DATA SHEET 256MB Unbuffered SDRAM DIMM HB52E328EM-A6B, -B6B (32M words × 64 bits, 1 bank) HB52E329EM-A6B, -B6B (32M words × 72 bits, 1 bank) Description The HB52E328EM and HB52E329EM belong to 8-byte DIMM (Dual In-line Memory Module) family, and have been developed as an optimized main memory solution for 8-byte processor applications. They are synchronous Dynamic RAM Module, mounted 256M bits SDRAMs (HM5225805BTT) sealed in TSOP package, and 1 piece of serial EEPROM (2k bits) for Presence Detect (PD). The HB52E328EM is organized 32M × 64 × 1 bank mounted 8 pieces of 256M bits SDRAM. The HB52E329EM is organized 32M × 72 × 1 bank mounted 9 pieces of 256M bits SDRAM. Therefore, they make high density mounting possible without surface mount technology. They provide common data inputs and outputs. Decoupling capacitors are mounted beside each TSOP on the module board. • Byte control by DQMB • Refresh cycles: 8192 refresh cycles/64ms • 2 variations of refresh Auto refresh Self refresh Features • Fully compatible with: JEDEC standard outline 8byte DIMM • 168-pin socket type package (dual lead out) Outline: 133.37mm (Length) × 34.925mm (Height) × 4.00mm (Thickness) Lead pitch: 1.27mm • 3.3V power supply • Clock frequency: 100MHz (max.) • LVTTL interface • Data bus width : × 64 Non parity (HB52E328EM) : × 72 ECC (HB52E329EM) • Single pulsed /RAS • 4 Banks can operates simultaneously and independently • Burst read/write operation and burst read/single write operation capability • Programmable burst length (BL): 1, 2, 4, 8 • 2 variations of burst sequence Sequential Interleave • Programmable /CE latency (CL) : 2, 3 (HB52E328EM/329EM-A6B) : 3 (HB52E328EM/329EM-B6B) Document No. E0185H10 (Ver. 1.0) Date Published July 2001 Printed in Japan URL: http://www.elpida.com C Elpida Memory, Inc. 2001 Elpida Memory, Inc. is a joint venture DRAM company of NEC Corporation and Hitachi, Ltd. HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B Ordering Information Clock frequency MHz (max.) Part number HB52E328EM-A6B HB52E328EM-B6B HB52E329EM-A6B HB52E329EM-B6B 100 100 /CE latency Package Contact pad 2, 3 3 2, 3 3 168-pin dual lead out socket type Gold Pin Configurations 1 pin 10 pin 11 pin 40 pin 41 pin 85 pin 94 pin 95 pin 124 pin 125 pin 84 pin 168 pin [HB52E328EM] Pin No. Pin name Pin No. Pin name Pin No. Pin name Pin No. Pin name 1 VSS 43 VSS 85 VSS 127 VSS 2 DQ0 44 NC 86 DQ32 128 CKE0 3 DQ1 45 /S2 87 DQ33 129 NC 4 DQ2 46 DQMB2 88 DQ34 130 DQMB6 5 DQ3 47 DQMB3 89 DQ35 131 DQMB7 6 VCC 48 NC 90 VCC 132 NC 7 DQ4 49 VCC 91 DQ36 133 VCC 8 DQ5 50 NC 92 DQ37 134 NC 9 DQ6 51 NC 93 DQ38 135 NC 10 DQ7 52 NC 94 DQ39 136 NC 11 DQ8 53 NC 95 DQ40 137 NC 12 VSS 54 VSS 96 VSS 138 VSS 13 DQ9 55 DQ16 97 DQ41 139 DQ48 14 DQ10 56 DQ17 98 DQ42 140 DQ49 15 DQ11 57 DQ18 99 DQ43 141 DQ50 16 DQ12 58 DQ19 100 DQ44 142 DQ51 17 DQ13 59 VCC 101 DQ45 143 VCC 18 VCC 60 DQ20 102 VCC 144 DQ52 19 DQ14 61 NC 103 DQ46 145 NC 20 DQ15 62 NC 104 DQ47 146 NC 21 NC 63 NC 105 NC 147 NC 22 NC 64 VSS 106 NC 148 VSS 23 VSS 65 DQ21 107 VSS 149 DQ53 24 NC 66 DQ22 108 NC 150 DQ54 25 NC 67 DQ23 109 NC 151 DQ55 26 VCC 68 VSS 110 VCC 152 VSS 27 /W 69 DQ24 111 /CE 153 DQ56 28 DQMB0 70 DQ25 112 DQMB4 154 DQ57 Data Sheet E0185H10 (Ver. 1.0) 2 HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B Pin No. Pin name Pin No. Pin name Pin No. Pin name Pin No. Pin name 29 DQMB1 71 DQ26 113 DQMB5 155 DQ58 30 /S0 72 DQ27 114 NC 156 DQ59 31 NC 73 VCC 115 /RE 157 VCC 32 VSS 74 DQ28 116 VSS 158 DQ60 33 A0 75 DQ29 117 A1 159 DQ61 34 A2 76 DQ30 118 A3 160 DQ62 35 A4 77 DQ31 119 A5 161 DQ63 36 A6 78 VSS 120 A7 162 VSS 37 A8 79 CK2 121 A9 163 CK3 38 A10 (AP) 80 NC 122 BA0 164 NC 39 BA1 81 WP 123 A11 165 SA0 40 VCC 82 SDA 124 VCC 166 SA1 41 VCC 83 SCL 125 CK1 167 SA2 42 CK0 84 VCC 126 A12 168 VCC [HB52E329EM] Pin No. Pin name Pin No. Pin name Pin No. Pin name Pin No. Pin name 1 VSS 43 VSS 85 VSS 127 VSS 2 DQ0 44 NC 86 DQ32 128 CKE0 3 DQ1 45 /S2 87 DQ33 129 NC 4 DQ2 46 DQMB2 88 DQ34 130 DQMB6 5 DQ3 47 DQMB3 89 DQ35 131 DQMB7 6 VCC 48 NC 90 VCC 132 NC 7 DQ4 49 VCC 91 DQ36 133 VCC 8 DQ5 50 NC 92 DQ37 134 NC 9 DQ6 51 NC 93 DQ38 135 NC 10 DQ7 52 CB2 94 DQ39 136 CB6 11 DQ8 53 CB3 95 DQ40 137 CB7 12 VSS 54 VSS 96 VSS 138 VSS 13 DQ9 55 DQ16 97 DQ41 139 DQ48 14 DQ10 56 DQ17 98 DQ42 140 DQ49 15 DQ11 57 DQ18 99 DQ43 141 DQ50 16 DQ12 58 DQ19 100 DQ44 142 DQ51 17 DQ13 59 VCC 101 DQ45 143 VCC 18 VCC 60 DQ20 102 VCC 144 DQ52 19 DQ14 61 NC 103 DQ46 145 NC 20 DQ15 62 NC 104 DQ47 146 NC 21 CB0 63 NC 105 CB4 147 NC 22 CB1 64 VSS 106 CB5 148 VSS 23 VSS 65 DQ21 107 VSS 149 DQ53 24 NC 66 DQ22 108 NC 150 DQ54 25 NC 67 DQ23 109 NC 151 DQ55 26 VCC 68 VSS 110 VCC 152 VSS Data Sheet E0185H10 (Ver. 1.0) 3 HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B Pin No. Pin name Pin No. Pin name Pin No. Pin name Pin No. Pin name 27 /W 69 DQ24 111 /CE 153 DQ56 28 DQMB0 70 DQ25 112 DQMB4 154 DQ57 29 DQMB1 71 DQ26 113 DQMB5 155 DQ58 30 /S0 72 DQ27 114 NC 156 DQ59 31 NC 73 VCC 115 /RE 157 VCC 32 VSS 74 DQ28 116 VSS 158 DQ60 33 A0 75 DQ29 117 A1 159 DQ61 34 A2 76 DQ30 118 A3 160 DQ62 35 A4 77 DQ31 119 A5 161 DQ63 36 A6 78 VSS 120 A7 162 VSS 37 A8 79 CK2 121 A9 163 CK3 38 A10 (AP) 80 NC 122 BA0 164 NC 39 BA1 81 WP 123 A11 165 SA0 40 VCC 82 SDA 124 VCC 166 SA1 41 VCC 83 SCL 125 CK1 167 SA2 42 CK0 84 VCC 126 A12 168 VCC Pin Description [HB52E328EM] Pin name Function A0 to A12 Address input Row address A0 to A12 Column address A0 to A9 BA0, BA1 Bank select address DQ0 to DQ63 Data input/output /S0, /S2 Chip select input /RE Row enable (/RAS) input /CE Column enable (/CAS) input /W Write enable input DQMB0 to DQMB7 Byte data mask CK0, CK2 Clock input CKE0 Clock enable input WP Write protect for serial PD SDA Data input/output for serial PD SCL Clock input for serial PD SA0 to SA2 Serial address input VCC Primary positive power supply VSS Ground NC No connection Data Sheet E0185H10 (Ver. 1.0) 4 HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B [HB52E329EM] Pin name Function A0 to A12 Address input Row address A0 to A12 Column address A0 to A9 BA0, BA1 Bank select address DQ0 to DQ63 Data input/output CB0 to CB7 Check bit (Data input/output) /S0, /S2 Chip select input /RE Row enable (/RAS) input /CE Column enable (/CAS) input /W Write enable input DQMB0 to DQMB7 Byte data mask CK0, CK2 Clock input CKE0 Clock enable input WP Write protect for serial PD SDA Data input/output for serial PD SCL Clock input for serial PD SA0 to SA2 Serial address input VCC Primary positive power supply VSS Ground NC No connection Data Sheet E0185H10 (Ver. 1.0) 5 HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B 1 Serial PD Matrix* Byte No. Function described Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value Comments 0 Number of bytes used by module manufacturer 1 0 0 0 0 0 0 0 80 128 1 Total SPD memory size 0 0 0 0 1 0 0 0 08 256 byte 2 Memory type 0 0 0 0 0 1 0 0 04 SDRAM 3 Number of row addresses bits 0 0 0 0 1 1 0 1 0D 13 4 Number of column addresses bits 0 0 0 0 1 0 1 0 0A 10 5 Number of banks 0 0 0 0 0 0 0 1 01 1 6 Module data width (HB52E328EM) 0 1 0 0 0 0 0 0 40 64 bit (HB52E329EM) 0 1 0 0 1 0 0 0 48 72 bit 7 Module data width (continued) 0 0 0 0 0 0 0 0 00 0 (+) 8 Module interface signal levels 0 0 0 0 0 0 0 1 01 LVTTL 1 0 1 0 0 0 0 0 A0 CL = 3 0 1 1 0 0 0 0 0 60 0 0 0 0 0 0 0 0 00 Non parity (HB52E329EM) 0 0 0 0 0 0 1 0 02 ECC 12 Refresh rate/type 1 0 0 0 0 0 1 0 82 Normal (7.8125 µs) Self refresh 13 SDRAM width 0 0 0 0 1 0 0 0 08 32M × 8 14 Error checking SDRAM width (HB52E328EM) 0 0 0 0 0 0 0 0 00 — 0 0 0 0 1 0 0 0 08 ×8 0 0 0 0 0 0 0 1 01 1 CLK 0 0 0 0 1 1 1 1 0F 1, 2, 4, 8 0 0 0 0 0 1 0 0 04 4 0 0 0 0 0 1 1 0 06 2, 3 0 0 0 0 0 0 0 1 01 0 0 0 0 0 0 0 0 1 01 0 SDRAM device attributes 0 0 0 0 0 0 0 0 00 Non buffer 22 SDRAM device attributes: General 0 0 0 0 1 1 1 0 0E VCC ± 10% 23 SDRAM cycle time (2nd highest /CE latency) (-A6B) 10ns 1 0 1 0 0 0 0 0 A0 CL = 2 1 1 1 1 0 0 0 0 F0 0 1 1 0 0 0 0 0 60 1 0 0 1 0 0 0 0 90 9 10 11 SDRAM cycle time (highest /CE latency) 10ns SDRAM access from Clock (highest /CE latency) 6ns Module configuration type (HB52E328EM) (HB52E329EM) 15 16 17 18 19 20 21 SDRAM device attributes: minimum clock delay for back-toback random column addresses SDRAM device attributes: Burst lengths supported SDRAM device attributes: number of banks on SDRAM device SDRAM device attributes: /CE latency SDRAM device attributes: /S latency SDRAM device attributes: /W latency (-B6B) 15ns 24 SDRAM access from Clock (2nd highest /CE latency) (-A6B) 6ns (-B6B) 9ns Data Sheet E0185H10 (Ver. 1.0) 6 CL = 2 HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B Byte No. 25 26 Function described SDRAM cycle time (3rd highest /CE latency) Undefined SDRAM access from Clock (3rd highest /CE latency) Undefined Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 Comments 27 Minimum row precharge time 0 0 0 1 0 1 0 0 14 20ns 28 Row active to row active min 0 0 0 1 0 1 0 0 14 20ns 29 /RE to /CE delay min 0 0 0 1 0 1 0 0 14 20ns 30 Minimum /RE pulse width 0 1 1 0 0 0 1 0 32 50ns 31 Density of each bank on module 0 1 0 0 0 0 0 0 40 1 bank 256M byte 0 0 1 0 0 0 0 0 20 2.0ns 0 0 0 1 0 0 0 0 10 1.0ns 32 33 Address and command signal input setup time Address and command signal input hold time 34 Data signal input setup time 0 0 1 0 0 0 0 0 20 2.0ns 35 Data signal input hold time 0 0 0 1 0 0 0 0 10 1.0ns 36 to 61 Superset information 0 0 0 0 0 0 0 0 00 Future use 62 SPD data revision code 0 0 0 1 0 0 1 0 12 Rev. 1.2A 63 Checksum for bytes 0 to 62 (HB52E328EM-A6B) 1 0 1 1 1 0 0 1 B9 185 (HB52E328EM-B6B) 0 0 1 1 1 0 0 1 39 57 (HB52E329EM-A6B) 1 1 0 0 1 0 1 1 CB 203 (HB52E329EM-B6B) 0 1 0 0 1 0 1 1 4B 75 HITACHI 64 Manufacturer’s JEDEC ID code 0 0 0 0 0 1 1 1 07 65 to 71 Manufacturer’s JEDEC ID code 0 0 0 0 0 0 0 0 00 72 Manufacturing location × × × × × × × × ×× *3 (ASCII-8bit code) 73 Manufacturer’s part number 0 1 0 0 1 0 0 0 48 H 74 Manufacturer’s part number 0 1 0 0 0 0 1 0 42 B 75 Manufacturer’s part number 0 0 1 1 0 1 0 1 35 5 76 Manufacturer’s part number 0 0 1 1 0 0 1 0 32 2 77 Manufacturer’s part number 0 1 0 0 0 1 0 1 45 E 78 Manufacturer’s part number 0 0 1 1 0 0 1 1 33 3 79 Manufacturer’s part number 0 0 1 1 0 0 1 0 32 2 80 Manufacturer’s part (HB52E328EM) 0 0 1 1 1 0 0 0 38 8 0 0 1 1 1 0 0 1 39 9 81 Manufacturer’s part number 0 1 0 0 0 1 0 1 45 E 82 Manufacturer’s part number 0 1 0 0 1 1 0 1 4D M 83 Manufacturer’s part number 0 0 1 0 1 1 0 1 2D — 84 Manufacturer’s part number (-A6B) 0 1 0 0 0 0 0 1 41 A 0 1 0 0 0 0 1 0 42 B (HB52E329EM) (-B6B) 85 Manufacturer’s part number 0 0 1 1 0 1 1 0 36 6 86 Manufacturer’s part number 0 1 0 0 0 0 1 0 42 B 87 Manufacturer’s part number 0 0 1 0 0 0 0 0 20 (Space) 88 Manufacturer’s part number 0 0 1 0 0 0 0 0 20 (Space) 89 Manufacturer’s part number 0 0 1 0 0 0 0 0 20 (Space) Data Sheet E0185H10 (Ver. 1.0) 7 HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B Byte No. Function described Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value Comments 90 Manufacturer’s part number 0 (Space) 91 Revision code 0 0 1 1 0 0 0 0 30 Initial 92 Revision code 0 0 1 0 0 0 0 0 20 (Space) 93 Manufacturing date × × × × × × × × ×× Year code (BCD)*4 94 Manufacturing date × × × × × × × × ×× Week code (BCD)*4 *5 0 1 0 0 0 0 0 20 6 95 to 98 Assembly serial number * 99 to 125 Manufacturer specific data — — — — — — — — — 0 1 1 0 0 1 0 0 64 1 0 1 0 1 1 1 1 AF CL = 2, 3 1 0 1 0 1 1 0 1 AD CL = 3 126 127 Reserved (Intel specification frequency) Reserved (Intel specification /CE# latency support) (-A6B) (-B6B) Notes: 1. All serial PD data are not protected. 0: Serial data, “driven Low”, 1: Serial data, “driven High” These SPD are based on Intel specification (Rev.1.2A). 2. Regarding byte32 to 35, based on JEDEC Committee Ballot JC42.5-97-119. 3. Byte72 is manufacturing location code. (ex: In case of Japan, byte72 is 4AH. 4AH shows “J” on ASCII code.) 4. Regarding byte93 and 94, based on JEDEC Committee Ballot JC42.5-97-135. BCD is “Binary Coded Decimal”. 5. All bits of 99 through 125 are not defined (“1” or “0”). 6. Bytes 95 through 98 are assembly serial number. Data Sheet E0185H10 (Ver. 1.0) 8 HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B Block Diagram (HB52E328EM) A0 to A12, BA0, BA1 /RE, /CE, /W /S0 /CS /CS DQM DQMB0 8 N0, N1 DQ0 to DQ7 8 N2, N3 DQ8 to DQ15 D0 8 I/O0 to I/O7 /CS DQM DQMB1 DQM DQMB4 N8, N9 DQ32 to DQ39 /CS DQM DQMB5 D1 8 N10, N11 I/O0 to I/O7 D4 I/O0 to I/O7 DQ40 to DQ47 D5 I/O0 to I/O7 /S2 /CS DQM DQMB2 8 N4, N5 DQ16 to DQ23 8 N6, N7 DQ24 to DQ31 D2 I/O0 to I/O7 /CS DQM DQMB3 /CS DQM DQMB6 /CS DQM DQMB7 D3 I/O0 to I/O7 8 N14, N15 I/O0 to I/O7 DQ56 to DQ63 VCC R100 CK0 D6 8 N12, N13 I/O0 to I/O7 DQ48 to DQ55 D7 VCC (D0 to D7, U0) C0 to C7 CLK :4 SDRAMs + 3.3pF cap VSS C8 to C15 VSS (D0 to D7, U0) R101 CK2 Serial PD CLK :4 SDRAMs + 3.3pF cap SCL SCL R102, R103 SDA SDA U0 CK1, CK3 C100, C101 A0 A1 WP A2 R1 CKE0 CKE (D0 to D7) SA0 SA1 SA2 VSS Notes : 1. The SDA pull-up resistor is required due to the open-drain/open-collector output. 2. The SCL pull-up resistor is recommended because of the normal SCL line inacitve "high" state. * D0 to D7: HM5225805 U0: 2k bits EEPROM C0 to C7: 0.33µF C8 to C15: 0.10µF C100, C101: 10pF N0 to N17: Network registor 10Ω R100 to R103: 10Ω R1: 47kΩ Data Sheet E0185H10 (Ver. 1.0) 9 HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B Block Diagram (HB52E329EM) A0 to A12, BA0, BA1 /RE, /CE, /W /S0 /CS /CS DQM DQMB0 8 N0, N1 DQ0 to DQ7 8 N2, N3 DQ8 to DQ15 8 N4, N5 8 N10, N11 DQ32 to DQ39 D5 I/O0 to I/O7 /CS DQM DQMB5 D1 8 N12, N13 I/O0 to I/O7 /CS DQM CB0 to CB7 D0 I/O0 to I/O7 /CS DQM DQMB1 DQM DQMB4 DQ40 to DQ47 D6 I/O0 to I/O7 D2 I/O0 to I/O7 /S2 /CS DQM DQMB2 8 N6, N7 DQ16 to DQ23 8 N8, N9 DQ24 to DQ31 D3 I/O0 to I/O7 /CS DQM DQMB3 /CS DQM DQMB6 /CS DQM DQMB7 D4 I/O0 to I/O7 8 N16, N17 I/O0 to I/O7 DQ56 to DQ63 VCC R100 CK0 D8 VCC (D0 to D8, U0) C0 to C8 VSS CLK ; 5 SDRAMs D7 8 N14, N15 I/O0 to I/O7 DQ48 to DQ55 C9 to C17 VSS (D0 to D8, U0) R101 CK1 Serial PD C100 SCL SCL SDA SDA U0 R102 CK2 CLK; 4 SDRAMs + 3.3pF cap R103 WP A0 CK3 A1 A2 R1 C101 SA0 SA1 SA2 VSS CKE0 Notes: 1. The SDA pull-up resistor is required due to the open-drain/open-collector output. CKE (D0 to D8) 2. The SCL pull-up resistor is recommended because of the normal SCL line inacitve "high" state. * D0 to D8: HM5225805 U0: 2k bits EEPROM C0 to C9: 0.33µF, C10 to C19: 0.10µF C100, C101: 10pF R1: 47kΩ N0 to N17: Network registor 10Ω R100 to R103: 10Ω Data Sheet E0185H10 (Ver. 1.0) 10 ` HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B Electrical Specifications Absolute Maximum Ratings Parameter Symbol Value Unit Note Voltage on any pin relative to VSS VT –0.5 to VCC + 0.5 (≤ 4.6 (max.)) V 1 Supply voltage relative to VSS VCC –0.5 to +4.6 V 1 Short circuit output current IOUT 50 mA Power dissipation (HB52E328EM) PT 8.0 W Power dissipation (HB52E329EM) PT 9.0 W Operating temperature Topr 0 to +65 °C Storage temperature Tstg –55 to +125 °C Notes: 1. Respect to VSS. DC Operating Conditions (TA = 0 to +65°C) Parameter Symbol Supply voltage min. max. Unit Note VCC 3.0 3.6 V 1, 2 VSS 0 0 V 3 Input high voltage VIH 2.0 VCC + 0.3 V 1, 4 Input low voltage VIL –0.3 0.8 V 1, 5 Notes: 1. 2. 3. 4. 5. All voltage referred to VSS The supply voltage with all VCC pins must be on the same level. The supply voltage with all VSS pins must be on the same level. VIH (max.) = VCC + 2.0V for pulse width ≤ 3ns at VCC. VIL (min.) = VSS − 2.0V for pulse width ≤ 3ns at VSS. Data Sheet E0185H10 (Ver. 1.0) 11 HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B DC Characteristics (TA = 0 to 65°C, VCC = 3.3V ± 0.3V, VSS = 0V) Parameter /CE latency Symbol Grade HB52E328EM HB52E329EM max. max. Unit Test condition Notes 855 mA Burst length = 1 tRC = min. 1, 2, 3 760 855 mA ICC2P 24 27 mA CKE = VIL, tCK = 12ns 6 ICC2PS 16 18 mA CKE = VIL, tCK = ∞ 7 ICC2N 160 180 mA CKE, /S = VIH, tCK = 12ns 4 ICC3P 32 36 mA CKE = VIL, tCK = 12ns 1, 2, 6 ICC3N 240 270 mA CKE, /S = VIH, tCK = 12ns 1, 2, 4 ICC4 800 900 mA tCK = min., BL = 4 1, 2, 5 (CL = 3) ICC4 800 900 mA Refresh current ICC5 1760 1980 mA tRC = min. 3 Self refresh current ICC6 24 27 mA VIH ≥ VCC – 0.2 V VIL ≤ 0.2 V 8 Operating current (CL = 2) ICC1 760 (CL = 3) ICC1 Standby current in power down Standby current in power down (input signal stable) Standby current in non power down Active standby current in power down Active standby current in non power down Burst operating current (CL = 2) Notes: 1. ICC depends on output load condition when the device is selected. ICC (max.) is specified at the output open condition. 2. One bank operation. 3. Input signals are changed once per one clock. 4. Input signals are changed once per two clocks. 5. Input signals are changed once per four clocks. 6. After power down mode, CK operating current. 7. After power down mode, no CK operating current. 8. After self refresh mode set, self refresh current. DC Characteristics2 (TA = 0 to 65°C, VCC = 3.3V ± 0.3V, VSS = 0V) Parameter Symbol min. max. Unit Test condition Input leakage current ILI –10 10 µA 0 ≤ VIN ≤ VCC Output leakage current ILO –10 10 µA 0 ≤ VOUT ≤ VCC DQ = disable Output high voltage VOH 2.4 — V IOH = –4mA Output low voltage VOL — 0.4 V IOL = 4mA Data Sheet E0185H10 (Ver. 1.0) 12 Notes HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B Pin Capacitance (TA = 25°C, VCC = 3.3V ± 0.3V) (HB52E328EM) Parameter Input capacitance Input/Output capacitance Symbol Pin max. Unit Notes CI1 Address 70 pF 1, 2, 4 CI2 /RE, /CE, /W 63 pF 1, 2, 4 CI3 CKE 68 pF 1, 2, 4 CI4 /S 34 pF 1, 2, 4 CI5 CK 50 pF 1, 2, 4 CI6 DQMB 16 pF 1, 2, 4 CI/O1 DQ 14 pF 1, 2, 3, 4 Pin Capacitance (TA = 25°C, VCC = 3.3V ± 0.3V) (HB52E329EM) Parameter Symbol Pin max. Unit Notes Input capacitance CI1 Address 72 pF 1, 2, 4 Input/Output capacitance CI2 /RE, /CE, /W 66 pF 1, 2, 4 CI3 CKE 70 pF 1, 2, 4 CI4 /S 39 pF 1, 2, 4 CI5 CK 50 pF 1, 2, 4 CI6 DQMB 21 pF 1, 2, 4 CI/O1 DQ 14 pF 1, 2, 3, 4 Notes: 1.Capacitance measured with Boonton Meter or effective capacitance measuring method. 2. Measurement condition: f = 1MHz, 1.4Vbias, 200mV swing. 3. DQMB = VIH to disable Data-out. 4. This parameter is sampled and not 100% tested. Data Sheet E0185H10 (Ver. 1.0) 13 HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B AC Characteristics (TA = 0 to 65°C,VCC = 3.3V ± 0.3V, VSS = 0V) Parameter Symbol PC100 Symbol min. max. Unit Notes System clock cycle time (CL = 2) tCK Tclk 10 — ns 1 (CL = 3) tCK Tclk 10 — ns CK high pulse width tCKH Tch 3 — ns 1 CK low pulse width tCKL Tcl 3 — ns 1 Access time from CK (CL = 2) tAC Tac — 6 ns 1, 2 (CL = 3) tAC Tac — 6 ns Data-out hold time tOH Toh 3 — ns 1, 2 CK to Data-out low impedance tLZ 2 — ns 1, 2, 3 CK to Data-out high impedance tHZ — 6 ns 1, 4 Data-in setup time tDS Tsi 2 — ns 1 Data in hold time tDH Thi 1 — ns 1 Address setup time tAS Tsi 2 — ns 1 Address hold time tAH Thi 1 — ns 1 CKE setup time tCES Tsi 2 — ns 1, 5 CKE setup time for power down exit tCESP Tpde 2 — ns 1 CKE hold time tCEH Thi 1 — ns 1 Command setup time tCS Tsi 2 — ns 1 Command hold time tCH Thi 1 — ns 1 Ref/Active to Ref/Active command period tRC Trc 70 — ns 1 Active to precharge command period tRAS Tras 50 120000 ns 1 Active command to column command (same bank) tRCD Trcd 20 — ns 1 Precharge to active command period tRP Trp 20 — ns 1 Write recovery or data-in to precharge lead tDPL time Tdpl 20 — ns 1 Active (a) to Active (b) command period tRRD Trrd 20 — ns 1 Transition time (rise and fall) tT 1 5 ns Refresh period tREF — 64 ms Notes: 1. 2. 3. 4. 5. AC measurement assumes tT = 1ns. Reference level for timing of input signals is 1.5V. Access time is measured at 1.5V. Load condition is CL = 50pF. tLZ (min.) defines the time at which the outputs achieves the low impedance state. tHZ (max.) defines the time at which the outputs achieves the high impedance state. tCES defines CKE setup time to CK rising edge except power down exit command. Test Conditions • Input and output timing reference levels: 1.5V • Input waveform and output load: See following figures 2.4V input 0.4V I/O 2.0V 0.8V CL tT tT Input waveform and Output load Data Sheet E0185H10 (Ver. 1.0) 14 HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B Relationship Between Frequency and Minimum Latency Parameter Frequency (MHz) 100 tCK (ns) Symbol Active command to column command (same bank) IRCD PC100 Symbol 10 Notes 2 1 7 = [IRAS + IRP] 1 Active command to precharge command (same bank) IRAS 5 1 Precharge command to active command (same bank) IRP 2 1 2 1 Active command to active command (same bank) IRC Write recovery or data-in to precharge command (same bank) IDPL Active command to active command (different bank) IRRD 2 1 Self refresh exit time ISREX Tsrx 1 2 Last data in to active command (Auto precharge, same bank) IAPW Tdal 4 = [IDPL + IRP] Self refresh exit to command input ISEC 7 = [IRC] 3 Precharge command to high impedance (CL = 2) IHZP Troh 2 (CL = 3) IHZP Troh 3 Last data out to active command (Auto precharge, same bank) Last data out to precharge (early precharge) (CL = 2) Tdpl IAPR 1 IEP –1 (CL = 3) IEP –2 Column command to column command ICCD Tccd 1 Write command to data in latency IWCD Tdwd 0 DQMB to data in IDID Tdqm 0 DQMB to data out IDOD Tdqz 2 CKE to CK disable ICLE Tcke 1 Register set to active command IRSA Tmrd /S to command disable ICDD 0 Power down exit to command input IPEC 1 Notes: 1. IRCD to IRRD are recommended value. 2. Be valid [DESL] or [NOP] at next command of self refresh exit. 3. Except [DESL] and [NOP] Data Sheet E0185H10 (Ver. 1.0) 15 1 HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B Pin Functions CK0, CK2 (input pin): CK is the master clock input to this pin. The other input signals are referred at CK rising edge. /S0, /S2 (input pin): When /S is Low, the command input cycle becomes valid. When /S is High, all inputs are ignored. However, internal operations (bank active, burst operations, etc.) are held. /RE, /CE and /W (input pins): Although these pin names are the same as those of conventional DRAMs, they function in a different way. These pins define operation commands (read, write, etc.) depending on the combination of their voltage levels. For details, refer to the command operation section. A0 to A12 (input pins): Row address (AX0 to AX12) is determined by A0 to A12 level at the bank active command cycle CK rising edge. Column address (AY0 to AY9) is determined by A0 to A9 level at the read or write command cycle CK rising edge. And this column address becomes burst access start address. A10 defines the precharge mode. When A10 = High at the precharge command cycle, all banks are precharged. But when A10 = Low at the precharge command cycle, only the bank that is selected by BA0, BA1 (BA) is precharged. BA0, BA1 (input pin): BA0, BA1 are bank select signal (BA). The memory array is divided into bank 0, bank 1, bank 2 and bank 3. If BA1 is Low and BA0 is Low, bank 0 is selected. If BA1 is High and BA0 is Low, bank 1 is selected. If BA1 is Low and BA0 is High, bank 2 is selected. If BA1 is High and BA0 is High, bank 3 is selected. CKE0 (input pin): This pin determines whether or not the next CK is valid. If CKE is High, the next CK rising edge is valid. If CKE is Low, the next CK rising edge is invalid. This pin is used for power-down and clock suspend modes. DQMB0 to DQMB7 (input pins): Read operation: If DQMB is High, the output buffer becomes High-Z. If the DQMB is Low, the output buffer becomes Low-Z. Write operation: If DQMB is High, the previous data is held (the new data is not written). If DQMB is Low, the data is written. DQ0 to DQ63, CB0 to CB7 (input/output pins): Data is input to and output from these pins. VCC (power supply pins): 3.3V is applied. VSS (power supply pins): Ground is connected. Detailed Operation Part Refer to the HM5225165B/HM5225805B/HM5225405B-75/A6/B6 datasheet (E0082H). Data Sheet E0185H10 (Ver. 1.0) 16 HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B Physical Outline Unit: mm inch Front side 133.37 ± 0.15 5.251 ± 0.006 (DATUM -A-) B C 0.450 36.83 1.450 Back side 4.00 min 0.157 min ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Component area ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (Front) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 1 84 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 11.43 A 1.27 ± 0.10 0.050 ± 0.004 54.61 2.150 127.35 ± 0.15 5.014 ± 0.006 2 – φ 3.00 ± 0.10 2 – φ 0.118 ± 0.003 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Component area ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (Back) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (DATUM -A-) Detail C R FULL (DATUM -A-) 6.35 0.250 2.00 ± 0.10 0.079 ± 0.004 3.125 ± 0.125 0.123 ± 0.005 1.27 0.050 0.20 ± 0.15 0.010 ± 0.0004 2.50 ± 0.20 0.098 ± 0.008 1.00 ± 0.05 0.039 ± 0.002 Detail B 34.925 1.375 85 Detail A 17.80 0.70 168 4.00 ±0.10 0.157 ± 0.004 4.00 max 0.157 max (63.67) (2.51) Note: Tolerance on all dimensions ± 0.15/0.006 unless otherwise specified. Data Sheet E0185H10 (Ver. 1.0) 17 1.00 0.039 3.125 ± 0.125 0.123 ± 0.005 3.00 ± 0.10 0.118 ± 0.004 3.00 typ 0.118 typ R FULL 6.35 0.250 4.175 0.164 2.00 ± 0.10 0.079 ± 0.004 ;; ;; ;; ; HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B NOTES FOR CMOS DEVICES 1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it. 2 HANDLING OF UNUSED INPUT PINS FOR CMOS Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to V DD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices. 3 STATUS BEFORE INITIALIZATION OF MOS DEVICES Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function. Data Sheet E0185H10 (Ver. 1.0) 18 HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B CAUTION FOR HANDLING MEMORY MODULES When handling or inserting memory modules, be sure not to touch any components on the modules, such as the memory IC, chip capacitors and chip resistors. It is necessary to avoid undue mechanical stress on these components to prevent damaging them. When re-packing memory modules, be sure the modules are NOT touching each other. Modules in contact with other modules may cause excessive mechanical stress, which may damage the modules. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Elpida Memory, Inc. Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights (including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or third parties by or arising from the use of the products or information listed in this document. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of Elpida Memory, Inc. or others. Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of the customer's equipment shall be done under the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information. [Product applications] Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability. However, users are instructed to contact Elpida Memory's sales office before using the product in aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment, medical equipment for life support, or other such application in which especially high quality and reliability is demanded or where its failure or malfunction may directly threaten human life or cause risk of bodily injury. [Product usage] Design your application so that the product is used within the ranges and conditions guaranteed by Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no responsibility for failure or damage when the product is used beyond the guaranteed ranges and conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other consequential damage due to the operation of the Elpida Memory, Inc. product. [Usage environment] This product is not designed to be resistant to electromagnetic waves or radiation. This product must be used in a non-condensing environment. If you export the products or technology described in this document that are controlled by the Foreign Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by U.S. export control regulations, or another country's export control laws or regulations, you must follow the necessary procedures in accordance with such laws or regulations. If these products/technology are sold, leased, or transferred to a third party, or a third party is granted license to use these products, that third party must be made aware that they are responsible for compliance with the relevant laws and regulations. M02 01. 4 Data Sheet E0185H10 (Ver. 1.0) 19