® VERSA-PAC® Inductors and Transformers (Surface Mount) Description RoHS 2002/95/EC • Six winding, surface mount devices that offer more than 500 usable inductor or transformer configurations • High power density and low profile • Low radiated noise and tightly coupled windings • Power range from 1 Watt – 70 Watts • Frequency range to over 1MHz • 500 VAC Isolation • Ferrite core material Applications • Inductors: buck, boost, coupled, choke, filter, resonant, noise filtering, differential, forward, common mode • Transformers: flyback, feed forward, push-pull, multiple output, inverter, step-up, step-down, gate drive, base drive, wide band, pulse, control, impedance, isolation, bridging, ringer, converter, auto Environmental Data • Storage temperature range: -55°C to 125°C • Operating ambient temperature range: -40°C to +85°C (range is application specific). The internal “hot spot” temperature defines the maximum allowable currents, which are limited to 130°C, including ambient • Solder reflow temperature: +260°C max for 10 seconds max. Part (1) Number VPH1-1400-R(10) VP1-1400-R(10) VPH1-0190-R VP1-0190-R VPH1-0102-R VP1-0102-R VPH1-0076-R VP1-0076-R VPH1-0059-R VP1-0059-R VPH2-1600-R(10) VP2-1600-R(10) VPH2-0216-R VP2-0216-R VPH2-0116-R VP2-0116-R VPH2-0083-R VP2-0083-R VPH2-0066-R VP2-0066-R VPH3-0780-R(10) VP3-0780-R(10) VPH3-0138-R VP3-0138-R VPH3-0084-R VP3-0084-R VPH3-0055-R VP3-0055-R VPH3-0047-R VP3-0047-R L(BASE) µH (NOM)(2) 201.6 +/-30% 89.6 +/-30% 27.4 +/-20% 12.2 +/-20% 14.7 +/-20% 6.5 +/-20% 10.9 +/-20% 4.9 +/-20% 8.5 +/-20% 3.8 +/-20% 160 +/-30% 78.4 +/-30% 21.6 +/-20% 10.6 +/-20% 11.6 +/-20% 5.7 +/-20% 8.3 +/-20% 4.1 +/-20% 6.6 +/-20% 3.2 +/-20% 132 +/-30% 63.2 +/-30% 23.3 +/-20% 11.2 +/-20% 14.2 +/-20% 6.8 +/-20% 9.3 +/-20% 4.5 +/-20% 7.94 +/-20% 3.8 +/-20% ISAT(BASE) Amps (TYP)(3)(4) 0.04 0.06 0.29 0.43 0.53 0.80 0.72 1.06 0.92 1.37 0.07 0.10 0.53 0.76 0.99 1.41 1.39 1.95 1.74 2.50 0.07 0.10 0.41 0.59 0.67 0.97 1.02 1.46 1.19 1.73 IRMS(BASE) Amps (TYP)(3)(5) 0.55 0.85 0.55 0.85 0.55 0.85 0.55 0.85 0.55 0.85 0.95 1.26 0.95 1.26 0.95 1.26 0.95 1.26 0.95 1.26 0.97 1.47 0.97 1.47 0.97 1.47 0.97 1.47 0.97 1.47 R(BASE) Ohms (MAX)(6) 0.344 0.145 0.344 0.145 0.344 0.145 0.344 0.145 0.344 0.145 0.159 0.090 0.159 0.090 0.159 0.090 0.159 0.090 0.159 0.090 0.14 0.061 0.14 0.061 0.14 0.061 0.14 0.061 0.14 0.061 Packaging • Supplied in tape and reel packaging, 600 (VP01), 300 (VP02), and 200 (VP03) per reel • Supplied in bulk packaging (VP04 and VP05) • VP04 & VP05 tape and reel packaging available. Please contact factory for details. Volt-µSEC(BASE) EPEAK(BASE) µVs µJ (MAX)(7) (TYP)(8) 0.11 32.9 21.8 0.11 32.9 0.77 21.8 0.77 32.9 1.45 21.8 1.45 32.9 1.92 21.8 1.92 32.9 2.48 21.8 2.48 48.3 0.29 33.7 0.29 48.3 2.11 33.7 2.11 48.3 3.94 33.7 3.94 48.3 5.47 33.7 5.47 48.3 7.01 33.7 7.01 39.8 0.24 27.7 0.24 39.8 1.36 27.7 1.36 39.8 2.23 27.7 2.23 39.8 3.38 27.7 3.38 39.8 4.00 27.7 4.00 Leakage Inductance (BASE) µH (TYP) 0.212 0.096 0.212 0.096 0.212 0.096 0.212 0.096 0.212 0.096 0.165 0.083 0.165 0.083 0.165 0.083 0.165 0.083 0.165 0.083 0.125 0.058 0.125 0.058 0.125 0.058 0.125 0.058 0.125 0.058 Thermal Resistance °C/Watt (TYP)(9) 60.7 60.7 60.7 60.7 60.7 60.7 60.7 60.7 60.7 60.7 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 43.4 43.4 43.4 43.4 43.4 43.4 43.4 43.4 43.4 43.4 ® VERSA-PAC® Inductors and Transformers (Surface Mount) Part (1) Number VPH4-0860-R(10) VP4-0860-R(10) VPH4-0140-R VP4-0140-R VPH4-0075-R VP4-0075-R VPH4-0060-R VP4-0060-R VPH4-0047-R VP4-0047-R VPH5-1200-R(10) VP5-1200-R(10) VPH5-0155-R VP5-0155-R VPH5-0083-R VP5-0083-R VPH5-0067-R VP5-0067-R VPH5-0053-R VP5-0053-R L(BASE) µH (NOM)(2) 159.65 +/-30% 87.0 +/-30% 23.7 +/-20% 11.3 +/-20% 12.7 +/-20% 6.1 +/-20% 10.1 +/-20% 4.9 +/-20% 7.94 +/-20% 3.8 +/-20% 173 +/-30% 76.8 +/-30% 22.3 +/-20% 9.9 +/-20% 12 +/-20% 5.3 +/-20% 9.65 +/-20% 4.3 +/-20% 7.63 +/-20% 3.4 +/-20% ISAT(BASE) Amps (TYP)(3)(4) 0.11 0.15 0.65 0.95 1.21 1.75 1.52 2.18 1.94 2.81 0.14 0.20 1.05 1.60 1.96 2.95 2.43 3.63 3.07 4.59 IRMS(BASE) Amps (TYP)(3)(5) 1.41 1.70 1.41 1.70 1.41 1.70 1.41 1.70 1.41 1.70 1.70 2.08 1.70 2.08 1.70 2.08 1.70 2.08 1.70 2.08 R(BASE) Ohms (MAX)(6) 0.0828 0.057 0.0828 0.057 0.0828 0.057 0.0828 0.057 0.0828 0.057 0.0711 0.047 0.0711 0.047 0.0711 0.047 0.0711 0.047 0.0711 0.047 (1) The first three digits in the part number signify the size of the package. The next four digits specify the AL, or nanoHenries per turn squared. (2) L = Nominal Inductance of a single winding. (3) I is the lessor of I ( ) and I ( ). (4) Peak current that will result in 30% saturation of the core. This current value assumes that equal current flows in all six windings. For applications in which all windings are not simultaneously driven (i.e. flyback, SEPIC, Cuk, etc.), the saturation current per winding may be calculated as follows: SAT BASE ISAT 2 EnergySERIES = S x 2 RMS BASE = 6 x ISAT(BASE) Number of Windings Driven (5) RMS Current that results in a surface temperature of approximately 40°C above ambient. The 40°C rise occurs when the specified current flows through each of the six windings. (6) Maximum DC Resistance of each winding. (7) For multiple windings in series, the volt-µsecond (µVs) capability varies as the number of windings in series (S): TOTAL EnergyPARALLEL = P x 1 2 x 2 1 2 0.7LBASE x I SAT(BASE) 2 x 0.7LBASE x I SAT(BASE) For multiple windings, the energy capability varies as the square of the number of windings. For example, six windings (either parallel or series) can store 36 times more energy than one winding. (9) Thermal Resistance is the approximate surface temperature rise per Watt of heat loss under still-air conditions. Heat loss is a combination of core loss and wire loss. The number assumes the underlying PCB copper area equals 150% of the component area. (10) These devices are designed for feed-forward applications, where load current dominates magnitizing current. Volt-µsecTOTAL = S x Volt-µsec(BASE) For multiple windings in parallel, the volt-µsecond is as shown in the table above. TOTAL Thermal Resistance °C/Watt (TYP)(9) 39.4 39.4 39.4 39.4 39.4 39.4 39.4 39.4 39.4 39.4 30.3 30.3 30.3 30.3 30.3 30.3 30.3 30.3 30.3 30.3 (8) Maximum Energy capability of each winding. This is based on 30% saturation of the core: BASE BASE Leakage Inductance (BASE) µH (TYP) 0.156 0.075 0.156 0.075 0.156 0.075 0.156 0.075 0.156 0.075 0.235 0.105 0.235 0.105 0.235 0.105 0.235 0.105 0.235 0.105 Volt-µSEC(BASE) EPEAK(BASE) µVs µJ (MAX)(7) (TYP)(8) 64.6 0.57 44.7 0.57 64.6 3.54 44.7 3.54 64.6 6.55 44.7 6.55 64.6 8.16 44.7 8.16 64.6 10.52 44.7 10.52 98.4 1.11 65.6 1.11 98.4 8.83 65.6 8.83 98.4 16.07 65.6 16.07 98.4 19.83 65.6 19.83 98.4 25.10 65.6 25.10 (µVs) capability VERSA-PAC temperature rise depends on total power losses and size. Any other PCM configurations other than those suggested could run hotter than acceptable. Certain topologies or applications must be analyzed for needed requirements and matched with the best VERSA-PAC size and configuration. Proper consideration must be used with all parameters, especially those associated with current rating, energy storage, or maximum volt-seconds. VERSA-PAC should not be used in off-line or safety related applications. The breakdown voltage from one winding to any other winding is 500 VAC maximum. PCM ® VERSA-PAC® Inductors and Transformers (Surface Mount) Mechanical Diagrams VPH1 VP1 and TOP VIEW 1 TOP VIEW LOGO (OPTIONAL) LOGO (OPTIONAL) 12 12 6 7 VPH_-_ _ _ _ VPH_-_ _ _ _ WHITE DOT PIN #1 WHITE DOT PIN #1 1 D D (12 PLCS) (12 PLCS) A A J 6 7 B B C C FRONT VIEW FRONT VIEW E E F F I (12 PLCS) G (2 PLCS) H I H (12 PLCS) WWLLYY R G (2 PLCS) RECOMMENDED PCB LAYOUT RECOMMENDED PCB LAYOUT N N M P M (10PLCS) P 1 12 (10PLCS) 1 12 K NOTES COMPONENT K (12PLCS) 0 1) Tolerances A - I are ± 0.25 mm COMPONENT SIDE J (12PLCS) 0 unless specified otherwise. SIDE (10PLCS) (10PLCS) 2) Tolerances J - P are +/- 0.1 mm 6 7 unless specified otherwise. L 6 7 3) Marking as shown L (12PLCS) a) Dot for pin #1 identification (12PLCS) 4 10 b) On top of unit: -- VPHx-xxx 4 10 (product code, size, 4 digit part number per family table.) 7 1 c) On top of unit: Versa Pac 11 7 5 1 Logo (optional) 11 5 d) On bottom of unit: wwllyy = (date code) R = (revision 8 2 level) 12 8 6 2 4) All soldering surfaces must be 12 6 coplanar within 0.102 mm. A mm max 12.9 VP1 and VPH1 B mm ref 9.2 9 3 WWLLYY R 1:1:1:1:1:1 3 C mm max 13.0 D mm ref 0.7 E mm ref 5.9 F mm max 6.2 G mm ref 1.5 H mm ref 0.1 I mm ref 0.25 9 1:1:1:1:1:1 J K mm mm ref 11.5 1.5 L mm 2.25 M mm ref 9.7 N mm max 14.2 O mm P mm 2.0 0.5 VP2 and VPH2 6 7 VPH_-_ _ _ _ VPH_-_ _ _ _ TOP VIEW TOP VIEW WHITE DOT LOGO (OPTIONAL) WHITE DOT PIN #1 LOGO (OPTIONAL) PIN #1 1 12 D 1 12 D (12 PLCS) A (12 PLCS) A J 6 7 B B C C FRONT VIEW FRONT VIEW E E F F I (12 PLCS) H I H (12 PLCS) WWLLYY R G (2 PLCS) G (2 PLCS) RECOMMENDED PCB LAYOUT RECOMMENDED PCB LAYOUT N N M P M 1 (10PLCS) P 12 (10PLCS) 1 12 K NOTES COMPONENT K (12PLCS) 0 1) Tolerances A - I are ± 0.25 mm SIDE COMPONENT J (12PLCS) 0 unless specified otherwise. SIDE (10PLCS) (10PLCS) 2) Tolerances J - P are +/- 0.1 mm 6 7 unless specified otherwise. L 6 7 3) Marking as shown (12PLCS) L a) Dot for pin #1 identification (12PLCS) 4 10 b) On top of unit: -- VPHx-xxx 4 10 (product code, size, 4 digit part number per family table.) 7 1 c) On top of unit: Versa Pac 11 7 5 1 Logo (optional) 11 5 d) On bottom of unit: wwllyy = (date code) R = (revision 8 2 level) 12 8 6 2 4) All soldering surfaces must be 12 6 coplanar within 0.102 mm. VP2 and VPH2 A mm max 16.3 B mm ref 12.0 C mm max 16.8 9 3 WWLLYY R 1:1:1:1:1:1 3 D mm ref 0.7 E mm ref 6.7 F mm max 7.8 G mm ref 2.0 H mm ref 0.1 I mm ref 0.30 1:1:1:1:1:1 J K mm mm ref 14.25 1.75 9 L mm 2.5 M mm ref 13.0 N mm max 18.0 O mm P mm 2.5 0.75 ® VERSA-PAC® Inductors and Transformers (Surface Mount) Mechanical Diagrams VP3 and VPH3 WHITE DOT PIN #1 1 D 12 PLCS) TOP VIEW M L TOP VIEW WHITE DOT PIN #1 1 12 VPH_-_ _ _ _ 1 D LOGO (12 PLCS) (OPTIONAL) 12 I A VPH_-_ _ _ _ COMPONENT1 SIDE J I A LOGO 7 (OPTIONAL) 6 J (12PLCS) 6 7 7 K (12PLCS) 4 1 B C 12 N (10PLCS) COMPONENT SIDE 7 (12PLCS) 6 K (12PLCS) 6 B O M (10PLCS) L 12 4 1 C 9 5 12 2 FRONT VIEW E G (12 PLCS) H 8 6 11 3 E H (12 PLCS) G (12 PLCS) A mm max VP3 and VPH3 17.1 8 6 11 3 F (2 PLCS) (12 PLCS) 9 5 12 2 FRONT VIEW F (2 PLCS) 7 10 B mm ref 16.0 C mm max 22.3 D mm ref 0.7 E mm max 8.4 F mm ref 3.0 G mm ref 0.1 1:1:1:1:1:1 10 J K mm mm H mm ref 0.4 I mm ref 14.49 1.79 O (10PLCS) N (10PLCS) NOTES 1) Tolerances A - I are ± 0.25 mm unless specified otherwise. 2) Tolerances J - P are +/- 0.1 mm unless specified otherwise. 3) Marking as shown a) Dot for pin #1 identification b) On top of unit: -- VPHx-xxx (product code, size, 4 digit part number per family table.) c) On top of unit: Versa Pac Logo (optional) d) On bottom of unit: wwllyy = (date code) R = (revision level) 4) All soldering surfaces must be coplanar within 0.102 mm. 7 1:1:1:1:1:1 L M mm mm ref max 3.43 16.88 23.74 N mm O mm 2.54 0.75 VP4 and VPH4 WHITE DOT PIN #1 1 D 12 PLCS) TOP VIEW M L TOP VIEW WHITE DOT PIN #1 1 12 VPH_-_ _ _ _ 1 D LOGO (12 PLCS) (OPTIONAL) 12 I A VPH_-_ _ _ _ COMPONENT1 SIDE J I A LOGO 7 (OPTIONAL) 6 J (12PLCS) (12PLCS) 6 K (12PLCS) 6 B 12 N (10PLCS) COMPONENT SIDE 7 6 7 7 K (12PLCS) 4 1 B C O M (10PLCS) L 12 4 1 C 9 5 12 2 FRONT VIEW E H (12 PLCS) (12 PLCS) 8 6 11 3 E G (12 PLCS) H G (12 PLCS) B mm ref 18.0 8 6 11 3 F (2 PLCS) A mm max VP4 and VPH4 18.0 9 5 12 2 FRONT VIEW F (2 PLCS) 7 10 C mm max 24.6 D mm ref 0.7 E mm max 10.0 F mm ref 3.3 G mm ref 0.1 H mm ref 0.4 1:1:1:1:1:1 10 J K mm mm I mm ref 14.25 1.75 1:1:1:1:1:1 L M mm mm ref max 3.43 19.14 26.0 O (10PLCS) N (10PLCS) NOTES 1) Tolerances A - I are ± 0.25 mm unless specified otherwise. 2) Tolerances J - P are +/- 0.1 mm unless specified otherwise. 3) Marking as shown a) Dot for pin #1 identification b) On top of unit: -- VPHx-xxx (product code, size, 4 digit part number per family table.) c) On top of unit: Versa Pac Logo (optional) d) On bottom of unit: wwllyy = (date code) R = (revision level) 4) All soldering surfaces must be coplanar within 0.102 mm. 7 N mm O mm 2.5 0.75 ® VERSA-PAC® Inductors and Transformers (Surface Mount) Mechanical Diagrams VP5 and VPH5 WHITE DOT PIN #1 1 D (12 PLCS) TOP VIEW M L TOP VIEW WHITE DOT PIN #1 1 12 VPH_-_ _ _ _ 1 D LOGO (12 PLCS) (OPTIONAL) 12 I A VPH_-_ _ _ _ COMPONENT1 SIDE J I A LOGO 7 (OPTIONAL) 6 J (12PLCS) (12PLCS) 6 K (12PLCS) 6 B 12 N COMPONENT (10PLCS) SIDE 7 6 7 B 4 1 C 9 5 12 2 FRONT VIEW E G (12 PLCS) H 8 6 11 3 E G (12 PLCS) (12 PLCS) A mm max VP5 and VPH5 21.0 B mm ref 21.0 8 6 11 3 F (2 PLCS) F (2 PLCS) 7 10 C mm max 28.5 D mm ref 0.7 E mm max 10.8 F mm ref 2.95 G mm ref 0.1 1:1:1:1:1:1 10 J K mm mm H mm ref 0.4 I mm ref 17.25 2.25 3.15 N (10PLCS) 1) Tolerances A - I are ± 0.25 mm unless specified otherwise. 2) Tolerances J - P are +/- 0.1 mm unless specified otherwise. 3) Marking as shown a) Dot for pin #1 identification b) On top of unit: -- VPHx-xxx (product code, size, 4 digit part number per family table.) c) On top of unit: Versa Pac Logo (optional) d) On bottom of unit: wwllyy = (date code) R = (revision level) 4) All soldering surfaces must be coplanar within 0.102 mm. 7 1:1:1:1:1:1 L M mm mm ref max 22.7 29.0 N mm O mm 3.0 0.75 Inductance Characteristics OCL vs. Isat 100.0% 90.0% 80.0% 70.0% % of OCL H (12 PLCS) 9 5 12 2 FRONT VIEW O (10PLCS) NOTES 7 K (12PLCS) 4 1 C O M (10PLCS) L 12 60.0% 50.0% 40.0% 30.0% 20.0% 10.0% 0.0% 0.0% 20.0% 40.0% 60.0% 80.0% 100.0% 120.0% % of Isat 140.0% 160.0% 180.0% 200.0% ® VERSA-PAC® Inductors and Transformers (Surface Mount) HOW TO USE MULTIPLE WINDINGS Discrete inductors combine like resistors, when connected in series or parallel. For example, inductors in series add and inductors in parallel reduce in a way similar to Ohm’s Law. LSeries = L1 + L2 + L3...Ln LParallel = 1/ [1/L1 + 1/ L2 + 1/ L3....1/Ln] Windings on the same magnetic core behave differently. Two windings in series result in four times the inductance of a single winding. This is because the inductance varies proportionately to the square of the turns. Paralleled VERSA-PAC windings result in no change to the net inductance because the total number of turns remains unchanged; only the effective wire size becomes larger. Two parallel windings result in approximately twice the current carrying capability of a single winding. The net inductance of a given PCM configuration is based on the number of windings in series squared multiplied by the inductance of a single winding (L ). The current rating of a PCM configuration is derived by multiplying the maximum current rating of one winding (I ) by the number of windings in parallel. Examples of simple two-winding devices are shown below: BASE BASE Series Connected (2 Windings) Parallel Connected (2 Windings) 10µH 1 Amp 10µH 1 Amp 10µH 1 Amp 10µH 1 Amp 2 LTOTAL = LBASE x S IMAX = IBASE x P = 1 Amp x 1 = 10 µH x 2 = 1 Amp = 40 µH L 2 2 TOTAL = LBASE x S IMAX = IBASE x P = 10 µH x 1 = 1 Amp x 2 = 10 µH = 2 Amps 2 Where: LBASE = Inductance of a single winding P = Number of windings in parallel (use 1 with all windings in series) S = Number of windings in series IBASE = Maximum current rating of one winding ® VERSA-PAC® Inductors and Transformers (Surface Mount) HOW TO PIN-CONFIGURE VERSA-PAC ® Each VERSA-PAC can be configured in a variety of ways by simply connecting pins together on the Printed Circuit Board (PCB). As shown below, the connections on the PCB are equal to the pin configuration statement shown at the bottom of the schematic symbol. Connecting a number of windings in parallel will increase the current carrying capability, while connecting in series will multiply the inductance. Each VERSA-PAC part can be configured in at least 6 combinations for inductor use or configured in at least 15 turns ratios for transformer applications. Given 25 VERSA-PAC part numbers, this allows for at least 500 magnetic configurations. The PCM configurations can either be created by the designer or simply chosen from the existing PCM diagrams. The following inductor example shows 6 windings in series, which result in an inductance of 36 times the base inductance and 1 times the base current. INDUCTOR EXAMPLE FOR SIZES VP3, VP4 AND VP5 LTOTAL = 36 x LBASE 4 1 12 9 2 11 5 8 3 6 10 7 Component View = 36 times the base Inductance from Data Table. 1 12 6 7 1 7 PIN CONFIGURATIONS (2,12)(3,11)(4,10)(5,9)(6,8) Each VERSA-PAC may be used in at least 15 transformer applications. More than 375 transformer combinations may be achieved using the available 25 VERSA-PAC parts. TRANSFORMER EXAMPLE FOR SIZES VP3, VP4 AND VP5 1:5 1 4 12 9 2 11 5 8 3 6 10 7 1 12 6 7 LPRIMARY = 1 x LBASE 1 2 IPRI = 1 x IBASE ISEC = 1 x IBASE 12 7 PIN CONFIGURATIONS (3,11)(4,10)(5,9)(6,8) The PCM configurations may be selected from the examples on the following pages or created by the designer. Six PCM inductor and fifteen PCM transformer configurations and equivalent circuit schematics are shown. The printed circuit board layout in each example illustrates the connections to obtain the desired inductance or turns ratio. The examples may be used by the PCB designer to configure VERSA-PAC as desired. To assist the designer, VERSA-PAC phasing, coupling and thermal issues have been considered in each of the PCM configurations illustrated. Additionally, the inductance and current ratings, as a function of the respective base values from the following Data Tables, are shown in each PCM example. Turns ratios are also given for each PCM Transformer shown. It is important to carefully select the proper VERSA-PAC part in order to minimize the component size without exceeding the RMS current capability or saturating the core. The Data Tables indicate maximum ratings. Watts VERSA-PAC® Inductors and Transformers (Surface Mount) VP 4 VP 3 10.0 VP 2 5.0 ® VP 1 VERSA-PAC Performance Characteristics 0.0 100 200 300 400 500 kHz Frequency, Bipolar (Push-Pull) Power vs Frequency Unipolar (Flyback) Power vs Frequency 40.0 70.0 35.0 60.0 30.0 VP 5 50.0 Unipolar (Flyback) Power vs Frequency 30.0 Watts VP 5 40.0 25.0 20.0 VP 4 15.0 VP 4 20.0 VP 3 10.0 VP 3 VP 2 10.0 5.0 VP 2 VP 1 0.0 100 200 300 400 VP 1 0.0 100 500 200 300 400 500 Frequency, kHz Frequency, kHz These curves represent typical power70.0 handling capability. +V VERSA-PAC Indicated power levels may not be achievable with all configurations. VP5-0083 10000 +V 60.0 VERSA-PAC VP5-0083 3.3V Buck Converter RTN RTN 1,2 +5V@ 1A 5V to 3.3V BuckSynchronous Converter With 5V Output Controller 7 1,2 Synchronous Controller IC 50.0 +5V@ 1A 7 IC This circuit utilizes the gap of the VP5-0083 to handle the 12.5 This circuit minimizes both board space and cost by eliminating a 5 + (Push-Pull)second40.0regulator. VERSA-PAC’s gap VP Amp output current without saturating. In each ofBipolar the five VERSAserves to prevent core + 1000 PAC sizes, the gap is varied to achieve a selection of specific during the switch on-time and also stores energy for the Power vs Frequencysaturation 30.0 which is delivered during the flyback interval. The +3.3V inductance and current values (see VERSA-PAC Data Table). +5V load VP 4 Size 5 buck winding is configured by placing+ two windings +3.3V@in series while All six windings are connected in Size parallel to minimize AC/DC 20.0 4.2A 4 the +5V is generated by an additional flyback winding stacked on +3.3V@ + VP 3 copper losses and to maximize heat dissipation. With VERSA4.2A the 3.3V output. Extra windings are paralleled with primary Size 3 10.0 PAC, this circuit works well at or above 300 KHz. Also, the closed windings to handle more current. The VP turns 2 ratio of 2:1 adds 1.67V flux-path EFD geometry enables much lower radiation to the +3.3V during the flyback intervalVPto1 achieve +5V. Size 2 100 0.0 characteristics than open-path bobbin core style components. 200 300 400 500 100 6 12,11 3,4,5 Watts 6 12,11 3,4,5 LEVEL SHIFT LEVEL SHIFT 10,9,8 10,9,8 +V +V VERSA-PAC Frequency, kHz +V VP5-0083 Size 1 1 2 3 4 5 6 Synchronous Controller IC 10000 12 11 10 9 8 7 10 VERSA-PAC VP5-0083 RTN Synchronous Controller IC Synchronous Controller IC 1 2 3 4 5 6 12 111,2 10 9 8 7 VERSA-PAC VP5-0083 +5V@ 1A 7 +3.3V@ 12.5A + 6 +3.3V@ 12.5A 12,11 3,4,5 + + RTN RTN LEVEL SHIFT 10,9,8 1000 +3.3V@ 4.2A + 1 Maximum Turns 36vs37American 38 39 40 Wire 41 42 Gauge LITHIUM-ION BATTERY TO 3.3V SEPIC CONVERTER 27 28 29 30 31 32 33 34 35 VERSA-PAC VP5-0083 The voltage of a American Lithium-Ion Wire Battery Gauge varies above and below 12 11 10 4 5 6 +3.3V depending on the degree of charge. The SEPIC + +3.3V@ configuration takes advantage of VERSA-PAC’s 6A multiple tightly + coupled windings. This results in lower ripple current which lowers 1 2 3 9 8 7 noise and core losses substantially. The circuit does not require a + snubber to control the voltage “spike” associated with switch turnoff, and is quite efficient due to lower RMS current in the windings. Maximum Turns m Turns Gauge ® 20.0 15.0 Watts h-Pull) quency VP 5 25.0 Maximum Turns yback) quency 30.0 Size 5 Size 4 +V VERSA-PAC Size VP5-0083 12 11 10 100 Controller + IC Synchronous W/Integral Controller Switch Controller IC W/Integral Switch IC 1 2 3 4 15 2 3 6 + 3 4 5 6 Size 2 12 11 10 9 9 8 78 Size7 1 + VERSA-PAC VP5-0083 +3.3V@ 6A +3.3V@ 12.5A + RTN 10 PM-4301 8/06 © Cooper Electronic Technologies 2006 Visit us on the Web at www.cooperbussmann.com 1225 Broken Sound Pkwy. Suite F Boca Raton, FL 33487 Tel: +1-561-998-4100 Toll Free: +1-888-414-2645 Fax: +1-561-241-6640 1 VERSA-PAC VP5-0083 12 11 10 4 5 6 This bulletin is intended to present product design solutions and technical information that will help the end user with design applications. Cooper Electronic 27 28 29 30 31 32 33 34 35 36 37 +38 +3.3V@ 39 40 41 42 Technologies reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any6A products. Cooper Controller American Wire Gauge + IC Electronic Technologies also reserves the right to change or update, without notice, any technical information contained in 9this bulletin. Once a product has been W/Integral 1 2 3 8 7 Switch selected, it should be tested by the user in all possible applications. + Life Support Policy: Cooper Electronic Technologies does not authorize the use of any of its products for use in life support devices or systems without the express written approval of an officer of the Company. Life support systems are devices which support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.