170 mVPP
n Temperature range
−40˚C to 85˚C
n Large Dome 4-Bump micro SMD package with improved
adhesion technology.
The LMV1032 series offers low output impedance over the
voice bandwidth, excellent power supply rejection (PSRR),
and stability over temperature.
The devices are offered in space saving 4-bump ultra thin
micro SMD (TM) lead free packages and are thus ideally
suited for the form factor of miniature electret microphone
packages. These extremely miniature packages have the
Large Dome Bump (LDB) technology. This micro SMD technology is designed for microphone PCBs requiring 1 kg
adhesion criteria.
Block Diagram
Applications
n
n
n
n
n
Mobile communications - Bluetooth
Automotive accessories
Cellular phones
PDAs
Accessory microphone products
Electret Microphone
20084202
20084201
© 2005 National Semiconductor Corporation
DS200842
www.national.com
LMV1032-06/LMV1032-15/LMV1032-25 Amplifiers for 3-Wire Analog Electret Microphones
November 2005
LMV1032-06/LMV1032-15/LMV1032-25
Absolute Maximum Ratings (Note 1)
Storage Temperature Range
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
Junction Temperature (Note 6)
−65˚C to 150˚C
150˚C max
Mounting Temperature
Infrared or Convection (20 sec.)
235˚C
ESD Tolerance (Note 2)
Human Body Model
2500V
Machine Model
Operating Ratings (Note 1)
250V
Supply Voltage
Supply Voltage
VDD - GND
1.7V to 5V
Temperature Range
5.5V
−40˚C to +85˚C
1.7V and 5V Electrical Characteristics
(Note 3)
Unless otherwise specified, all limits guaranteed for TJ = 25˚C and VDD = 1.7V and 5V. Boldface limits apply at the temperature extremes.
Symbol
Parameter
Min
(Note 4)
Conditions
Typ
(Note 5)
Max
(Note 4)
60
85
100
IDD
Supply Current
VIN = GND
SNR
Signal to Noise Ratio
VDD = 1.7V
VIN = 18 mVPP
f = 1 kHz
LMV1032-06
58
LMV1032-15
61
LMV1032-25
61
VDD = 5V
VIN = 18 mVPP
f = 1 kHz
LMV1032-06
59
LMV1036-15
61
1.7V < VDD < 5V
LMV1032-06
65
60
75
LMV1032-15
60
55
70
LMV1032-25
55
50
65
PSRR
VIN
Power Supply Rejection Ratio
Max Input Signal
LMV1032-25
f = 1 kHz and THD+N
< 1%
LMV1032-06
300
LMV1032-15
170
LMV1032-25
60
Lower −3 dB Roll Off Frequency
RSOURCE = 50Ω
VIN = 18 mVPP
fHIGH
Upper −3 dB Roll Off Frequency
RSOURCE = 50Ω
VIN = 18 mVPP
LMV1032-06
120
LMV1032-15
75
LMV1032-25
21
A-Weighted
LMV1032-06
−97
LMV1032-15
−89
Output Noise
Output Voltage
VIN = GND
dB
mVPP
kHz
dBV
−80
100
300
500
LMV1032-15
250
500
750
LMV1032-25
300
600
1000
< 200
Output Impedance
f = 1 kHz
IO
Output Current
VDD = 1.7V, VOUT = 1.7V, Sinking
0.9
0.5
2.3
VDD = 1.7V, VOUT = 0V, Sourcing
0.3
0.2
0.64
VDD = 5V, VOUT = 1.7V, Sinking
0.9
0.5
2.4
VDD = 5V, VOUT = 0V, Sourcing
0.4
0.1
1.46
2
Hz
LMV1032-06
RO
www.national.com
dB
70
LMV1032-25
VOUT
µA
62
fLOW
en
Units
mV
Ω
mA
(Note 3) (Continued)
Unless otherwise specified, all limits guaranteed for TJ = 25˚C and VDD = 1.7V and 5V. Boldface limits apply at the temperature extremes.
Symbol
THD
CIN
Parameter
Total Harmonic Distortion
Min
(Note 4)
Conditions
f = 1 kHz
VIN = 18 mVPP
LMV1032-06
0.11
LMV1032-15
0.13
LMV1032-25
0.35
Input Capacitance
ZIN
Input Impedance
AV
Gain
Typ
(Note 5)
Max
(Note 4)
%
2
pF
> 100
f = 1 kHz
VIN = 18 mVPP
Units
MΩ
LMV1032-06
5.5
4.5
6.2
6.7
7.7
LMV1032-15
14.8
14
15.4
16
17
LMV1032-25
24.8
24
25.5
26.2
27
dB
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is
intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: The Human Body Model (HBM) is 1.5 kΩ in series with 100 pF. The Machine Model is 0Ω in series with 200 pF.
Note 3: Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of
the device such that TJ = TA. No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where TJ > TA.
Note 4: All limits are guaranteed by design or statistical analysis.
Note 5: Typical values represent the most likely parametric norm.
Note 6: The maximum power dissipation is a function of TJ(MAX) , θJA and TA. The maximum allowable power dissipation at any ambient temperature is PD =
(TJ(MAX) - TA)/θJA. All numbers apply for packages soldered directly onto a PC board.
3
www.national.com
LMV1032-06/LMV1032-15/LMV1032-25
1.7V and 5V Electrical Characteristics
LMV1032-06/LMV1032-15/LMV1032-25
Connection Diagram
Large Dome 4-Bump micro SMD
20084203
Top View
Note: - Pin numbers are referenced to package marking text orientation.
- The actual physical placement of the package marking will vary slightly from part to part. The package will designate the date code and will vary considerably.
Package marking does not correlate to device type in any way.
Ordering Information
Package
Part Number
4-Bump
Ultra Thin micro SMD
(LDB)
Lead Free
LMV1032UR-15
LMV1032URX-15
LMV1032UR-25
LMV1032URX-25
LMV1032UP-06
4-Bump
Ultra Thin micro SMD
(Small Bump)
Lead Free
LMV1032UPX-06
LMV1032UP-15
LMV1032UPX-15
LMV1032UP-25
LMV1032UPX-25
Package
Marking
Transport Media
250 Units Tape and Reel
Date Code
3k Units Tape and Reel
250 Units Tape and Reel
Date Code
Full Production
Full Production
250 Units Tape and Reel
Date Code
Full Production
250 Units Tape and Reel
250 Units Tape and Reel
Date Code
3k Units Tape and Reel
250 Units Tape and Reel
Date Code
3k Units Tape and Reel
The LMV1032 series replaces the LMV1014.
4
Product Status
URA04JJA
3k Units Tape and Reel
Note: The LMV1032 series is offered only with lead free (NOPB) solder bumps.
www.national.com
NSC Drawing
UPA04QQA
Life Time Buy
Life Time Buy
Unless otherwise specified, VS = 1.7V, single supply, TA =
Supply Current vs. Supply Voltage (LMV1032-06)
Supply Current vs. Supply Voltage (LMV1032-15)
20084204
20084213
Closed Loop Gain and Phase vs. Frequency
(LMV1032-06)
Supply Current vs. Supply Voltage (LMV1032-25)
20084205
20084214
Closed Loop Gain and Phase vs. Frequency
(LMV1032-15)
Closed Loop Gain and Phase vs. Frequency
(LMV1032-25)
20084216
20084215
5
www.national.com
LMV1032-06/LMV1032-15/LMV1032-25
Typical Performance Characteristics
25˚C
LMV1032-06/LMV1032-15/LMV1032-25
Typical Performance Characteristics Unless otherwise specified, VS = 1.7V, single supply, TA =
25˚C (Continued)
Power Supply Rejection Ratio vs. Frequency
(LMV1032-06)
Power Supply Rejection Ratio vs. Frequency
(LMV1032-15)
20084206
20084217
Power Supply Rejection Ratio vs. Frequency
(LMV1032-25)
Total Harmonic Distortion vs. Frequency (LMV1032-06)
20084207
20084218
Total Harmonic Distortion vs. Frequency (LMV1032-15)
Total Harmonic Distortion vs. Frequency (LMV1032-25)
20084219
www.national.com
20084220
6
Total Harmonic Distortion vs. Input Voltage
(LMV1032-06)
Total Harmonic Distortion vs. Input Voltage
(LMV1032-15)
20084208
20084221
Total Harmonic Distortion vs. Input Voltage
(LMV1032-25)
Output Voltage Noise vs. Frequency (LMV1032-06)
20084223
20084222
Output Voltage Noise vs. Frequency (LMV1032-15)
Output Voltage Noise vs. Frequency (LMV1032-25)
20084224
20084225
7
www.national.com
LMV1032-06/LMV1032-15/LMV1032-25
Typical Performance Characteristics Unless otherwise specified, VS = 1.7V, single supply, TA =
25˚C (Continued)
LMV1032-06/LMV1032-15/LMV1032-25
Application Section
MEASURING NOISE AND SNR
The overall noise of the LMV1032 is measured within the
frequency band from 10 Hz to 22 kHz using an A-weighted
filter. The input of the LMV1032 is connected to ground with
a 5 pF capacitor.
LOW CURRENT
The LMV1032 has a low supply current which allows for a
longer battery life. The low supply current of 60µA makes this
amplifier optimal for microphone applications which need to
be always on.
BUILT-IN GAIN
The LMV1032 is offered in the space saving small micro
SMD package which fits perfectly into the metal can of a
microphone. This allows the LMV1032 to be placed on the
PCB inside the microphone.
The bottom side of the PCB has the pins that connect the
supply voltage to the amplifier and make the output available. The input of the amplifier is connected to the microphone via the PCB.
20084210
FIGURE 3. Noise Measurement Setup
The signal-to-noise ratio (SNR) is measured with a 1 kHz
input signal of 18 mVPP using an A-weighted filter. This
represents a sound pressure level of 94 dB SPL. No input
capacitor is connected.
SOUND PRESSURE LEVEL
The volume of sound applied to a microphone is usually
stated as the pressure level with respect to the threshold of
hearing of the human ear. The sound pressure level (SPL) in
decibels is defined by:
Sound pressure level (dB) = 20 log Pm/PO
Where,
Pm is the measured sound pressure
PO is the threshold of hearing (20µPa)
In order to be able to calculate the resulting output voltage of
the microphone for a given SPL, the sound pressure in dB
SPL needs to be converted to the absolute sound pressure
in dBPa. This is the sound pressure level in decibels which is
referred to as 1 Pascal (Pa).
20084202
FIGURE 1. Built-in Gain
A-WEIGHTED FILTER
The human ear has a frequency range from 20 Hz to about
20 kHz. Within this range the sensitivity of the human ear is
not equal for each frequency. To approach the hearing response weighting filters are introduced. One of those filters
is the A-weighted filter.
The A-weighted filter is usually used in signal-to-noise ratio
measurements, where sound is compared to device noise. It
improves the correlation of the measured data to the signalto-noise ratio perceived by the human ear.
20084209
FIGURE 2. A-Weighted Filter
www.national.com
8
(Continued)
The LMV1032 is optimized to be used in audio band applications. The LMV1032 provides a flat gain response within
the audio band and offers linearity and excellent temperature
stability.
The conversion is given by:
dBPa = dB SPL + 20*log 20 µPa
dBPa = dB SPL - 94 dB
ADVANTAGE OF THREE PINS
The LMV1032 ECM solution has three pins instead of the
two pins provided in the case of a JFET solution. The third
pin provides the advantage of a low supply current, high
PSRR and eliminates the need for additional components.
Noise pick-up by a microphone in a cell phone is a wellknown problem. A conventional JFET circuit is sensitive for
noise pick-up because of its high output impedance. The
output impedance is usually around 2.2 kΩ. By providing
separate output and supply pins a much lower output impedance is achieved and therefore is less sensitive to noise
pick-up.
Translation from absolute sound pressure level to a voltage
is specified by the sensitivity of the microphone. A conventional microphone has a sensitivity of −44 dBV/Pa.
RF noise is among other caused by non-linear behavior. The
non-linear behavior of the amplifier at high frequencies, well
above the usable bandwidth of the device, causes AM demodulation of high frequency signals. The AM modulation
contained in such signals folds back into the audio band,
thereby disturbing the intended microphone signal. The
GSM signal of a cell phone is such an AM-modulated signal.
The modulation frequency of 216 Hz and its harmonics can
be observed in the audio band. This type of noise is called
bumblebee noise.
20084211
FIGURE 4. dB SPL to dBV Conversion
EXTERNAL PRE-AMPLIFIER APPLICATION
The LMV1032 can also be used outside of an ECM as a
space saving external pre-amplifier. In this application, the
LMV1032 follows a phantom biased JFET microphone in the
circuit. This is shown in Figure 6. The input of the LMV1032
is connected to the microphone via the 2.2 µF capacitor. The
advantage of this circuit over one with only a JFET microphone are the additional gain and the high pass filter supplied by the LMV1032. The high pass filter makes the output
signal more robust and less sensitive to low frequency disturbances. In this configuration the LMV1032 should be
placed as close as possible to the microphone.
Example: Busy traffic is 70 dB SPL
VOUT = 70 −94 −44 = −68 dBV
This is equivalent to 1.13 mVPP
Since the LMV1032-15 has a gain of 5.6 (15 dB) over the
JFET, the output voltage of the microphone is 6.35 mVPP. By
replacing the JFET with the LMV1032-15, the sensitivity of
the microphone is −29 dBV/Pa (−44 + 15).
LOW FREQUENCY CUT OFF FILTER
To reduce noise on the output of the microphone a low cut
filter has been implemented in the LMV1032. This filter
reduces the effect of wind and handling noise.
It’s also helpful to reduce the proximity effect in directional
microphones. This effect occurs when the sound source is
very close to the microphone. The lower frequencies are
amplified which gives a bass sound. This amplification can
cause an overload, which results in a distortion of the signal.
20084226
FIGURE 6. LMV1032 as External Pre-Amplifier
20084215
FIGURE 5. Gain vs. Frequency
9
www.national.com
LMV1032-06/LMV1032-15/LMV1032-25
Application Section
LMV1032-06/LMV1032-15/LMV1032-25
Physical Dimensions
inches (millimeters)
unless otherwise noted
NOTE: UNLESS OTHERWISE SPECIFIED.
1. FOR SOLDER BUMP COMPOSITION, SEE "SOLDER INFORMATION" IN THE PACKAGING SECTION OF THE NATIONAL SEMICONDUCTOR WEB
PAGE (www.national.com).
2. RECOMMEND NON-SOLDER MASK DEFINED LANDING PAD.
3. PIN A1 IS ESTABLISHED BY LOWER LEFT CORNER WITH RESPECT TO TEXT ORIENTATION.
4. XXX IN DRAWING NUMBER REPRESENTS PACKAGE SIZE VARIATION WHERE X1 IS PACKAGE WIDTH, X2 IS PACKAGE LENGTH AND X3 IS
PACKAGE HEIGHT.
5. NO JEDEC REGISTRATION AS OF MAY 2005.
4-Bump Ultra Thin micro SMD with Large Dome Bump Technology
NS Package Number URA04JJA
X1 = 1.179 ± 0.030 mm X2 = 1.179 ± 0.030 mm X3 = 0.35 ± 0.075 mm
www.national.com
10
inches (millimeters) unless otherwise noted (Continued)
NOTE: UNLESS OTHERWISE SPECIFIED.
1. FOR SOLDER BUMP COMPOSITION, SEE "SOLDER INFORMATION" IN THE PACKAGING SECTION OF THE NATIONAL SEMICONDUCTOR WEB
PAGE (www.national.com).
2. RECOMMEND NON-SOLDER MASK DEFINED LANDING PAD.
3. PIN A1 IS ESTABLISHED BY LOWER LEFT CORNER WITH RESPECT TO TEXT ORIENTATION.
4. XXX IN DRAWING NUMBER REPRESENTS PACKAGE SIZE VARIATION WHERE X1 IS PACKAGE WIDTH, X2 IS PACKAGE LENGTH AND X3 IS
PACKAGE HEIGHT.
5. REFERENCE JEDEC REGISTRATION MO-211. VARIATION CA.
4-Bump Ultra Thin micro SMD
NS Package Number UPA04QQA
X1 = 1.133 ± 0.03 mm X2 = 1.133 ± 0.03 mm X3 = 0.35 ± 0.045 mm
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves
the right at any time without notice to change said circuitry and specifications.
For the most current product information visit us at www.national.com.
LIFE SUPPORT POLICY
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS
WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR
CORPORATION. As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, and whose failure to perform when
properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result
in a significant injury to the user.
2. A critical component is any component of a life support
device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or
system, or to affect its safety or effectiveness.
BANNED SUBSTANCE COMPLIANCE
National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products
Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain
no ‘‘Banned Substances’’ as defined in CSP-9-111S2.
Leadfree products are RoHS compliant.
National Semiconductor
Americas Customer
Support Center
Email: [email protected]
Tel: 1-800-272-9959
National Semiconductor
Europe Customer Support Center
Fax: +49 (0) 180-530 85 86
Email: [email protected]
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790
National Semiconductor
Asia Pacific Customer
Support Center
Email: [email protected]
National Semiconductor
Japan Customer Support Center
Fax: 81-3-5639-7507
Email: [email protected]
LMV1032-06/LMV1032-15/LMV1032-25 Amplifiers for 3-Wire Analog Electret Microphones
Physical Dimensions
www.national.com
Tel: 81-3-5639-7560
LMV1032-06/LMV1032-15/LMV1032-25 Amplifiers for 3-Wire Analog Electret Microphones
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Audio
www.ti.com/audio
Communications and Telecom www.ti.com/communications
Amplifiers
amplifier.ti.com
Computers and Peripherals
www.ti.com/computers
Data Converters
dataconverter.ti.com
Consumer Electronics
www.ti.com/consumer-apps
DLP® Products
www.dlp.com
Energy and Lighting
www.ti.com/energy
DSP
dsp.ti.com
Industrial
www.ti.com/industrial
Clocks and Timers
www.ti.com/clocks
Medical
www.ti.com/medical
Interface
interface.ti.com
Security
www.ti.com/security
Logic
logic.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Power Mgmt
power.ti.com
Transportation and Automotive www.ti.com/automotive
Microcontrollers
microcontroller.ti.com
Video and Imaging
RFID
www.ti-rfid.com
OMAP Mobile Processors
www.ti.com/omap
Wireless Connectivity
www.ti.com/wirelessconnectivity
TI E2E Community Home Page
www.ti.com/video
e2e.ti.com
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated