TI TVP5150PBS

TVP5150PBS Ultralow-Power
NTSC/PAL Video Decoder
Data Manual
Literature Number: SLES043A
May 2006
Printed on Recycled Paper
Contents
Section
1
2
3
Page
TVP5150 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4
Document Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7
Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1
Input Multiplexers and Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2
Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3
Programmable Gain Amplifier and Automatic Gain Control Circuit . . . . . . . . . . . . . . . . . . . . . . .
3.4
A/D Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5
Composite Processing Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6
Adaptive Comb Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7
Color Low-Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8
Luminance Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.9
Chrominance Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.10
Timing Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.11
VBI Data Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.12
VBI FIFO and Ancillary Data in Video Stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.13
Raw Video Data Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.14
Output Formatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.15
Synchronization Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.16
AVID Cropping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.17
Embedded Syncs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.18
I2C Host Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.18.1
I2C Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.18.2
I2C Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.19
Clock Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.20
Genlock Control (GLCO) and Real-Time Control (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.20.1
TVP5150 Genlock Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.20.2
RTC Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.21
Internal Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.22
Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.22.1
Video Input Source Selection #1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.22.2
Analog Channel Controls Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.22.3
Operation Mode Controls Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.22.4
Miscellaneous Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.22.5
Autoswitch Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.22.6
Software Reset Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.22.7
Color Killer Threshold Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.22.8
Luminance Processing Control #1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.22.9
Luminance Processing Control #2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.22.10 Brightness Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.22.11
Color Saturation Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
May 2006
SLES043A
1
2
2
2
3
3
3
4
4
7
7
7
7
7
7
8
10
11
11
11
11
13
14
14
15
17
18
19
19
20
21
22
22
23
23
25
25
26
26
26
27
28
28
28
29
29
29
iii
Contents
Section
Page
3.22.12
3.22.13
3.22.14
3.22.15
3.22.16
3.22.17
3.22.18
3.22.19
3.22.20
3.22.21
3.22.22
3.22.23
3.22.24
3.22.25
3.22.26
3.22.27
3.22.28
3.22.29
3.22.30
3.22.31
3.22.32
3.22.33
3.22.34
3.22.35
3.22.36
3.22.37
3.22.38
3.22.39
3.22.40
3.22.41
3.22.42
3.22.43
3.22.44
3.22.45
3.22.46
3.22.47
3.22.48
3.22.49
3.22.50
3.22.51
3.22.52
3.22.53
3.22.54
3.22.55
3.22.56
3.22.57
3.22.58
3.22.59
iv
SLES043A
Hue Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Contrast Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Outputs and Data Rates Select Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Luminance Processing Control #3 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Configuration Shared Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Active Video Cropping Start Pixel MSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Active Video Cropping Start Pixel LSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Active Video Cropping Stop Pixel MSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Active Video Cropping Stop Pixel LSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Genlock and RTC Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Horizontal Sync (HSYNC) Start Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vertical Blanking Start Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vertical Blanking Stop Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chrominance Control #1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chrominance Control #2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Reset Register B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Enable Register B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Configuration Register B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Video Standard Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MSB of Device ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LSB of Device ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ROM Version Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RAM Patch Code Version Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vertical Line Count MSB Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vertical Line Count LSB Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Status Register B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Active Register B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Status Register #1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Status Register #2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Status Register #3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Status Register #4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Status Register #5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Closed Caption Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
WSS Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VPS Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VITC Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VBI FIFO Read Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Teletext Filter and Mask Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Teletext Filter Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Status Register A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Enable Register A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Configuration Register A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VDP Configuration RAM Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VDP Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
FIFO Word Count Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
FIFO Interrupt Threshold Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
FIFO Reset Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Line Number Interrupt Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
30
30
31
31
32
32
32
32
33
33
34
34
34
35
36
37
38
38
38
38
39
39
39
39
39
40
40
41
42
42
42
43
43
44
44
45
45
46
46
47
48
48
50
50
51
51
51
May 2006
Section
4
5
6
Page
3.22.60 Pixel Alignment Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.22.61 FIFO Output Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.22.62 Automatic Initialization Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.22.63 Full Field Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.22.64 Line Mode Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.22.65 Full Field Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1
Absolute Maximum Ratings Over Operating Free-Air Temperature Range . . . . . . . . . . . . . . . .
4.2
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.1
Crystal Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.1
DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.2
Analog Processing and A/D Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.3
Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1
Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
May 2006
SLES043A
51
52
52
52
53
54
55
55
55
55
55
56
56
57
58
58
59
v
Figures
List of Figures
Figure
2−1
2−2
3−1
3−2
3−3
3−4
3−5
3−6
3−7
3−8
3−9
3−10
3−11
3−12
3−13
3−14
3−15
4−1
4−2
5−1
vi
Page
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TVP5150 PBS-Package Terminal Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Composite Processing Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Comb Filters Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chroma Trap Filter Frequency Response, NTSC ITU−R BT.601 Sampling . . . . . . . . . . . . . . . . . . .
Chroma Trap Filter Frequency Response, PAL ITU−R BT.601 Sampling . . . . . . . . . . . . . . . . . . . . .
Color Low-Pass Filter With Notch Filter Characteristics, NTSC/PAL ITU−R BT.601 Sampling . . .
Peaking Filter Response, NTSC/PAL ITU−R BT.601 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4:2:2 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8-Bit YCbCr 4:2:2 and ITU−R BT.656 Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8-bit 4:2:2, Timing With 2x Pixel Clock (SCLK) Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Horizontal Synchronization Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AVID Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reference Clock Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GLCO Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RTC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Horizontal Sync . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Clocks, Video Data, and Sync Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I2C Host Port Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SLES043A
4
5
8
9
10
10
10
11
14
14
16
17
18
22
22
23
33
57
57
58
May 2006
List of Tables
Table
2−1
3−1
3−2
3−3
3−4
3−5
3−6
3−7
3−8
3−9
3−10
3−11
3−12
May 2006
Page
Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Types Supported by the VDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ancillary Data Format and Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Summary of Line Frequencies, Data Rates, and Pixel Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EAV and SAV Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Write Address Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I2C Terminal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Read Address Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Registers Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Analog Channel and Video Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital Output Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Clock Delays (SCLKs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VBI Configuration RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SLES043A
5
12
13
14
18
19
19
20
23
25
27
33
49
vii
Features
1
TVP5150 Features
D Accepts NTSC (N, 4.43), PAL (B, D, G, H, I,
D
D
D
D
D
D
D
D
D
D
D
D
M, N) Video Data
Supports ITU−R BT.601 Standard Sampling
High-Speed 9-Bit A/D Converter
Two Composite Inputs or One S-Video
Input
Fully Differential CMOS Analog
Preprocessing Channels With Clamping
and AGC For Best S/N Performance
Ultralow Power Consumption: 113 mW
Typical
32-Pin TQFP Package
Power-Down Mode: <1 mW
Brightness, Contrast, Saturation, Hue, and
Sharpness Control Through I2C
Complementary 4-Line (3-H Delay) Adaptive
Comb Filters For Both Cross-Luminance
And Cross-Chrominance Noise Reduction
Patented Architecture For Locking To
Weak, Noisy, Or Unstable Signals
Single 14.318-MHz Crystal for All Standards
Internal PLL For Line-Locked Clock and
Sampling
D Subcarrier Genlock Output For
D
D
D
D
Synchronizing Color Subcarrier Of External
Encoder. Standard Programmable Video
Output Format:
− ITU−R BT.656, 8-Bit 4:2:2 With Embedded
Syncs
MacrovisionE Copy Protection Detection
Advanced Programmable Video Output
Formats:
− 2x Oversampled Raw VBI Data During
Active Video
− Sliced VBI Data During Horizontal
Blanking Or Active Video
VBI Modes Supported
− Teletext (NABTS, WST) Closed-Caption
Decode With FIFO
− Wide Screen Signaling, Video Program
System, CGMS, Vertical Interval Time
Code
− Custom Configuration Mode That Allows
The User To Program The Slice Engine
For Unique VBI Data Signals
Power-on Reset
Table 1−1.
Figure 1−1.
MicroStar BGA is a trademark of Texas Instruments.
Other trademarks are the property of their respective owners.
May 2006
SLES043A
1
Introduction
2
Introduction
2.1
Description
The TVP5150 device is an ultralow-power video decoder for NTSC and PAL video signals. Available in a space
saving 32-pin TQFP package, the TVP5150 device converts NTSC and PAL video signals to 8-bit ITU−R
BT.656 format. Discrete syncs are also available. The optimized architecture of the TVP5150 device allows
for ultralow-power consumption. The device consumes 113 mW of power in typical operation and consumes
less than 1 mW in power-down mode, considerably increasing battery life in portable applications. The device
uses just one crystal for all supported standards. The TVP5150 device can be programmed using an I2C serial
interface. The device uses a 1.8-V supply for its analog and digital supplies, and a 3.3-V supply for its I/O.
The TVP5150 device converts baseband analog NTSC and PAL video into digital YUV 4:2:2 component video.
Luminance/chrominance (Y/C) composite and S-video inputs are also supported. The TVP5150 device
includes one 9-bit A/D converter with 2x sampling. Sampling is ITU−R BT.601 (27.0 MHz, generated off the
14.318-MHz crystal or oscillator input) and is line-locked for correct pixel alignment. The output formats can
be 8-bit 4:2:2 or 8-bit ITU−R BT.656 with embedded synchronization.
The TVP5150 device utilizes Texas Instruments patented technology for locking to weak, noisy, or unstable
signals. A chroma frequency control output is generated for synchronizing downstream video encoders.
Complementary 3-line or 4-line adaptive comb filtering is available for both the luma and chroma data paths
to reduce both cross-luma and cross-chroma artifacts; a chroma trap filter is also available.
Video characteristics including hue, contrast, brightness, saturation, and sharpness may be programmed
using the I2C high speed serial interface. The TVP5150 device generates synchronization, blanking, field,
lock, and clock signals in addition to digital video outputs. The TVP5150 device includes methods for
advanced vertical blanking interval (VBI) data retrieval. The VBI data processor slices, parses, and performs
error checking on Teletext, Closed Caption, and other data in several formats.
The TVP5150 device detects copy-protected input signals according to the Macrovision 7.1 standard.
The main blocks of the TVP5150 device include:
•
•
•
•
•
•
•
•
•
2.2
A/D converter with analog processor
Y/C separation
Chrominance processor
Luminance processor
Video clock/timing processor and power-down control
Output formatter
I2C interface
VBI data processor
Macrovision detection for composite and S-video
Applications
•
•
•
•
•
•
•
Digital television
PDA
Notebook PCs
Cell phones
Video recorder/players
Internet appliances/web pads
Handheld games
Macrovision is a trademark of Macrovision Corporation.
Other trademarks are the property of their respective owners.
2
SLES043A
May 2006
Introduction
2.3
Trademarks
•
•
•
•
2.4
CompactPCI is a trademark of PICMG – PCI Industrial Computer Manufacturers Group, Inc.
Intel is a trademark of Intel Corporation.
TI and MicroStar BGA are trademarks of Texas Instruments
Other trademarks are the property of their respective owners
Document Conventions
Throughout this data manual, several conventions are used to convey information. These conventions are
listed below:
1. To identify a binary number or field, a lower case b follows the numbers. For example: 000b is a 3-bit binary
field.
2. To identify a hexadecimal number or field, a lower case h follows the numbers. For example: 8AFh is a
12-bit hexadecimal field.
3. All other numbers that appear in this document that do not have either a b or h following the number are
assumed to be decimal format.
4. If the signal or terminal name has a bar above the name (for example, RESETB), then this indicates the
logical NOT function. When asserted, this signal is a logic low, 0, or 0b.
5. RSVD indicates that the referenced item is reserved.
2.5
Ordering Information
PACKAGED DEVICES
TA
0°C to 70°C
May 2006
32TQFP-PBS
TVP5150PBS
SLES043A
3
Introduction
2.6
Functional Block Diagram
AIP1B
A/D
AGC
LUMINANCE
PROCESSING
CHROMINANCE
PROCESSING
OUTPUT
FORMATTER
M
U
X
AIP1A
Y/C SEPARATION
MACROVISION
DETECTION
YOUT[7:0]
YUV 8-BIT 4:2:2
VBI / DATA SLICER
SCL
SDA
I2C
INTERFACE
HOST PROCESSOR
PDN
SCLK
SYNC PROCESSOR
XTAL2
LINE AND
CHROMA PLLS
XTAL1
FID/GLCO
VSYNC/PALI
INTERQ/GPCL/VBLK
HSYNC
AVID
Figure 2−1. Functional Block Diagram
2.7
Terminal Assignments
The TVP5150 video decoder bridge is packaged in a 32-terminal PBS package. Figure 2−2 is the
PBS-package terminal diagram. Table 2−1 gives a description of the terminals.
4
SLES043A
May 2006
Introduction
VSYNC/PALI
FID/GLCO
SDA
SCL
DVDD
DGND
YOUT0
YOUT1
TQFP PACKAGE
(TOP VIEW)
24 23 22 21 20 19 18 17
HSYNC
AVID
INTERQ/GPCL/VBLK
PDN
REFP
REFM
CH1_AGND
CH1_AVDD
25
16
26
15
27
14
28
13
29
12
30
11
31
10
32
9
4
5 6 7
8
AIP1A
AIP1B
PLL_AGND
PLL_AVDD
XTAL1/OSC
XTAL2
NSUB
RESETB
1 2 3
YOUT2
YOUT3
YOUT4
YOUT5
YOUT6
YOUT7/I2CSEL
IO_DVDD
SCLK
Figure 2−2. TVP5150 PBS-Package Terminal Diagram
Table 2−1. Terminal Functions
TERMINAL
NAME
NUMBER
I/O
DESCRIPTION
Analog Section
AIP1A
1
I
Analog input. Connect to the video analog input via 0.1-µF to 1-µF capacitor. The maximum input range is
0−0.75 VPP, and may require an attenuator to reduce the input amplitude to the desired level. If not used,
connect to AGND via 0.1-µF capacitor.
AIP1B
2
I
Analog input. Connect to the video analog input via 0.1-µF to 1-µF capacitor. The maximum input range is
0−0.75 VPP, and may require an attenuator to reduce the input amplitude to the desired level. If not used,
connect to AGND via 0.1-µF capacitor.
CH1_AGND
31
I
Analog ground
CH1_AVDD
32
I
Analog supply. Connect to 1.8-V analog supply.
NSUB
7
I
Substrate. Connect to analog ground.
PLL_AGND
3
I
PLL ground. Connect to analog ground.
PLL_AVDD
4
I
PLL supply. Connect to 1.8-V analog supply.
REFM
30
I
A/D reference ground. Connect to analog ground through 1-µF capacitor. Also recommended to connect
directly to REFP through 1-µF capacitor.
REFP
29
I
A/D reference supply. Connect to analog ground through 1-µF capacitor.
May 2006
SLES043A
5
Introduction
Table 2−1. Terminal Functions (Continued)
TERMINAL
NAME
NUMBER
I/O
DESCRIPTION
Digital Section
AVID
26
O
Active video indicator. This signal is high during the horizontal active time of the video output on the Y
and UV terminals. AVID continues to toggle during vertical blanking intervals. This terminal can be
placed in a high-impedance state.
DGND
19
I
Digital ground
DVDD
20
I
Digital supply. Connect to 1.8-V digital supply
FID/GLCO
23
O
FID: Odd/even field indicator or vertical lock indicator. For the odd/even indicator, a 1 indicates the odd
field.
GLCO: This serial output carries color PLL information. A slave device can decode the information to
allow chroma frequency control from the TVP5150 device. Data is transmitted at the SCLK rate in
Genlock mode. In RTC mode, SCLK/4 is used.
HSYNC
25
O
Horizontal synchronization signal
INTREQ: Interrupt request output.
GPCL: General-purpose control logic. This terminal has three functions:
1. General-purpose output. In this mode the state of GPCL is directly programmed via I2C.
2. Vertical blank output. In this mode the GPCL terminal is used to indicate the vertical blanking interval
of the output video. The beginning and end times of this signal are programmable via I2C.
3. Sync lock control input. In this mode when GPCL is high, the output clock frequencies and the sync
timing are forced to nominal values.
INTREQ/GPCL/
VBLK
27
I/O
IO_DVDD
10
I
Digital supply. Connect to 3.3 V.
PDN
28
I
Power-down terminal (active low). Puts the device in standby mode. Preserves the value of the
registers.
RESETB
8
I
SCL
21
I/O
Active-low reset. RESETB can be used only when PDN = 1.
When RESETB is pulled low, it resets all the registers, restarts the internal microprocessor.
I2C serial clock (pullup to IO_DVDD with 1.2-kΩ resistor)
SCLK
9
O
SDA
22
I/O
VSYNC/PALI
24
O
VSYNC: Vertical synchronization signal
PALI: PAL line indicator or horizontal lock indicator
For the PAL line indicator, a 1 indicates a noninverted line, and a 0 indicates an inverted line.
XTAL1
XTAL2
5
6
I
O
External clock reference. The user may connect XTAL1 to an oscillator or to one terminal of a crystal
oscillator. The user may connect XTAL2 to the other terminal of the crystal oscillator or not connect
XTAL2 at all. One single 14.318-MHz crystal or oscillator is needed for ITU−R BT.601 sampling, for all
supported standards.
12, 13,
14, 15,
16, 17, 18
I/O
Output decoded ITU−R BT.656 output/YUV 422 output with discrete sync.
I/O
I2CSEL: Determines address for I2C (sampled at startup). A pullup or pulldown register is needed
(>1 kΩ) to program the terminal to the desired address.
Logic 1: Address = 0xBA, Logic 0: Address = 0xB8
YOUT7: MSB of output decoded ITU−R BT.656 output/YUV 422 output.
YOUT[6:0]
YOUT(7)/I2CSEL
6
SLES043A
11
System clock at either 1x or 2x the frequency of the pixel clock.
I2C serial data (pullup to IO_DVDD with 1.2-kΩ resistor)
May 2006
Functional Description
3
Functional Description
3.1
Input Multiplexers and Buffers
The TVP5150 device has an analog input channel that accepts two video inputs, ac-coupled through 0.1-µF
to 1-µF capacitors. The two analog input ports can be connected as follows:
•
•
Two selectable composite video inputs or
One S-video input
The internal video multiplexers can be configured via I2C. The internal nodes are grounded for zero channel
crosstalk. The input buffers are continuous time amplifiers that allow an input range of up to 0.75 VPP. This
allows the decoder to support input ranges of 0 to 1.5 V with an external attenuation of one-half.
3.2
Clamp
An internal clamping circuit restores the ac-coupled video signal to a fixed dc level. The clamping circuit
provides line-by-line restoration of the video sync level to a fixed dc reference voltage. Two modes of clamping
are provided, coarse and fine.
•
In coarse mode, the most negative portion of the input signal (typically the sync tip) is clamped to a fixed
dc level and remains on. This mode is used while the timing processor is searching for the horizontal sync.
•
Fine clamp mode is enabled after the horizontal lock is achieved. This is enabled to prevent spurious level
shifting caused by noise more negative than the sync tip on the input signal. If fine clamp mode is selected,
then clamping is only enabled during the sync period.
−
When in bottom level mode, the sync tip of the input signal is set to output code 0 of the A/D converter
(ADC).
−
When in mid-level mode, fine clamp restores the dc level of the signal to the mid-range of the ADC.
S-video requires the fine clamp mode on the chroma channel for proper operation. The clamp can be
completely disabled using software registers.
3.3
Programmable Gain Amplifier and Automatic Gain Control Circuit
The programmable gain amplifier (PGA) and the automatic gain control (AGC) circuit work together to make
sure that the input signal is amplified sufficiently to ensure the proper input range for the ADC. The gain is
controlled by a 4-bit gain code.
Input video signal amplitude can vary significantly from the nominal level of 1 VPP (140 IRE). An AGC circuit
adjusts the signal amplitude to utilize the maximum range of the A/D converter without clipping. The AGC
adjusts the gain to achieve the desired sync amplitude. The PGA has a range of 0 to 12 dB.
3.4
A/D Converter
The ADC has 9 bits of resolution and runs at a maximum speed of 27 MHz. The clock input for the ADC comes
from the PLL. The data is aligned to the pixel clock supplied from the PLL and matched in delay. The ADC uses
the REFM and REFP terminals as the internal reference generator. For configuration of these terminals,
please refer to Figure 5−1.
3.5
Composite Processing Block Diagram
The composite processing block process NTSC/PAL signals into the YCbCr color space. Figure 3−1 explains
the basic architecture of this processing block.
Figure 3−1 illustrates the luminance/chrominance (Y/C) separation process in the TVP5150 device. The
composite video is multiplied by subcarrier signals in the quadrature modulator to generate color difference
signals U and V. U and V are then low-pass filtered to achieve the desired bandwidth and to reduce crosstalk,
by the color low-pass filters.
May 2006
SLES043A
7
Functional Description
An adaptive 4-line comb filter separates UV from Y based on the unique property of color phase shift from line
to line. Chroma is remodulated through another quadrature modulator and subtracted from the line-delayed
composite video to generate luma. This form of Y/C separation is completely complementary and thus loses
no information. However, in some applications, it is desirable to limit the U/V bandwidth to avoid crosstalk. In
that case, notch filters can be turned on. To accommodate some viewing preferences, a peaking filter is also
available in the luma path. Contrast, brightness, hue, saturation, and sharpness are programmable via I2C.
The Y/C separation is bypassed for S-video input. For S-video, the remodulation path is disabled. Since Y and
C are already separated at the inputs, the only requirement is to digitize them and enable the same processing
as the composite signal after Y/C separation.
Gain Factor
Peak
Detector
Bandpass
X
Peaking
Delay
Composite
Line
Delay
+
Delay
−
Y
Y
Quadrature
Modulation
Contrast
Brightness
Saturation
Adjust
U
V
Notch
Filter
U
U
Composite
Quadrature
Demodulation
V
Burst
Accumulator
(U)
V
Notch
Filter
Color
LPF
3- or 4-Line
Adaptive
Comb
Filter
Color
LPF
Notch
Filter
Notch
Filter
Delay
Delay
Burst
Accumulator
(V)
Figure 3−1. Composite Processing Block Diagram
3.6
Adaptive Comb Filtering
Y/C separation can be performed using adaptive 4-line (3-H delay), fixed 3-line, fixed 2-line comb filters, or
a chroma trap filter. Characteristics of 4-line and 3-line comb filters are shown in Figure 3−2.
8
SLES043A
May 2006
Functional Description
The filter frequency plots show that both 4-line and 3-line (with filter coefficients [1,3,3,1]/8 and [1,2,1]/4) comb
filters have zeros at 1/2 of the horizontal line frequency to separate the interleaved Y/C spectrum in NTSC.
The 4-line comb filter has less cross-luma and cross-chroma noise due to slightly sharper filter cutoff. The
4-line comb filter with filter coefficients [1,1,1,1]/4 has three zeros at 1/4, 2/4, and 3/4 of the horizontal line
frequency. This is to be used for PAL only because of its 90_ U/V phase shifting from line to line. The comb
filter can be selectively bypassed in the luma or chroma path. If the comb filter is bypassed in the luma path,
then chroma trap filters are used. TI’s patented adaptive comb filter algorithm reduces artifacts such as
hanging dots at color boundaries and detects and properly handles false colors in high frequency luminance
images such as a multiburst pattern or circle pattern. Adaptive comb filtering is the recommended mode of
operation. The complete comb filter selection is shown in the chrominance control #1 register (see Section
3.22.25).
1.0
Amplitude − dB
0.8
0.6
3 line (1,2,1)/4
0.4
4 line (1,3,3,1)/8
4 line (1,1,1,1)/4
0.2
0.0
0
1
2
3
4
5
f − Frequency − MHz
Figure 3−2. Comb Filters Frequency Response
May 2006
SLES043A
9
Functional Description
10
10
0
0
−5
−5
−10
Notch1 Filter
−15
−20
Notch3 Filter
5
Notch3 Filter
Amplitude − dB
Amplitude − dB
5
Notch2 Filter
−25
−10
Notch1 Filter
−15
−20
Notch2 Filter
−25
No Notch Filter
−30
−30
−35
No Notch Filter
−35
−40
−40
0
1
2
3
4
5
6
7
0
1
2
f − Frequency − MHz
Figure 3−3. Chroma Trap Filter Frequency
Response, NTSC ITU−R BT.601 Sampling
3.7
3
4
5
6
7
f − Frequency − MHz
Figure 3−4. Chroma Trap Filter Frequency
Response, PAL ITU−R BT.601 Sampling
Color Low-Pass Filter
In some applications, it is desirable to limit the U/V bandwidth to avoid crosstalk. This is especially true in case
of nonstandard video signals that have asymmetrical U/V sidebands. In this case, notch filters are provided
that limit the bandwidth of the U/V signals.
Notch filters are needed when the comb filtering turns off, due to extreme color transitions in the input image.
The response of these notch filters is shown in Figure 3−5. The notch filters have three options that allow three
different frequency responses based on the color frequency characteristics of the input video.
10
Notch2 Filter
−3 dB @ 844 kHz
0
No Notch Filter
−3 dB @ 1.412 MHz
Amplitude − dB
−10
Notch3 Filter
−3 dB @ 554 kHz
−20
Notch1
Filter −3 dB
@ 1.03 MHz
−30
−40
−50
−60
−70
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
f − Frequency − MHz
Figure 3−5. Color Low-Pass Filter With Notch Filter Characteristics, NTSC/PAL ITU−R BT.601 Sampling
10
SLES043A
May 2006
Functional Description
3.8
Luminance Processing
The luma component is derived from the composite signal by subtracting the remodulated chroma information.
A line delay exists in this path to compensate for the line delay in the adaptive comb filter in the color processing
chain. The luma information is then fed into the peaking circuit, which enhances the high frequency
components of the signal as shown in Figure 3−6.
7
Peak at
f = 2.40 MHz
6
Gain = 2
Amplitude − dB
5
Gain = 1
4
3
Gain = 0.5
2
1
0
Gain = 0
−1
0
1
2
3
4
5
6
7
f − Frequency − MHz
Figure 3−6. Peaking Filter Response, NTSC/PAL ITU−R BT.601 Sampling
3.9
Chrominance Processing
For PAL/NTSC formats, the color processing begins with a quadrature demodulator extracting U and V
components from the composite signal. The U/V signals then pass through the gain control stage for chroma
saturation adjustment. An adaptive comb filter is applied to both U and V to eliminate cross-chrominance
noise. Hue control is achieved with phase shift of the digitally controlled oscillator. An automatic color killer
circuit is also included in this block. The color killer suppresses the chroma processing when the color burst
of the video signal is weak or not present.
3.10 Timing Processor
The timing processor is a combination of hardware and software running in the internal microprocessor that
serves to control horizontal lock to the input sync pulse edge, AGC and offset adjustment in the analog front
end, vertical sync detection, and Macrovisiont detection.
3.11 VBI Data Processor
The TVP5150 VBI data processor (VDP) slices various data services like Teletext (WST, NABTS), Closed
Caption (CC), wide screen signaling (WSS), etc. These services are acquired by programming the VDP to
enable a standard(s) in the vertical blank interval. The results are stored in a FIFO and/or registers. The
Teletext results are stored in a FIFO only. Listed in Table 3−1 is a summary of the types of vertical blank interval
data supported according to the video standard. It supports ITU−R BT. 601 sampling for each. Thirteen
standard modes are currently supported.
May 2006
SLES043A
11
Functional Description
Table 3−1. Data Types Supported by the VDP
LINE MODE
REGISTER (D0h−FCh)
BITS [3:0]
SAMPLING
RATE (0Dh)
BIT 7
0000b
x
x
Reserved
0000b
x
x
Reserved
0001b
x
x
Reserved
0001b
1
WST PAL B 6
Teletext, PAL, System B, ITU−R BT.601
0010b
x
x
Reserved
0010b
1
WST PAL C 6
Teletext, PAL, System C, ITU−R BT.601
0011b
x
x
Reserved
NAME
DESCRIPTION
0011b
1
WST, NTSC B 6
Teletext, NTSC, System B, ITU−R BT.601
0100b
x
x
Reserved
0100b
1
NABTS, NTSC C 6
Teletext, NTSC, System C, ITU−R BT.601
0101b
x
x
Reserved
0101b
1
NABTS, NTSC D 6
Teletext, NTSC, System D (Japan), ITU−R BT.601
0110b
x
x
Reserved
0110b
1
CC, PAL 6
Closed caption PAL, ITU−R BT.601
0111b
x
x
Reserved
0111b
1
CC, NTSC 6
Closed caption NTSC, ITU−R BT.601
1000b
x
x
Reserved
1000b
1
WSS, PAL 6
Wide-screen signal, PAL, ITU−R BT.601
1001b
x
x
Reserved
1001b
1
WSS, NTSC 6
Wide-screen signal, NTSC, ITU−R BT.601
1010b
x
x
Reserved
1010b
1
VITC, PAL 6
Vertical interval timecode, PAL, ITU−R BT.601
1011b
x
x
Reserved
1011b
1
VITC, NTSC 6
Vertical interval timecode, NTSC, ITU−R BT.601
1100b
x
x
Reserved
1100b
1
VPS, PAL 6
Video program system, PAL, ITU−R BT.601
1101b
x
x
Reserved
1110b
x
x
Reserved
1111b
x
Active Video
Active video/full field
At powerup the host interface is required to program the VDP-configuration RAM (VDP-CRAM) contents with
the lookup table (see Section 3.22.54). This is done through port address C3h. Each read from or write to this
address will auto increment an internal counter to the next RAM location. To access the VDP-CRAM, the line
mode registers (D0h−FCh) must be programmed with FFh to avoid a conflict with the internal microprocessor
and the VDP in both writing and reading. Full field mode must also be disabled.
Available VBI lines are from line 6 to line 27 of both field 1 and field 2. Each line can be any VBI mode. When
changing modes, the VDP must allow the current transaction to complete through the delays of the VDP before
switching the line mode register contents. It must also complete loading of the line mode registers before the
next line starts processing. The switch pixel number is set through registers CBh and CCh (see Section
3.22.60).
Output data is available either through the VBI-FIFO (B0h) or through dedicated registers at 90h−AFh, both
of which are available through the I2C port.
12
SLES043A
May 2006
Functional Description
3.12 VBI FIFO and Ancillary Data in Video Stream
Sliced VBI data can be output as ancillary data in the video stream in the ITU−R BT.656 mode. VBI data is
output during the horizontal blanking period following the line from which the data was retrieved. Table 3−2
shows the header format and sequence of the ancillary data inserted into the video stream. This format is also
used to store any VBI data into the FIFO. The size of FIFO is 512 bytes. Therefore, the FIFO can store up to
11 lines of teletext data with the NTSC NABTS standard.
Table 3−2. Ancillary Data Format and Sequence
BYTE
NO.
D7
(MSB)
D6
D5
D4
D3
D2
D1
D0
(LSB)
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
3
NEP
EP
0
1
0
DID2
DID1
DID0
4
NEP
EP
F5
F4
F3
F2
F1
F0
Secondary data ID (SDID)
5
NEP
EP
N5
N4
N3
N2
N1
N0
Number of 32 bit data (NN)
0
0
0
6
Video line # [7:0]
7
Data
error
Match
#1
DESCRIPTION
Ancillary data preamble
Data ID (DID)
Internal Data ID0 (IDID0)
Match
#2
Video line # [9:8]
Internal Data ID1 (IDID1)
8
1. Data
Data byte
9
2. Data
Data byte
10
3. Data
Data byte
11
4. Data
Data byte
:
:
NEP
EP
1
0
4(N+2)
:
m−1. Data
Data byte
m. Data
Data byte
CS[5:0]
0
0
1st word
0
Nth word
Check sum
0
0
0
Fill byte
EP:
Even parity for D0−D5
DID:
91h: Sliced data of VBI lines of first field
53h: Sliced data of line 24 to end of first field
55h: Sliced data of VBI lines of second field
97h: Sliced data of line 24 to end of second field
SDID:
This field holds the data format taken from the line mode register of the corresponding line.
NN:
Number of Dwords beginning with byte 8 through 4(N+2). This value is the number of Dwords
where each Dword is 4 bytes.
IDID0:
Transaction video line number [7:0]
IDID1:
Bit 0/1 = Transaction video line number [9:8]
Bit 2 = Match 2 flag
Bit 3 = Match 1 flag
Bit 4 = 1 if an error was detected in the EDC block. 0 if not.
CS:
Sum of D0−D7 of DID through last data byte.
Fill byte:
Fill bytes make a multiple of 4 bytes from byte 0 to last fill byte. For teletext modes, byte 8 is the
sync pattern byte. Byte 9 is 1. Data (the first data byte).
May 2006
NEP: Negated even parity
SLES043A
13
Functional Description
3.13 Raw Video Data Output
The TVP5150 device can output raw A/D video data at 2x sampling rate for external VBI slicing. This is
transmitted as an ancillary data block during the active horizontal portion of the line and during vertical
blanking.
3.14 Output Formatter
The YUV digital output can be programmed as 8-bit 4:2:2 or 8-bit ITU−R BT.656 parallel interface standard.
Table 3−3. Summary of Line Frequencies, Data Rates, and Pixel Counts
STANDARDS
HORIZONTAL
LINE RATE (kHz)
PIXELS PER
LINE
ACTIVE PIXELS
PER LINE
SCLK FREQUENCY
(MHz)
15.73426
858
720
27.00
15.625
864
720
27.00
NTSC (M, 4.43), ITU−R BT.601
PAL (B, D, G, H, I), ITU−R BT.601
Y0
U0
V0
Y1
Y2
U1
V1
Y4
U2
V2
Y3
Y5
Y716
U358
V358
Y718
U359
V359
Y717
Y719
= Luminance-Only Sample
= Luminance and Chrominance Sample
Timing is for 13.5-MHz sampling
Figure 3−7. 4:2:2 Sampling
The different formats that are supported and the corresponding sampling frequencies are listed as follows:
DATA CLOCK
FREQUENCY
TERMINALS
EMBEDDED SYNCS,
VBI DATA, RAW DATA
8-bit ITU−R BT.601
SCLK
Y(7−0) YCbCr
Syncs optional
VBI optional (edge prog)
Raw data optional
NTSC/PAL
YUV output
8-bit 4:2:2
SCLK
Y(7−0) YCbCr
Syncs optional
VBI optional (edge prog)
Raw data optional
Any standard
YUV output
MODES
STANDARDS
SUPPORTED
The following diagram explains the different modes.
SCLK
YOUT[7:0]
U0
Y0
V0
Y1
U1
Y2
U359
Y718
V359
Y719
Numbering shown is for 13.5-MHz sampling
Figure 3−8. 8-Bit YCbCr 4:2:2 and ITU−R BT.656 Mode Timing
14
SLES043A
May 2006
Functional Description
3.15 Synchronization Signals
Nondata stream embedded syncs are provided via the following signals:
•
•
•
•
•
•
VSYNC (vertical sync)
FID/VLK (field indicator or vertical lock indicator)
GPCL/VBLK (general-purpose I/O or vertical blanking indicator)
PALI/HLK (PAL switch indicator or horizontal lock indicator)
HSYNC (horizontal sync)
AVID (active video indicator)
In hardware, VSYNC, FID, PALI, and VBLK are software-set and programmable to the SCLK pixel count. This
allows any possible alignment to the internal pixel count and line count. The proper settings for a 525-/625-line
video output are given as an example below.
May 2006
SLES043A
15
Functional Description
525-Line
525
1
2
3
4
5
6
7
8
9
10
11
20
21
22
Composite
Video
VSYNC
FID
GPCL/VBLK
−←0→+
VBLK Start
262
263
−←0→+
VBLK Stop
264
265
266
267
268
269
270
271
272
273
282
283
284
Composite
Video
VSYNC
FID
GPCL/VBLK
−←0→+
VBLK Start
−←0→+
VBLK Stop
625-Line
310
311
312
313
314
315
316
317
318
319
320
333
334
335
336
Composite
Video
VSYNC
FID
GPCL/VBLK
−←0→+
VBLK Start
622
623
624
−←0→+
VBLK Stop
625
1
2
3
4
5
6
7
20
21
22
23
Composite
Video
VSYNC
FID
GPCL/VBLK
−←0→+
VBLK Start
Notes:
−←0→+
VBLK Stop
1. Line numbering conforms to ITU−R BT.470
Figure 3−9. 8-bit 4:2:2, Timing With 2x Pixel Clock (SCLK) Reference
16
SLES043A
May 2006
Functional Description
ITU−R BT.656 timing shown without embedded syncs.
NTSC 601
1436
1437
1438 1439 1440 1441
… 1455 1456
…
1583 1584 … 1711 1712 1713 1714 1715
PAL 601
1436
1437
1438 1439 1440 1441
… 1459 1460
…
1587 1588 … 1723 1724 1725 1726 1727
ITU 656
Cb
Datastream 359
Y
718
Cr
359
…
…
Y
719
FF
00
10
80
10
80
…
10
FF
00
00
XX
0
1
2
3
0
1
2
3
Cb
0
Y
0
Cr
0
Y
1
HSYNC
−←0→+
HSYNC Start
AVID
−←0→+
AVID Stop
−←0→+
AVID Start
NOTE: AVID rising edge occurs 4 SCLK cycles early when in ITU−R BT.656 output
mode.
Figure 3−10. Horizontal Synchronization Signals
3.16 AVID Cropping
AVID or active video cropping provides a means to decrease bandwidth of the video output. This is
accomplished by horizontally blanking a number of AVID pulses and by vertically blanking a number of lines
per frame. The horizontal AVID cropping is controlled using registers 11h and 12h for start pixels MSB and
LSB, respectively.
Registers 13h and 14h provide access to stop pixels MSB and LSB, respectively. The vertical AVID cropping
is controlled using the vertical blanking (VBLK) start and stop registers at addresses 18h and 19h. Figure 3−11
shows an AVID application.
May 2006
SLES043A
17
VBLK Stop
Functional Description
Active Video Area
VBLK Start
AVID Cropped
Area
AVID Start
VSYNC
AVID Stop
HSYNC
Figure 3−11. AVID Application
3.17 Embedded Syncs
Standards with embedded syncs insert SAV and EAV codes into the datastream on the rising and falling edges
of AVID. These codes contain the V and F bits which also define vertical timing. F and V are software
programmable and change after SAV but before EAV, so that the new value always appears on EAV first.
Table 3−4 gives the format of the SAV and EAV codes.
H equals 1 always indicates EAV. H equals 0 always indicates SAV. The alignment of V and F to the line and
field counter varies depending on the standard.
The P bits are protection bits:
P3 = V xor H
P2 = F xor H
P1 = F xor V
P0 = F xor V xor H
Table 3−4. EAV and SAV Sequence
8-BIT DATA
D7 (MSB)
D6
D5
D4
D3
D2
D1
D0
Preamble
1
1
1
1
1
1
1
1
Preamble
0
0
0
0
0
0
0
0
Preamble
0
0
0
0
0
0
0
0
Status word
1
F
V
H
P3
P2
P1
P0
18
SLES043A
May 2006
Functional Description
3.18 I2C Host Interface
The I2C standard consists of two signals, serial input/output data line (SDA) and input/output clock line (SCL),
which carry information between the devices connected to the bus. A third signal (I2CSEL) is used for slave
address selection. Although the I2C system can be multimastered, the TVP5150 device functions as a slave
device only.
Both SDA and SCL must be connected to a positive supply voltage via a pullup resistor. When the bus is free,
both lines are high. The slave address select terminal (I2CSEL) enables the use of two TVP5150 devices tied
to the same I2C bus. At power up, the status of the I2CSEL is polled. Depending on the write and read
addresses to be used for the TVP5150 device, it can either pulled low or high through a resistor. This terminal
is multiplexed with YOUT7 and hence must not be tied directly to ground or VDD. Table 3−6 summarizes the
terminal functions of the I2C-mode host interface.
Table 3−5. Write Address Selection
I2CSEL
WRITE ADDRESS
0
B8h
1
BAh
Table 3−6. I2C Terminal Description
SIGNAL
TYPE
I2CSEL (YOUT7)
I
DESCRIPTION
SCL
I/O (open drain)
Input/output clock line
SDA
I/O (open drain)
Input/output data line
Slave address selection
Data transfer rate on the bus is up to 400 kbits/s. The number of interfaces connected to the bus is dependent
on the bus capacitance limit of 400 pF. The data on the SDA line must be stable during the high period of the
SCL except for start and stop conditions. The high or low state of the data line can only change with the clock
signal on the SCL line being low. A high-to-low transition on the SDA line while the SCL is high indicates an
I2C start condition. A low-to-high transition on the SDA line while the SCL is high indicates an I2C stop
condition.
Every byte placed on the SDA must be 8 bits long. The number of bytes which can be transferred is
unrestricted. Each byte must be followed by an acknowledge bit. The acknowledge-related clock pulse is
generated by the I2C master.
3.18.1
I 2C Write Operation
Data transfers occur utilizing the following illustrated formats.
An I2C master initiates a write operation to the TVP5150 device by generating a start condition (S) followed
by the TVP5150 I2C address (as shown below), in MSB first bit order, followed by a 0 to indicate a write cycle.
After receiving an acknowledge from the TVP5150 device, the master presents the subaddress of the register,
or the first of a block of registers it wants to write, followed by one or more bytes of data, MSB first. The
TVP5150 device acknowledges each byte after completion of each transfer. The I2C master terminates the
write operation by generating a stop condition (P).
Step 1
I2C Start (master)
Step 2
I2C General address (master)
Step 3
I2C Acknowledge (slave)
May 2006
0
S
7
6
5
4
3
2
1
0
1
0
1
1
1
0
X
0
9
A
SLES043A
19
Functional Description
Step 4
I2C Write register address (master)
Step 5
I2C Acknowledge (slave)
Step 6
I2C Write data (master)
Step 7†
I2C Acknowledge (slave)
Step 8
I2C Stop (master)
7
6
5
4
3
2
1
0
addr
addr
addr
addr
addr
addr
addr
addr
7
6
5
4
3
2
1
0
Data
Data
Data
Data
Data
Data
Data
Data
9
A
9
A
0
P
† Repeat steps 6 and 7 until all data have been written.
3.18.2
I 2C Read Operation
The read operation consists of two phases. The first phase is the address phase. In this phase, an I2C master
initiates a write operation to the TVP5150 device by generating a start condition (S) followed by the TVP5150
I2C address, in MSB first bit order, followed by a 0 to indicate a write cycle. After receiving acknowledges from
the TVP5150 device, the master presents the subaddress of the register or the first of a block of registers it
wants to read. After the cycle is acknowledged, the master terminates the cycle immediately by generating
a stop condition (P).
Table 3−7. Read Address Selection
I2CSEL
READ ADDRESS
0
B9h
1
BBh
The second phase is the data phase. In this phase, an I2C master initiates a read operation to the TVP5150
device by generating a start condition followed by the TVP5150 I2C address (as shown below for a read
operation), in MSB first bit order, followed by a 1 to indicate a read cycle. After an acknowledge from the
TVP5150 device, the I2C master receives one or more bytes of data from the TVP5150 device. The I2C master
acknowledges the transfer at the end of each byte. After the last data byte desired has been transferred from
the TVP5150 device to the master, the master generates a not acknowledge followed by a stop.
3.18.2.1 Read Phase 1
Step 1
I2C Start (master)
Step 2
I2C General address (master)
Step 3
I2C Acknowledge (slave)
Step 4
I2C Read register address (master)
Step 5
I2C Acknowledge (slave)
20
SLES043A
0
S
7
6
5
4
3
2
1
0
1
0
1
1
1
0
X
0
9
A
7
6
5
4
3
2
1
0
addr
addr
addr
addr
addr
addr
addr
addr
9
A
May 2006
Functional Description
0
Step 6
I2C Stop (master)
P
3.18.2.2 Read Phase 2
Step 7
I2C Start (master)
0
S
Step 8
I2C General address (master)
7
6
5
4
3
2
1
0
1
0
1
1
1
0
X
1
Step 9
I2C Acknowledge (slave)
9
A
Step 10
I2C Read data (slave)
7
6
5
4
3
2
1
0
Data
Data
Data
Data
Data
Data
Data
Data
Step 11†
I2C Not Acknowledge (master)
A
Step 12
I2C Stop (master)
P
9
0
† Repeat steps 10 and 11 for all bytes read. Master does not acknowledge the last read data received.
3.18.2.3 I2C Timing Requirements
The TVP5150 device requires delays in the I2C accesses to accommodate its internal processor’s timing. In
accordance with I2C specifications, the TVP5150 device holds the I2C clock line (SCL) low to indicate the wait
period to the I2C master. If the I2C master is not designed to check for the I2C clock line held-low condition,
then the maximum delays must always be inserted where required. These delays are of variable length;
maximum delays are indicated in the following diagram:
Normal register writing address 00h−8Fh (addresses 90h−FFh do not require delays)
Start
Slave address
(B8h)
Ack
Subaddress
Ack
Data
(XXh)
Ack
Wait 64 µs
Stop
3.19 Clock Circuits
An internal line-locked phase-locked loop (PLL) generates the system and pixel clocks. The PLL minimizes
jitter and process and environmental variability. It is capable of operating off a single crystal frequency with
a high supply rejection ratio. A 14.318-MHz clock is required to drive the PLL. This may be input to the
TVP5150 device on terminal 5 (XTAL1), or a crystal of 14.318-MHz fundamental resonant frequency may be
connected across terminals 5 and 6 (XTAL2). Figure 3−12 shows the reference clock configurations. For the
example crystal circuit shown (a parallel-resonant crystal with 14.318-MHz fundamental frequency), the
external capacitors must have the following relationship:
CL1 = CL2 = 2CL − CSTRAY,
where CSTRAY is the terminal capacitance with respect to ground. Please note that with the crystal oscillator,
an external 100-kΩ resistor can be optionally put across XTAL1 and XTAL2 terminals. Figure 3−12 shows the
reference clock configurations.
May 2006
SLES043A
21
Functional Description
TVP5150
14.318-MHz or
27-MHz Crystal
TVP5150
5
XTAL1
14.318-MHz or
27-MHz Clock
XTAL1
R
6
XTAL2
CL1
5
XTAL2
6
CL2
NOTE: 100-kΩ resistor R is optional
Figure 3−12. Reference Clock Configurations
3.20 Genlock Control (GLCO) and Real-Time Control (RTC)
A Genlock control function is provided to support a standard video encoder to synchronize its internal color
phase DCO for a clean video line and color lock.
The frequency control word of the internal color subcarrier digital control oscillator (DCO) and the subcarrier
phase reset bit are transmitted via terminal 23 (GLCO). The frequency control word is a 23-bit binary number.
The frequency of the DCO can be calculated from the following equation:
F
dco
=
F
2
ctrl
23
x Fsclk
where Fdco is the frequency of the DCO, Fctrl is the 23-bit DCO frequency control, and Fsclk is the frequency
of the SCLK.
3.20.1
TVP5150 Genlock Control Interface
A write of 1 to bit 4 of the chrominance control register at I2C subaddress 1Ah causes the subcarrier DTO
phase reset bit to be sent on the next scan line on GLCO. The active low reset bit occurs 7 SCLKs after the
transmission of the last bit of DCO frequency control. Upon the transmission of the reset bit, the phase of the
TVP5150 internal subcarrier DCO is reset to zero.
A Genlock slave device can be connected to the GLCO terminal and use the information on GLCO to
synchronize its internal color phase DCO to achieve clean line and color lock.
Figure 3−13 shows the timing diagram of the GLCO mode.
SCLK
GLCO
22
MSB
LSB
21
0
>128 SCLK
23 SCLK
23-Bit Frequency Control
7 SCLK
1 SCLK
1 SCLK
Start Bit
DCO Reset Bit
Figure 3−13. GLCO Timing
22
SLES043A
May 2006
Functional Description
3.20.2
RTC Mode
Figure 3−14 shows the timing diagram of the RTC mode. Clock rate for the RTC mode is 4 times slower than
the GLCO clock rate. For PLL frequency control, the upper 22 bits are used. Each frequency control bit is 2
clock cycles long. The active low reset bit occurs 6 CLKs after the transmission of the last bit of PLL frequency
control.
RTC
128 CLK
16 CLK
M
S
B
L
S
B
21
0
44 CLK
22-Bit Fsc Frequency Control
2 CLK
1 CLK
PAL
Switch
2 CLK
Start
Bit
3 CLK
1 CLK
Reset
Bit
Figure 3−14. RTC Timing
3.21 Internal Control Registers
The TVP5150 device is initialized and controlled by a set of internal registers which set all device operating
parameters. Communication between the external controller and the TVP5150 device is through I2C.
Table 3−8 shows the summary of these registers. The reserved registers must not be written. However,
reserved bits in the defined registers must be written with 0s. The detailed programming information of each
register is described in the following sections.
Table 3−8. Registers Summary
ADDRESS
DEFAULT
R/W
Video input source selection #1
REGISTER FUNCTION
00h
00h
R/W
Analog channel controls
01h
15h
R/W
Operation mode controls
02h
00h
R/W
Miscellaneous controls
03h
01h
R/W
Autoswitch mask
04h
00h
R/W
Software reset
05h
00h
R/W
Color killer threshold control
06h
10h
R/W
Luminance processing control #1
07h
20h
R/W
Luminance processing control #2
08h
00h
R/W
Brightness control
09h
80h
R/W
Color saturation control
0Ah
80h
R/W
Hue control
0Bh
00h
R/W
Contrast control
0Ch
80h
R/W
Outputs and data rates select
0Dh
47h
R/W
R = Read only
W = Write only
R/W = Read and write
May 2006
SLES043A
23
Functional Description
Table 3−8. Registers Summary (Continued)
ADDRESS
DEFAULT
R/W
Luminance processing control #3
REGISTER FUNCTION
0Eh
00h
R/W
Configuration shared pins
0Fh
08h
R/W
Reserved
10h
Active video cropping start MSB
11h
00h
R/W
Active video cropping start LSB
12h
00h
R/W
Active video cropping stop MSB
13h
00h
R/W
Active video cropping stop LSB
14h
00h
R/W
Genlock/RTC
15h
01h
R/W
Horizontal sync start
16h
80h
R/W
Reserved
17h
Vertical blanking start
18h
00h
R/W
Vertical blanking stop
19h
00h
R/W
Chrominance processing control #1
1Ah
0Ch
R/W
Chrominance processing control #2
1Bh
14h
R/W
Interrupt reset register B
1Ch
00h
R/W
Interrupt enable register B
1Dh
00h
R/W
1Eh
00h
R/W
00h
R/W
Interrupt configuration register B
Reserved
Video standard
Reserved
1Fh−27h
28h
29h–7Fh
MSB of device ID
80h
51h
R
LSB of device ID
81h
50h
R
ROM version
82h
02h
R
RAM patch-code version
83h
10h
R
Vertical line count MSB
84h
R
Vertical line count LSB
85h
R
Interrupt status register B
86h
Interrupt active register B
87h
Status register #1
88h
R
Status register #2
89h
R
Status register #3
8Ah
R
Status register #4
8Bh
R
Status register #5
8Ch
R
R
00h
R
Reserved
8Dh−8Fh
Closed caption data registers
90h−93h
R
WSS data registers
94h−99h
R
VPS data registers
9Ah−A6h
R
VITC data registers
A7h−AFh
R
VBI FIFO read data
B0h
R
Teletext filter 1
B1h−B5h
00h
R/W
Teletext filter 2
B6h−BAh
00h
R/W
R = Read only
W = Write only
R/W = Read and write
24
SLES043A
May 2006
Functional Description
Table 3−8. Registers Summary (Continued)
REGISTER FUNCTION
ADDRESS
DEFAULT
R/W
BBh
00h
R/W
Teletext filter enable
Reserved
BCh−BFh
Interrupt status register A
C0h
00h
R/W
Interrupt enable register A
C1h
00h
R/W
Interrupt configuration
C2h
04h
R/W
VDP configuration RAM data
C3h
DCh
R/W
Configuration RAM address low byte
C4h
0Fh
R/W
Configuration RAM address high byte
C5h
00h
R/W
VDP status register
C6h
R/W
FIFO word count
C7h
R
FIFO interrupt threshold
C8h
80h
FIFO reset
C9h
00h
W
Line number interrupt
CAh
00h
R/W
Pixel alignment register low byte
CBh
59h
R/W
Pixel alignment register high byte
CCh
03h
R/W
FIFO output control
CDh
01h
R/W
Automatic initialization
CEh
00h
R/W
Full field enable
CFh
00h
R/W
D0h−FBh
FFh
R/W
FCh
7Fh
R/W
Line mode registers
Full field mode register
Reserved
R/W
FDh−FFh
R = Read only
W = Write only
R/W = Read and write
3.22 Register Definitions
3.22.1
Address
7
Video Input Source Selection #1 Register
00h
6
5
4
3
2
Reserved
1
0
Channel 1 source
selection
S-video selection
Channel 1 source selection:
0 = AIP1A selected (default)
1 = AIP1B selected
Table 3−9. Analog Channel and Video Mode Selection
INPUT(S) SELECTED
Composite
S-Video
May 2006
ADDRESS 00
BIT 1
BIT 0
AIP1A (default)
0
0
AIP1B
1
0
1A luma, 2A chroma
x
1
SLES043A
25
Functional Description
3.22.2
Address
Analog Channel Controls Register
01h
7
6
5
4
Reserved
3
1
2
1
Automatic offset control
0
Automatic gain control
Automatic offset control:
00 = Disabled
01 = Automatic offset enabled (default)
10 = Reserved
11 = Clamping level frozen to the previously set value
Automatic gain control (AGC):
00 = Disabled (fixed gain value)
01 = AGC enabled (default)
10 = Reserved
11 = AGC frozen to the previously set value
3.22.3
Address
Operation Mode Controls Register
02h
7
6
5
4
3
Reserved
2
1
0
Color subcarrier PLL frozen
Reserved
Power down mode
Color subcarrier PLL frozen:
0 = Color subcarrier PLL increments by the internally generated phase increment. (default)
GLCO pin outputs the frequency increment.
1 = Color subcarrier PLL stops operating.
GLCO pin outputs the frozen frequency increment.
Power down mode:
0 = Normal operation (default)
1 = Power down mode. A/Ds are turned off and internal clocks are reduced to minimum.
3.22.4
Address
Miscellaneous Control Register
03h
7
6
5
4
3
2
1
0
VBKO
GPCL pin
GPCL I/O mode
select
Lock status
(HVLK)
YUV output
enable (TVPOE)
HSYNC, VSYNC/PALI,
AVID, FID/GLCO
output enable
Vertical blanking
on/off
Clock output
enable
VBKO (pin 27) function select:
0 = GPCL (default)
1 = VBLK
GPCL (data is output based on state of bit 5):
0 = GPCL outputs 0 (default)
1 = GPCL outputs 1
GPCL I/O mode select:
0 = GPCL is input (default)
1 = GPCL is output
26
SLES043A
May 2006
Functional Description
Lock status (HVLK) (configured along with register 0Fh):
0 = Terminal VSYNC/PALI outputs. PAL indicator (PALI) signal and terminal FID/GLCO outputs field ID
(FID) signal (default) (if terminals are configured to output PALI and FID in register 0Fh)
1 = Terminal VSYNC/PALI outputs horizontal lock indicator (HLK) and terminal FID outputs vertical lock
indicator (VLK) (if terminals are configured to output PALI and FID in register 0Fh)
These are additional functionalities that are provided for ease of use.
YUV output enable:
0 = Y(OUT7:0) high impedance (default)
1 = Y(OUT7:0) active
HSYNC, VSYNC/PALI, active video indicator (AVID), and FID/GLCO output enables:
0 = HSYNC, VSYNC/PALI, AVID, and FID/GLCO are high-impedance (default).
1 = HSYNC, VSYNC/PALI, AVID, and FID/GLCO are active.
Vertical blanking on/off:
0 = Vertical blanking (VBLK) off (default)
1 = Vertical blanking (VBLK) on
Clock output enable:
0 = SCLK output is high impedance.
1 = SCLK output is enabled (default).
Table 3−10. Digital Output Control
Terminal 28
(AVID)
Register 03h,
Bit 3 (TVPOE)
Register C2h,
Bit 2 (VDPOE)
YUV Output
1 during reset
X
X
Active after
reset
After reset and before YUV output enable bits are programmed.
TVPOE defaults to 1 and VDPOE is 1.
0 during reset
X
X
High impedance
after reset
After reset and before YUV output enable bits are programmed.
TVPOE defaults to 0 and VDPOE is 1.
X
0
X
High impedance
After both YUV output enable bits are programmed.
X
X
0
High impedance
After both YUV output enable bits are programmed.
X
1
1
Active
After both YUV output enable bits are programmed.
3.22.5
Address
Notes
Autoswitch Mask Register
04h
7
6
Reserved
5
4
3
2
N443_OFF
PALN_OFF
PALM_OFF
1
0
Reserved
N443_OFF:
0 = NTSC443 is masked from the autoswitch process. Autoswitch does not switch to NTSC443.
1 = Normal operation (default)
PALN_OFF:
0 = PAL-N is masked from the autoswitch process. Autoswitch does not switch to PAL-N.
1 = Normal operation (default)
PALM_OFF:
0 = PAL-M is masked from the autoswitch process. Autoswitch does not switch to PAL-M.
1 = Normal operation (default)
May 2006
SLES043A
27
Functional Description
3.22.6
Software Reset Register
Address
05h
7
6
5
4
3
2
1
0
Reserved
Reset
Reset:
0 = Normal operation (default)
1 = Reset device
3.22.7
Color Killer Threshold Control Register
Address
06h
7
6
Reserved
5
4
3
Automatic color killer
2
1
0
Color killer threshold
Automatic color killer:
00 = Automatic mode (default)
01 = Reserved
10 = Color killer enabled, the UV terminals are forced to a zero color state.
11 = Color killer disabled
Color killer threshold:
11111 = −30 dB (minimum)
10000 = −24 dB (default)
00000 = −18 dB (maximum)
3.22.8
Luminance Processing Control #1 Register
Address
07h
7
Luma bypass mode
6
5
4
Pedestal not present
Disable raw
header
Luma bypass during
vertical blank
3
2
1
0
Luminance signal delay with respect to
chrominance signal
Luma bypass mode:
0 = Input video bypasses the chroma trap and comb filters. Chroma outputs are forced to zero (default).
1 = Input video bypasses the whole luma processing. Raw A/D data is output alternatively as UV data and
Y data at SCLK rate. The output data is properly clipped to comply to ITU−R BT.601 coding range. Only
valid for 8-bit YUV output format (YUV output format = 100 or 111 at register 0Dh).
Pedestal not present:
0 = 7.5 IRE pedestal is present on the analog video input signal (default).
1 = Pedestal is not present on the analog video input signal.
Disable raw header:
0 = Insert 656 ancillary headers for raw data.
1 = Disable 656 ancillary headers and instead force dummy ones (0x40) (default).
Luminance bypass enabled during vertical blanking:
0 = Disabled (default)
1 = Enabled
Luminance bypass occurs for the duration of the vertical blanking as defined by registers 18h and 19h. This
feature may be used to prevent distortion of test and data signals present during the vertical blanking interval.
28
SLES043A
May 2006
Functional Description
Luma signal delay with respect to chroma signal in pixel clock increments (range −8 to +7 pixel clocks):
1111 = −8 pixel clocks delay
1011 = −4 pixel clocks delay
1000 = −1 pixel clocks delay
0000 = 0 pixel clocks delay (default)
0011 = 3 pixel clocks delay
0111 = 7 pixel clocks delay
3.22.9
Address
Luminance Processing Control #2 Register
08h
7
6
Reserved
Luminance filter select
5
4
3
Reserved
2
1
Peaking gain
0
Reserved
Luminance filter select:
0 = Luminance comb filter enabled (default)
1 = Luminance chroma trap filter enabled
Peaking gain:
00 = 0 (default)
01 = 0.5
10 = 1
11 = 2
Information on peaking frequency: ITU−R BT.601 sampling rate: all standards—2.6 MHz
3.22.10 Brightness Control Register
Address
09h
7
6
5
4
3
2
1
0
2
1
0
Brightness control
Brightness control:
1111 1111 = 255 (bright)
1000 1011 = 139 (ITU−R BT.601 level)
1000 0000 = 128 (default)
0000 0000 = 0 (dark)
3.22.11 Color Saturation Control Register
Address
7
0Ah
6
5
4
3
Saturation control
Saturation control:
1111 1111 = 255 (maximum)
1000 0000 = 128 (default)
0000 0000 = 0 (no color)
May 2006
SLES043A
29
Functional Description
3.22.12 Hue Control Register
Address
0Bh
7
6
5
4
3
2
1
0
3
2
1
0
Hue control
Hue control:
0111 1111 = +180 degrees
0000 0000 = 0 degrees (default)
1000 0000 = −180 degrees
3.22.13 Contrast Control Register
Address
0Ch
7
6
5
4
Contrast control
Contrast control:
1111 1111 = 255 (maximum contrast)
1000 0000 = 128 (default)
0000 0000 = 0 (minimum contrast)
3.22.14 Outputs and Data Rates Select Register
Address
0Dh
7
6
5
Reserved
YUV output code range
UV code format
4
3
YUV data path bypass
2
1
0
YUV output format
YUV output code range:
0 = ITU−R BT.601 coding range (Y ranges from 16 to 235. U and V range from 16 to 240)
1 = Extended coding range (Y, U, and V range from 1 to 254) (default)
UV code format:
0 = Offset binary code (2s complement + 128) (default)
1 = Straight binary code (2s complement)
YUV data path bypass:
00 = Normal operation (default)
01 = Digital composite output pins connected to decimation filter output, decoder function bypassed,
data output alternately as Y and UV buses at the SCLK rate.
10 = YUV output pins connected to A/D output, decoder function bypassed, data output at SCLK rate.
11 = Reserved
YUV output format:
000 = 8-bit 4:2:2 YUV with discrete sync output
001 = Reserved
010 = Reserved
011 = Reserved
100 = Reserved
101 = Reserved
110 = Reserved
111 = 8-bit ITU−R BT.656 interface with embedded sync output (default)
30
SLES043A
May 2006
Functional Description
3.22.15 Luminance Processing Control #3 Register
Address
0Eh
7
6
5
4
3
2
Reserved
1
0
Luminance trap filter select
Luminance filter stop band bandwidth (MHz):
00 = No notch (default)
01 = Notch 1
10 = Notch 2
11 = Notch 3
Luminance filter select [1:0] selects one of the four chroma trap filters to produce luminance signal by removing
the chrominance signal from the composite video signal. The stopband of the chroma trap filter is centered
at the chroma subcarrier frequency with stopband bandwidth controlled by the two control bits. Please refer
to Figure 3−5, for the frequency responses of the filters.
3.22.16 Configuration Shared Pins
Address
0Fh
7
6
5
4
3
2
1
0
Reserved
LOCK23
LOCK24A
LOCK24B
FID/GLCO
VSYNC/PALI
INTREQ/GPCL/VBLK
SCLK/PCLK
LOCK23 (pin 23) function select:
0 = FID (default, if bit 3 is selected to output FID)
1 = Lock indicator (Indicates whether device is locked both horizontally and vertically)
LOCK24A (pin 24) function select:
0 = VSYNC (default, if bit 2 is selected to output VSYNC)
1 = Lock indicator (Indicates whether device is locked both horizontally and vertically)
LOCK24B (pin 24) function select:
0 = PALI (default, if bit 2 is selected to output PALI)
1 = Lock indicator (Indicates whether device is locked both horizontally and vertically)
FID/GLCO (pin 23) function select (also refer to register 03h for enhanced functionality):
0 = FID
1 = GLCO (default)
VSYNC/PALI (pin 24) function select (also refer to register 03h for enhanced functionality):
0 = VSYNC (default)
1 = PALI
INTREQ/GPCL/VBLK (pin 27) function select:
0 = INTREQ (default)
1 = GPCL or VBLK depending on bit 7 of register 03h
SCLK/PCLK (pin 9) function select:
0 = SCLK (default)
1 = PCLK (1x pixel clock frequency)
May 2006
SLES043A
31
Functional Description
3.22.17 Active Video Cropping Start Pixel MSB
Address
11h
7
6
5
4
3
2
1
0
AVIDST_MSB [9:2]
Active video cropping start pixel MSB [9:2], set this register first before setting register 12h. The TVP5150
device updates the AVID start values only when register 12h is written to.
3.22.18 Active Video Cropping Start Pixel LSB
Address
12h
7
6
5
4
3
Reserved
2
AVID active
1
0
AVIDST_LSB [1:0]
AVID active:
0 = AVID out active in VBLK (default)
1 = AVID out inactive in VBLK
Active video cropping start pixel LSB [1:0]: The TVP5150 device updates the AVID start values only when this
register is written to.
AVID start [9:0] (combined registers 11h and 12h):
01 1111 1111 = 511
00 0000 0001 = 1
00 0000 0000 = 0 (default)
11 1111 1111 = −1
10 0000 0000 = −512
3.22.19 Active Video Cropping Stop Pixel MSB
Address
13h
7
6
5
4
3
2
1
0
AVID stop pixel MSB
Active video cropping stop pixel MSB [9:2], set this register first before setting the register 14h. The TVP5150
device updates the AVID stop values only when register 14h is written to.
3.22.20 Active Video Cropping Stop Pixel LSB
Address
14h
7
6
5
4
Reserved
3
2
1
0
AVID stop pixel LSB
Active video cropping stop pixel LSB [1:0]: The number of pixels of active video must be an even number. The
TVP5150 device updates the AVID stop values only when this register is written to.
AVID stop [9:0] (combined registers 13h and 14h):
01 1111 1111 = 511
00 0000 0001 = 1
00 0000 0000 = 0 (default) (see Figure 3−10)
11 1111 1111 = −1
10 0000 0000 = −512
32
SLES043A
May 2006
Functional Description
3.22.21 Genlock and RTC Register
Address
15h
7
6
5
4
3
Reserved
2
1
0
CDTO_SW
Reserved
GLCO/ RTC
CDTO_LSB_Switch (CDTO_SW):
0 = CDTO_LSB is forced to 0
1 = CDTO_LSB is forced to 1 (default)
GLCO/RTC:
0 = GLCO output
1 = RTC output (default)
Figure 3−13 shows the timing of GLCO and Figure 3−14 shows the timing of RTC.
3.22.22 Horizontal Sync (HSYNC) Start Register
Address
16h
7
6
5
4
3
2
1
0
HSYNC start
HSYNC start:
1111 1111 = −127 x 4 pixel clocks
1111 1110 = −126 x 4 pixel clocks
1111 1101 = −125 x 4 pixel clocks
1000 0000 = 0 pixel clocks (default)
0111 1111 = 1 x 4 pixel clocks
0111 1110 = 2 x 4 pixel clocks
0000 0000 = 128 x 4 pixel clocks
BT.656 EAV Code
YOUT
[7:0]
U
Y
V
Y
0
F
F
0
0
0
0
0
0
X
Y
Z
0
8
0
BT.656 SAV Code
0
1
0
0
8
0
0
1
0
0
F
F
0
0
0
0
0
0
X
Y
Z
U
Y
HSYNC
AVID
128 SCLK
Start of
Digital Line
Start of Digital
Active Line
Nhbhs
Nhb
Figure 3−15. Horizontal Sync
Table 3−11. Clock Delays (SCLKs)
May 2006
STANDARD
Nhbhs
Nhb
NTSC 601
32
272
PAL 601
24
284
SLES043A
33
Functional Description
Detailed timing information is also available in Section 3.15, Synchronization Signals.
3.22.23 Vertical Blanking Start Register
Address
18h
7
6
5
4
3
2
1
0
Vertical blanking start
Vertical blanking (VBLK) start:
0111 1111 = 127 lines after start of vertical blanking interval
0000 0001 = 1 line after start of vertical blanking interval
0000 0000 = Same time as start of vertical blanking interval (default) (see Figure 3−9)
1000 0001 = 1 line before start of vertical blanking interval
1111 1111 = 128 lines before start of vertical blanking interval
Vertical blanking is adjustable with respect to the standard vertical blanking intervals. The setting in this
register determines the timing of the GPCL/VBLK signal when it is configured to output vertical blank (see
register 03h). The setting in this register also determines the duration of the luma bypass function (see register
07h).
3.22.24 Vertical Blanking Stop Register
Address
19h
7
6
5
4
3
2
1
0
Vertical blanking stop
Vertical blanking (VBLK) stop:
0111 1111 = 127 lines after stop of vertical blanking interval
0000 0001 = 1 line after stop of vertical blanking interval
0000 0000 = Same time as stop of vertical blanking interval (default) (see Figure 3−9)
1000 0001 = 1 line before stop of vertical blanking interval
1111 1111 = 128 lines before stop of vertical blanking interval
Vertical blanking is adjustable with respect to the standard vertical blanking intervals. The setting in this
register determines the timing of the GPCL/VBLK signal when it is configured to output vertical blank (see
register 03h). The setting in this register also determines the duration of the luma bypass function (see register
07h).
3.22.25 Chrominance Control #1 Register
Address
7
1Ah
6
5
Reserved
4
3
2
Color PLL reset
Chrominance adaptive
comb filter enable (ACE)
Chrominance comb filter
enable (CE)
1
0
Automatic color gain control
Color PLL reset:
0 = Color PLL not reset (default)
1 = Color PLL reset
Color PLL phase is reset to zero and the color PLL reset bit then immediately returns to zero. When this bit
is set, the subcarrier PLL phase reset bit is transmitted on terminal 23 (GLCO) on the next line (NTSC or PAL).
Chrominance adaptive comb filter enable (ACE):
34
SLES043A
May 2006
Functional Description
0 = Disable
1 = Enable (default)
Chrominance comb filter enable (CE):
0 = Disable
1 = Enable (default)
Automatic color gain control (ACGC):
00 = ACGC enabled (default)
01 = Reserved
10 = ACGC disabled
11 = ACGC frozen to the previously set value
3.22.26 Chrominance Control #2 Register
Address
1Bh
7
6
5
4
Chrominance comb filter mode [3:0]
3
2
Reserved
WCF
1
0
Chrominance filter select
Chrominance comb filter mode [3:0] (CM[3:0]): Chrominance control #2 register 1Bh, bits 7−4
ACE
CE
CM[3]
CM[2]
CM[1]
CM[0]
0
0
X
X
X
X
Comb filter disabled
COMB FILTER SELECTION
0
1
0
0
0
X
Fixed 3-line comb filter with (1, 2, 1)/4 coefficients
0
1
0
0
1
X
Fixed 3-line comb filter with (1, 0, 1)/2 coefficients
0
1
1
0
X
X
Fixed 2-line comb filter
0
1
0
1
0
X
Fixed 4-line (1, 1, 1, 1)/4 comb filter
0
1
0
1
1
X
Fixed 4-line (1, 3, 3, 1)/8 comb filter
0
1
1
1
X
X
Fixed 2-line comb filter
1
1†
X
X
X
0
0†
0
1†
Adaptive between 3-line (1, 2, 1)/4 and 2-line comb filter
X
0
0†
1
X
X
0
1
0
Adaptive between 3-line (1, 0, 1)/2 comb filter and 2-line comb filter
1
X
X
0
1
1
Adaptive between 3-line (1, 0, 1)/2 comb filter and no comb filter
1
1‡
X
X
X
1
1‡
0
0‡
0
1‡
Adaptive between 4-line (1, 1, 1, 1)/4 and 2-line comb filter
X
1
X
X
1
1
0
Adaptive between 4-line (1, 3, 3, 1)/8 comb filter and 2-line comb filter
1
X
X
1
1
1
Adaptive between 4-line (1, 3, 3, 1)/8 comb filter and no comb filter
Adaptive between 3-line (1, 2, 1)/4 comb filter and no comb filter
Adaptive between 4-line (1, 1, 1, 1)/4 comb filter and no comb filter
† Indicates default settings for NTSC
‡ Indicates default settings for PAL mode
Wideband chroma filter (WCF):
0 = Disable
1 = Enable (default)
Chrominance filter select:
00 = No notch (default)
01 = Notch 1
10 = Notch 2
11 = Notch 3
May 2006
SLES043A
35
Functional Description
Chrominance output bandwidth (MHz):
WCF
FILTER SELECT
NTSC ITU−R BT.601
PAL ITU−R BT.601
00
1.2214
1.2214
01
0.8782
0.8782
10
0.7297
0.7297
11
0.4986
0.4986
00
1.4170
1.4170
01
1.0303
1.0303
10
0.8438
0.8438
11
0.5537
0.5537
0
1
3.22.27 Interrupt Reset Register B
Address
1Ch
7
6
5
4
3
2
1
0
Software
initialization
reset
Macrovision
detect changed
reset
Command
ready reset
Field rate
changed reset
Line alternation
changed reset
Color lock
changed reset
H/V lock
changed reset
TV/VCR
changed reset
Software initialization reset:
0 = No effect (default)
1 = Reset software initialization bit
Macrovision detect changed reset:
0 = No effect (default)
1 = Reset macrovision detect changed bit
Command ready reset:
0 = No effect (default)
1 = Reset command ready bit
Field rate changed reset:
0 = No effect (default)
1 = Reset field rate changed bit
Line alternation changed reset:
0 = No effect (default)
1 = Reset line alternation changed bit
Color lock changed reset:
0 = No effect (default)
1 = Reset color lock changed bit
H/V lock changed reset:
0 = No effect (default)
1 = Reset H/V lock changed bit
TV/VCR changed reset [TV/VCR mode is determined by counting the total number of lines/frame. The mode
switches to VCR for nonstandard number of lines]:
0 = No effect (default)
1 = Reset TV/VCR changed bit
36
SLES043A
May 2006
Functional Description
Interrupt reset register B is used by the external processor to reset the interrupt status bits in interrupt status
register B. Bits loaded with a 1 allow the corresponding interrupt status bit to reset to 0. Bits loaded with a 0
have no effect on the interrupt status bits.
3.22.28 Interrupt Enable Register B
Address
1Dh
7
6
5
4
3
2
1
0
Software initialization
occurred enable
Macrovision
detect changed
Command
ready enable
Field rate
changed
Line alternation
changed
Color lock
changed
H/V lock
changed
TV/VCR
changed
Software initialization occurred enable:
0 = Disabled (default)
1 = Enabled
Macrovision detect changed:
0 = Disabled (default)
1 = Enabled
Command ready enable:
0 = Disabled (default)
1 = Enabled
Field rate changed:
0 = Disabled (default)
1 = Enabled
Line alternation changed:
0 = Disabled (default)
1 = Enabled
Color lock changed:
0 = Disabled (default)
1 = Enabled
H/V lock changed:
0 = Disabled (default)
1 = Enabled
TV/VCR changed:
0 = Disabled (default)
1 = Enabled
Interrupt enable register B is used by the external processor to mask unnecessary interrupt sources for
interrupt B. Bits loaded with a 1 allow the corresponding interrupt condition to generate an interrupt on the
external pin. Conversely, bits loaded with a 0 mask the corresponding interrupt condition from generating an
interrupt on the external pin. This register only affects the external pin, it does not affect the bits in the interrupt
status register. A given condition can set the appropriate bit in the status register and not cause an interrupt
on the external pin. To determine if this device is driving the interrupt pin either AND interrupt status register
B with interrupt enable register B or check the state of interrupt B in the interrupt B active register.
May 2006
SLES043A
37
Functional Description
3.22.29 Interrupt Configuration Register B
Address
1Eh
7
6
5
4
3
2
1
0
Reserved
Interrupt polarity B
Interrupt polarity B:
0 = Interrupt B is active low (default).
1 = Interrupt B is active high.
Interrupt polarity B must be same as interrupt polarity A bit at bit 0 of the interrupt configuration register A at
address C2h.
Interrupt configuration register B is used to configure the polarity of interrupt B on the external interrupt pin.
When the interrupt B is configured for active low, the pin is driven low when active and high-impedance when
inactive (open-collector). Conversely, when the interrupt B is configured for active high, it is driven
high-impedance for active and driven low for inactive.
3.22.30 Video Standard Register
Address
28h
7
6
5
4
3
2
Reserved
1
0
Video standard
Video standard:
0000 = Autoswitch mode (default)
0001 = Reserved
0010 = (M) NTSC ITU−R BT.601
0011 = Reserved
0100 = (B, G, H, I, N) PAL ITU−R BT.601
0101 = Reserved
0110 = (M) PAL ITU−R BT.601
0111 = Reserved
1000 = (Combination-N) ITU−R BT.601
1001 = Reserved
1010 = NTSC 4.43 ITU−R BT.601
1011 = Reserved
1100 = Reserved
With the autoswitch code running, the user can force the device to operate in a particular video standard mode
and sample rate by writing the appropriate value into this register.
3.22.31 MSB of Device ID Register
Address
80h
7
6
5
4
3
2
1
0
2
1
0
MSB of device ID
This register identifies the MSB of the device ID. Value = 0x51.
3.22.32 LSB of Device ID Register
Address
81h
7
6
5
4
3
LSB of device ID
This register identifies the LSB of the device ID. Value = 0x50.
38
SLES043A
May 2006
Functional Description
3.22.33 ROM Version Register
Address
82h
7
6
5
4
3
2
1
0
2
1
0
1
0
ROM version: 0x01 for 1.0, 0x20 for 2.00
Value = 0x02
3.22.34 RAM Patch Code Version Register
Address
83h
7
6
5
4
3
RAM patch code version: 0x10 for combined version 2-1, 0x20 for combined version 2-2
Value = 0x10
3.22.35 Vertical Line Count MSB Register
Address
84h
7
6
5
4
3
2
Reserved
Vertical line count MSB
Vertical line count bits [9:8]
3.22.36 Vertical Line Count LSB Register
Address
85h
7
6
5
4
3
2
1
0
Vertical line count LSB
Vertical line count bits [7:0]
Registers 84h and 85h can be read and combined to extract the current vertical line count. This can be used
with nonstandard video signals such as a VCR in fast-forward or rewind modes to synchronize the
downstream video circuitry.
3.22.37 Interrupt Status Register B
Address
86h
7
6
Software
initialization
Macrovision detect
changed
5
4
3
2
1
0
Reserved
Field rate
changed
Line alternation
changed
Color lock
changed
H/V lock
changed
TV/VCR
changed
Software initialization:
0 = Software initialization is not ready (default).
1 = Software initialization is ready.
Macrovision detect changed:
0 = Macrovision detect status has not changed (default).
1 = Macrovision detect status has changed.
Field rate changed:
0 = Field rate has not changed (default).
1 = Field rate has changed.
May 2006
SLES043A
39
Functional Description
Line alternation changed:
0 = Line alteration has not changed (default).
1 = Line alternation has changed.
Color lock changed:
0 = Color lock status has not changed (default).
1 = Color lock status has changed.
H/V lock changed:
0 = H/V lock status has not changed (default).
1 = H/V lock status has changed.
TV/VCR changed:
0 = TV/VCR status has not changed (default).
1 = TV/VCR status has changed.
Interrupt status register B is polled by the external processor to determine the interrupt source for interrupt
B. After an interrupt condition is set, it can be reset by writing to the interrupt reset register B at subaddress
1Ch with a 1 in the appropriate bit.
3.22.38 Interrupt Active Register B
Address
87h
7
6
5
4
3
2
1
Reserved
0
Interrupt B
Interrupt B:
0 = Interrupt B is not active on the external terminal (default).
1 = Interrupt B is active on the external terminal.
The interrupt active register B is polled by the external processor to determine if interrupt B is active.
3.22.39 Status Register #1
Address
88h
7
6
5
4
3
2
1
0
Peak white
detect status
Line-alternating
status
Field rate
status
Lost lock
detect
Color subcarrier
lock status
Vertical sync
lock status
Horizontal sync
lock status
TV/VCR status
Peak white detect status:
0 = Peak white is not detected.
1 = Peak white is detected.
Line-alternating status:
0 = Nonline alternating
1 = Line alternating
Field rate status:
0 = 60 Hz
1 = 50 Hz
Lost lock detect:
40
SLES043A
May 2006
Functional Description
0 = No lost lock since status register #1 was last read.
1 = Lost lock since status register #1 was last read.
Color subcarrier lock status:
0 = Color subcarrier is not locked.
1 = Color subcarrier is locked.
Vertical sync lock status:
0 = Vertical sync is not locked.
1 = Vertical sync is locked.
Horizontal sync lock status:
0 = Horizontal sync is not locked.
1 = Horizontal sync is locked.
TV/VCR status [TV/VCR mode is determined by counting the total number of lines/frame. The mode switches
to VCR for nonstandard number of lines]:
0 = TV
1 = VCR
3.22.40 Status Register #2
Address
89h
7
6
5
4
3
2
Reserved
Weak signal
detection
PAL switch
polarity
Field sequence
status
AGC and offset frozen
status
Reserved
1
0
Macrovision detection
Weak signal detection:
0 = No weak signal
1 = Weak signal mode
PAL switch polarity of first line of odd field:
0 = PAL switch is 0
1 = PAL switch is 1
Field sequence status:
0 = Even field
1 = Odd field
AGC and offset frozen status:
0 = AGC and offset are not frozen.
1 = AGC and offset are frozen.
Macrovision detection:
00 = No copy protection
01 = AGC pulses/pseudo-syncs present
10 = AGC pulses/pseudo-syncs and 2-line color striping present
11 = AGC pulses/pseudo-syncs and 4-line color striping present
May 2006
SLES043A
41
Functional Description
3.22.41 Status Register #3
Address
8Ah
7
6
5
4
3
2
1
0
3
2
1
0
AGC gain
AGC gain:
0000 0000 = −6 dB
0100 0000 = −3 dB
1000 0000 = 0 dB
1100 0000 = 3 dB
1111 1111 = 6 dB
3.22.42 Status Register #4
Address
8Bh
7
6
5
4
Subcarrier to horizontal (SCH) phase
SCH (color PLL subcarrier phase at 50% of the falling edge of horizontal sync of line one of odd field; step
size 360_/256):
0000 0000 = 0.00_
0000 0001 = 1.41_
0000 0010 = 2.81_
1111 1110 = 357.2_
1111 1111 = 358.6_
3.22.43 Status Register #5
Address
8Ch
7
6
Autoswitch mode
5
4
Reserved
3
2
Video standard
1
0
Sampling rate
This register contains information about the detected video standard and the sampling rate at which the device
is currently operating. When autoswitch code is running, this register must be tested to determine which video
standard has been detected.
Autoswitch mode:
0 = Stand-alone (forced video standard) mode
1 = Autoswitch mode
42
SLES043A
May 2006
Functional Description
Video standard:
VIDEO STANDARD [3:1]
SR
VIDEO STANDARD
BIT 3
BIT2
BIT1
BIT 0
0
0
0
0
Reserved
0
0
0
1
(M) NTSC ITU−R BT.601
0
0
1
0
Reserved
0
0
1
1
(B, G, H, I, N) PAL ITU−R BT.601
0
1
0
0
Reserved
0
1
0
1
(M) PAL ITU−R BT.601
0
1
1
0
Reserved
0
1
1
1
(Combination-N) ITU−R BT.601
1
0
0
0
Reserved
1
0
0
1
NTSC 4.43 ITU−R BT.601
1
0
1
0
Reserved
1
0
1
1
Reserved
Sampling rate (SR):
0 = Reserved
1 = ITU−R BT.601
3.22.44 Closed Caption Data Registers
Address
90h−93h
Address
7
6
5
4
3
2
90h
Closed caption field 1 byte 1
91h
Closed caption field 1 byte 2
92h
Closed caption field 2 byte 1
93h
Closed caption field 2 byte 2
1
0
These registers contain the closed caption data arranged in bytes per field.
3.22.45 WSS Data Registers
Address
94h−99h
NTSC
ADDRESS
7
6
94h
95h
3
2
1
0
b3
b2
b1
b0
WSS field 1 byte 1
BYTE
b11
b10
b9
b8
b7
b6
WSS field 1 byte 2
b19
b18
b17
b16
b15
b14
WSS field 1 byte 3
97h
b5
b4
b3
b2
b1
b0
WSS field 2 byte 1
b11
b10
b9
b8
b7
b6
WSS field 2 byte 2
b19
b18
b17
b16
b15
b14
WSS field 2 byte 3
99h
b13
b12
4
b4
96h
98h
b13
5
b5
b12
These registers contain the wide screen signaling (WSS) data for NTSC.
Bits 0−1 represent word 0, aspect ratio
Bits 2−5 represent word 1, header code for word 2
Bits 6−13 represent word 2, copy control
Bits 14−19 represent word 3, CRC
May 2006
SLES043A
43
Functional Description
PAL
ADDRESS
7
6
5
4
3
2
1
0
94h
b7
b6
b5
b4
b3
b2
b1
b0
WSS field 1 byte 1
b13
b12
b11
b10
b9
b8
WSS field 1 byte 2
95h
96h
b7
b6
97h
BYTE
b5
b4
b3
b2
b1
b0
WSS field 2 byte 1
b13
b12
b11
b10
b9
b8
WSS field 2 byte 2
98h
Reserved
99h
Reserved
PAL:
Bits 0−3 represent group 1, aspect ratio
Bits 4−7 represent group 2, enhanced services
Bits 8−10 represent group 3, subtitles
Bits 11−13 represent group 4, others
3.22.46 VPS Data Registers
Address
9Ah–A6h
ADDRESS
7
6
5
4
3
9Ah
VPS byte 1
9Bh
VPS byte 2
9Ch
VPS byte 3
9Dh
VPS byte 4
9Eh
VPS byte 5
9Fh
VPS byte 6
A0h
VPS byte 7
A1h
VPS byte 8
A2h
VPS byte 9
A3h
VPS byte 10
A4h
VPS byte 11
A5h
VPS byte 12
A6h
VPS byte 13
2
1
0
These registers contain the entire VPS data line except the clock run-in code or the start code.
3.22.47 VITC Data Registers
Address
A7h–AFh
ADDRESS
7
6
5
4
3
A7h
VITC byte 1, frame byte 1
A8h
VITC byte 2, frame byte 2
A9h
VITC byte 3, seconds byte 1
AAh
VITC byte 4, seconds byte 2
ABh
VITC byte 5, minutes byte 1
ACh
VITC byte 6, minutes byte 2
ADh
VITC byte 7, hour byte 1
AEh
VITC byte 8, hour byte 2
AFh
VITC byte 9, CRC
2
1
0
These registers contain the VITC data.
44
SLES043A
May 2006
Functional Description
3.22.48 VBI FIFO Read Data Register
Address
B0h
7
6
5
4
3
2
1
0
FIFO read data
This address is provided to access VBI data in the FIFO through the host port. All forms of teletext data come
directly from the FIFO, while all other forms of VBI data can be programmed to come from the registers or from
the FIFO. Current status of the FIFO can be found at address C6h and the number of bytes in the FIFO is
located at address C7h. If the host port is to be used to read data from the FIFO, then the output formatter
must be disabled at address CDh bit 0. The format used for the VBI FIFO is shown in Section 3.12.
3.22.49 Teletext Filter and Mask Registers
Address
ADDRESS
B1h–BAh
7
6
5
4
3
2
1
B1h
Filter 1 Mask 1
Filter 1 Pattern 1
B2h
Filter 1 Mask 2
Filter 1 Pattern 2
B3h
Filter 1 Mask 3
Filter 1 Pattern 3
B4h
Filter 1 Mask 4
Filter 1 Pattern 4
B5h
Filter 1 Mask 5
Filter 1 Pattern 5
B6h
Filter 2 Mask 1
Filter 2 Pattern 1
B7h
Filter 2 Mask 2
Filter 2 Pattern 2
B8h
Filter 2 Mask 3
Filter 2 Pattern 3
B9h
Filter 2 Mask 4
Filter 2 Pattern 4
BAh
Filter 2 Mask 5
Filter 2 Pattern 5
0
For an NABTS system, the packet prefix consists of five bytes. Each byte contains four data bits (D[3:0])
interlaced with four Hamming protection bits (H[3:0]):
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
D[3]
H[3]
D[2]
H[2]
D[1]
H[1]
D[0]
H[0]
Only the data portion D[3:0] from each byte is applied to a teletext filter function with corresponding pattern
bits P[3:0] and mask bits M[3:0]. Hamming protection bits are ignored by the filter.
For a WST system (PAL or NTSC), the packet prefix consists of two bytes so that two patterns are used.
Patterns 3, 4, and 5 are ignored.
The mask bits enable filtering using the corresponding bit in the pattern register. For example, a 1 in the LSB
of mask 1 means that the filter module must compare the LSB of nibble 1 in the pattern register to the first data
bit on the transaction. If these match, then a true result is returned. A 0 in a bit of mask 1 means that the filter
module must ignore that data bit of the transaction. If all 0s are programmed in the mask bits, then the filter
matches all patterns returning a true result (default 00h).
Pattern and mask for each byte and filter are referred as <1,2><P,M><1,2,3,4,5> where:
<1,2> identifies the filter 1 or 2
<P,M> identifies the pattern or mask
<1,2,3,4,5> identifies the byte number
May 2006
SLES043A
45
Functional Description
3.22.50 Teletext Filter Control Register
Address
BBh
7
6
5
4
Reserved
3
Filter logic
2
1
0
Mode
TTX filter 2 enable
TTX filter 1 enable
Filter logic: allows different logic to be applied when combining the decision of filter 1 and filter 2 as follows:
00 = NOR (Default)
01 = NAND
10 = OR
11 = AND
Mode:
0 = Teletext WST PAL mode B (2 header bytes) (default)
1 = Teletext NABTS NTSC mode C (5 header bytes)
TTX filter 2 enable:
0 = Disabled (default)
1 = Enabled
TTX filter 1 enable:
0 = Disabled (default)
1 = Enabled
If the filter matches or if the filter mask is all 0s, then a true result is returned.
3.22.51 Interrupt Status Register A
Address
C0h
7
Lock state
interrupt
6
5
4
Lock interrupt
Cycle complete
interrupt
Bus error
interrupt
3
2
1
0
Reserved
FIFO threshold
interrupt
Line interrupt
Data interrupt
The interrupt status register A can be polled by the host processor to determine the source of an interrupt. After
an interrupt condition is set it can be reset by writing to this register with a 1 in the appropriate bit(s).
Lock state interrupt:
0 = TVP5150 is not locked to the video signal.
1 = TVP5150 is locked to the video signal.
Lock interrupt:
0 = A transition has not occurred on the lock signal.
1 = A transition has occurred on the lock signal.
Cycle complete interrupt:
0 = Read or write cycle in progress
1 = Read or write cycle complete
Bus error interrupt:
0 = No bus error
1 = PHI interface detected an illegal access
46
SLES043A
May 2006
Functional Description
FIFO threshold interrupt:
0 = The amount of data in the FIFO has not yet crossed the threshold programmed at address C8h.
1 = The amount of data in the FIFO has crossed the threshold programmed at address C8h.
Line interrupt:
0 = The video line number has not yet been reached.
1 = The video line number programmed in address CAh has occurred.
Data interrupt:
0 = No data is available.
1 = VBI data is available either in the FIFO or in the VBI data registers.
3.22.52 Interrupt Enable Register A
Address
C1h
7
6
5
4
Reserved
Lock interrupt
enable
Cycle complete
interrupt enable
Bus error
interrupt enable
3
2
1
0
Reserved
FIFO threshold
interrupt enable
Line interrupt
enable
Data interrupt
enable
The interrupt enable register A is used by the host processor to mask unnecessary interrupt sources. Bits
loaded with a 1 allow the corresponding interrupt condition to generate an interrupt on the external pin.
Conversely, bits loaded with a 0 mask the corresponding interrupt condition from generating an interrupt on
the external pin. This register only affects the interrupt on the external terminal, it does not affect the bits in
interrupt status register A. A given condition can set the appropriate bit in the status register and not cause
an interrupt on the external terminal. To determine if this device is driving the interrupt terminal either perform
a logical AND of interrupt status register A with interrupt enable register A, or check the state of the interrupt
A bit in the interrupt configuration register at address C2h.
Lock interrupt enable:
0 = Disabled (default)
1 = Enabled
Cycle complete interrupt enable:
0 = Disabled (default)
1 = Enabled
Bus error interrupt enable:
0 = Disabled (default)
1 = Enabled
FIFO threshold interrupt enable:
0 = Disabled (default)
1 = Enabled
Line interrupt enable:
0 = Disabled (default)
1 = Enabled
Data interrupt enable:
0 = Disabled (default)
1 = Enabled
May 2006
SLES043A
47
Functional Description
3.22.53 Interrupt Configuration Register A
Address
C2h
7
6
5
4
3
Reserved
2
1
0
YUV enable
(VDPOE)
Interrupt A
Interrupt polarity A
YUV enable (VDPOE):
0 = YUV pins are high impedance.
1 = YUV pins are active if other conditions are met (default).
Interrupt A (read-only):
0 = Interrupt A is not active on the external pin (default).
1 = Interrupt A is active on the external pin.
Interrupt polarity A:
0 = Interrupt A is active low (default).
1 = Interrupt A is active high.
Interrupt configuration register A is used to configure the polarity of the external interrupt terminal. When
interrupt A is configured as active low, the terminal is driven low when active and high-impedance when
inactive (open collector). Conversely, when the terminal is configured as active high, it is driven high when
active and driven low when inactive.
3.22.54 VDP Configuration RAM Register
Address
C3h−C5h
Address
7
6
5
4
3
C3h
Configuration data
C4h
RAM address (7:0)
C5h
2
Reserved
1
0
RAM
address 8
The configuration RAM data is provided to initialize the VDP with initial constants. The configuration RAM is
512 bytes organized as 32 different configurations of 16 bytes each. The first 12 configurations are defined
for the current VBI standards. An additional 2 configurations can be used as a custom programmed mode for
unique standards like Gemstar.
Address C3h is used to read or write to the RAM. The RAM internal address counter is automatically
incremented with each transaction. Addresses C5h and C4h make up a 9-bit address to load the internal
address counter with a specific start address. This can be used to write a subset of the RAM for only those
standards of interest. Registers D0h−FBh must all be programmed with FFh, before writing or reading the
configuration RAM. Full field mode (CFh) must be disabled as well.
The suggested RAM contents are shown below. All values are hexadecimal.
48
SLES043A
May 2006
Functional Description
Table 3−12. VBI Configuration RAM
Index
Address
0
1
2
3
4
5
6
7
8
Reserved
000
Reserved
Reserved
010
Reserved
Reserved
020
WST PAL B 6
030
Reserved
040
WST PAL C 6
050
Reserved
060
WST NTSC 6
070
Reserved
080
NABTS, NTSC 6
090
Reserved
0A0
A
B
C
D
E
F
72
10
0
0
0
10
0
98
0D
0
0
0
10
0
93
0D
0
0
0
10
0
93
0D
0
0
0
15
0
93
0D
0
0
0
10
0
7B
09
0
0
0
27
0
8C
09
0
0
0
27
0
CD
0F
0
0
0
3A
0
7C
08
0
0
0
39
0
85
08
0
0
0
4C
0
94
08
0
0
0
4C
0
DA
0B
0
0
0
60
0
Reserved
AA
AA
FF
FF
27
2E
20
AA
AA
FF
FF
E7
2E
20
AA
AA
FF
FF
27
2E
20
2B
A6
Reserved
22
A6
Reserved
23
69
Reserved
AA
AA
FF
FF
E7
2E
20
22
69
Reserved
NABTS, NTSC-J 6
0B0
Reserved
0C0
CC, PAL 6
0D0
Reserved
0E0
CC, NTSC 6
0F0
Reserved
100
WSS, PAL 6
110
Reserved
120
WSS, NTSC C
130
Reserved
140
VITC, PAL 6
150
Reserved
160
VITC, NTSC 6
170
Reserved
180
VPS, PAL 6
190
Custom
1A0
Programmable
Custom
1B0
Programmable
May 2006
9
AA
AA
FF
FF
A7
2E
20
23
69
Reserved
AA
2A
FF
3F
04
51
6E
AA
2A
FF
3F
04
51
6E
5B
55
C5
FF
0
71
6E
02
A6
Reserved
02
69
Reserved
42
A6
Reserved
38
00
3F
00
0
71
6E
43
69
Reserved
0
0
0
0
0
8F
6D
0
0
0
0
0
8F
6D
AA
AA
FF
FF
BA
CE
2B
49
A6
Reserved
49
69
Reserved
0D
A6
SLES043A
49
Functional Description
3.22.55 VDP Status Register
Address
C6h
7
6
5
4
3
2
1
0
FIFO full error
FIFO empty
TTX available
CC field 1 available
CC field 2 available
WSS available
VPS available
VITC available
The VDP status register indicates whether data is available in either the FIFO or data registers, and status
information about the FIFO. Reading data from the corresponding register does not clear the status flags
automatically. These flags are only reset by writing a 1 to the respective bit. However, bit 6 is updated
automatically.
FIFO full error:
0 = No FIFO full error
1 = FIFO was full during a write to FIFO.
The FIFO full error flag is set when the current line of VBI data can not enter the FIFO. For example, if the FIFO
has only 10 bytes left and teletext is the current VBI line, the FIFO full error flag is set, but no data is written
because the entire teletext line will not fit. However, if the next VBI line is closed caption requiring only 2 bytes
of data plus the header, this goes into the FIFO. Even if the full error flag is set.
FIFO empty:
0 = FIFO is not empty.
1 = FIFO is empty.
TTX available:
0 = Teletext data is not available.
1 = Teletext data is available.
CC field 1 available:
0 = Closed caption data from field 1 is not available.
1 = Closed caption data from field 1 is available.
CC field 2 available:
0 = Closed caption data from field 2 is not available.
1 = Closed caption data from field 2 is available.
WSS available:
0 = WSS data is not available.
1 = WSS data is available.
VPS available:
0 = VPS data is not available.
1 = VPS data is available.
VITC available:
0 = VITC data is not available.
1 = VITC data is available.
3.22.56 FIFO Word Count Register
Address
C7h
7
6
5
4
3
2
1
0
Number of words
50
SLES043A
May 2006
Functional Description
This register provides the number of words in the FIFO. 1 word equals 2 bytes.
3.22.57 FIFO Interrupt Threshold Register
Address
C8h
7
6
5
4
3
2
1
0
Number of words
This register is programmed to trigger an interrupt when the number of words in the FIFO exceeds this value
(default 80h). This interrupt must be enabled at address C1h. 1 word equals 2 bytes.
3.22.58 FIFO Reset Register
Address
C9h
7
6
5
4
3
2
1
0
1
0
Any data
Writing any data to this register resets the FIFO and clears any data present.
3.22.59 Line Number Interrupt Register
Address
CAh
7
6
Field 1 enable
Field 2 enable
5
4
3
2
Line number
This register is programmed to trigger an interrupt when the video line number matches this value in bits 5:0.
This interrupt must be enabled at address C1h. The value of 0 or 1 does not generate an interrupt.
Field 1 enable:
0 = Disabled (default)
1 = Enabled
Field 2 enable:
0 = Disabled (default)
1 = Enabled
Line number: (default 00h)
3.22.60 Pixel Alignment Registers
Address
Address
CBh−CCh
7
6
5
4
CBh
CCh
3
2
1
0
Switch pixel [7:0]
Reserved
Switch pixel [9:8]
These registers form a 10-bit horizontal pixel position from the falling edge of sync, where the VDP controller
initiates the program from one line standard to the next line standard. For example, the previous line of teletext
to the next line of closed caption. This value must be set so that the switch occurs after the previous transaction
has cleared the delay in the VDP, but early enough to allow the new values to be programmed before the
current settings are required.
The default value is 0x1E and has been tested with every standard supported here. A new value is needed
only if a custom standard is in use.
May 2006
SLES043A
51
Functional Description
3.22.61 FIFO Output Control Register
Address
CDh
7
6
5
4
3
2
1
0
Reserved
Host access enable
This register is programmed to allow I2C access to the FIFO or allowing all VDP data to go out the video port.
Host access enable:
0 = Output FIFO data to the video output Y[9:2] (default)
1 = Allow I2C access to the FIFO data
3.22.62 Automatic Initialization Register
Address
CEh
7
6
5
4
3
Reserved
2
1
0
Auto initialize
Auto clock
Reserved
This register enables the VDP to preprogram the line mode registers for the most common standards based
on the video standard, that is, PAL, NTSC.
Auto initialize:
0 = Disable initialization of teletext and closed caption standards (default)
1 = Enable initialization of teletext and closed caption standards
Auto clock:
0 = Do not update bit 0 (default)
1 = Enable VDP to update bit 0
3.22.63 Full Field Enable Register
Address
CFh
7
6
5
4
Reserved
3
2
1
0
Full field enable
This register enables the full field mode. In this mode, all lines outside the vertical blank area and all lines in
the line mode registers programmed with FFh are sliced with the definition of register FCh. Values other than
FFh in the line mode registers allow a different slice mode for that particular line.
Full field enable:
0 = Disable full field mode (default)
1 = Enable full field mode
52
SLES043A
May 2006
Functional Description
3.22.64 Line Mode Registers
Address
ADDRESS
D0h−FBh
7
6
5
4
3
D0h
Line 6 Field 1
D1h
Line 6 Field 2
D2h
Line 7 Field 1
D3h
Line 7 Field 2
D4h
Line 8 Field 1
D5h
Line 8 Field 2
D6h
Line 9 Field 1
D7h
Line 9 Field 2
D8h
Line 10 Field 1
D9h
Line 10 Field 2
DAh
Line 11 Field 1
DBh
Line 11 Field 2
DCh
Line 12 Field 1
DDh
Line 12 Field 2
DEh
Line 13 Field 1
DFh
Line 13 Field 2
E0h
Line 14 Field 1
E1h
Line 14 Field 2
E2h
Line 15 Field 1
E3h
Line 15 Field 2
E4h
Line 16 Field 1
E5h
Line 16 Field 2
E6h
Line 17 Field 1
E7h
Line 17 Field 2
E8h
Line 18 Field 1
E9h
Line 18 Field 2
EAh
Line 19 Field 1
EBh
Line 19 Field 2
ECh
Line 20 Field 1
EDh
Line 20 Field 2
EEh
Line 21 Field 1
EFh
Line 21 Field 2
F0h
Line 22 Field 1
F1h
Line 22 Field 2
F2h
Line 23 Field 1
F3h
Line 23 Field 2
F4h
Line 24 Field 1
F5h
Line 24 Field 2
F6h
Line 25 Field 1
F7h
Line 25 Field 2
F8h
Line 26 Field 1
F9h
Line 26 Field 2
FAh
Line 27 Field 1
FBh
Line 27 Field 2
May 2006
2
1
0
SLES043A
53
Functional Description
These registers program the specific VBI standard at a specific line in the video field.
Bit 7:
0 = Disable filtering of null bytes in closed caption modes
1 = Enable filtering of null bytes in closed caption modes (default)
In teletext modes, bit 7 enables the data filter function for that particular line. If it is set to 0, then the data filter
passes all data on that line.
Bit 6:
0 = Send VBI data to registers only.
1 = Send VBI data to FIFO and the registers. Teletext data only goes to FIFO. (default)
Bit 5:
0 = Allow VBI data with errors in the FIFO
1 = Do not allow VBI data with errors in the FIFO (default)
Bit 4:
0 = Do not enable error detection and correction
1 = Enable error detection and correction (when bits [3:0] = 1 2, 3, and 4 only) (default)
Bits [3:0]:
0000 = Reserved
0001 = WST PAL B
0010 = WST PAL C
0011 = WST NTSC
0100 = NABTS NTSC
0101 = TTX NTSC
0110 = CC PAL
0111 = CC NTSC
1000 = WSS PAL
1001 = WSS NTSC
1010 = VITC PAL
1011 = VITC NTSC
1100 = VPS PAL
1101 = Custom 1
1110 = Custom 2
1111 = Active video (VDP off) (default)
A value of FFh in the line mode registers is required for any line to be sliced as part of the full field mode.
3.22.65 Full Field Mode Register
Address
FCh
7
6
5
4
3
2
1
0
Full field mode
This register programs the specific VBI standard for full field mode. It can be any VBI standard. Individual line
settings take priority over the full field register. This allows each VBI line to be programmed independently but
have the remaining lines in full field mode. The full field mode register has the same definitions as the line mode
registers (default 7Fh).
54
SLES043A
May 2006
Electrical Characteristics
4
Electrical Characteristics
4.1
Absolute Maximum Ratings Over Operating Free-Air Temperature Range (unless
otherwise noted)†
Supply voltage range:
IOVDD to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.5 V
DVDD to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 2.3 V
PLL_AVDD to PLL_AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 2.3 V
CH1_AVDD to CH1_AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 2.3 V
Digital input voltage range, VI to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.5 V
Input voltage range, XTAL1 to PLL_GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 2.3 V
Analog input voltage range AI to CH1_AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.2 V to 2.0 V
Digital output voltage range, VO to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.5 V
Operating free-air temperature, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
Storage temperature, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
† Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
4.2
Recommended Operating Conditions
MIN
NOM
MAX
UNIT
3.0
3.3
3.6
V
IODVDD
DVDD
Digital I/O supply voltage
Digital supply voltage
1.65
1.8
1.95
V
PLL_AVDD
CH1_AVDD
Analog PLL supply voltage
1.65
1.8
1.95
V
Analog core supply voltage
1.65
1.8
1.95
V
VI(P-P)
VIH
Analog input voltage (ac-coupling necessary)
0.75
V
VIL
VIH_XTAL
Digital input voltage low
VIL_XTAL
IOH
XTAL input voltage low
High-level output current
2
mA
IOL
IOH_SCLK
Low-level output current
−2
mA
4
mA
IOL_SCLK
TA
SCLK low-level output current
−4
mA
70
°C
Digital input voltage high
XTAL input voltage high
0
0.7 IOVDD
V
0.3 IOVDD
0.7 PLL_AVDD
V
0.3 PLL_AVDD
SCLK high-level output current
Operating free-air temperature
V
0
V
4.2.1 Crystal Specifications
CRYSTAL SPECIFICATIONS
Frequency
Frequency tolerance
4.3
MIN
NOM
MAX
UNIT
14.31818
MHz
±50
ppm
Electrical Characteristics
DVDD = 1.8 V, PLL_AVDD = 1.8 V, CH1_AVDD = 1.8 V, IOVDD = 3.3 V
For minimum/maximum values: TA = 0°C to 70°C, and for typical values: TA = 25°C unless otherwise noted
May 2006
SLES043A
55
Electrical Characteristics
4.3.1 DC Electrical Characteristics
TEST CONDITIONS
(see Note 1)
PARAMETER
MIN
TYP
MAX
UNIT
IDD(IO_D)
IDD(D)
Digital I/O supply current
Color bar input
6
mA
Digital core supply current
Color bar input
21
mA
IDD(PLL_A)
IDD(CH1_A)
Analog PLL supply current
Color bar input
6
mA
Analog PLL supply current
Color bar input
25
mA
PTOT
PDOWN
Total power dissipation, normal mode
Color bar input
113
Total power dissipation, power-down mode
Color bar input
0.9
Ci
Input capacitance
By design
VOH
VOL
Output voltage high
IOH = 2 mA
IOL = −2 mA
0.8 IOVDD
VOH_SCLK
VOL_SCLK
SCLK output voltage high
IOH = 2 mA
IOL = −4 mA
0.8 IOVDD
IIH
IIL
High-level input current (see Note 2)
Output voltage low
SCLK output voltage low
150
mW
8
pF
V
0.22 IOVDD
V
V
0.22 IOVDD
V
±20
µA
±20
µA
VI = VIH
VI = VIL
Low-level input current (see Note 2)
mW
NOTES: 1. Measured with a load of 15 pF.
2. YOUT7 is a bidirectional terminal with an internal pulldown resistor. This terminal may sink more than the specified current when
in the RESET mode.
4.3.2 Analog Processing and A/D Converters
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
Zi
Input impedance, analog video inputs
By design
500
kΩ
Ci
Input capacitance, analog video inputs
By design
10
pF
Vi(pp)
Input voltage range
Ccoupling = 0.1 µF
∆G
Gain control range
DNL
DC differential nonlinearity
A/D only
±0.5
INL
DC integral nonlinearity
A/D only
±1
Fr
Frequency response
6 MHz
SNR
Signal-to-noise ratio
6 MHz, 1.0 VP-P
50
dB
NS
Noise spectrum
50% flat field
50
dB
DP
Differential phase
1.5
°
DG
Differential gain
56
SLES043A
0
0.75
V
0
12
dB
−0.9
LSB
LSB
−3
dB
0.5%
May 2006
Electrical Characteristics
4.3.3 Timing
4.3.3.1
Clocks, Video Data, Sync Timing
TEST CONDITIONS
(see NOTE 2)
PARAMETER
MIN
Duty cycle PCLK, SCLK
t1
TYP
MAX
UNIT
50%
See Note 3 (by design)
Delay time, SCLK falling edge to digital outputs
2.8
8
TYP
MAX
ns
NOTES: 3. CL = 15 pF
4. All outputs are 3.3 V.
SCLK
t1
HSYNC/VSYNC/AVID/
PALI/FID/Y[7:0]
Figure 4−1. Clocks, Video Data, and Sync Timing
4.3.3.2
I2C Host Port Timing
PARAMETER
TEST CONDITIONS
MIN
UNIT
t1
t2
Bus free time between STOP and START
1.3
µs
Setup time for a (repeated) START condition
0.6
µs
t3
t4
Hold time (repeated) START condition
0.6
µs
Setup time for a STOP condition
0.6
ns
t5
t6
Data setup time
100
t7
t8
Rise time VC1(SDA) and VC0(SCL) signal
Cb
Capacitive load for each bus line
I2C clock frequency
fI2C
Data hold time
ns
0
0.9
250
Fall time VC1(SDA) and VC0(SCL) signal
µs
ns
250
Stop Start
ns
400
pF
400
kHz
Stop
VC1 (SDA)
Data
t1
t6
t7
t3
t2
t8
t6
t4
t5
VC0 (SCL)
Figure 4−2. I2C Host Port Timing
May 2006
SLES043A
57
Application Information
5
Application Information
5.1
Application Example
NOTE:
X and (75 − X) is used since the maximum P−P signal allowed is 0.75V. Hence for a 140IRE signal, the signal
must be divided by approximately half. Change X depending on the input signal range.
C2
C1
1uF
1uF
C3
C11
PDN
INTERQ/GPCL
AVID
HSYNC
1uF
0.1uF
R2
C11
AVDD
IO_DVDD
(75−X)
R5
0.1uF
X
1
2
3
4
5
6
7
8
C5
CH2_IN
AVDD
R6
C6
(75−X)
S1
1
24
23
22
21
20
19
18
17
VSYNC/PALI
FID/GLCO
SDA
SCL
VSYNC/PALI
FID/GLCO
DVDD
C7
0.1uF
2
9
10
11
12
13
14
15
16
OSC
OSC_IN
TVP5150
VSYNC/PALI
FID/GLCO
SDA
SCL
DVDD
DGND
YOUT0
YOUT1
R4
1.2K
SCLK
IO_DVDD
YOUT7
YOUT6
YOUT5
YOUT4
YOUT3
YOUT2
0.1uF
AIP1A
AIP1B
PLL_AGND
PLL_AVDD
XTAL1/OSC
XTAL2
NSUB
RESETB
R3
1.2K
HSYNC
0.1uF
C4
32
31
30
29
28
27
26
25
X
CH1_AVDD
CH1_AGND
REFM
REFP
PDN
INTERQ/GPCL
AVID
R1
CH1_IN
PDN
INTERQ/GPC
AVID
HSYNC
Y1
SCLK
14.31818MHz
IO_DVDD
C8
C9
C10
CL1
DVDD
SCLK
RESETB
YOUT[7:0]
CL2
0.1uF
R7
Implies I2C address is BAh. If B8h is to be used,
10K
NOTE:
connect pulldown resistor to digital ground.
The use of INTERQ/GPCL/AVID/HSYNC and VSYNC is optional. These are outputs and can be left floating.
When OSC is connected through S1, remove the caps for the crystal.
PDN needs to be high, if device has to be always operational.
RESETB is operational only when PDN is high. This allows an active low reset to the device.
CL1 and CL2 typical values used are 27 pF.
Figure 5−1. Application Example
58
SLES043A
May 2006
Mechanical Data
6
Mechanical Data
The TVP5150 device is available in the 32-terminal PQFP package (PBS). The following figure shows the
mechanical dimensions for the PBS package.
PBS (S-PQFP-G32)
PLASTIC QUAD FLATPACK
0,23
0,17
0,50
24
0,08 M
17
25
16
32
9
0,13 NOM
1
8
3,50 TYP
Gage Plane
5,05
SQ
4,95
7,10
SQ
6,90
0,25
0,10 MIN
0°−ā 7°
0,70
0,40
1,05
0,95
Seating Plane
1,20 MAX
0,08
4087735/A 11/95
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
May 2006
SLES043A
59
PACKAGE MATERIALS INFORMATION
www.ti.com
26-Jan-2013
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
TVP5150PBSR
Package Package Pins
Type Drawing
TQFP
PBS
32
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
1000
330.0
16.4
Pack Materials-Page 1
7.2
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
7.2
1.5
12.0
16.0
Q2
PACKAGE MATERIALS INFORMATION
www.ti.com
26-Jan-2013
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
TVP5150PBSR
TQFP
PBS
32
1000
367.0
367.0
38.0
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated