芟Ι1≡ IΠ 天 △ 塬 Ⅱ =纽 =口 毛兴武 摘 要 :与 传 统 两 级∷ PFc变 换 器 比较 ,单 级PFc Ac~DC变 换 器 只 采 用△ 个 开 关 和 一 个控 制 器 。单 级 PFc技 术 在 低 功 率 电 源 中 的 应 用 已 成 为 目前研 究的课 题 。 关键 词 :单 级 ,功 率 因数 校 正 ,电 路 拓 朴 ,∷ 1、 制 电路 ,同 时 实 现 功 率 因 数 校 正 和 对 输 出 电压 引言 的调 节 。 为减 少 办 公 白动 化 设 备 、 计 算 机 和 家 用 电器 等 内部 开 关 电源 对 电 网 的 污 染 ,国 际 电 工 委 员 会 和 — 些 国 家 与 地 区 推 出 了 |EC1000-3-2不 □ EN61O00-3-2等 标准 ,对 电流 皆 波 作 出 了 限 量 规 定 。 为 满 足 输 人 电流 谐 波 限 制 要 求 单 级 PFC变 换 器 基 本 电 路 拓 朴 2、 1单 级 PFC变 换 器 基本 电路 2■ 单 级 PFC变 换 器 通 常 由升 压 型PFC级 和 DC- ,最 有 效 的 DC变 换 器 组 合 而 成 。 其 中 的 DC-DC变 换 器 又 技 术 手 段 就 有 源 功 率 因数 校 正 (有 源 PFC)。 分正 激 式和 反 激 式 两 种 类 型 。 图2所 示 为基 本 的 目 前 被 广 为 采 用 的 有 源 PFC技 术 是 两 级 方 ,如 图 1所 示 。 单 级 隔 离 型 正 激 式 升 压 PFC电 路 。 两 部 分 电路 共 用 — 个 开 关 (O1),通 过 =极 管 D1白 勺电流 为 PFC变 换 器 使 用 两 个 开 关 (通 常 为 MOSFET)和 两 个 控 制 器 ,即 一 个 功 率 因 数 控 制 储 能 电容 C1充 电 ,D2在 O1关 断 时 防 止 电流 倒 流 。通 过 控 制 O1白 勺通 断 ,电 路 同时完成 对AC输 器 和 一 个 PWM控 制 器 。 只 有 在 采 用 PFC/PWM组 C时 ,才 能 使 用 — 个 控 制 器 ,但 仍 需 用 合控 制器 丨 入 电流 的整 形和 对输 出 电压 的调 节 。 两 个 开 关 。 两 级 PFC在 技 术 上 十 分 成 熟 已获 路 ,瞬 时 输 入 功 率 是 随 时 变化 的 ,欲 得 到 稳 定 ,但 该 方 案 存 在 电路 拓 朴 复 杂 和 成 本 的功 率 输 出 ,要 依 靠 储 能 电容 实 现 功 率 平 衡 。 案 ,即 有 源 PFC升 压 变 换 器 +DC-DC变 换 器 两级 得广泛应用 ,早 由于 全 波 桥 式 整 流 电路 输 入 连 接 AC供 电线 (CCM) 较 高等缺 点 。 对 于 DC-DC变 换 器 ,通 常在 连 续模 式 单 级 PFC AC— DC变 换 器 中 的 PFC级 和 DCDC级 共 用 一 个 开 关 管 ‘ 不□采 用 PWM方 式 的 — 套 控 ,占 空 因 数 不 随 负 载 变化 。 而 全 桥 整 流 输 出 电压 与 负 载 大 小 无 关 ,当 负 载 减 轻 时 ,输 下工作 出功 率减 小 f『 鞲 辗 琳赢 黠‰ 镒 姆 糨踔 D 蚋 ∶昏:淄蠛鑫 ,但 PFC级 输 入 功 率 同 重 载 时 一 脱辘风 曩 狂 图1 螂 螂 螂 蚋 螂 蚋 螂 卿 裰 两 级 PFc变 换 器 电路 级 成 框 图 41 样 ,使 充 入 C|的 能 量 等 于 从 C|抽 取 的 能 量 ,引 起 直 流 总 线 电压 明 显 上 升 ,C|上 的 电压 应 力往 往 达 100O∨ 以 上 ,对 开 关器 件 的耐 压 要 求 非 常 高 。 由 于 开 关 器 件 的 电压 高 ,电 流 应 力 大 ,开 关 损 耗 大 ,并 且 功 率 从 输 入 到输 出要 经 两 次 变换 ,故 效 2改 进 型 单级 PFC变 换 器 电路 为 降低 储 能 电容 上 的高压 和 变换 器 效 率 ,必 须 对 图2所 示 的单 级 PFC基 本 电路拓 朴 进行 改进 。 —种 用 变压 器 双 线组 实现 负反 馈 的单 级 PFC变 换 器 电路 如 图3所 示 。 N1和 N2绕 组 为 变压 器T1的 耦 合 绕 组 。 当 开 关 O1导 通 时 ,电 压 ∨c1施 加 到 T1初 级 绕 数 ,增 加 电流 谐 波含 量 。如 果 在 D2与 N1之 间加 入 — 个 电感 ,使 输 入 电流 工 作 在 CCM,C1上 的 电 压 还 可 以 降 低 。 在 图 3中 。 要 求 N1+N2( NP。 关 。在 输 入 电流 过 零 附近 ,o2导 通 ,使 附加 绕 组 N1短 路 当输 入 电压 大于 某 — 值 时 ,O2关 断 。 由于 O2在 输 入 电压 很 小 时 才 会 导 通 ,其 余 的 时 间 阻 断 ,流 过 O2白 勺电流 很 小 ,o2白 勺功 率 损耗 也 就 很 小 。 这种 电路拓 朴 与 图3电 路 比 较 ,减 小 了 器 L1上 才 会 有 电 流 通 过 。 当 O1截 止 时 ,加 在 L1上 的 反 向 电压 为∨c1与 N2上 的 电压 ∨N2之 和 减 去 ,提 供 了负反馈 电压 ,减 轻 了C1上 的 电压 应 力 ,提 高 了 输 入 电压 。 N1和 N2两 个 耦 合 线 圈 的 加 入 噼 率 ,降 低 了 电容 图5所 示 为 带 有 源 钳 位 和 软 开 关 的单 级 隔 离 式 PFC变 换 器 电路 。 图 中 ,O1为 主 开 关 ,O2为 辅助开关 ,C1为 Cr为 o1、 o2和 电路 中寄 生 电容 之 和 。 电路 的升 鹅5 G2 :∶ ∶ ∶ |丨 基 本 的 单 级 隔 离式升 压 型PFC电 路 带低 频 辅 助 开 关的CCM单 级 PFc变 换 器 中囝 咆 滋 博 览 钳 位 电容 孛 ;詈 ;∶ , 罾L2∶ D磷 | 20O6每 叫苇 1、 2期 ,C2为 压 级 工 作 在 DCM,从 而 保 证 有 较 高 的 功 率 因 i}}}∶ 图4 储 能 电容 龠 勰 啻 山 妤磉 图2 ,提 高 了 功 率 因 数 和 效 (C1)上 的 电压 。 输 入 电流 的 谐 波 含 量 组 。 当经 整 的 电压 大于 N1上 的 电压 时 ,升 压 电感 摒戚爨漉 鞲巍 ,加 入 N1和 N2后 ,会 降 低 功 率 因 图 4示 出 了 带 低 频 辅 助 开 关 的 CCM单 级 PFC变 换 器 电 路 。 o1为 主 开 关 ,O2为 辅 助 开 率低 。 2■ 效 率 。但 是 图3 G重 瞅L 用 双 绕 组 实现 页反 馈 的 单 级 PFc变 换 器 图5带 有 源 箱 位 和 软 开 关 的 单 级 隔 离式 PFC 变换 器 数 。反激 式 变换 器 级 设计 工 作 在 CCM,从 而 避 免 in波 形 为 直 角 三 角 形 输 入 电流 丨 了产 生 较 高 的 电流 应 力 。 电路 采 用 有 源钳 位 和 软 丨 in(avg)为 〓 DzoR ⑴ 硕⒛ ⒆ 妾 壬・ 开 关技 术 来 限制 开 关 MOSFET白 勺电压 应 力 。存 储 在 变压 器 漏感 中 的再 生 能量 ,为 主 开 关O1和 辅 助 开 关 O2提 供 了 软 开 关 条 件 ,从 而 减 少 了开 关 损 — 耗 ,提 高 了 变换 器 效 率 。 O1不 口O2采 用 同 控 制 在 升 压 电 感 状 态 ,当 |∨ m㈦ )(∨ C1-∨ O) 时 ,T1相 当 于 — 个 升 压 电感 。 在 一 个 开 关 周 期 电路和 驱 动 电路 ,从 而使 拓 朴 结 构 简 化 。 3、 基 于 F|yboost模 块 的 单 级 PFC 内 ,当 o1导 通 时 ,T1初 级 绕 组 电感 LP经 D5充 电 AC- 器 电路 如 图 6所 示 。 该 变换 器 建 立 在 反 激 式 升 压 可表 示 为 拓 朴 基 础 上 ,工 作 状 态 分 反 激 式 变压 器 状 态 和 升 压 状 态 两 个 工 作 状 态 。 若 ∨in(t)为 Ac输 入 电压 的 D2・ yc1{l/U叫 飞・ 2.助 .(yc卜 (1)和 (2)可 知 ,在 两 种 工 作 状 态 下 ,平 均 输 入 电流 均 与 输 入 电压 成 正 比 ,从 而 从式 )((∨ c1-n∨ O), D6不 能 导通 ,储 存在T1中 的能量 全部传 送 到输 出 实 现 功 率 因 数 校 正 。 C1上 的 电 压 被 钳 位 在 端 。在 这 种 工 作 状 态 ,全 桥 整 流 输 出端 的 变换 器 (∨ in(peak)+n=∨ ・Iin V 块 | O)电 引 基 于Flyboost模 块 的 单 级 PFc 平 上 ,通 常 不超 过 i2 D8 图6 u叫 (2) ) 式 中 :D为 开 关5空 比 ,Ts为 开 关周 期 。 ; | F丨 yboost模 : Iin(avg)= 瞬 时值 ,∨ c1为 储 能 电容 C1上 的 电压 ,n为 变压 器 T1的 电压 比 ,在 反激 式 变压 器 状 态 的 — 个 开 关 周 当O1截 止 时 , 由 I(∨ in㈦ 的储 能 向 — 般 升 压 电感 型 单 级 作情况与 C1放 电 ,工 PFC变 换 器 相 同 。 在 此 状 态 下 ,平 均 输 入 电流 AC-DC变 换 期 内 ,当 开 关o1导 通 时 ,T1被 充 电 ,储 存 能量 ;当 o1关 断 时 ,D6导 通 ,在 LP中 储能 DC变 换 器 基 于 F|ybOOst模 块 的 单 级 PFC ,平 均 输 入 电流 : L1 Ac— DC变 换 器 中池咆源博 览 2006每 二.苇 1、 2期 4O0∨ 。 此 电路 拓 朴 的 功 率 因 数 — 般 可 达 0.95以 C1,对 C1进 行 充 电。 在 AC线 路 输 入 的 半 周 期 内 ,两 个 电 感 器 上 ,效 率超 过 80%。 (L1和 4、 基于 :iW2202的 数 字 单 级 PFC电 路 图 7所 示 为 基 于 数 字 控 制 器 iw2202的 单 级 PFC变 换 器 电路 。 |w2202与 本 刊 20O5年 第 11期 — 《 种 全 数 字 高 效 率 开 关 电源 》 一 文 中 介 绍 的 LP)储 存 的 能 量 平 均 值 相 等 ,从 而 使 C1上 的 电压 保 持 不 变 。 用 iw2202作 为 控 制器 , 解 决 了储 能 电容 上 电压 应 力 过 高 的 问题 。 在 通 常情 况 下 ,C1上 的 电压 不 会 超 过 400∨ ,从 而 iw22O1一 样 ,采 用 了脉 冲 串 (pu|seTainTM)专 C1可 选 用 400∨ 白 勺标 准 电容 器 。 基 于 iw2202的 全 数 字 SMPS,可 以 实 现 单 位 功 率 因 数 (即 有 技 术 和 实 时 波 形 分 析 及 智 能 跳 越 PF=1)和 小 于 5%的 总谐 波 失真 (THD)。 (SmartSkip)技 术 。但是 ,iw2201不 具 有 PFC功 能 ,而 iw2202集 成 了 单 级 PFC变 换 器 控 制 5、 功能。 单 级 PFC变 换 器 电路 简 单 ,但 PFC和 对 输 入 结束 语 图7所 示 的 电路桥 式 整 流 后 边 拓 朴 ,为 PFC升 电流 谐 波 抑 制 的效 果 不 如 两 级 PFC变 换 器 。 基 压 与 反 激 式 整 流 器 相 结 合 捕巳量 储 存 /DC_DC 于 全 数 字 控 制 器 iw2202白 勺单 级 全 数 字 PFC变 换 ( Boost integrated vvit h F|yback 器 ,可 以 实 现 接 近 于 |的 功 率 因 数 ,输 入 电流 达 Rectifier/Energy StOrage/DC-DC'简 写 为 B丨 FRED)拓 朴 ,利 用 不 连 续 模 式 (DCM)升 压 到低 失真 指 标 :满 足 |EC1000-3-2规 定 限值 。◇ 变换 器 实现 功 率 因数校 正 。 变压 器 初 级 绕 组 参考文献 [1]李 意 ,尹 华 杰 ,单 级 功 率 因数校 正 研 究 的新进展 ,电 源技 术应 用 ,⒛ 03(5) [2]毛 兴 武 ,一 种 全数 字 高 效 率 开 关 电源 中国 电源博 览 ,⒛ 05(11),39-41 (WP)串 联 的储 能 电容 C1,用 作 驱 动 反 激 式 变 换 器 。 电路 的 工 作 原 理 如 下 : 当开 关 O1导 通 时 ,来 白AC线 路 的 能 量 被 储 存 在 升压 电感器 L1中 。 与 此 同时 ,来 白C1白 勺能 量 : , 被 储 存在 反激 式 变压 器 T1的 初 级绕 组 中。 当O1关 断 时 ,在 T1初 级储 存 的能量 传 送 到输 出。 同时 ,在 升 压 电感 器 L1中 的能量 传 输 到 电容 85-265V 50-60Hz lW2202 R1| ΨD1 1 c4节 WAUx 图7 中囝 咆 源 博 览 2O06每 二.苇 1、 2期 基 于数 字控 制 器iw2202的 单 级 PFc变 换 器 iW2202 Digital SMPS Controller Preliminary Data 1 Application 4 Description Blue-Angel-compliant PFC-controlled switch-mode power supplies up to 150 watts. The iW2202 is a digital switching mode power supply controller for PFC applications. Its is typically used with the PFC-corrected BIFRED (Boost Integrated with Flyback Rectifier/Energy storage DC/DC) topology, shown in Figure 1. The BIFRED topology is a singlestage, single-switch topology that combines a boost converter with an isolated flyback converter, achieving power-factor correction with a low parts count. 2 Features PulseTrain regulation allows voltage, current and PFC to be controlled independently Primary-only feedback eliminates optoisolators and simplifies design No loop compensation components required ±1% regulation over a 100:1 load variation Built-in soft-start Adaptive pulseTrain regulation keeps the bulk capacitor voltage below 400V Operates in critical discontinuous conduction mode (CDCM) Low start-up and supply current Reduced EMI noise SO-8 package 3 Benefits Ideal for single-stage, single-switch power factor correction (PFC) Enables 97% power factor correction resulting in EN6100-3-2 compliance SmartSkip mode provides low standby dissipation of the power supply enabling Blue Angel Compliance Efficiency greater than 85% across line and load variation Universal input (85-270V, 50-60 Hz) Low parts count Reduced design time due to the elimination of loop compensation design Revision 1.0 An iW2202-based power supply looks like a resistor to the AC line. Unlike attempts to control the BIFRED topology with analog controllers, the all-digital iW2202 provides a near-unity power factor without placing high voltage stresses on the bulk capacitor. The iW2202 uses a proprietary new digital control technology called pulseTrain to achieve efficiencies in excess of 85% across a wide load range, and across the universal input range of 85-270VAC, 50-60 Hz. Internally, the iW2202 uses real-time waveform analysis to determine crucial circuit parameters. The reflected secondary voltage of the flyback transformer is sensed at precisely calculated times to determine the secondary voltage, the transformer reset time, and the ideal zero-voltage switching point Measurements are performed during the OFF time of every cycle, and the results determine what is done on the next cycle. The dynamic response time of the circuit is less than half a cycle. Boost Inductor Auxiliary Winding 85-270 V, 50-60 Hz Output AC Input Switch iW2202 Flyback Winding Current Sense + Vout Boost (Bulk) Capacitor GND Figure 1. iW2202 system concept Page 1 iW2202 Data Sheet Preliminary Data 5 Pin Description VCC 1 8 OUTPUT VSENSE 2 7 PGND VIN 3 6 GND VAUX 4 5 ISENSE iW2202 Pin # Name Type Pin Description 1 VCC Power Input Power supply for control logic and voltage sense for power-on reset circuitry 2 VSENSE Analog Input Secondary voltage sense (when used with optional secondary opto-isolator feedback). Tied to VAUX in normal configuration 3 VIN Analog Input Line voltage sense. Used to monitor rectified line voltage for PFC control 4 VAUX Analog Input Feedback voltage from auxilary winding. Used to monitor output voltage waveform 5 ISENSE Analog Input Primary current sense. Used for cycle-by-cycle peak-current control 6 GND Signal Ground Analog/digital ground 7 PGND Power Ground Power ground 8 OUTPUT Digital Output Gate driver for external MOSFET switch. 6 Absolute Maximum Ratings PARAMETER MIN MAX UNITS Supply voltage 0 15 V -0.3 6.3 V 800 mW 150 °C 300 °C Input voltage on VSENSE, VIN, VAUX, ISENSE Power dissipation at TA ≤ 25° C Storage temperature (TSTG) Lead temperature, while soldering for ≤ 10 seconds Revision 1.0 -65 Page 2 iW2202 Data Sheet Preliminary Data 7 Electrical Characteristics Unless otherwise specified, these specifications apply for VCC = 12V, TA ≤ 70 °C. (See Note 1.) Symbol Parameter Test Conditions Min Typ Max Units 5 V 0.1 1 µA 1.182 1.2 1.218 V 4.75 5 FEEDBACK / AUXILIARY / PFC SECTION (Pins 2, 3, and 4) VIR Input voltage range IIR Input current range VREF 0 Internal voltage reference (Note 2) ISENSE SECTION (Pin 5) ISENSE buffer gain Input voltage 0 Input current VSD 0.1 Output shutdown voltage (Note 3) 1.5 5.25 V/V 5 V 2 µA 5 V OUTPUT SECTION (Pin 8) VOL VOH Output low level Output high level ISINK = 200mA 0.5 1 V ISINK = 20mA 0.2 0.4 V ISOURCE = 200mA 10 11 V ISOURCE = 20mA 10 11 V tR Rise time (Note 4) TA = 25 °C, CL = 1500pF 30 50 nS tF Fall time (Note 4) TA = 25 °C, CL = 1500pF 30 50 nS 5.1 6 6.9 µS Start-up threshold (Note 1) 13.5 14 14.5 V Min operating voltage after turn-on 9.5 10 10.5 V 1 mA tON_MAX Maximum switch ON time (Note 5) START-UP SECTION (Pin 1) VSU SUPPLY VOLTAGE SECTION (Pin 1) ISU Start-up current VCC = 13V 0.5 ICC Supply current (operating) 10 ≤ VCC ≤ 13.2 12 VUVP Under-voltage protection VOVP Over-voltage protection 7 7.8 mA 8.6 V VSU+1.0 V Notes: 1. VCC must be brought aboe the start-up threshold before setting to its operating value (nominally 12V). 2. VREF is the internal voltage reference. It is not brought out to a pin. 3. When the voltage on the ISENSE pin exceeds VSD, all gate pulses are suppressed. 4. Not tested, but guaranteed by design. 5. The switch will be turned off after this amount of ON time if IPEAK has not been reached, placing a lower limit on switching frequency. Revision 1.0 Page 3 iW2202 Data Sheet Preliminary Data 8 Application Example Flyback Windings D6 L1 Blocking Diode Boost Inductor Output Rectifier, Filter Capacitor T1 Snubber D5 D4 VOUT C2 1 Vcc Line Voltage Sense AC Input Auxiliary Voltage from Chip Power 100-250 V, 50-60 Hz BR1 C3 Q1 Switch Output 8 iW2202 R1 GND 6 4 Vaux D2 Isense 5 iWatt 2202 Digital SMPS Controller D1 R2 R5 R8 Bulk Capacitor Chip Power VCC 2 Vsense PGND 7 3 Vin C1 Startup R3 R7 D3 C4 Auxiliary Winding Current Sense R4 R6 PGND GND Item Description Q1 MOSFET switch. L1, C1, D6 Boost converter section of the BIFRED boost/flyback system. The capacitor C1 provides the energy for the flyback transformer. See sections 11.4 and 12.7. T1 The flyback winding provides power to the load. The reflected voltage on the auxiliary winding is used by the real-time waveform analysis circuit. The auxiliary winding also provides power for the iW2202. D1, C4, Startup Chip power supply. R1, R2 Voltage divider to scale the auxiliary voltage to the appropriate value. Clamping diode D2 minimizes negative voltage on the Vaux pin. See section 12.6. R7, R8 Voltage divider for the line voltage sense circuit. Fixed values: R7= 500K, R8=1K. R4, R5, R6 Current sense circuit. Resistor values set the peak current. See section 12.3.1. Figure 2. iW2202 -based power supply with single-stage, single-switch active PFC Revision 1.0 Page 4 iW2202 Data Sheet Preliminary Data 9 Block Diagram V CC PowerOn Reset Voltage Reg. Waveform Analyzer Control Logic ISENSE Primary Current Sense VAUX Reflected Voltage Waveform Detect VSENSE (Opt.) Secondary Voltage Sense VIN PFC Line Voltage Sense Cycle Selection • Power • Sense • Skip Cycle Timing • Rising Edge (ZVS) • Falling Edge (Constant Ipeak) Driver Output PGND GND Figure 3. Conceptual block diagram of the iW2202 PulseTrain State Switch State Cycle n Cycle n+1 Cycle n+2 Cycle n+3 Power Cycle Sense Cycle Power Cycle Sense Cycle ON OFF ON tn OFF ON OFF ON tn+2 tn+1 OFF tn+3 VAUXThreshold VAUX High Low High Low The voltage on the auxiliary winding, VAUX, is measured at a point near the end of the OFF period. This voltage is compared to the VAUX threshold. If it is higher, the next cycle is a sense cycle. Otherwise, the next cycle is a power cycle. Figure 4. Power pulses, sense pulses, and the reflected secondary voltage on the auxiliary winding Revision 1.0 Page 5 iW2202 Data Sheet Preliminary Data 10 PulseTrain Regulation Rather than using pulse-width or pulse frequency modulation to achieve output voltage regulation, pulseTrain controls output voltage through the presence or absence of power pulses. If the output voltage is below the desired level, power pulses are emitted continuously until the desired level is reached. If the output voltage is higher than the desired level, sense pulses are sent instead of power pulses. A sense pulse has a much shorter ON time than a power pulse, and transfers much less energy. See Figure 4. It is important to recognize that pulseTrain does not depend on the precise width of the pulses to maintain regulation. If the output voltage is lower than the desired level, the next cycle will contain a power pulse. If the output voltage is above the desired limit, the next cycle will contain a sense pulse. The pulseTrain controller will optimize the ratio of power pulses to sense pulses to keep the output voltage constant. The frequency and duty cycle of the pulses can change, but this does not affect voltage regulation. A sense cycle has the same period as the preceding power cycle, but the ON time is set to one-fourth that of the power cycle. Since primary current ramps linearly with ON time, the peak current of a sense pulse is also only one-fourth that of a power pulse. Thus, a sense cycle only transfers one-sixteenth as much energy as a power cycle. This situation is very different from the situation with analog technologies, such as PWM/PFM-based controllers, which are forced to attempt to meet all their goals through the adjustment of pulse geometry, which forces unwanted trade-offs. Under most load conditions, regulation is achieved through a mix of power cycles and sense cycles. Under extremely low-load conditions, no power pulses are sent. Instead, sense cycles alternate with skip cycles. As will be shown in the next section, pulseTrain modulation takes full advantage of its ability to pursue multiple simultaneous goals, combining the flexibility of pulseTrain regulation with the precision of real-time waveform analysis, resulting in ultra-fast dynamic response and simplified circuit design. 11 Real-Time Waveform Analysis Figure 5 shows the effect of a sense pulse on the transformer’s primary winding, measured at Vdrain. As you can see, this waveform contains quite a bit of ringing. This ringing is highly organized, consistent from cycle to cycle, and its onset pinpoints important events in the cycle. Real-time waveform analysis uses the information in the reflected voltage to extract secondary voltage and transformer reset time. These voltage measurements are made on every cycle, and each cycle’s measurement determines the next cycle’s pulse type. In a flyback system, the reflected voltage seen during the switch’s OFF time reveals the secondary voltage, plus additional circuit information, including leakage inductance, transformer reset time, resonant frequency, and secondary diode characteristics. All this information is easily read on an auxiliary winding. This information renders secondary feedback unnecessary. Traditional voltage regulators use space-average sensing, averaging the voltage over multiple cycles. This causes the loss of a great deal of information and introduces delays, slowing the response of the controller and raising the issue of loop instability. Real-time waveform analysis, on the other hand, does not perform averaging, but determines the next cycle’s switching decisions from the current cycle alone. The time delay between measurement and correction (dynamic response) is thus extremely short, being less than the OFF time of a single cycle. The system is inherently stable. There is no need for loop compensation. The choice between reading the reflected voltage on the primary winding or on an auxiliary winding is somewhat arbitrary. If taken from the primary, the voltage centers around Vin (the instantaneous line voltage). If taken from an auxiliary winding, the voltage centers around zero. The auxiliary winding can also provide power for the device. Revision 1.0 Page 6 iW2202 Data Sheet Switch State Preliminary Data ON OFF Ringing due to leakage inductance. The OFF time of a sense pulse must be wider than the decay time of this waveform. Voltage is measured here VDRAIN = VIN+(VOUT+∆V)*NPRI/NSEC ∆T The slope of this reflected voltage represents the voltage-current characteristics of the secondary side. If the voltage is read at a consistent time before the transformer is fully discharged, this ∆V is a constant, and we achieve a very accurate reading of the secondary output voltage. TCDS VDRAIN VIN 0 TCDS is the OFF-time that will achieve critically discontinuous conduction mode and zerovoltage switching. In iWatt products, this time is measured with every sense pulse. Secondary Diode Current This ringing is due to the resonance of the magnetizing inductance and switch capacitance, and TRES/2 indicates a fully reset transformer. Resonance is easily detected when voltage TRES/4 excursions cross VIN. Two successive crossings give TRES/2. Very consistent from cycle to cycle. If the transistor is switched back on at this point, we will come very close to ∆T true zero-voltage switching. In addition, we will achieve critically discontinuous conduction mode; that is, we will eliminate dead time between cycles while guaranteeing that we remain in discontinuous mode. This value of ID2 will always be the same, given a constant ∆T. Figure 5. Information available to waveform analysis Revision 1.0 Page 7 iW2202 Data Sheet Preliminary Data 11.1 Zero-Voltage Switching traditional technologies, resulting in lower core losses and thus higher efficiencies. PulseTrain achieves zero-voltage switching (ZVS) by using the resonance (ringing) that occurs in discontinuous-mode flyback circuits. This resonance occurs after the secondary current falls to zero, indicating the transition from power transfer to open-circuit conditions. Because the waveform is being monitored in real time, critically discontinuous conduction mode is maintained across all variations in line and load conditions. In addition, this method of extracting maximum performance from the inductor is insensitive to component variations, since the circuit behavior is measured, not assumed. Post-Conduction Resonance Vaux = Vout*Nsec/Naux Vaux=0 t1 t2 Vaux = -Vin*Npri/Naux ZVS Algorithm (Power Cycles): 1. Wait for Vaux < 0 2. Wait an additional tZVS 3. Turn on switch tZVS = (t2-t1)/2 tZVS is measured on sense cycles Figure 6. Auxiliary voltage and zero-voltage switching As shown in Figure 5, post-conduction resonance is a damped oscillation that falls very close to zero volts on its first cycle. Zero-voltage switching can be achieved very easily, simply by measuring the resonant period on a sense cycle, and switching the output transistor when the voltage is closest to zero on subsequent power cycles. The algorithm for ZVS is shown in Figure 6. On each power cycle, pulseTrain waits for the primary voltage to drop below VIN, (on the auxiliary winding, this occurs when the voltage goes negative). This indicates that we are in the postconduction resonance. After this event, the controller waits an additional ∆T that will take us to the minimum voltage, then turns on the switch for the next power or sense cycle. The time between the zero-crossing on the auxiliary winding and the minimum primary voltage is estimated as being one-half the time between the negative-going zero crossing and the positive-going zero-crossing, as shown in Figure 6. Given the geometry of the resonant signal, this estimate is extremely accurate. By achieving zero-voltage switching, we also achieve critically discontinuous conduction mode, because we have turned the transistor back on immediately after the transformer’s magnetic field has reset. This eliminates dead time between cycles, fully utilizing the output transformer. As a result, the transformer operates at lower flux levels than Revision 1.0 11.2 Primary-Only Feedback PulseTrain uses primary-only feedback, measuring the secondary voltage by analyzing its reflected voltage as seen by an auxiliary winding. This reflection reveals what is happening at the transformer secondary. However, the voltage at the load differs from the secondary voltage by a diode drop and IR losses. The diode drop is a function of current, as are IR losses. Thus, if the secondary voltage is always read at a constant secondary current, the difference between the output voltage and the secondary voltage will be a fixed ∆V. Furthermore, if the voltage can be read when the secondary current is small, the ∆V will also be small. As shown in Figure 5, secondary current has a linear ramp down to zero. Zero secondary current is signaled (on the reflected voltage waveform) by the beginning of post-conduction resonance. Using resonance as a marker, is a simple matter to calculate a fixed ∆T that will pinpoint a time where secondary diode current is still flowing, but is very small. The exact value of ∆T is not crucial, so long as it places the measurement at a point where current is still nonzero. ∆T is recalculated on sense cycles. Measuring voltage on sense cycles uses the same ∆T as on power cycles. Because the slope of the secondary current ramp is independent of ON time, the current at a fixed ∆T is the same, regardless of whether the cycle is a sense cycle or a power cycle. 11.3 Constant Peak Current Like the decision to turn the transistor on, the decision to turn the transistor off is controlled by real-time waveform analysis -- this time in the current domain. The maximum desirable primary current, Ipeak, is set with external resistors. On every power cycle, the power transistor is kept on until the primary current ramps up to Ipeak. When this level is reached, the transistor is turned Page 8 iW2202 Data Sheet Preliminary Data off. Thus, the point at which the transistor is turned off is controlled by the current waveform, while the point at which it is turned on is controlled by the voltage waveform. If the line voltage is very high, the current will ramp up quickly, and the ON time of the switch will be short. If the line voltage is very low, the current will ramp slowly, and the ON time will be long. ON OFF ON OFF ON OFF Vdrain Iswitch Isec Low line voltage results in longer ON times before peak current is reached, resulting in long cycle times (and relatively low switching frequencies). Critically discontinuous mode is maintained. components and the design time they represent are eliminated. 11.4 Power Factor Correction One very welcome result of the pulseTrain methodology is that topologies that have proven problematical with PWM/PFM controllers work smoothly with pulseTrain. For example, the iW2202 is ideal for use in the inherently PFC-corrected BIFRED (Boost Integrated with Flyback Rectifier/Energy Storage/DC-DC) topology. The basic BIFRED topology uses a discontinuous mode boost converter to achieve PFC. The capacitor of the boost converter is used as a bulk capacitor to drive a flyback converter. BIFRED uses a single switch. See Figure 8. Flyback Windings L1 T1 D5 Boost Inductor C2 ON OFF ON OFF ON VOUT OFF Vdrain Q1 Switch C1 Bulk Capacitor Iswitch Isec High line voltage results in shorter ON times, because peak current is reached more quickly. Short ON times lead to short cycle times (high switching frequency). Critically discontinuous mode is maintained. Figure 8. BIFRED circuit Figure 7. Constant peak current switching The circuit operates as follows: Because of this, the output frequency of the pulseTrain regulator varies to accommodate changing line voltage. Switch on: Energy derived from the AC line is stored in the boost inductor. At the same time, energy derived from the bulk capacitor is stored in the primary of the flyback transformer. The dynamic response to changing load conditions is very fast. The time between measurement and action is only a fraction of a power cycle. The voltage measurement comes during the switch OFF time of every cycle, and controls the ON time switching decision for the very next cycle. PulseTrain therefore reacts almost instantaneously to changes in load and line conditions. The mechanism of real-time waveform analysis provides inherent stability without the need for loop compensation. The expense of loop compensation Revision 1.0 Switch off: The energy in the flyback primary is transferred to the output. At the same time, the energy in the boost inductor is delivered to the bulk capacitor, charging it. If the two inductors store the same amount of energy, on average, over the course of a half-cycle of the AC input, the voltage of the bulk capacitor will remain constant. The iW2202 achieves this goal, avoiding the problem of high voltage stresses on the bulk capacitor. With traditional controllers (such as modified PFM), the bulk capacitor voltages tend to Page 9 iW2202 Data Sheet Preliminary Data become very high under some line and load conditions. With the iW2202, the voltages remain under 400V at all times, allowing standard capacitors to be used. This is a direct benefit of using pulseTrain technology. Both the boost stage and the flyback stage operate in discontinuous mode. This means that both inductors are fully reset once per switching cycle. The energy stored in the boost inductor is completely transferred to the bulk capacitor, and the energy stored in the flyback transformer is completely transferred to the load. this, the device enters SmartSkip mode, when the circuit alternates between sense pulses and no pulses at all. Regulation is still maintained, since each sense pulse returns a precise measurement of output voltage. SmartSkip mode is entered automatically when the sense pulses reveal that the output voltage is remaining above the desired level, though no power pulses have been sent recently. The depth of the SmartSkip mode (the ratio of skipped cycles to sense pulses) is increased or decreased, according to voltage and the current skip-mode depth. The depth of the SmartSkip mode is reduced automatically as the load increases. Normal Mode (Power Pulses and Sense Pulses) Input Current SmartSkip Mode (Sense Pulses and Skipped Pulses) Vgate Input Voltage Vpri Figure 9. Power factor correction example 11.5 SmartSkip Mode Figure 11. Depth of SmartSkip increasing with light load 11.6 Soft-Start and Protection Vgate SmartSkip Sense Pulses Power Pulses Sense Pulses Smart Skip Vpri Figure 10. SmartSkip mode As has already been mentioned, a sense pulse delivers one-sixteenth as much energy as a power pulse. A continuous stream of sense pulses thus delivers 6.25% of full load. If the load is lighter than Revision 1.0 In pulseTrain, all output switching occurs as the result of the pulseTrain logic. If the logic is not up and running, the output switch is always off. Valid waveform analysis is available by the second power pulse. This reduces the problem of soft-start merely to the requirement that there be a reliable power-on reset mechanism. Figure 12 shows what happens on the output at start-up. The first power pulse shows a clean current ramp, but the drain voltage reflects the fact that the transformer does not reset by the time the second pulse arrives, and thus is operating in continuous mode. This is also shown in the current on the second pulse, which starts at a non-zero value. However, pulseTrain’s automatic peak current limiting causes the second power pulse to be much shorter than the first one. By the third cycle, the initial current has already fallen significantly, due to Page 10 iW2202 Data Sheet the second cycle’s shorter ON time. This trend will continue until, in a few cycles, the initial current is zero and the transformer is operating in critically discontinuous mode. Vgate Preliminary Data The nominal VCC voltage of the device is 12 volts. It requires a start-up voltage that reaches 14 momentarily, initiating a start-up sequence internally. The device protects itself from overvoltage by shutting itself down if VCC exceeds 15 volts. Its under-voltage lockout circuit will cause it to shut itself down if the voltage drops below 7.8 volts, and will remain shut down until the start-up voltage is seen again. Both over- and under-voltage shutdowns inhibit switching on the OUTPUT pin. These mechanisms protect the device, while protecting the rest of the circuit indirectly. Vdrain Ipri Additional protection can be achieved with external sensors that shut down the iW2202 on a circuit fault. The best way of shutting down the iW2202 is to pull the Isense pin above 1.5V. This will inhibit output pulses. Figure 12. Example of current limiting during start-up 12 Designing iW2202 -Based Power Supplies The schematic in Figure 2 shows a typical iW2202 system. Choosing component values is a straightforward process, as shown in the example below. and the highest input voltage for our worst-case calculation: Vd_max = Vline_max + N*Vsec N = (Vd_max – Vline_max)/Vsec 12.1 Description For this example, we are designing an 70W, 19V laptop computer power supply. It is a universal input supply supporting input line voltages of 85265 VRMS, and operating in discontinuous flyback mode. To keep component costs low, we wish to use a switch with a maximum Vdrain of no more than 600V. 12.2 Primary Turns Ratio The voltage across a flyback switch includes the input voltage plus the reflected secondary voltage: Vd = Vin + N*Vout. The turns ratio between the primary and secondary, N, is constrained by our desire to avoid stressing the switch. We use the maximum safe value of Vd Revision 1.0 12.2.1 Example If we use a 600V switch and derate it by 100V as a safety margin, we are left with 500V as our maximum drain voltage, Vd_max. N = (500V-380V)/19.7V = 6.09 ≈ 6. 12.3 Ipeak Selection We next need to calculate the peak current value we need to support worst-case operation. The constant peak current circuitry will keep the output switch on until this value is reached on every power cycle. Iin is the average input current to the converter: Iin = Po/(Vin*η) Where η is the efficiency of the converter. Vsec is the secondary voltage. It differs from the output voltage, Page 11 iW2202 Data Sheet Preliminary Data Vout, by a fixed ∆V, where ∆V is the secondary diode drop. We will use 0.7V for ∆V, and thus a Vsec of 19.7V in our example. Resistors R4, R5, and R6 are chosen to scale the voltage accordingly. The maximum input current we must support occurs at minimum supported line voltage: Example Iin = Po/(Vin_min* η) Vin_min = Vline_min*1.4142 Vline_min is the lowest supported RMS line voltage. Full-load efficiency can be taken as a (slightly conservative) 0.80 for design purposes. We need to convert the average input current Iin into a peak input current Ipeak. This depends on the duty cycle, D, of the switch and the shape of the primary current waveform (a triangle wave with a peak value of twice the average value): Ipeak = 2*Iin/D At low line voltage, D is: D_ll = ton_ll/(ton_ll+toff_ll) We choose 0.1 Ω for R6. The voltage across R6 at Ipeak is: 0.1*2.94 = 0.294 V. We need the voltage at the Isense pin, Vc_pk, to be 1.2/5 or 0.24 when Ipeak is reached. If we choose R4 to be 2.2 K Ω, then R5 = R4*(Ipeak*R6*gain – Vref)/Vref = 495 12.4 Primary Inductance The inductance of the primary winding is based on the lowest supported line voltage, the longest ON time, and the peak current: Lp = Vin_min * Ton_max/Ipeak Ton_ll is the maximum on time, which we will set to 5.5 µs. (The device will limit the ON time to 6 µs if Ipeak is not reached.) Example Since, in a critically discontinuous-mode flyback converter, the net transformer volt-seconds are zero: Lp = 120.21 * 5.5x10-6 / 2.94 = 225 µH Vpri*ton = N*Vsec*toff, 12.5 Auxiliary Turns Ratio We can solve for toff: Our design calls for an Lp of toff_ll = Vin_min*ton_ll/(N*Vsec) The turns ratio between secondary and auxiliary winding is set to give 12V output plus a 0.6V diode drop to provide power to the chip: Example Naux/Nsec = 12.6/Vout Vin_min = 85*1.4142 = 120.21 V toff_ll = 120.21*5.5x10-6/(6*19.7) = 5.6x10-6s Iin = 70/(120.21*0.80) = 0.728 A D_ll = 5.5x10-6s/(5.5x10-6s+5.6x10-6s) = 0.495 f_sw = 1/(5.5x10-6s+5.6x10-6s) = 90 Khz Ipeak = 2*0.728/0.495 = 2.94 A 12.6 Vaux Resistors The output voltage is set by the resistor divider, R1 and R2, across the auxiliary winding voltage (Vauxw). The divided voltage is fed into the Vaux pin. A Schottky diode, D2, is used as a clamping diode in parallel with R2, to minimize negative voltages on the Vaux pin. 12.3.1 Ipeak Resistors Vsec = Vauxw * (Nsec/Naux) The Ipeak resistors consist of a sense resistor (R6) and a voltage divider (R4 and R5). The Isense pin is a voltage amplifier with a gain of 5.0 that compares the amplified voltage to a reference of 1.2V. Voltage regulation is controlled by the resistor divider and the iW2202’s internal voltage reference, which is fixed at 1.2V. The voltage on the Vaux pin is compared with the reference by the real-time waveform analysis circuitry. If it is above this level, Revision 1.0 Page 12 iW2202 Data Sheet the next cycle will be a sense cycle. If it is below this level, the next cycle will be a power cycle: Vauxw = Vref * (R1+R2)/R2 Vsec = 1.2* (( R1+R2)/R2 * (Nsec/Naux)) Preliminary Data Other implementations of the BIFRED technology operate at elevated capacitor voltages, but this does not occur with a pulseTrain controller. The size of the bulk capacitor is based on ripple voltage requirements. We have used 2µf per watt of output power as a starting point. Example Continuing our example, we see that Nsec/Naux = 19.7/12.6. Example In our design: To find R1 and R2, we first note that: L1 = 0.80*225µH/2 = 90 µH Vauxw = Vref(1 + R1/R2) , C1 = 2.0*70 = 140 µF R1 = (Vauxw –Vref)*R2/Vref If we arbitrarily set R2 to 1.1 kΩ, we have: R1 = (12.6 - 1.2)*1100/1.2 = 10.45 kΩ 12.7 PFC Choke and Capacitor 12.8 Vin Resistors The pin sensing line voltage uses a fixed resistor divider consisting of R7 and R8. R7 = 500 KΩ; R8 = 1 KΩ. In the BIFRED topology used in this design, there is a definite relationship between the flyback primary inductance (Lp), the boost inductance (L1), and the boost capacitor (C1) voltage: 12.9 Conclusion L1 = (η *Vin_rms2*L2)/Vc12 In particular, note the complete absence of loop compensation, eliminating the time and costs associated with loop compensation design. We would like the bulk capacitor voltage to be no more than the peak input voltage: Vc1 = Vin_rms* 2 By substituting Vin_rms* 2 for Vc1, we get: L1 = η *Lp/2 Revision 1.0 This example shows the simplicity of designing a power supply with an iWatt pulseTrain controller. We have also eliminated optoisolators and their associated feedback circuitry, reducing costs and PC board area. Finally, PFC features have been added with a minimum of cost and design effort. Page 13 iW2202 Data Sheet Preliminary Data 13 Physical Dimensions Figure 13. Physical dimensions, SO-8 package 14 About iWatt iWatt Inc. is a fabless semiconductor company that develops power management ICs for computer, communication, and consumer markets. The company’s patented pulseTrain ™ technology, the industry’s first truly digital approach to power system regulation, is revolutionizing power supply design. Trademark Information iWatt and pulseTrain are trademarks of iWatt, Inc. Contact Information Web: http://www.iwatt.com E-mail: [email protected] Phone: 408-374-4200 Fax: 408-341-0455 iWatt Corporation 90 Albright Way Los Gatos CA 95032 Revision 1.0 Disclaimer iWatt reserves the right to make changes to its products and to discontinue products without notice. Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications"). IWATT SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS, OR OTHER CRITICAL APPLICATIONS. Inclusion of iWatt products in critical applications is understood to be fully at the risk of the customer. Questions concerning potential risk applications should be directed to iWatt through an iWatt sales office. iWatt semiconductors are typically used in power supplies in which high voltages are present during operation. High-voltage safety precautions should be observed in design and operation to minimize the chance of injury. Page 14