ELPIDA HB52E329EM-A6B

DATA SHEET
256MB Unbuffered SDRAM DIMM
HB52E328EM-A6B, -B6B (32M words × 64 bits, 1 bank)
HB52E329EM-A6B, -B6B (32M words × 72 bits, 1 bank)
Description
The HB52E328EM and HB52E329EM belong to 8-byte
DIMM (Dual In-line Memory Module) family, and have
been developed as an optimized main memory solution
for 8-byte processor applications.
They are
synchronous Dynamic RAM Module, mounted 256M
bits SDRAMs (HM5225805BTT) sealed in TSOP
package, and 1 piece of serial EEPROM (2k bits) for
Presence Detect (PD).
The HB52E328EM is
organized 32M × 64 × 1 bank mounted 8 pieces of
256M bits SDRAM. The HB52E329EM is organized
32M × 72 × 1 bank mounted 9 pieces of 256M bits
SDRAM.
Therefore, they make high density mounting possible
without surface mount technology.
They provide
common data inputs and outputs.
Decoupling
capacitors are mounted beside each TSOP on the
module board.
• Byte control by DQMB
• Refresh cycles: 8192 refresh cycles/64ms
• 2 variations of refresh
 Auto refresh
 Self refresh
Features
• Fully compatible with: JEDEC standard outline 8byte DIMM
• 168-pin socket type package (dual lead out)
 Outline: 133.37mm (Length) × 34.925mm (Height)
× 4.00mm (Thickness)
 Lead pitch: 1.27mm
• 3.3V power supply
• Clock frequency: 100MHz (max.)
• LVTTL interface
• Data bus width : × 64 Non parity (HB52E328EM)
: × 72 ECC (HB52E329EM)
• Single pulsed /RAS
• 4 Banks can operates simultaneously and
independently
• Burst read/write operation and burst read/single write
operation capability
• Programmable burst length (BL): 1, 2, 4, 8
• 2 variations of burst sequence
 Sequential
 Interleave
• Programmable /CE latency (CL)
: 2, 3 (HB52E328EM/329EM-A6B)
: 3 (HB52E328EM/329EM-B6B)
Document No. E0185H10 (Ver. 1.0)
Date Published July 2001
Printed in Japan
URL: http://www.elpida.com
C
Elpida Memory, Inc. 2001
Elpida Memory, Inc. is a joint venture DRAM company of NEC Corporation and Hitachi, Ltd.
HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B
Ordering Information
Clock frequency
MHz (max.)
Part number
HB52E328EM-A6B
HB52E328EM-B6B
HB52E329EM-A6B
HB52E329EM-B6B
100
100
/CE latency
Package
Contact pad
2, 3
3
2, 3
3
168-pin dual lead out
socket type
Gold
Pin Configurations
1 pin 10 pin 11 pin
40 pin 41 pin
85 pin 94 pin 95 pin 124 pin 125 pin
84 pin
168 pin
[HB52E328EM]
Pin No.
Pin name
Pin No.
Pin name
Pin No.
Pin name
Pin No.
Pin name
1
VSS
43
VSS
85
VSS
127
VSS
2
DQ0
44
NC
86
DQ32
128
CKE0
3
DQ1
45
/S2
87
DQ33
129
NC
4
DQ2
46
DQMB2
88
DQ34
130
DQMB6
5
DQ3
47
DQMB3
89
DQ35
131
DQMB7
6
VCC
48
NC
90
VCC
132
NC
7
DQ4
49
VCC
91
DQ36
133
VCC
8
DQ5
50
NC
92
DQ37
134
NC
9
DQ6
51
NC
93
DQ38
135
NC
10
DQ7
52
NC
94
DQ39
136
NC
11
DQ8
53
NC
95
DQ40
137
NC
12
VSS
54
VSS
96
VSS
138
VSS
13
DQ9
55
DQ16
97
DQ41
139
DQ48
14
DQ10
56
DQ17
98
DQ42
140
DQ49
15
DQ11
57
DQ18
99
DQ43
141
DQ50
16
DQ12
58
DQ19
100
DQ44
142
DQ51
17
DQ13
59
VCC
101
DQ45
143
VCC
18
VCC
60
DQ20
102
VCC
144
DQ52
19
DQ14
61
NC
103
DQ46
145
NC
20
DQ15
62
NC
104
DQ47
146
NC
21
NC
63
NC
105
NC
147
NC
22
NC
64
VSS
106
NC
148
VSS
23
VSS
65
DQ21
107
VSS
149
DQ53
24
NC
66
DQ22
108
NC
150
DQ54
25
NC
67
DQ23
109
NC
151
DQ55
26
VCC
68
VSS
110
VCC
152
VSS
27
/W
69
DQ24
111
/CE
153
DQ56
28
DQMB0
70
DQ25
112
DQMB4
154
DQ57
Data Sheet E0185H10 (Ver. 1.0)
2
HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B
Pin No.
Pin name
Pin No.
Pin name
Pin No.
Pin name
Pin No.
Pin name
29
DQMB1
71
DQ26
113
DQMB5
155
DQ58
30
/S0
72
DQ27
114
NC
156
DQ59
31
NC
73
VCC
115
/RE
157
VCC
32
VSS
74
DQ28
116
VSS
158
DQ60
33
A0
75
DQ29
117
A1
159
DQ61
34
A2
76
DQ30
118
A3
160
DQ62
35
A4
77
DQ31
119
A5
161
DQ63
36
A6
78
VSS
120
A7
162
VSS
37
A8
79
CK2
121
A9
163
CK3
38
A10 (AP)
80
NC
122
BA0
164
NC
39
BA1
81
WP
123
A11
165
SA0
40
VCC
82
SDA
124
VCC
166
SA1
41
VCC
83
SCL
125
CK1
167
SA2
42
CK0
84
VCC
126
A12
168
VCC
[HB52E329EM]
Pin No.
Pin name
Pin No.
Pin name
Pin No.
Pin name
Pin No.
Pin name
1
VSS
43
VSS
85
VSS
127
VSS
2
DQ0
44
NC
86
DQ32
128
CKE0
3
DQ1
45
/S2
87
DQ33
129
NC
4
DQ2
46
DQMB2
88
DQ34
130
DQMB6
5
DQ3
47
DQMB3
89
DQ35
131
DQMB7
6
VCC
48
NC
90
VCC
132
NC
7
DQ4
49
VCC
91
DQ36
133
VCC
8
DQ5
50
NC
92
DQ37
134
NC
9
DQ6
51
NC
93
DQ38
135
NC
10
DQ7
52
CB2
94
DQ39
136
CB6
11
DQ8
53
CB3
95
DQ40
137
CB7
12
VSS
54
VSS
96
VSS
138
VSS
13
DQ9
55
DQ16
97
DQ41
139
DQ48
14
DQ10
56
DQ17
98
DQ42
140
DQ49
15
DQ11
57
DQ18
99
DQ43
141
DQ50
16
DQ12
58
DQ19
100
DQ44
142
DQ51
17
DQ13
59
VCC
101
DQ45
143
VCC
18
VCC
60
DQ20
102
VCC
144
DQ52
19
DQ14
61
NC
103
DQ46
145
NC
20
DQ15
62
NC
104
DQ47
146
NC
21
CB0
63
NC
105
CB4
147
NC
22
CB1
64
VSS
106
CB5
148
VSS
23
VSS
65
DQ21
107
VSS
149
DQ53
24
NC
66
DQ22
108
NC
150
DQ54
25
NC
67
DQ23
109
NC
151
DQ55
26
VCC
68
VSS
110
VCC
152
VSS
Data Sheet E0185H10 (Ver. 1.0)
3
HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B
Pin No.
Pin name
Pin No.
Pin name
Pin No.
Pin name
Pin No.
Pin name
27
/W
69
DQ24
111
/CE
153
DQ56
28
DQMB0
70
DQ25
112
DQMB4
154
DQ57
29
DQMB1
71
DQ26
113
DQMB5
155
DQ58
30
/S0
72
DQ27
114
NC
156
DQ59
31
NC
73
VCC
115
/RE
157
VCC
32
VSS
74
DQ28
116
VSS
158
DQ60
33
A0
75
DQ29
117
A1
159
DQ61
34
A2
76
DQ30
118
A3
160
DQ62
35
A4
77
DQ31
119
A5
161
DQ63
36
A6
78
VSS
120
A7
162
VSS
37
A8
79
CK2
121
A9
163
CK3
38
A10 (AP)
80
NC
122
BA0
164
NC
39
BA1
81
WP
123
A11
165
SA0
40
VCC
82
SDA
124
VCC
166
SA1
41
VCC
83
SCL
125
CK1
167
SA2
42
CK0
84
VCC
126
A12
168
VCC
Pin Description
[HB52E328EM]
Pin name
Function
A0 to A12
Address input
 Row address
A0 to A12
 Column address A0 to A9
BA0, BA1
Bank select address
DQ0 to DQ63
Data input/output
/S0, /S2
Chip select input
/RE
Row enable (/RAS) input
/CE
Column enable (/CAS) input
/W
Write enable input
DQMB0 to DQMB7
Byte data mask
CK0, CK2
Clock input
CKE0
Clock enable input
WP
Write protect for serial PD
SDA
Data input/output for serial PD
SCL
Clock input for serial PD
SA0 to SA2
Serial address input
VCC
Primary positive power supply
VSS
Ground
NC
No connection
Data Sheet E0185H10 (Ver. 1.0)
4
HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B
[HB52E329EM]
Pin name
Function
A0 to A12
Address input
 Row address
A0 to A12
 Column address A0 to A9
BA0, BA1
Bank select address
DQ0 to DQ63
Data input/output
CB0 to CB7
Check bit (Data input/output)
/S0, /S2
Chip select input
/RE
Row enable (/RAS) input
/CE
Column enable (/CAS) input
/W
Write enable input
DQMB0 to DQMB7
Byte data mask
CK0, CK2
Clock input
CKE0
Clock enable input
WP
Write protect for serial PD
SDA
Data input/output for serial PD
SCL
Clock input for serial PD
SA0 to SA2
Serial address input
VCC
Primary positive power supply
VSS
Ground
NC
No connection
Data Sheet E0185H10 (Ver. 1.0)
5
HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B
1
Serial PD Matrix*
Byte No.
Function described
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value
Comments
0
Number of bytes used by module
manufacturer
1
0
0
0
0
0
0
0
80
128
1
Total SPD memory size
0
0
0
0
1
0
0
0
08
256 byte
2
Memory type
0
0
0
0
0
1
0
0
04
SDRAM
3
Number of row addresses bits
0
0
0
0
1
1
0
1
0D
13
4
Number of column addresses bits
0
0
0
0
1
0
1
0
0A
10
5
Number of banks
0
0
0
0
0
0
0
1
01
1
6
Module data width
(HB52E328EM)
0
1
0
0
0
0
0
0
40
64 bit
(HB52E329EM)
0
1
0
0
1
0
0
0
48
72 bit
7
Module data width (continued)
0
0
0
0
0
0
0
0
00
0 (+)
8
Module interface signal levels
0
0
0
0
0
0
0
1
01
LVTTL
1
0
1
0
0
0
0
0
A0
CL = 3
0
1
1
0
0
0
0
0
60
0
0
0
0
0
0
0
0
00
Non parity
(HB52E329EM)
0
0
0
0
0
0
1
0
02
ECC
12
Refresh rate/type
1
0
0
0
0
0
1
0
82
Normal
(7.8125 µs)
Self refresh
13
SDRAM width
0
0
0
0
1
0
0
0
08
32M × 8
14
Error checking SDRAM width
(HB52E328EM)
0
0
0
0
0
0
0
0
00
—
0
0
0
0
1
0
0
0
08
×8
0
0
0
0
0
0
0
1
01
1 CLK
0
0
0
0
1
1
1
1
0F
1, 2, 4, 8
0
0
0
0
0
1
0
0
04
4
0
0
0
0
0
1
1
0
06
2, 3
0
0
0
0
0
0
0
1
01
0
0
0
0
0
0
0
0
1
01
0
SDRAM device attributes
0
0
0
0
0
0
0
0
00
Non buffer
22
SDRAM device attributes: General
0
0
0
0
1
1
1
0
0E
VCC ± 10%
23
SDRAM cycle time
(2nd highest /CE latency)
(-A6B) 10ns
1
0
1
0
0
0
0
0
A0
CL = 2
1
1
1
1
0
0
0
0
F0
0
1
1
0
0
0
0
0
60
1
0
0
1
0
0
0
0
90
9
10
11
SDRAM cycle time
(highest /CE latency)
10ns
SDRAM access from Clock
(highest /CE latency)
6ns
Module configuration type
(HB52E328EM)
(HB52E329EM)
15
16
17
18
19
20
21
SDRAM device attributes:
minimum clock delay for back-toback random column addresses
SDRAM device attributes:
Burst lengths supported
SDRAM device attributes: number of
banks on SDRAM device
SDRAM device attributes:
/CE latency
SDRAM device attributes:
/S latency
SDRAM device attributes:
/W latency
(-B6B) 15ns
24
SDRAM access from Clock
(2nd highest /CE latency)
(-A6B) 6ns
(-B6B) 9ns
Data Sheet E0185H10 (Ver. 1.0)
6
CL = 2
HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B
Byte No.
25
26
Function described
SDRAM cycle time
(3rd highest /CE latency)
Undefined
SDRAM access from Clock (3rd
highest /CE latency)
Undefined
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value
0
0
0
0
0
0
0
0
00
0
0
0
0
0
0
0
0
00
Comments
27
Minimum row precharge time
0
0
0
1
0
1
0
0
14
20ns
28
Row active to row active min
0
0
0
1
0
1
0
0
14
20ns
29
/RE to /CE delay min
0
0
0
1
0
1
0
0
14
20ns
30
Minimum /RE pulse width
0
1
1
0
0
0
1
0
32
50ns
31
Density of each bank on module
0
1
0
0
0
0
0
0
40
1 bank
256M byte
0
0
1
0
0
0
0
0
20
2.0ns
0
0
0
1
0
0
0
0
10
1.0ns
32
33
Address and command signal input
setup time
Address and command signal input
hold time
34
Data signal input setup time
0
0
1
0
0
0
0
0
20
2.0ns
35
Data signal input hold time
0
0
0
1
0
0
0
0
10
1.0ns
36 to 61
Superset information
0
0
0
0
0
0
0
0
00
Future use
62
SPD data revision code
0
0
0
1
0
0
1
0
12
Rev. 1.2A
63
Checksum for bytes 0 to 62
(HB52E328EM-A6B)
1
0
1
1
1
0
0
1
B9
185
(HB52E328EM-B6B)
0
0
1
1
1
0
0
1
39
57
(HB52E329EM-A6B)
1
1
0
0
1
0
1
1
CB
203
(HB52E329EM-B6B)
0
1
0
0
1
0
1
1
4B
75
HITACHI
64
Manufacturer’s JEDEC ID code
0
0
0
0
0
1
1
1
07
65 to 71
Manufacturer’s JEDEC ID code
0
0
0
0
0
0
0
0
00
72
Manufacturing location
×
×
×
×
×
×
×
×
××
*3 (ASCII-8bit code)
73
Manufacturer’s part number
0
1
0
0
1
0
0
0
48
H
74
Manufacturer’s part number
0
1
0
0
0
0
1
0
42
B
75
Manufacturer’s part number
0
0
1
1
0
1
0
1
35
5
76
Manufacturer’s part number
0
0
1
1
0
0
1
0
32
2
77
Manufacturer’s part number
0
1
0
0
0
1
0
1
45
E
78
Manufacturer’s part number
0
0
1
1
0
0
1
1
33
3
79
Manufacturer’s part number
0
0
1
1
0
0
1
0
32
2
80
Manufacturer’s part
(HB52E328EM)
0
0
1
1
1
0
0
0
38
8
0
0
1
1
1
0
0
1
39
9
81
Manufacturer’s part number
0
1
0
0
0
1
0
1
45
E
82
Manufacturer’s part number
0
1
0
0
1
1
0
1
4D
M
83
Manufacturer’s part number
0
0
1
0
1
1
0
1
2D
—
84
Manufacturer’s part number
(-A6B)
0
1
0
0
0
0
0
1
41
A
0
1
0
0
0
0
1
0
42
B
(HB52E329EM)
(-B6B)
85
Manufacturer’s part number
0
0
1
1
0
1
1
0
36
6
86
Manufacturer’s part number
0
1
0
0
0
0
1
0
42
B
87
Manufacturer’s part number
0
0
1
0
0
0
0
0
20
(Space)
88
Manufacturer’s part number
0
0
1
0
0
0
0
0
20
(Space)
89
Manufacturer’s part number
0
0
1
0
0
0
0
0
20
(Space)
Data Sheet E0185H10 (Ver. 1.0)
7
HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B
Byte No.
Function described
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value
Comments
90
Manufacturer’s part number
0
(Space)
91
Revision code
0
0
1
1
0
0
0
0
30
Initial
92
Revision code
0
0
1
0
0
0
0
0
20
(Space)
93
Manufacturing date
×
×
×
×
×
×
×
×
××
Year code (BCD)*4
94
Manufacturing date
×
×
×
×
×
×
×
×
××
Week code (BCD)*4
*5
0
1
0
0
0
0
0
20
6
95 to 98
Assembly serial number
*
99 to 125
Manufacturer specific data
—
—
—
—
—
—
—
—
—
0
1
1
0
0
1
0
0
64
1
0
1
0
1
1
1
1
AF
CL = 2, 3
1
0
1
0
1
1
0
1
AD
CL = 3
126
127
Reserved (Intel specification
frequency)
Reserved (Intel specification /CE#
latency support)
(-A6B)
(-B6B)
Notes: 1. All serial PD data are not protected. 0: Serial data, “driven Low”, 1: Serial data, “driven High” These
SPD are based on Intel specification (Rev.1.2A).
2. Regarding byte32 to 35, based on JEDEC Committee Ballot JC42.5-97-119.
3. Byte72 is manufacturing location code. (ex: In case of Japan, byte72 is 4AH. 4AH shows “J” on ASCII
code.)
4. Regarding byte93 and 94, based on JEDEC Committee Ballot JC42.5-97-135. BCD is “Binary Coded
Decimal”.
5. All bits of 99 through 125 are not defined (“1” or “0”).
6. Bytes 95 through 98 are assembly serial number.
Data Sheet E0185H10 (Ver. 1.0)
8
HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B
Block Diagram (HB52E328EM)
A0 to A12, BA0, BA1
/RE, /CE, /W
/S0
/CS
/CS
DQM
DQMB0
8 N0, N1
DQ0 to DQ7
8 N2, N3
DQ8 to DQ15
D0
8
I/O0
to I/O7
/CS
DQM
DQMB1
DQM
DQMB4
N8, N9
DQ32 to DQ39
/CS
DQM
DQMB5
D1
8 N10, N11
I/O0
to I/O7
D4
I/O0
to I/O7
DQ40 to DQ47
D5
I/O0
to I/O7
/S2
/CS
DQM
DQMB2
8 N4, N5
DQ16 to DQ23
8 N6, N7
DQ24 to DQ31
D2
I/O0
to I/O7
/CS
DQM
DQMB3
/CS
DQM
DQMB6
/CS
DQM
DQMB7
D3
I/O0
to I/O7
8 N14, N15 I/O0
to I/O7
DQ56 to DQ63
VCC
R100
CK0
D6
8 N12, N13 I/O0
to I/O7
DQ48 to DQ55
D7
VCC (D0 to D7, U0)
C0 to C7
CLK
:4 SDRAMs + 3.3pF cap VSS
C8 to C15
VSS (D0 to D7, U0)
R101
CK2
Serial PD
CLK
:4 SDRAMs + 3.3pF cap
SCL
SCL
R102, R103
SDA
SDA
U0
CK1, CK3
C100, C101
A0
A1
WP
A2
R1
CKE0
CKE (D0 to D7)
SA0 SA1 SA2
VSS
Notes :
1. The SDA pull-up resistor is required due to
the open-drain/open-collector output.
2. The SCL pull-up resistor is recommended
because of the normal SCL line inacitve
"high" state.
* D0 to D7: HM5225805
U0: 2k bits EEPROM
C0 to C7: 0.33µF
C8 to C15: 0.10µF
C100, C101: 10pF
N0 to N17: Network registor 10Ω
R100 to R103: 10Ω
R1: 47kΩ
Data Sheet E0185H10 (Ver. 1.0)
9
HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B
Block Diagram (HB52E329EM)
A0 to A12, BA0, BA1
/RE, /CE, /W
/S0
/CS
/CS
DQM
DQMB0
8 N0, N1
DQ0 to DQ7
8 N2, N3
DQ8 to DQ15
8 N4, N5
8 N10, N11
DQ32 to DQ39
D5
I/O0
to I/O7
/CS
DQM
DQMB5
D1
8 N12, N13
I/O0
to I/O7
/CS
DQM
CB0 to CB7
D0
I/O0
to I/O7
/CS
DQM
DQMB1
DQM
DQMB4
DQ40 to DQ47
D6
I/O0
to I/O7
D2
I/O0
to I/O7
/S2
/CS
DQM
DQMB2
8 N6, N7
DQ16 to DQ23
8 N8, N9
DQ24 to DQ31
D3
I/O0
to I/O7
/CS
DQM
DQMB3
/CS
DQM
DQMB6
/CS
DQM
DQMB7
D4
I/O0
to I/O7
8 N16, N17 I/O0
to I/O7
DQ56 to DQ63
VCC
R100
CK0
D8
VCC (D0 to D8, U0)
C0 to C8
VSS
CLK ; 5 SDRAMs
D7
8 N14, N15 I/O0
to I/O7
DQ48 to DQ55
C9 to C17
VSS (D0 to D8, U0)
R101
CK1
Serial PD
C100
SCL
SCL
SDA
SDA
U0
R102
CK2
CLK; 4 SDRAMs + 3.3pF cap
R103
WP
A0
CK3
A1
A2
R1
C101
SA0 SA1 SA2 VSS
CKE0
Notes:
1. The SDA pull-up resistor is required due to
the open-drain/open-collector output.
CKE (D0 to D8)
2. The SCL pull-up resistor is recommended
because of the normal SCL line inacitve
"high" state.
* D0 to D8: HM5225805
U0: 2k bits EEPROM
C0 to C9: 0.33µF, C10 to C19: 0.10µF
C100, C101: 10pF
R1: 47kΩ
N0 to N17: Network registor 10Ω
R100 to R103: 10Ω
Data Sheet E0185H10 (Ver. 1.0)
10
`
HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B
Electrical Specifications
Absolute Maximum Ratings
Parameter
Symbol
Value
Unit
Note
Voltage on any pin relative to VSS
VT
–0.5 to VCC + 0.5
(≤ 4.6 (max.))
V
1
Supply voltage relative to VSS
VCC
–0.5 to +4.6
V
1
Short circuit output current
IOUT
50
mA
Power dissipation (HB52E328EM)
PT
8.0
W
Power dissipation (HB52E329EM)
PT
9.0
W
Operating temperature
Topr
0 to +65
°C
Storage temperature
Tstg
–55 to +125
°C
Notes: 1. Respect to VSS.
DC Operating Conditions (TA = 0 to +65°C)
Parameter
Symbol
Supply voltage
min.
max.
Unit
Note
VCC
3.0
3.6
V
1, 2
VSS
0
0
V
3
Input high voltage
VIH
2.0
VCC + 0.3
V
1, 4
Input low voltage
VIL
–0.3
0.8
V
1, 5
Notes: 1.
2.
3.
4.
5.
All voltage referred to VSS
The supply voltage with all VCC pins must be on the same level.
The supply voltage with all VSS pins must be on the same level.
VIH (max.) = VCC + 2.0V for pulse width ≤ 3ns at VCC.
VIL (min.) = VSS − 2.0V for pulse width ≤ 3ns at VSS.
Data Sheet E0185H10 (Ver. 1.0)
11
HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B
DC Characteristics (TA = 0 to 65°C, VCC = 3.3V ± 0.3V, VSS = 0V)
Parameter
/CE latency
Symbol
Grade
HB52E328EM
HB52E329EM
max.
max.
Unit
Test condition
Notes
855
mA
Burst length = 1
tRC = min.
1, 2, 3
760
855
mA
ICC2P
24
27
mA
CKE = VIL, tCK = 12ns 6
ICC2PS
16
18
mA
CKE = VIL, tCK = ∞
7
ICC2N
160
180
mA
CKE, /S = VIH,
tCK = 12ns
4
ICC3P
32
36
mA
CKE = VIL, tCK = 12ns 1, 2, 6
ICC3N
240
270
mA
CKE, /S = VIH,
tCK = 12ns
1, 2, 4
ICC4
800
900
mA
tCK = min., BL = 4
1, 2, 5
(CL = 3)
ICC4
800
900
mA
Refresh current
ICC5
1760
1980
mA
tRC = min.
3
Self refresh current
ICC6
24
27
mA
VIH ≥ VCC – 0.2 V
VIL ≤ 0.2 V
8
Operating current
(CL = 2)
ICC1
760
(CL = 3)
ICC1
Standby current in power
down
Standby current in power
down (input signal stable)
Standby current in non
power down
Active standby current in
power down
Active standby current in
non power down
Burst operating current
(CL = 2)
Notes: 1. ICC depends on output load condition when the device is selected. ICC (max.) is specified at the output
open condition.
2. One bank operation.
3. Input signals are changed once per one clock.
4. Input signals are changed once per two clocks.
5. Input signals are changed once per four clocks.
6. After power down mode, CK operating current.
7. After power down mode, no CK operating current.
8. After self refresh mode set, self refresh current.
DC Characteristics2 (TA = 0 to 65°C, VCC = 3.3V ± 0.3V, VSS = 0V)
Parameter
Symbol
min.
max.
Unit
Test condition
Input leakage current
ILI
–10
10
µA
0 ≤ VIN ≤ VCC
Output leakage current
ILO
–10
10
µA
0 ≤ VOUT ≤ VCC
DQ = disable
Output high voltage
VOH
2.4
—
V
IOH = –4mA
Output low voltage
VOL
—
0.4
V
IOL = 4mA
Data Sheet E0185H10 (Ver. 1.0)
12
Notes
HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B
Pin Capacitance (TA = 25°C, VCC = 3.3V ± 0.3V) (HB52E328EM)
Parameter
Input capacitance
Input/Output capacitance
Symbol
Pin
max.
Unit
Notes
CI1
Address
70
pF
1, 2, 4
CI2
/RE, /CE, /W
63
pF
1, 2, 4
CI3
CKE
68
pF
1, 2, 4
CI4
/S
34
pF
1, 2, 4
CI5
CK
50
pF
1, 2, 4
CI6
DQMB
16
pF
1, 2, 4
CI/O1
DQ
14
pF
1, 2, 3, 4
Pin Capacitance (TA = 25°C, VCC = 3.3V ± 0.3V) (HB52E329EM)
Parameter
Symbol
Pin
max.
Unit
Notes
Input capacitance
CI1
Address
72
pF
1, 2, 4
Input/Output capacitance
CI2
/RE, /CE, /W
66
pF
1, 2, 4
CI3
CKE
70
pF
1, 2, 4
CI4
/S
39
pF
1, 2, 4
CI5
CK
50
pF
1, 2, 4
CI6
DQMB
21
pF
1, 2, 4
CI/O1
DQ
14
pF
1, 2, 3, 4
Notes: 1.Capacitance measured with Boonton Meter or effective capacitance measuring method.
2. Measurement condition: f = 1MHz, 1.4Vbias, 200mV swing.
3. DQMB = VIH to disable Data-out.
4. This parameter is sampled and not 100% tested.
Data Sheet E0185H10 (Ver. 1.0)
13
HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B
AC Characteristics (TA = 0 to 65°C,VCC = 3.3V ± 0.3V, VSS = 0V)
Parameter
Symbol
PC100
Symbol
min.
max.
Unit
Notes
System clock cycle time
(CL = 2)
tCK
Tclk
10
—
ns
1
(CL = 3)
tCK
Tclk
10
—
ns
CK high pulse width
tCKH
Tch
3
—
ns
1
CK low pulse width
tCKL
Tcl
3
—
ns
1
Access time from CK
(CL = 2)
tAC
Tac
—
6
ns
1, 2
(CL = 3)
tAC
Tac
—
6
ns
Data-out hold time
tOH
Toh
3
—
ns
1, 2
CK to Data-out low impedance
tLZ
2
—
ns
1, 2, 3
CK to Data-out high impedance
tHZ
—
6
ns
1, 4
Data-in setup time
tDS
Tsi
2
—
ns
1
Data in hold time
tDH
Thi
1
—
ns
1
Address setup time
tAS
Tsi
2
—
ns
1
Address hold time
tAH
Thi
1
—
ns
1
CKE setup time
tCES
Tsi
2
—
ns
1, 5
CKE setup time for power down exit
tCESP
Tpde
2
—
ns
1
CKE hold time
tCEH
Thi
1
—
ns
1
Command setup time
tCS
Tsi
2
—
ns
1
Command hold time
tCH
Thi
1
—
ns
1
Ref/Active to Ref/Active command period
tRC
Trc
70
—
ns
1
Active to precharge command period
tRAS
Tras
50
120000
ns
1
Active command to column command
(same bank)
tRCD
Trcd
20
—
ns
1
Precharge to active command period
tRP
Trp
20
—
ns
1
Write recovery or data-in to precharge lead
tDPL
time
Tdpl
20
—
ns
1
Active (a) to Active (b) command period
tRRD
Trrd
20
—
ns
1
Transition time (rise and fall)
tT
1
5
ns
Refresh period
tREF
—
64
ms
Notes: 1.
2.
3.
4.
5.
AC measurement assumes tT = 1ns. Reference level for timing of input signals is 1.5V.
Access time is measured at 1.5V. Load condition is CL = 50pF.
tLZ (min.) defines the time at which the outputs achieves the low impedance state.
tHZ (max.) defines the time at which the outputs achieves the high impedance state.
tCES defines CKE setup time to CK rising edge except power down exit command.
Test Conditions
• Input and output timing reference levels: 1.5V
• Input waveform and output load: See following figures
2.4V
input
0.4V
I/O
2.0V
0.8V
CL
tT
tT
Input waveform and Output load
Data Sheet E0185H10 (Ver. 1.0)
14
HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B
Relationship Between Frequency and Minimum Latency
Parameter
Frequency (MHz)
100
tCK (ns)
Symbol
Active command to column command (same bank)
IRCD
PC100
Symbol
10
Notes
2
1
7
= [IRAS + IRP]
1
Active command to precharge command (same bank) IRAS
5
1
Precharge command to active command (same bank) IRP
2
1
2
1
Active command to active command (same bank)
IRC
Write recovery or data-in to precharge command
(same bank)
IDPL
Active command to active command (different bank)
IRRD
2
1
Self refresh exit time
ISREX
Tsrx
1
2
Last data in to active command
(Auto precharge, same bank)
IAPW
Tdal
4
= [IDPL + IRP]
Self refresh exit to command input
ISEC
7
= [IRC]
3
Precharge command to high impedance
(CL = 2)
IHZP
Troh
2
(CL = 3)
IHZP
Troh
3
Last data out to active command
(Auto precharge, same bank)
Last data out to precharge (early precharge)
(CL = 2)
Tdpl
IAPR
1
IEP
–1
(CL = 3)
IEP
–2
Column command to column command
ICCD
Tccd
1
Write command to data in latency
IWCD
Tdwd
0
DQMB to data in
IDID
Tdqm
0
DQMB to data out
IDOD
Tdqz
2
CKE to CK disable
ICLE
Tcke
1
Register set to active command
IRSA
Tmrd
/S to command disable
ICDD
0
Power down exit to command input
IPEC
1
Notes: 1. IRCD to IRRD are recommended value.
2. Be valid [DESL] or [NOP] at next command of self refresh exit.
3. Except [DESL] and [NOP]
Data Sheet E0185H10 (Ver. 1.0)
15
1
HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B
Pin Functions
CK0, CK2 (input pin): CK is the master clock input to this pin. The other input signals are referred at CK rising
edge.
/S0, /S2 (input pin): When /S is Low, the command input cycle becomes valid. When /S is High, all inputs are
ignored. However, internal operations (bank active, burst operations, etc.) are held.
/RE, /CE and /W (input pins): Although these pin names are the same as those of conventional DRAMs, they
function in a different way. These pins define operation commands (read, write, etc.) depending on the combination
of their voltage levels. For details, refer to the command operation section.
A0 to A12 (input pins): Row address (AX0 to AX12) is determined by A0 to A12 level at the bank active command
cycle CK rising edge. Column address (AY0 to AY9) is determined by A0 to A9 level at the read or write command
cycle CK rising edge. And this column address becomes burst access start address. A10 defines the precharge
mode. When A10 = High at the precharge command cycle, all banks are precharged. But when A10 = Low at the
precharge command cycle, only the bank that is selected by BA0, BA1 (BA) is precharged.
BA0, BA1 (input pin): BA0, BA1 are bank select signal (BA). The memory array is divided into bank 0, bank 1,
bank 2 and bank 3. If BA1 is Low and BA0 is Low, bank 0 is selected. If BA1 is High and BA0 is Low, bank 1 is
selected. If BA1 is Low and BA0 is High, bank 2 is selected. If BA1 is High and BA0 is High, bank 3 is selected.
CKE0 (input pin): This pin determines whether or not the next CK is valid. If CKE is High, the next CK rising edge
is valid. If CKE is Low, the next CK rising edge is invalid. This pin is used for power-down and clock suspend
modes.
DQMB0 to DQMB7 (input pins): Read operation: If DQMB is High, the output buffer becomes High-Z. If the
DQMB is Low, the output buffer becomes Low-Z.
Write operation: If DQMB is High, the previous data is held (the new data is not written). If DQMB is Low, the data
is written.
DQ0 to DQ63, CB0 to CB7 (input/output pins): Data is input to and output from these pins.
VCC (power supply pins): 3.3V is applied.
VSS (power supply pins): Ground is connected.
Detailed Operation Part
Refer to the HM5225165B/HM5225805B/HM5225405B-75/A6/B6 datasheet (E0082H).
Data Sheet E0185H10 (Ver. 1.0)
16
HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B
Physical Outline
Unit: mm
inch
Front side
133.37 ± 0.15
5.251 ± 0.006
(DATUM -A-)
B
C
0.450
36.83
1.450
Back side
4.00 min
0.157 min
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
Component area
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(Front)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1
84
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
11.43
A
1.27 ± 0.10
0.050 ± 0.004
54.61
2.150
127.35 ± 0.15
5.014 ± 0.006
2 – φ 3.00 ± 0.10
2 – φ 0.118 ± 0.003
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
Component area
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(Back)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(DATUM -A-)
Detail C
R FULL
(DATUM -A-)
6.35
0.250
2.00 ± 0.10
0.079 ± 0.004
3.125 ± 0.125
0.123 ± 0.005
1.27
0.050
0.20 ± 0.15
0.010 ± 0.0004
2.50 ± 0.20
0.098 ± 0.008
1.00 ± 0.05
0.039 ± 0.002
Detail B
34.925
1.375
85
Detail A
17.80
0.70
168
4.00 ±0.10
0.157 ± 0.004
4.00 max
0.157 max
(63.67)
(2.51)
Note: Tolerance on all dimensions ± 0.15/0.006 unless otherwise specified.
Data Sheet E0185H10 (Ver. 1.0)
17
1.00
0.039
3.125 ± 0.125
0.123 ± 0.005
3.00 ± 0.10
0.118 ± 0.004
3.00 typ
0.118 typ
R FULL
6.35
0.250
4.175
0.164
2.00 ± 0.10
0.079 ± 0.004
;;
;;
;;
;
HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B
NOTES FOR CMOS DEVICES
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS
Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using
insulators that easily build static electricity. Semiconductor devices must be stored and transported
in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work bench and floor should be grounded. The operator should be grounded using
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need
to be taken for PW boards with semiconductor devices on it.
2
HANDLING OF UNUSED INPUT PINS FOR CMOS
Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused
pin should be connected to V DD or GND with a resistor, if it is considered to have a possibility of
being an output pin. All handling related to the unused pins must be judged device by device and
related specifications governing the devices.
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES
Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS
does not define the initial operation status of the device. Immediately after the power source is
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the
reset signal is received. Reset operation must be executed immediately after power-on for devices
having reset function.
Data Sheet E0185H10 (Ver. 1.0)
18
HB52E328EM-A6B, -B6B, HB52E329EM-A6B, -B6B
CAUTION FOR HANDLING MEMORY MODULES
When handling or inserting memory modules, be sure not to touch any components on the modules, such as
the memory IC, chip capacitors and chip resistors. It is necessary to avoid undue mechanical stress on these
components to prevent damaging them.
When re-packing memory modules, be sure the modules are NOT touching each other. Modules in contact
with other modules may cause excessive mechanical stress, which may damage the modules.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Elpida Memory, Inc.
Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights
(including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or
third parties by or arising from the use of the products or information listed in this document. No license,
express, implied or otherwise, is granted under any patents, copyrights or other intellectual property
rights of Elpida Memory, Inc. or others.
Descriptions of circuits, software and other related information in this document are provided for
illustrative purposes in semiconductor product operation and application examples. The incorporation of
these circuits, software and information in the design of the customer's equipment shall be done under
the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses
incurred by customers or third parties arising from the use of these circuits, software and information.
[Product applications]
Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability.
However, users are instructed to contact Elpida Memory's sales office before using the product in
aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment,
medical equipment for life support, or other such application in which especially high quality and
reliability is demanded or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury.
[Product usage]
Design your application so that the product is used within the ranges and conditions guaranteed by
Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation
characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no
responsibility for failure or damage when the product is used beyond the guaranteed ranges and
conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure
rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so
that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other
consequential damage due to the operation of the Elpida Memory, Inc. product.
[Usage environment]
This product is not designed to be resistant to electromagnetic waves or radiation. This product must be
used in a non-condensing environment.
If you export the products or technology described in this document that are controlled by the Foreign
Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance
with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by
U.S. export control regulations, or another country's export control laws or regulations, you must follow
the necessary procedures in accordance with such laws or regulations.
If these products/technology are sold, leased, or transferred to a third party, or a third party is granted
license to use these products, that third party must be made aware that they are responsible for
compliance with the relevant laws and regulations.
M02 01. 4
Data Sheet E0185H10 (Ver. 1.0)
19