ELPIDA EBE81FF4ABHT-6E-E

PRELIMINARY DATA SHEET
8GB Fully Buffered DIMM
EBE81FF4ABHT
Specifications
Features
• Density: 8GB
• Organization
 1024M words × 72 bits, 2 ranks
• Mounting 36 pieces of 2G bits DDR2 SDRAM with
sFBGA
• Package
 240-pin fully buffered, socket type dual in line
memory module (FB-DIMM)
PCB height: 30.35mm
Lead pitch: 1.00mm
 Advanced Memory Buffer (AMB): 655-ball FCBGA
 Lead-free (RoHS compliant)
• Power supply
 DDR2 SDRAM: VDD = 1.8V ± 0.1V
 AMB: VCC = 1.5V +0.075V/ −0.045V
• Data rate: 667Mbps (max.)
• Eight internal banks for concurrent operation
(components)
• Interface: SSTL_18
• Burst lengths (BL): 4, 8
• /CAS Latency (CL): 3, 4, 5
• Precharge: auto precharge option for each burst
access
• Refresh: auto-refresh, self-refresh
• Refresh cycles: 8192 cycles/64ms
 Average refresh period
7.8µs at 0°C ≤ TC ≤ +85°C
3.9µs at +85°C < TC ≤ +95°C
• Operating case temperature range
 TC = 0°C to +95°C
• JEDEC standard Raw Card D Design
• Industry Standard Advanced Memory Buffer (AMB)
• High-speed differential point-to-point link interface at
1.5V (JEDEC spec)
 14 north-bound (NB) high speed serial lanes
 10 south-bound (SB) high speed serial lanes
• Various features/modes:
 MemBIST and IBIST test functions
 Transparent mode and direct access mode for
DRAM testing
 Interface for a thermal sensor and status indicator
• Channel error detection and reporting
• Automatic DDR2 SDRAM bus and channel
calibration
• SPD (serial presence detect) with 1piece of 256 byte
serial EEPROM
Note: Warranty void if removed DIMM heat
spreader.
Performance
FB-DIMM
System clock
frequency
167MHz
DDR2 SDRAM
Speed grade
Peak channel
throughput
FB-DIMM link data rate
Speed Grade
DDR data rate
PC2-5300F
8.0GByte/s
4.0Gbps
DDR2-667 (5-5-5)
667Mbps
Document No. E1240E20 (Ver. 2.0)
Date Published February 2008 (K) Japan
Printed in Japan
URL: http://www.elpida.com
Elpida Memory, Inc. 2007-2008
EBE81FF4ABHT
Ordering Information
Part number
DIMM speed
grade
Component JEDEC
speed bin (CL-tRCD-tRP)
Mounted devices*
EBE81FF4ABHT-6E-E
PC2-5300F
DDR2-667 (5-5-5)
2G bits DDR2 SDRAM
1
Mounted AMB*
2
IDT Rev. C1
Notes: 1. Please refer to 2Gb DDR2 datasheet (E1196E) for detailed operation part and timing waveforms.
2. Please refer to the following documents for detailed operation part and timing waveforms.
Advanced Memory Buffer (AMB) specification
FB-DIMM Architecture and Protocol specification
Part Number
E B E 81 F F 4 A B H T - 6E - E
Environment code
E: Lead Free
(RoHS compliant)
Elpida Memory
Type
B: Module
DRAM Speed Grade
6E: DDR2-667 (5-5-5)
Product Family
E: DDR2
Density / Rank
81: 8GB/2-rank
AMB Device Information
T: IDT, Rev.C1
Module Type
F: Fully Buffered
Module Outline
H: 240-pin DIMM
(Stacked FBGA)
Mono Density
F: 2Gbit
Die Rev. (Mono)
Mono Organization
4: x4
Power Supply, Interface
A: 1.8V, SSTL_1.8
Preliminary Data Sheet E1240E20 (Ver. 2.0)
2
EBE81FF4ABHT
Advanced Memory Buffer Overview
The Advanced Memory Buffer (AMB) reference design complies with the FB-DIMM Architecture and Protocol
Specification. It supports DDR2 SDRAM main memory. The AMB allows buffering of memory traffic to support large
memory capacities. All memory control for the DRAM resides in the host, including memory request initiation, timing,
refresh, scrubbing, sparing, configuration access, and power management. The AMB interface is responsible for
handling FB-DIMM channel and memory requests to and from the local DIMM and for forwarding requests to other
DIMMs on the FB-DIMM channel.
The FB-DIMM provides a high memory bandwidth, large capacity channel solution that has a narrow host interface.
FB-DIMMs use commodity DRAMs isolated from the channel behind a buffer on the DIMM. The memory capacity is
288 devices per channel and total memory capacity scales with DRAM bit density.
The AMB is the buffer that isolates the DRAMs from the channel.
Advanced Memory Buffer Functionality
The AMB will perform the following FB-DIMM channel functions.
• Supports channel initialization procedures as defined in the initialization chapter of the FB-DIMM Architecture and
Protocol Specification to align the clocks and the frame boundaries, verify channel connectivity, and identify AMB
DIMM position.
• Supports the forwarding of southbound and northbound frames, servicing requests directed to a specific AMB or
DIMM, as defined in the protocol chapter, and merging the return data into the northbound frames.
• If the AMB resides on the last DIMM in the channel, the AMB initializes northbound frames.
• Detects errors on the channel and reports them to the host memory controller.
• Support the FB-DIMM configuration register set as defined in the register chapters.
• Acts as DRAM memory buffer for all read, write, and configuration accesses addressed to the DIMM.
• Provides a read buffer FIFO and a write buffer FIFO.
• Supports an SMBus protocol interface for access to the AMB configuration registers.
• Provides logic to support MemBIST and IBIST design for test functions.
• Provides a register interface for the thermal sensor and status indicator.
• Functions as a repeater to extend the maximum length of FB-DIMM links.
Preliminary Data Sheet E1240E20 (Ver. 2.0)
3
EBE81FF4ABHT
Advanced Memory Buffer Block Diagram
Southbound
10×2
Data in
Reference
clock
Southbound
Data out
10×2
Data merge
PLL
RE-time
1×2
Re-synch
PISO
Demux
/RESET
Reset
control
10×12
10×12
Link init SM
and control
and CSRs
Thermal
sensor
Init
patterns
Mux
4
IBIST-RX
failover
Command
decoder &
CRC check
DRAM clock
IBIST-TX
4
DRAM clock
LAI logic
DRAM Command
Mux
Command
out
DRAM
interface
DDR state controller
and CSRs
Core
controller
and CSRs
Write data
FIFO
Mux
External MemBIST
DDR calibration
IBIST-TX
LAI
controller
SMBus
Data in
Sync & idle
pattern
generator
Data CRC
generator and
Read FIFO
Mux
NB LAI Buffer
IBIST-RX
Link init SM
and control
and CSRs
failover
14×6×2
SMBus
controller
Data out
14×12
PISO
Demux
Re-synch
RE-time
Data merge
Northbound 14×2
Data Out
14×2 Northbound
Data In
Note: This figure is a conceptual block diagram of the AMB’s data flow and clock domains.
Preliminary Data Sheet E1240E20 (Ver. 2.0)
4
29
DRAM
address and
command copy1
29
DRAM
address and
command copy2
72+18×2 DRAM
data and strobes
EBE81FF4ABHT
Interfaces
Figure Block Diagram AMB Interfaces shows the AMB and all of its interfaces. They consist of two FB-DIMM links,
one DDR2 channel and an SMBus interface. Each FB-DIMM link connects the AMB to a host memory controller or
an adjacent FB-DIMM. The DDR2 channel supports direct connection to the DDR2 SDRAMs on an FB-DIMM.
NB FBD
in Link
NB FBD
out Link
SB FBD
in Link
AMB
SB FBD
out Link
Secondary or to
optional next FBD
Primary or Host
Direction
Memory Interface
SMB
Block Diagram AMB Interfaces
Interface Topology
The FB-DIMM channel uses a daisy-chain topology to provide expansion from a single DIMM per channel to up to 8
DIMMs per channel. The host sends data on the southbound link to the first DIMM where it is received and redriven
to the second DIMM. On the southbound data path each DIMM receives the data and again re-drives the data to the
next DIMM until the last DIMM receives the data. The last DIMM in the chain initiates the transmission of data in the
direction on the host (a.k.a. northbound). On the northbound data path each DIMM receives the data and re-drives
the data to the next DIMM until the host is reached.
Host
Nourthbound
Southbound
AMB
AMB
AMB
AMB
n/c
n/c
Block Diagram FB-DIMM Channel Southbound and Northbound Paths
Preliminary Data Sheet E1240E20 (Ver. 2.0)
5
EBE81FF4ABHT
High-Speed Differential Point-to-Point Link (at 1.5 V) Interfaces
The AMB supports one FB-DIMM channel consisting of two bidirectional link interfaces using high-speed differential
point-to-point electrical signaling. The southbound input link is 10 lanes wide and carries commands and write data
from the host memory controller or the adjacent DIMM in the host direction. The southbound output link forwards
this same data to the next FB-DIMM. The northbound input link is 14 lanes wide and carries read return data or
status information from the next FB-DIMM in the chain back towards the host. The northbound output link forwards
this information back towards the host and multiplexes in any read return data or status information that is generated
internally. Data and commands sent to the DRAMs travel southbound on 10 primary differential signal line pairs.
Data received from the DRAMs and status information travel northbound on 14 primary differential pairs. Data and
commands sent to the adjacent DIMM upstream are repeated and travel further southbound on 10 secondary
differential pairs. Data and status information received from the adjacent DIMM upstream travel further northbound
on 14 secondary differential pairs.
DDR2 Channel
The DDR2 channel on the AMB supports direct connection to DDR2 SDRAMs. The DDR2 channel supports two
ranks of eight banks with 16 row/column request, 64 data, and eight check-bit signals. There are two copies of
address and command signals to support DIMM routing and electrical requirements. Four transfer bursts are driven
on the data and check-bit lines at 800MHz. Propagation delays between read data/check-bit strobe lanes on a given
channel can differ. Each strobe can be calibrated by hardware state machines using write/read trial and error.
Hardware aligns the read data and check-bits to a single core clock. The AMB provides four copies of the command
clock phase references (CLK [3:0]) and write data/check-bit strobes (DQSs) for each DRAM nibble.
SMBus Slave interface
The AMB supports an SMBus interface to allow system access to configuration register independent of the FB-DIMM
link. The AMB will never be a master on the SMBus, only a slave. Serial SMBus data transfer is supported at
100kHz. SMBus access to the AMB may be a requirement to boot and to set link strength, frequency and other
parameters needed to insure robust configurations. It is also required for diagnostic support when the link is down.
The SMBus address straps located on the DIMM connector are used by the unique ID.
Preliminary Data Sheet E1240E20 (Ver. 2.0)
6
EBE81FF4ABHT
Block Diagram
VSS
/CS1
/CS0
DQS9
DQS0
/DQS0
/DQS9
DM /CS
4
DQ0 to DQ3
DQ0
to DQ3
DQS /DQS
D0
DM /CS
DQ0
to DQ3
DQS /DQS
DM
4
D18
DQ4 to /DQ7
4
DQ0
to DQ3
DQS /DQS
D1
DM /CS
DQ0
to DQ3
DQS /DQS
DM
DQ12 to DQ15
D19
DQS2
DQS11
/DQS2
/DQS11
DM /CS
4
DQ0
to DQ3
DQS /DQS
D2
DM /CS
DQ0
to DQ3
DQS12
/DQS12
DM /CS
DQ0
to DQ3
DQS /DQS
D3
DM /CS
DQ0
to DQ3
DQS /DQS
DQS4
DQS13
/DQS13
DM /CS
4
DQ0
to DQ3
DQS /DQS
D4
DM /CS
DQ0
to DQ3
DQS /DQS
DQS5
DQS14
/DQS5
/DQS14
DM /CS
DQ40 to DQ43
4
DQ0
to DQ3
DQS /DQS
D5
DM /CS
DQ0
to DQ3
DQS /DQS
D23
D27
D13
/CS DQS /DQS
DQ0
to DQ3
D14
DM
/CS DQS /DQS
DQ0
to DQ3
DM
D28
/CS DQS /DQS
DQ0
to DQ3
DM
CS DQS /DQS
DQ0
to DQ3
DM
D29
D30
/CS DQS /DQS
DQ0
to DQ3
DM
D31
/CS DQS /DQS
DQ0
to DQ3
D32
DQS15
4
DQ0
to DQ3
DQS /DQS
D6
DM /CS
DQ0
to DQ3
DQS /DQS
DM
DQ52 to DQ55
D24
DQS7
DQS16
/DQS7
/DQS16
DM /CS
4
DQ0
to DQ3
DQS /DQS
D7
DM /CS
DQ0
to DQ3
D25
DQS17
/DQS17
DM /CS
DQ0
to DQ3
!
" "
DQS /DQS
D8
DM /CS
DQ0
to DQ3
DQS /DQS
D16
/CS DQS /DQS
DQ0
to DQ3
D17
& ./ 0 1
" ./ " 0 1
./ 02 31
" ./ " 02 314
5! ./ 5! 0 1
0 1
6 0 1
0 1
0 1
7 0 1
" "
CB4 to CB7
4
D15
/CS DQS /DQS
DQ0
to DQ3
DM
D26
4
/CS DQS /DQS
DQ0
to DQ3
DM
DQ60 to DQ63
DQS8
4
4
DQS /DQS
/DQS8
CB0 to CB3
/CS DQS /DQS
/DQS15
DM /CS
DQ56 to DQ59
4
D12
/CS DQS /DQS
DQ0
to DQ3
DM
DQ44 to DQ47
DQS6
/DQS6
DQ48 to DQ51
4
D11
/CS DQS /DQS
DQ0
to DQ3
DM
DQ36 to DQ39
D22
D10
/CS DQS /DQS
DQ0
to DQ3
DM
4
DQ28 to DQ31
D21
/DQS4
DQ32 to DQ35
4
/CS DQS /DQS
DQ0
to DQ3
DM
DQ20 to DQ23
D20
DQS3
4
4
DQS /DQS
/DQS3
DQ24 to DQ27
DM
DQ0
to DQ3
/DQS10
DM /CS
DQ16 to DQ19
D9
DQS10
DQS1
/DQS1
DQ8 to DQ11
/CS DQS /DQS
DQ0
to DQ3
8!!
9
7
< 3 # = )& 9 # 3 )( 5
8!!
8
8
8
8 :
8
#
$ %&&' ( ) *' %&*& &))$
$ !* %
+*(& +& , * $ !* ,
- +*(& +& , * $
Preliminary Data Sheet E1240E20 (Ver. 2.0)
7
DM
/CS DQS /DQS
DQ0
to DQ3
DM
/CS DQS /DQS
DQ0
to DQ3
DM
D33
D34
/CS DQS /DQS
DQ0
to DQ3
D35
!&
; 3; 3
3; ; EBE81FF4ABHT
Pin Configurations
Front side
1 pin
121 pin
68 pin 69 pin
120 pin
188 pin 189 pin
240 pin
Back side
Front side
Back side
No.
Name
No. Name
No.
Name
No.
Name
No.
Name
No.
Name
No.
Name No.
Name
1
VDD
36
VSS
71
/PS0
106
NC
121
VDD
156
VSS
191
/SS0
226
NC
2
VDD
37
PN5
72
VSS
107
VSS
122
VDD
157
SN5
192
VSS
227
VSS
3
VDD
38
/PN5
73
PS1
108
VDD
123
VDD
158
/SN5
193
SS1
228
SCK
4
VSS
39
VSS
74
/PS1
109
VDD
124
VSS
159
VSS
194
/SS1
229
/SCK
5
VDD
40
PN13
75
VSS
110
VSS
125
VDD
160
SN13
195
VSS
230
VSS
6
VDD
41
/PN13
76
PS2
111
VDD
126
VDD
161
/SN13
196
SS2
231
VDD
7
VDD
42
VSS
77
/PS2
112
VDD
127
VDD
162
VSS
197
/SS2
232
VDD
8
VSS
43
VSS
78
VSS
113
VDD
128
VSS
163
VSS
198
VSS
233
VDD
9
VCC
44
NC
79
PS3
114
VSS
129
VCC
164
NC
199
SS3
234
VSS
10
VCC
45
NC
80
/PS3
115
VDD
130
VCC
165
NC
200
/SS3
235
VDD
11
VSS
46
VSS
81
VSS
116
VDD
131
VSS
166
VSS
201
VSS
236
VDD
12
VCC
47
VSS
82
PS4
117
VTT
132
VCC
167
VSS
202
SS4
237
VTT
13
VCC
48
PN12
83
/PS4
118
SA2
133
VCC
168
SN12
203
/SS4
238
VDDSPD
14
VSS
49
/PN12
84
VSS
119
SDA
134
VSS
169
/SN12
204
VSS
239
SA0
15
VTT
50
VSS
85
VSS
120
SCL
135
VTT
170
VSS
205
VSS
240
SA1
16
VID1
51
PN6
86
NC
136
VID0
171
SN6
206
NC
17
/RESET 52
/PN6
87
NC
137
M_TEST 172
/SN6
207
NC
18
VSS
53
VSS
88
VSS
138
VSS
173
VSS
208
VSS
19
NC
54
PN7
89
VSS
139
NC
174
SN7
209
VSS
20
NC
55
/PN7
90
PS9
140
NC
175
/SN7
210
SS9
21
VSS
56
VSS
91
/PS9
141
VSS
176
VSS
211
/SS9
22
PN0
57
PN8
92
VSS
142
SN0
177
SN8
212
VSS
23
/PN0
58
/PN8
93
PS5
143
/SN0
178
/SN8
213
SS5
24
VSS
59
VSS
94
/PS5
144
VSS
179
VSS
214
/SS5
25
PN1
60
PN9
95
VSS
145
SN1
180
SN9
215
VSS
26
/PN1
61
/PN9
96
PS6
146
/SN1
181
/SN9
216
SS6
27
VSS
62
VSS
97
/PS6
147
VSS
182
VSS
217
/SS6
28
PN2
63
PN10
98
VSS
148
SN2
183
SN10
218
VSS
29
/PN2
64
/PN10
99
PS7
149
/SN2
184
/SN10
219
SS7
30
VSS
65
VSS
100
/PS7
150
VSS
185
VSS
220
/SS7
31
PN3
66
PN11
101
VSS
151
SN3
186
SN11
221
VSS
32
/PN3
67
/PN11
102
PS8
152
/SN3
187
/SN11
222
SS8
33
VSS
68
VSS
103
/PS8
153
VSS
188
VSS
223
/SS8
34
PN4
69
VSS
104
VSS
154
SN4
189
VSS
224
VSS
35
/PN4
70
PS0
105
NC
155
/SN4
190
SS0
225
NC
Preliminary Data Sheet E1240E20 (Ver. 2.0)
8
EBE81FF4ABHT
Pin Description
Pin name
Pin Type
Function
SCK, /SCK
Input
System clock input
PN0 to PN13, /PN0 to /PN13
Output
Primary northbound data
PS0 to PS9, /PS0 to /PS9
Input
Primary southbound data
SN0 to SN13, /SN0 to /SN13
Input
Secondary northbound data
SS0 to SS9, /SS0 to /SS9
Output
Secondary southbound data
SCL
Input
Serial presence detect (SPD) clock input
Input / Output
SPD data and AMB SMBus address/data
Input
SPD address inputs
Input
Voltage ID
SDA
SA0 to SA2*
1
VID0 to VID1*
/RESET
M_TEST*
NC
3
2
Input
AMB reset signal
Input
VREF margin test input

No connection
VCC
Power supply
AMB core power and AMB channel interface power (1.5V)
VDD
Power supply
DRAM power and AMB DRAM I/O power (1.8V)
VTT
Power supply
DRAM address, Command and clock termination voltage (VDD/2)
VDDSPD
Power supply
SPD power (3.3V)
VSS

Ground
Notes: 1. They are also used to select the DIMM number in the AMB.
2. These pins must be unconnected.
3. Don’t connect in a system.
Preliminary Data Sheet E1240E20 (Ver. 2.0)
9
EBE81FF4ABHT
Electrical Specifications
• All voltages are referenced to VSS (GND).
Absolute Maximum Ratings
Parameter
Symbol
Value
Unit
Voltage on any pin relative to VSS
VIN/VOUT
–0.3 to +1.75
V
AMB core power voltage relative to VSS
VCC
–0.3 to +1.75
V
DRAM interface power voltage relative to VSS
VDD
–0.5 to +2.30
V
Termination voltage relative to VSS
VTT
–0.5 to +2.30
V
Storage temperature
Tstg
–55 to +100
°C
Note
Caution
Exposing the device to stress above those listed in Absolute Maximum Ratings could cause
permanent damage. The device is not meant to be operated under conditions outside the limits
described in the operational section of this specification. Exposure to Absolute Maximum Rating
conditions for extended periods may affect device reliability.
Operating Temperature Conditions
Parameter
Symbol
Value
Unit
Note
SDRAM component case temperature
TC_DRAM
0 to +95
°C
1
AMB component case temperature
TC_AMB
110
°C
Note: 1. Supporting 0°C to +85°C and being able to extend to +95°C with doubling auto-refresh commands in
frequency to a 32ms period (tREFI = 3.9µs) and higher temperature self-refresh entry via the control of
EMRS (2) bit A7 is required.
DC Operating Conditions
Parameter
Symbol
min.
typ.
max.
Unit
Note
AMB supply voltage
VCC
1.455
1.50
1.575
V
DDR2 SDRAM supply voltage
VDD
1.7
1.8
1.9
V
Input termination voltage
VTT
0.48 × VDD
0.50 × VDD
0.52 × VDD
V
EEPROM supply voltage
VDDSPD
3.0
3.3
3.6
V
SPD input high voltage
VIH (DC)
2.1
—
VDDSPD
V
1
SPD input low voltage
VIL (DC)
—
—
0.8
V
1
RESET input high voltage
VIH (DC)
1.0
—
—
V
2
RESET input low voltage
VIL (DC)
—
—
0.5
V
2
Leakage current (RESET)
IL
–90
—
90
µA
2
Leakage current (link)
IL
–5
—
5
µA
3
Notes: 1. Applies for SMB and SPD bus signals.
2. Applies for AMB CMOS signal /RESET.
3. For all other AMB related DC parameters, please refer to the high-speed differential link interface
specification.
Preliminary Data Sheet E1240E20 (Ver. 2.0)
10
EBE81FF4ABHT
AMB Component Timing
For purposes of IDD testing, the following parameters are to be utilized.
Parameter
Symbol
min.
typ.
max.
Units
EI Assertion pass-thru timing
tEI
propagate
—
—
4
clks
EI deassertion pass-thru timing
tEID
—
—
bit lock
clks
EI assertion duration
tEI
100
—
—
clks
Resample pass-thru time
—
1.075
—
ns
Resynch pass-thru time
—
2.075
—
ns
Bit lock Interval
tBitLock
—
—
119
frames
Frame lock Interval
tFrameLock
—
—
154
frames
Note
Note: 1. The EI stands for ″Electrical Idle″.
Power Specification Parameter and Test Conditions
-6E
Frequency (Mbps)
Parameter
667
Symbol
Idle Current, single
Idd_Idle_0
or last DIMM
Idle Current, first
DIMM
Active Power
Idd_Idle_1
Idd_Active_1
Active Power, data
Idd_Active_2
pass through
Training
Idd_Training
(for AMB spec.
Not in SPD)
Power
Supply
max.
Unit
@1.5V
2.60
A
@1.8V
2.22
A
Total
7.45
W
@1.5V
3.40
A
@1.8V
2.21
A
Total
8.70
W
@1.5V
3.90
A
@1.8V
4.74
A
Total
14.29
W
@1.5V
3.70
A
@1.8V
2.21
A
Total
9.17
W
@1.5V
4.00
A
@1.8V
2.00
A
Total
9.25
W
Preliminary Data Sheet E1240E20 (Ver. 2.0)
11
Conditions
L0 state, idle (0 BW)
Primary channel enabled,
Secondary channel disabled
CKE high. Command and address lines stable.
DRAM clock active.
L0 state, idle (0 BW)
Primary and secondary channels enabled
CKE high. Command and address lines stable.
DRAM clock active.
L0 state
50% DRAM BW, 67% read, 33% write.
Primary and secondary channels enabled.
DRAM clock active, CKE high.
L0 state
50% DRAM BW to downstream DIMM,
67% read, 33% write.
Primary and secondary channels enabled.
CKE high. Command and address lines stable.
DRAM clock active.
Primary and secondary channels enabled.
100% toggle on all channel lanes
DRAMs idle. 0 BW.
CKE high, Command and address lines stable.
DRAM clock active.
Note
EBE81FF4ABHT
Reference Clock Input Specifications*1
Parameter
Symbol
min.
max.
Units
Notes
Reference clock frequency@ 4.0 Gb/s
(nominal 166.67MHz)
fRefclk-4.0
158.33
166.75
MHz
2, 3, 4
Single-ended maximum voltage
Vmax

1.15
V
5, 7
Single-ended minimum voltage
Vmin
−0.3

V
5, 8
Differential voltage high
VRefclk-diff-ih
150

mV
6
Differential voltage low
VRefclk-diff-il

−150
mV
6
Absolute crossing point
VCross
250
550
mV
5, 9, 10
VCross variation
VCross-delta

140
mV
5, 9, 11
AC common mode
VSCK-cm-acp-p

225
mV
12
Rising and falling edge rates
ERRefclk-diff-Rise,
ERRefclk-diff-Fall
0.6
4.0
V/ns
6, 13
% Mismatch between rise and fall edge
rates
ERRefclk-Match

20
%
6, 14
Duty cycle of reference clock
TRefclk-Dutycycle
40
60
%
6
Ringback voltage threshold
VRB-diff
−100
100
mV
6, 15
Allowed time before ringback
TStable
500

ps
6, 15
Clock leakage current
II_CK
−10
10
µA
16, 17
Clock input capacitance
CI_CK
0.5
2.0
pF
17
Clock input capacitance delta
CI_CK (∆)
−0.25
0.25
pF
Difference between
RefClk and RefClk#
input capacitance
Transport delay
TD

5
ns
18, 19

periods
20
3.0
ps
21, 22

30
ps

0.75
ps
NSAMPLE
Reference clock jitter (rms), filtered
10
12
TREF-JITTER-RMS 
Reference clock jitter (peak-to-peak) due
TREF-SSCp-p
to spectrum clocking effects
Reference clock jitter difference between TREF-JITTERadjacent AMB
DELTA
23
Notes: 1. For details, refer to the JEDEC specification “FB-DIMM High Speed Differential PTP Link at 1.5V”.
2. The nominal reference clock frequency is determined by the data frequency of the link divided by 2 times
the fixed PLL multiplication factor for the FB-DIMM channel (6:1). fdata = 2000MHz for a 4.0Gbps FBDIMM channel and so on.
3. Measured with SSC disabled. Enabling SSC will reduce the reference clock frequency.
4. Not all FB-DIMM agents will support all frequencies; compliance to the frequency specifications is only
required for those data rates that are supported by the device under test.
5. Measurement taken from single-ended waveform.
6. Measurement taken from differential waveform.
7. Defined as the maximum instantaneous voltage including overshoot.
8. Defined as the minimum instantaneous voltage including undershoot.
9. Measured at the crossing point where the instantaneous voltage value of the rising edge of REFCLK+
equals the falling edge of REFCLK-.
10. Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is
crossing. Refers to all crossing points for this measurement.
11. Defined as the total variation of all crossing voltages of rising REFCLK+ and falling REFCLK-. This is the
maximum allowed variance in for any particular system.
12. The majority of the reference clock AC common mode occurs at high frequency (i.e., the reference clock
frequency).
Preliminary Data Sheet E1240E20 (Ver. 2.0)
12
EBE81FF4ABHT
13. Measured from −150mV to + 150mV on the differential waveform. The signal must be monotonic through
the measurement region for rise and fall time. The 300mV measurement window is centered on the
differential 0V crossing.
14. Edge rate matching applies to rising edge rate for REFCLK+ and falling edge rate for REFCLK-. It is
measured using a ± 75mV window centered on the median cross point where REFCLK+ rising meets
REFCLK- falling. The median crosspoint is used to calculate the voltage thresholds the oscilloscope uses
for the edge rate calculations. The rising edge rate of REFCLK+ should be compared to the falling edge
rate of REFCLK-. The maximum allowed difference should not exceed 20% of the slowest edge
15. Tstable is the time the differential clock must maintain a minimum ±150mV differential voltage after rising
/falling edges before it is allowed to droop back into the ±100mV differential range.
16.Measured with a single-ended input voltage of 1V.
17. Applies to RefClk and RefClk#.
18. This parameter is not a direct clock output parameter but it indirectly determines the clock output
parameter TREF-JITTER.
19. The net transport delay is the difference in time of flight between associated data and clock paths. The
data path is defined from the reference clock source, through the TX, to data arrival at the data sampling
point in the RX. The clock path is defined from the reference clock source to clock arrival at the same
sampling point. The path delays are caused by copper trace routes, on-chip routing, on-chip buffering,
etc. They include the time-of-flight of interpolators or other clock adjustment mechanisms. They do not
include the phase delays caused by finite PLL loop bandwidth because these delays are modeled by the
PLL transfer functions.
20. Direct measurement of phase jitter records over NSAMPLE periods may be impractical. It is expected that
the jitter will be measured over a smaller, yet statistically significant, sample size and the total jitter at
NSAMPLE samples extrapolated from an estimate of the sigma of the random jitter components.
21. Measured with SSC enabled on reference clock generator.
22. As “measured” after the phase jitter filter. This number is separate from the receiver jitter budget that is
defined by the TRX-Total-MIN parameters.
23. This maximum value is below the noise floor of some test equipment.
Preliminary Data Sheet E1240E20 (Ver. 2.0)
13
EBE81FF4ABHT
Differential Transmitter Output Specifications*1
Parameter
Differential peak-to-peak
output voltage for large
voltage swing
Differential peak-to-peak
output voltage for regular
voltage swing
Differential peak-to-peak
output voltage for small
voltage swing
Symbol
min.
max.
Unit
Comments
VTX-DIFFp-p_L
900
1300
mV
VTX-DIFFp-p = 2 × | VTX-D+ − VTX-D- |
Measured as note 2
VTX-DIFFp-p_R
800

mV
VTX-DIFFp-p = 2 × | VTX-D+ − VTX-D- |
Measured as note 2
VTX-DIFFp-p_S
520

mV
VTX-DIFFp-p = 2 × | VTX-D+ − VTX-D- |
Measured as note 2
Defined as:
VTX-CM = DC (avg) of |VTX-D+
+ VTX-D-|/2
Measured as note 2
Defined as:
VTX-CM = DC (avg) of |VTX-D+ + VTX-D-|/2
Measured as note 2. See also note 3
DC common code
output voltage for large
voltage swing
VTX-CM_L

375
mV
DC common code
output voltage for small
voltage swing
VTX-CM_S
135
280
mV
VTX-DE-3.5-Ratio
−3.0
−4.0
dB
2, 4, 5
VTX-DE-6.0-Ratio
−5.0
−7.0
dB
2, 4, 5
De-emphasized differential
output voltage ratio for
-3.5dB de-emphasis
De-emphasized differential
output voltage ratio for
-6dB de-emphasis
VTX-CM-AC =
Max |VTX-D+ + VTX-D-|/2 – Min |VTX-D+
+ VTX-D-|/2
Measured as note 2. See also note 6
VTX-CM-AC =
Max |VTX-D+ + VTX-D-|/2 – Min |VTX-D+
+ VTX-D-|/2
Measured as note 2. See also note 6
VTX-CM-AC =
Max |VTX-D+ + VTX-D-|/2 – Min |VTX-D+
+ VTX-D-|/2
Measured as note 2. See also note 6
AC peak-to-peak common
mode output voltage for large VTX-CM-ACp-p L
swing

90
mV
AC peak-to-peak common
mode output voltage for
regular swing
VTX-CM-ACp-p R

80
mV
AC peak-to-peak common
mode output voltage for small VTX-CM-ACp-p S
swing

70
mV
VTX-IDLE-SE

50
mV
7, 8
VTX-IDLE-SE-DC

20
mV
7, 8, 9
VTX-IDLE-DIFFp-p

40
mV
8
VTX-SE
−75
750
mV
2, 10
Minimum TX eye width
TTX-Eye-MIN
0.7

UI
2, 11, 12
Maximum TX deterministic
jitter
TTX-DJ-DD

0.2
UI
2, 11, 12, 13
Instantaneous pulse width
TTX-PULSE
0.85

UI
14
30
90
ps
Given by 20%-80% voltage levels.
Measured as note 2

20
ps
Maximum single-ended
voltage in EI condition,
DC + AC
Maximum single-ended
voltage in EI condition,
DC only
Maximum peak-to-peak
differential voltage in EI
condition
Single-ended voltage
(w.r.t.VSS) on D+/D-
Differential TX output rise/fall TTX-RISE,
time
TTX-FALL
Mismatch between rise and
TTX-RF-MISMATCH
fall times
Differential return loss
RLTX-DIFF
8

dB
Common mode return loss
RLTX-CM
6

dB
Preliminary Data Sheet E1240E20 (Ver. 2.0)
14
Measured over 0.1GHz to 2.4GHz.
See also note 15
Measured over 0.1GHz to 2.4GHz.
See also note 15
EBE81FF4ABHT
Parameter
Symbol
min.
max.
Unit
Comments
Transmitter termination
resistance
RTX
41
55
Ω
16
%
RTX-Match-DC =
2×|RTX-D+ − RTX-D-| / (RTX-D+
+ RTX-D-)
Bounds are applied separately to high
and low output voltage states
D+/D- TX resistance
difference
RTX-Match-DC

4
Lane-to-lane skew at TX
LTX-SKEW 1

100 + 3UI ps
17, 19
Lane-to-lane skew at TX
LTX-SKEW 2

100 + 2UI ps
18, 19
Maximum TX Drift
(resync mode)
Maximum TX Drift
(resample mode only)
TTX-DRIFT-RESYNC 
240
ps
20
TTX-DRIFTRESAMPLE

120
ps
20
Bit Error Ratio
BER

10
-12
21
Notes: 1. For details, refer to the JEDEC specification “FB-DIMM High Speed Differential PTP Link at 1.5V”.
2. Specified at the package pins into a timing and voltage compliance test load. Common-mode
measurements to be performed using a 101010 pattern.
3. The transmitter designer should not artificially elevate the common mode in order to meet this
specification.
4. This is the ratio of the VTX-DIFFp-p of the second and following bits after a transition divided by
the VTX-DIFFp-p of the first bit after a transition.
5. De-emphasis shall be disabled in the calibration state.
6. Includes all sources of AC common mode noise.
7. Single-ended voltages below that value that are simultaneously detected on D+ and D- are interpreted as
the Electrical Idle condition.
8. Specified at the package pins into a voltage compliance test load. Transmitters must meet both singleended and differential output EI specifications.
9. This specification, considered with VRX-IDLE-SE-DC, implies a maximum 15mV single-ended DC offset
between TX and RX pins during the electrical idle condition. This in turn allows a ground offset between
adjacent FB-DIMM agents of 26mV when worst case termination resistance matching is considered.
10. The maximum value is specified to be at least (VTX-DIFFp-p L / 4) + VTX-CM L + (VTX-CM-ACp-p / 2)
11. This number does not include the effects of SSC or reference clock jitter.
12. These timing specifications apply to resync mode only.
13. Defined as the dual-dirac deterministic jitter.
14. Pulse width measured at 0 V differential.
15. One of the components that contribute to the deterioration of the return loss is the ESD structure which
needs to be carefully designed.
16. The termination small signal resistance; tolerance across voltages from 100mV to 400mV shall not
exceed ± 5Ω. with regard to the average of the values measured at 100mV and at 400mV for that pin.
17. Lane to Lane skew at the Transmitter pins for an end component.
18. Lane to Lane skew at the Transmitter pins for an intermediate component (assuming zero Lane to Lane
skew at the Receiver pins of the incoming PORT).
19. This is a static skew. An FB-DIMM component is not allowed to change its lane to lane phase relationship
after initialization.
20. Measured from the reference clock edge to the center of the output eye. This specification must be met
across specified voltage and temperature ranges for a single component. Drift rate of change is
significantly below the tracking capability of the receiver.
21. BER per differential lane.
Preliminary Data Sheet E1240E20 (Ver. 2.0)
15
EBE81FF4ABHT
Differential Receiver Input Specifications*1
Parameter
Symbol
min.
max.
Unit
Comments
VRX-DIFFp-p
170
1300
mV
VRX-DIFFp-p = 2×|VRX-D+ -VRX-D-|
Measured as note 2
VRX-IDLE-SE

65
mV
3, 4, 5, 6
VRX-IDLE-SE-DC

35
mV
3, 4, 5, 6, 7
VRX-IDLE-DIFFp-p

65
mV
4, 5, 6
VRX-SE
−300
900
mV
5
VRX-DIFF-PULSE
85

mV
5, 8
VRX-DIFF-ADJ
RATIO- HI

3.0
5, 9
VRX-DIFF-ADJ
RATIO

4.0
5, 9
Maximum RX inherent timing error TRX-TJ-MAX

0.4
UI
5, 10, 11
Maximum RX inherent
deterministic timing error
Single-pulse width at zero-voltage
crossing
Single-pulse width at minimumlevel crossing
TRX-DJ-DD

0.3
UI
5, 10, 11, 12
TRX-PW-ZC
0.55

UI
5, 8
TRX-PW-ML
0.2

UI
5, 8
TRX-RISE,
TRX-FALL
50

ps
Given by 20%-80% voltage levels.
Differential peak-to-peak input
voltage
Maximum single-ended voltage
for EI condition (AC + DC)
Maximum single-ended voltage
for EI condition (DC only)
Maximum peak-to-peak differential
voltage for EI condition
Single-ended voltage (w.r.t. VSS)
on D+/DSingle-pulse peak differential input
voltage
Amplitude ratio between adjacent
symbols,
1100mV < VRX-DIFFp-p <= 1300mV
Amplitude ratio between adjacent
symbols,
VRX-DIFFp-p <= 1100mV
Differential RX input rise/fall time
Defined as:
VRX-CM = DC (avg) of |VRX-D+
+ VRX-D-|/2
Measured as note 2.
See also note 13
VRX-CM-AC =
Max |VRX-D+ + VRX-D-|/2 –
Min |VRX-D+ + VRX-D-|/2
Measured as note 2
Common mode of the input voltage VRX-CM
120
400
mV
AC peak-to-peak common mode of
VRX-CM-ACp-p
input voltage

270
mV
Ratio of VRX-CM-ACp-p to
minimum VRX-DIFFp-p
VRX-CM-EH-Ratio

45
%
Differential return loss
RLRX-DIFF
9

dB
Common mode return loss
RLRX-CM
6

dB
RX termination resistance
RRX
41
55
Ω
D+/D- RX resistance difference
RRX-Match-DC

4
%
Lane-to-lane PCB skew at Rx
LRX-PCB-SKEW

6
UI
Minimum RX Drift Tolerance
TRX-DRIFT
400

ps
18
Minimum data tracking 3dB
bandwidth
FTRK
0.2

MHz
19
Electrical idle entry detect time
TEI-ENTRY DETECT

60
ns
20
Electrical idle exit detect time
TEI-EXIT -DETECT

30
BER

Bit Error Ratio
10
Preliminary Data Sheet E1240E20 (Ver. 2.0)
16
14
Measured over 0.1GHz to 2.4GHz.
See also note 15
Measured over 0.1GHz to 2.4GHz.
See also note 15
16
RRX-Match-DC =
2×|RRX-D+ − RRX-D-| / (RRX-D+
+ RRX-D-)
Lane-to-lane PCB skew at the
receiver that must be tolerated.
See also note 17
ns
-12
21
EBE81FF4ABHT
Notes: 1. For details, refer to the JEDEC specification “FB-DIMM High Speed Differential PTP Link at 1.5V”.
2. Specified at the package pins into a timing and voltage compliant test setup. Note that signal levels at the
pad will be lower than at the pin.
3. Single-ended voltages below that value that are simultaneously detected on D+ and D- are interpreted as
the Electrical Idle condition. Worst-case margins are determined by comparing EI levels with common
mode levels during normal operation for the case with transmitter using small voltage swing.
4. Multiple lanes need to detect the EI condition before the device can act upon the EI detection.
5. Specified at the package pins into a timing and voltage compliance test setup.
6. Receiver designers may implement either single-ended or differential EI detection. Receivers must meet
the specification that corresponds to the implemented detection circuit.
7. This specification, considered with VTX-IDLE-SE-DC, implies a maximum 15mV single-ended DC offset
between TX and RX pins during the electrical idle condition. This in turn allows a ground offset between
adjacent FB-DIMM agents of 26mV when worst case termination resistance matching is considered.
8. The single-pulse mask provides sufficient symbol energy for reliable RX reception. Each symbol must
comply with both the single-pulse mask and the cumulative eye mask.
9. The relative amplitude ratio limit between adjacent symbols prevents excessive inter-symbol interference
in the Rx. Each symbol must comply with the peak amplitude ratio with regard to both the preceding and
subsequent symbols.
10. This number does not include the effects of SSC or reference clock jitter.
11. This number includes setup and hold of the RX sampling flop.
12. Defined as the dual-dirac deterministic timing error.
13. Allows for 15mV DC offset between transmit and receive devices.
14. The received differential signal must satisfy both this ratio as well as the absolute maximum AC peak-topeak common mode specification. For example, if VRX-DIFFp-p is 200mV, the maximum AC peak-topeak common mode is the lesser of (200mV × 0.45 = 90mV) and VRX-CM-ACp-p.
15. One of the components that contribute to the deterioration of the return loss is the ESD structure which
needs to be carefully designed.
16. The termination small signal resistance; tolerance across voltages from 100mV to 400mV shall not
exceed ± 5Ω. with regard to the average of the values measured at 100mV and at 400mV for that pin.
17. This number represents the lane-to-lane skew between TX and RX pins and does not include the
transmitter output skew from the component driving the signal to the receiver. This is one component of
the end-to-end channel skew in the AMB specification.
18. Measured from the reference clock edge to the center of the input eye. This specification must be met
across specified voltage and temperature ranges for a single component. Drift rate of change is
significantly below the tracking capability of the receiver.
19. This bandwidth number assumes the specified minimum data transition density. Maximum jitter at 0.2MHz
is 0.05UI.
20. The specified time includes the time required to forward the EI entry condition.
21. BER per differential lane.
Preliminary Data Sheet E1240E20 (Ver. 2.0)
17
EBE81FF4ABHT
Serial PD Matrix for FB-DIMM
Byte No.
Function described
Byte value
Hex value
0
Number of serial PD bytes written / SPD device size / CRC coverage
116
92H
1
SPD revision
Revision 1.1
11H
2
Key byte / DRAM device type
DDR2 SDRAM FB-DIMM
09H
3
Voltage levels of this assembly
VDD = 1.8V, VCC = 1.5V
12H
4
SDRAM addressing
15-row, 11-column, 8-bank 69H
5
Module physical attributes
8.2mm
24H
6
Module Type / Thickness
FB-DIMM
07H
7
Module organization
2 ranks / 4bits
10H
8
Fine timebase (FTB) dividend / divisor
9
Medium timebase dividend
1
01H
10
Medium timebase divisor
4
04H
11
SDRAM minimum cycle time (tCK (min.))
3.00ns
0CH
12
SDRAM maximum cycle time (tCK (max.))
8ns
20H
13
SDRAM /CAS latencies supported
CL = 3, 4, 5
33H
14
SDRAM minimum /CAS latencies time (tCAS)
15ns
3CH
15
SDRAM write recovery times supported
WR = 2 to 5
42H
16
SDRAM write recovery time (tWR)
15ns
3CH
17
SDRAM write latencies supported
WL = 2 to 8
72H
18
SDRAM additive latencies supported
AL = 0 to 4
50H
19
SDRAM minimum /RAS to /CAS delay (tRCD)
15ns
3CH
20
SDRAM minimum row active to row active delay (tRRD)
7.5ns
1EH
21
SDRAM minimum row precharge time (tRP)
15ns
3CH
22
SDRAM upper nibbles for tRAS and tRC
00H
00H
23
SDRAM minimum active to precharge time (tRAS)
45ns
B4H
24
SDRAM minimum auto-refresh to active /auto-refresh time (tRC)
60ns
F0H
25
SDRAM minimum refresh recovery time delay (tRFC), LSB
195ns
0CH
26
SDRAM minimum refresh recovery time delay (tRFC), MSB
195ns
03H
27
SDRAM Internal write to read command delay (tWTR)
7.5ns
1EH
28
SDRAM Internal read to precharge command delay (tRTP)
7.5ns
1EH
29
SDRAM burst lengths supported
BL = 4, 8
03H
30
SDRAM terminations supported
ODT = 50, 75, 150Ω
07H
31
SDRAM drivers supported
Supported
01H
32
SDRAM average refresh interval (tREFI) / double refresh mode bit /
high temperature self-refresh rate support indication
7.8µs Double/HT refresh
C2H
33
Tcasemax (TC (max.)) delta / DT4R4W delta
95°C/ 0.00°C
51H
××
34
Psi T-A SDRAM at still air
*
3
35
SDRAM DT0
*
3
××
SDRAM DT2Q
*
3
××
37
SDRAM DT2P
*
3
××
38
SDRAM DT3N
*
3
××
SDRAM DT4R / mode bit
*
3
××
40
SDRAM DT5B
*
3
××
41
SDRAM DT7
*
3
××
36
39
Preliminary Data Sheet E1240E20 (Ver. 2.0)
18
EBE81FF4ABHT
Byte No.
Function described
Byte value
Hex value
42 to 78
Reserved
79
FB-DIMM ODT values
80
Reserved
00H
81 to 93
AMB personality bytes
××
94 to 97
Reserved
00H
98
AMB junction temperature maximum (TJ (max.))
××
99
Category byte
100
Reserved
00H
150/75Ω
Stack/FDHS
12H
1AH
00H
××
101 to 116 AMB personality bytes
117
Module ID: manufacturer’s JEDEC ID code
Elpida Memory
02H
118
Module ID: manufacturer’s JEDEC ID code
Elpida Memory
FEH
119
Module ID: manufacturing location
120
Module ID: manufacturing date
Year code (BCD)
××
121
Module ID: manufacturing date
Date code (BCD)
××
××
122 to 125 Module ID: module serial number
××
126 to 127 Cyclical redundancy code
××
128 to 145 Module part number
EBE81FF4ABHT
××
146
Module revision code
Initial
30H
147
Module revision code
(Space)
20H
148
SDRAM manufacturer’s JEDEC ID code
Elpida Memory
02H
149
SDRAM manufacturer’s JEDEC ID code
Elpida Memory
FEH
150
Informal AMB content revision tag (MSB)
151
Informal AMB content revision tag (LSB)
××
××
152 to 175 Manufacturer's specific data
00H
176 to 255 Open for customer use
00H
Remark IDD: DRAM current, ICC: AMB current
Notes: 1. Based on DDR2 SDRAM component specification.
2. Refer to JESD51-3 “Low effective thermal conductivity Test board for leaded surface mount packages”
under JESD51-2 standard.
3. DT parameter is derived as following: DTx = IDDx × VDD × Psi T-A, where IDDx definition is based on
JEDEC DDR2 SDRAM component specification and at VDD=1.9V, it is the datasheet (worst case) value,
and Psi T-A is the programmed value of Psi T-A (value in SPD Byte 33).
Preliminary Data Sheet E1240E20 (Ver. 2.0)
19
EBE81FF4ABHT
Physical Outline
Unit: mm
SDRAM location
Upper
Lower
8.20 max.
Front side
D19
D1
D20
D2
AMB
D21
D3
D22
D4
5.20 max.
D23
D5
D24
D6
3.00 max.
D25
D7
3.90
.
D18
D0
(DATUM -A-)
4.00 min.
74.675
Full DIMM
heat spreader
1
120
R0.75
1.25
1.27 ± 0.10
A
B
67.00
51.00
5.175
133.35
Back side
D28
D10
D29
D11
D30
D12
D26
D8
D35
D17
D31
D13
D32
D14
D33
D15
D34
D16
3.00
D27
D9
30.35
240
17.30
121
9.50
120
FULL R
2.50
Detail B
(DATUM -A-)
1.00
0.20 ± 0.15
2.50 ± 0.20
Detail A
2.50
3.80
0.40 min.
0.80 ± 0.05
FULL R
5.00
1.50 ± 0.10
Tie bar keep out zone
ECA-TS2-0185-01
Preliminary Data Sheet E1240E20 (Ver. 2.0)
20
EBE81FF4ABHT
CAUTION FOR HANDLING MEMORY MODULES
When handling or inserting memory modules, be sure not to touch any components on the modules, such as
the memory ICs, chip capacitors and chip resistors. It is necessary to avoid undue mechanical stress on
these components to prevent damaging them.
In particular, do not push module cover or drop the modules in order to protect from mechanical defects,
which would be electrical defects.
When re-packing memory modules, be sure the modules are not touching each other.
Modules in contact with other modules may cause excessive mechanical stress, which may damage the
modules.
MDE0202
NOTES FOR CMOS DEVICES
1
PRECAUTION AGAINST ESD FOR MOS DEVICES
Exposing the MOS devices to a strong electric field can cause destruction of the gate
oxide and ultimately degrade the MOS devices operation. Steps must be taken to stop
generation of static electricity as much as possible, and quickly dissipate it, when once
it has occurred. Environmental control must be adequate. When it is dry, humidifier
should be used. It is recommended to avoid using insulators that easily build static
electricity. MOS devices must be stored and transported in an anti-static container,
static shielding bag or conductive material. All test and measurement tools including
work bench and floor should be grounded. The operator should be grounded using
wrist strap. MOS devices must not be touched with bare hands. Similar precautions
need to be taken for PW boards with semiconductor MOS devices on it.
2
HANDLING OF UNUSED INPUT PINS FOR CMOS DEVICES
No connection for CMOS devices input pins can be a cause of malfunction. If no
connection is provided to the input pins, it is possible that an internal input level may be
generated due to noise, etc., hence causing malfunction. CMOS devices behave
differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed
high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected
to VDD or GND with a resistor, if it is considered to have a possibility of being an output
pin. The unused pins must be handled in accordance with the related specifications.
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES
Power-on does not necessarily define initial status of MOS devices. Production process
of MOS does not define the initial operation status of the device. Immediately after the
power source is turned ON, the MOS devices with reset function have not yet been
initialized. Hence, power-on does not guarantee output pin levels, I/O settings or
contents of registers. MOS devices are not initialized until the reset signal is received.
Reset operation must be executed immediately after power-on for MOS devices having
reset function.
CME0107
Preliminary Data Sheet E1240E20 (Ver. 2.0)
21
EBE81FF4ABHT
The information in this document is subject to change without notice. Before using this document, confirm that this is the latest version.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Elpida Memory, Inc.
Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights
(including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or
third parties by or arising from the use of the products or information listed in this document. No license,
express, implied or otherwise, is granted under any patents, copyrights or other intellectual property
rights of Elpida Memory, Inc. or others.
Descriptions of circuits, software and other related information in this document are provided for
illustrative purposes in semiconductor product operation and application examples. The incorporation of
these circuits, software and information in the design of the customer's equipment shall be done under
the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses
incurred by customers or third parties arising from the use of these circuits, software and information.
[Product applications]
Be aware that this product is for use in typical electronic equipment for general-purpose applications.
Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability.
However, users are instructed to contact Elpida Memory's sales office before using the product in
aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment,
medical equipment for life support, or other such application in which especially high quality and
reliability is demanded or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury.
[Product usage]
Design your application so that the product is used within the ranges and conditions guaranteed by
Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation
characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no
responsibility for failure or damage when the product is used beyond the guaranteed ranges and
conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure
rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so
that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other
consequential damage due to the operation of the Elpida Memory, Inc. product.
[Usage environment]
Usage in environments with special characteristics as listed below was not considered in the design.
Accordingly, our company assumes no responsibility for loss of a customer or a third party when used in
environments with the special characteristics listed below.
Example:
1) Usage in liquids, including water, oils, chemicals and organic solvents.
2) Usage in exposure to direct sunlight or the outdoors, or in dusty places.
3) Usage involving exposure to significant amounts of corrosive gas, including sea air, CL 2 , H 2 S, NH 3 ,
SO 2 , and NO x .
4) Usage in environments with static electricity, or strong electromagnetic waves or radiation.
5) Usage in places where dew forms.
6) Usage in environments with mechanical vibration, impact, or stress.
7) Usage near heating elements, igniters, or flammable items.
If you export the products or technology described in this document that are controlled by the Foreign
Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance
with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by
U.S. export control regulations, or another country's export control laws or regulations, you must follow
the necessary procedures in accordance with such laws or regulations.
If these products/technology are sold, leased, or transferred to a third party, or a third party is granted
license to use these products, that third party must be made aware that they are responsible for
compliance with the relevant laws and regulations.
M01E0706
Preliminary Data Sheet E1240E20 (Ver. 2.0)
22