FINTEK F71863

F71863
F71863
Super Hardware Monitor + LPC I/O
Release Date: July, 2008
Version: V0.29P
July, 2008
V0.29P
F71863
F71863 Datasheet Revision History
Version
0.10P
0.20P
0.21P
0.22P
0.23P
Date
2006/04/21
2006/06/14
2006/06/20
2006/07/06
2006/11/23
0.24P
0.25P
0.26P
0.27P
2007/7/6
2007/8/16
2008/1/30
2008/5/2
0.28P
0.29P
2008/5/26
2008/7/21
Page
62
11-18
99
52
62
106
Revision History
Original Version
Release Version
Modify typo
Modify typo of register description
Remove GPIO17 function of pin66
Modified the description of Wakeup Control Register 2Dh
bit 7(SPI_CS1_EN)
Company readdress
Modify pin names of decription to matche pin configuration
Modify operating temperature
Update application circuit
Modify power type of PWROK pin
Add register description of ACPI register F4h/F5h bit7
Add ST1/ST2 timing diagram
Add register of new function( Index 29h bit 4-6)
Update application circuit
Please note that all data and specifications are subject to change without notice. All the trade marks of products
and companies mentioned in this data sheet belong to their respective owners.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Fintek for any damages resulting from
such improper use or sales.
July, 2008
V0.29P
F71863
Table of Content
1.
2.
3.
4.
5.
6.
7.
8.
General Description ........................................................................................................................5
Feature List .....................................................................................................................................5
Key Specification............................................................................................................................8
Block Diagram ................................................................................................................................8
Pin Configuration............................................................................................................................8
Pin Description................................................................................................................................9
6.1 Power Pin ..................................................................................................................................10
6.2 LPC Interface ............................................................................................................................10
6.3 FDC...........................................................................................................................................10
6.4 UART and SIR ..........................................................................................................................11
6.5 Parallel Port...............................................................................................................................13
6.6 Hardware Monitor.....................................................................................................................14
6.7 ACPI Function Pins ..................................................................................................................15
6.8 VID Controller and Others........................................................................................................16
6.9 KBC Function ...........................................................................................................................17
Function Description.....................................................................................................................18
7.1 Power on Strapping Option.......................................................................................................18
7.2 FDC...........................................................................................................................................18
7.3 UART........................................................................................................................................32
7.4 Parallel Port...............................................................................................................................36
7.5 Keyboard Contoller...................................................................................................................39
7.6 Hardware Monitor.....................................................................................................................42
7.7 SPI Interface..............................................................................................................................50
7.8 ACPI Function ..........................................................................................................................50
7.9 AMDSI and Intel PECI Function..............................................................................................54
Register Description......................................................................................................................56
8.1 Global Control Registers...........................................................................................................60
8.2 FDC Registers (CR00)..............................................................................................................65
8.3 UART1 Registers (CR01) .........................................................................................................67
8.4 UART 2 Registers (CR02) ........................................................................................................68
8.5 Parallel Port Registers (CR03)..................................................................................................70
8.6 Hardware Monitor Registers (CR04)........................................................................................72
8.7 KBC Registers (CR05) .............................................................................................................87
July, 2008
V0.29P
F71863
8.8 GPIO Registers (CR06) ............................................................................................................88
8.9 VID Registers (CR07)...............................................................................................................95
8.10 SPI Registers (CR08)................................................................................................................97
8.11 PME and ACPI Registers (CR0A)..........................................................................................100
9.
Electron Characteristic................................................................................................................103
9.1 Absolute Maximum Ratings ...................................................................................................103
9.2 DC Characteristics ..................................................................................................................103
9.3 DC Characteristics Continued.................................................................................................103
10.
Ordering Information ..................................................................................................................105
11.
Package Dimensions ...................................................................................................................105
12.
Application Circuit......................................................................................................................106
July, 2008
V0.29P
F71863
1. General Description
The F71863 is the featured IO chip for PC system. Equipped with one IEEE 1284
Parallel Port, two UART Ports, Hardware Keyboard Controller, Serial Peripheral Interface
(SPI), SIR and one FDC. The F71863 integrated with hardware monitor, 9 sets of voltage
sensor, 3 sets of creative auto-controlling fans and 3 temperature sensor pins for the
accurate dual current type temp. measurement for CPU thermal diode or external
transistors 2N3906. Others, the F71863 supports newest AMDSI and Intel PECI interfaces
for temperature sensing. For AMD platform, the F71883 procides the power sequence
controller function.
The F71863 provides flexible features for multi-directional application. For instance,
supports 4-In and 4-Out pins CPU VID controlling with offset implement., provides 25 GPIO
pins (multi-pin), IRQ sharing function also designed in UART feature for particular usage
and accurate current mode H/W monitor will be worth in measurement of temperature,
provides 3 modes fan speed control mechanism included Manual Mode/Stage Auto
Mode/Linear Auto Mode for users’ selection.
The F71863 also integrated SPI interface. The SPI interface is for BIOS usage
including bridge function and back up function. User can implement BIOS data in second
flash to boot system when primary BIOS error. These features as above description will help
you more and improve product value. Finally, the F71863 is powered by 3.3V voltage, with
the LPC interface in the green package of 128-PQFP.
2. Feature List
General Functions
¾ Comply with LPC Spec. 1.0
¾ Support DPM (Device Power Management), ACPI
¾ Support AMD power sequence controller
¾ 4-VIDIN and 4-VIDOUT for Vcore use
¾ Provides one FDC, two UARTs, Hardware KBC and Parallel Port
¾ H/W monitor functions
¾ SPI interface for BIOS usage
¾ Support AMD SID/SIC interface and Intel PECI interface
¾ 25 GPIO Pins for flexible application
¾ 24/48 MHz clock input
¾ Packaged in 128-PQFP and powered by 3.3VCC
5
July, 2008
V0.29P
F71863
FDC
¾ Compatible with IBM PC AT disk drive systems
¾ Variable write pre-compensation with track selectable capability
¾ Support vertical recording format
¾ DMA enable logic
¾ 16-byte data FIFOs
¾ Support floppy disk drives and tape drives
¾ Detects all overrun and under run conditions
¾ Built-in address mark detection circuit to simplify the read electronics
¾ Completely compatible with industry standard 82077
¾ 360K/720K/1.2M/1.44M/2.88M format; 250K, 300K, 500K, 1M, 2M bps data transfer rate
UART
¾ Two high-speed 16C550 compatible UART with 16-byte FIFOs
¾ Fully programmable serial-interface characteristics
¾ Baud rate up to 115.2K
¾ Support IRQ sharing
Infrared
¾ Support IrDA version 1.0 SIR protocol with maximum baud rate up to 115.2K bps
Parallel Port
¾ One PS/2 compatible bi-directional parallel port
¾ Support Enhanced Parallel Port (EPP) − Compatible with IEEE 1284 specification
¾ Support Extended Capabilities Port (ECP) − Compatible with IEEE 1284
specification
¾ Enhanced printer port back-drive current protection
Keyboard Controller
¾ LPC interface support serial interrupt channel 1, 12.
¾ Two 16bit Programmable Address fully decoder, default 0x60 and 0x64.
¾ Support two PS/2 interface, one for PS/2 mouse and the other for keyboard.
¾ Keyboard’s scan code support set1, set2.
¾ Programmable compatibility with the 8042.
¾ Support both interrupt and polling modes.
¾ Fast Gate A20 and Hardware Keyboard Reset.
6
July, 2008
V0.29P
F71863
Hardware Monitor Functions
¾ 3 dual current type (±3℃) thermal inputs for CPU thermal diode and 2N3906 transistors
¾ Temperature range -40℃~127℃
¾ 9 sets voltage monitoring (6 external and 3 internal powers)
¾ High limit signal (PME#) for Vcore level
¾ 3 fan speed monitoring inputs
¾ 3 fan speed PWM/DC control outputs(support 3 wire and 4 wire fans)
¾ Stage auto mode ( 2-Limit and 3-Stage)/Linear auto mode/Manual mode
¾ Issue PME# and OVT# hardware signals output
¾ Case intrusion detection circuit
¾ WATCHDOG comparison of all monitored values
Serial Peripheral Interface Compatible
¾ Support SPI Bridge Function for BIOS use
¾ Support Back Up BIOS function
Integrate AMD SI Interface
Integrate Intel PECI Interface
Support AMD Power Sequence Controller
Package
¾ 128-pin PQFP Green Package
Noted: Patented TW207103 TW207104 TW220442 US6788131 B1 TWI235231 TW237183 TW235553
7
July, 2008
V0.29P
F71863
3. Key Specification
Supply Voltage
3.0V to 3.6V
Operating Supply Current
10 mA typ.
4. Block Diagram
CPU
Chipset
(NB+SB)
Super H/W Monitor +
F71863
IDE
USB
AC’97
I/O
Temperature
KBC
LED(GPIO)
Voltage
IrDA
COM
Fan
Parallel
Floppy
ACPI
VID
Controller
AMDSI
PECI
A
SPI
5. Pin Configuration
8
July, 2008
V0.29P
F71863
6. Pin Description
I/O12t
I/OOD12t
I/OD16t5v
OD16-u10-5v
I/OD12ts5v
ILv/OD8-S1
ILv/OD12
O8-u47-5v
O8
O12
- TTL level bi-directional pin with 12 mA source-sink cap ability.
- TTL level bi-directional pin, can select to OD or OUT by register, with 12 mA
source-sink capability.
- TTL level bi-directional pin,Open-drain output with 16 mA source-sink capability, 5V
tolerance.
- Open-drain output pin with 16 mA sink capability, pull-up 10k ohms, 5V tolerance.
- TTL level bi-directional pin and schmitt trigger, Open-drain output with 12 mA sink
capability, 5V tolerance.
- Low level bi-directional pin (VIH Æ 0.9V, VIL Æ 0.6V.). Output with 8mA drive and
1mA sink capability.
- Low level bi-directional pin (VIH Æ 0.9V, VIL Æ 0.6V.). Output with 12mA sink
capability.
- Open-drain pin with 8 mA source-sink capability, pull-up 47k ohms, 5V tolerance.
- Output pin with 8 mA source-sink capability.
- Output pin with 12 mA source-sink capability.
9
July, 2008
V0.29P
O30
AOUT
OD12
OD12-5v
OD24
INt5v
INts
INts5v
AIN
P
6.1
- Output pin with 30 mA source-sink capability.
- Output pin(Analog).
- Open-drain output pin with 12 mA sink capability.
- Open-drain output pin with 12 mA sink capability, 5V tolerance.
- Open-drain output pin with 24 mA sink capability.
- TTL level input pin,5V tolerance.
- TTL level input pin and schmitt trigger.
- TTL level input pin and schmitt trigger, 5V tolerance.
- Input pin(Analog).
- Power.
Power Pin
Pin No.
4,37,99
68
86
88
20, 48, 73, 117
6.2
Pin Name
VCC
VSB
VBAT
AGND(D-)
GND
Type
P
P
P
P
P
Description
Power supply voltage input with 3.3V
Stand-by power supply voltage input 3.3V
Battery voltage input
Analog GND
Digital GND
LPC Interface
Pin No.
29
Pin Name
LRESET#
Type
INts5v
PWR
VCC
30
31
32
LDRQ#
SERIRQ
LFRAM#
O12
I/O12t
INts
VCC
VCC
VCC
36-33
LAD[3:0]
I/O12t
VCC
38
39
PCICLK
CLKIN
INts
INts
VCC
VCC
PWR
VCC
6.3
F71863
Description
Reset signal. It can connect to PCIRST# signal on the
host.
Encoded DMA Request signal.
Serial IRQ input/Output.
Indicates start of a new cycle or termination of a
broken cycle.
These signal lines communicate address, control, and
data information over the LPC bus between a host and
a peripheral.
33MHz PCI clock input.
System clock input. According to the input frequency
24/48MHz.
FDC
Pin No.
7
Pin Name
DENSEL#
Type
OD24
8
MOA#
OD24
VCC
9
DRVA#
OD24
VCC
10
WDATA#
OD24
VCC
Description
Drive Density Select.
Set to 1 - High data rate.(500Kbps, 1Mbps)
Set to 0 – Low data rate. (250Kbps, 300Kbps)
Motor A On. When set to 0, this pin enables disk drive
0. This is an open drain output.
Drive Select A. When set to 0, this pin enables disk
drive A. This is an open drain output.
Write data. This logic low open drain writes
pre-compensation serial data to the selected FDD. An
10
July, 2008
V0.29P
F71863
11
DIR#
OD24
VCC
12
STEP#
OD24
VCC
13
HDSEL#
OD24
VCC
14
15
16
WGATE#
RDATA#
TRK0#
OD24
INts5v
INts5v
VCC
VCC
VCC
17
INDEX#
INts5v
VCC
18
WPT#
INts5v
VCC
19
DSKCHG#
INts5v
VCC
Pin Name
IRTX
Type
O12
PWR
VCC
118
GPIO42
IRRX
GPIO43
DCD1#
I/OOD12t
INts
I/OOD12t
INt5v
119
RI1#
INt5v
VCC
120
121
CTS1#
DTR1#
INt5v
O8-u47,5v
VCC
VCC
FAN60_100
INt5v
RTS1#
O8-u47,5v
6.4
Pin No.
27
28
122
open drain output.
Direction of the head step motor. An open drain output.
Logic 1 = outward motion
Logic 0 = inward motion
Step output pulses. This active low open drain output
produces a pulse to move the head to another track.
Head select. This open drain output determines which
disk drive head is active.
Logic 1 = side 0
Logic 0 = side 1
Write enable. An open drain output.
The read data input signal from the FDD.
Track 0. This Schmitt-triggered input from the disk
drive is active low when the head is positioned over
the outermost track.
This Schmitt-triggered input from the disk drive is
active low when the head is positioned over the
beginning of a track marked by an index hole.
Write protected. This active low Schmitt input from the
disk drive indicates that the diskette is write-protected.
Diskette change. This signal is active low at power on
and whenever the diskette is removed.
UART and SIR
VSB
VCC
VCC
Description
Infrared Transmitter Output.
General Purpose IO
Infrared Receiver input.
General Purpose IO.
Data Carrier Detect. An active low signal indicates the
modem or data set has detected a data carrier.
Ring Indicator. An active low signal indicates that a ring
signal is being received from the modem or data set.
Clear To Send is the modem control input.
UART 1 Data Terminal Ready. An active low signal
informs the modem or data set that controller is ready to
communicate. Internal 47k ohms pulled high and disable
after power on strapping.
Power on strapping pin:
1(Default): (Internal pull high)
Power on fan speed default duty is 60%.(PWM)
0: (External pull down)
Power on fan speed default duty is 100%.(PWM)
UART 1 Request To Send. An active low signal informs
the modem or data set that the controller is ready to
send data. Internal 47k ohms pulled high and disable
11
July, 2008
V0.29P
F71863
after power on strapping.
123
DSR1#
INt5v
VCC
124
SOUT1
O8-u47,5v
VCC
Config4E_2E
INt5v
125
SIN1
INt5v
VCC
126
DCD2#
INt5v
VCC
127
RI2#
INt5v
VCC
Ring Indicator. An active low signal indicates that a ring
signal is being received from the modem or data set.
128
CTS2#
INt5v
VCC
Clear To Send is the modem control input.
1
DTR2#
O8-u47,5v
VCC
FWH_TRAP
INt5v
RTS2#
O8-u47,5v
UART 2 Data Terminal Ready. An active low signal
informs the modem or data set that controller is ready to
communicate. Internal 47k ohms pulled high and disable
after power on strapping.
Power on strapping :
1(Default): SPI as a backup BIOS
0
: SPI as a primary BIOS
UART 2 Request To Send. An active low signal informs
the modem or data set that the controller is ready to
send data. Internal 47k ohms pulled high and disable
after power on strapping.
PWM_DC
INt5v
2
VCC
Data Set Ready. An active low signal indicates the
modem or data set is ready to establish a
communication link and transfer data to the UART.
UART 1 Serial Output. Used to transmit serial data out
to the communication link. Internal 47k ohms pulled high
and disable after power on strapping.
Power on strapping: 1(Default)Configuration register:4E
0 Configuration register:2E
Serial Input. Used to receive serial data through the
communication link.
Data Carrier Detect. An active low signal indicates the
modem or data set has detected a data carrier.
Power on strapping :
3
DSR2#
INt5v
VCC
5
SOUT2
O8-u47,5v
VCC
SPI_TRAP
INt5v
1 (Default): Fan control method will be PWM Mode
0 Drive :Fan control method will be DAC Mode
Data Set Ready. An active low signal indicates the
modem or data set is ready to establish a
communication link and transfer data to the UART.
UART 2 Serial Output. Used to transmit serial data out
to the communication link. Internal 47k ohms pulled
high and disable after power on strapping.
Power on strapping:
1(Default) : SPI function disable
6
SIN2
INt5v
VCC
0
: SPI function enable
Serial Input. Used to receive serial data through the
communication link.
12
July, 2008
V0.29P
F71863
66
6.5
CPU_PWRGD
VSB
Parallel Port
Pin No.
100
Pin Name
SLCT
Type
INts5v
PWR
VCC
101
PE
INts5v
VCC
102
BUSY
INts5v
VCC
103
ACK#
INts5v
VCC
104
SLIN#
OD12-5v
VCC
105
INIT#
OD12-5v
VCC
106
ERR#
INts5v
VCC
107
AFD#
OD12-5v
VCC
108
STB#
OD12-5v
VCC
109
PD0
I/O12ts5v
VCC
110
111
112
113
114
PD1
PD2
PD3
PD4
PD5
I/O12ts5v
I/O12ts5v
I/O12ts5v
I/O12ts5v
I/O12ts5v
VCC
VCC
VCC
VCC
VCC
Description
An active high input on this pin indicates that the
printer is selected. Refer to the description of the
parallel port for definition of this pin in ECP and EPP
mode.
An active high input on this pin indicates that the
printer has detected the end of the paper. Refer to the
description of the parallel port for the definition of this
pin in ECP and EPP mode.
An active high input indicates that the printer is not
ready to receive data. Refer to the description of the
parallel port for definition of this pin in ECP and EPP
mode.
An active low input on this pin indicates that the printer
has received data and is ready to accept more data.
Refer to the description of the parallel port for the
definition of this pin in ECP and EPP mode.
Output line for detection of printer selection. Refer to
the description of the parallel port for the definition of
this pin in ECP and EPP mode.
Output line for the printer initialization. Refer to the
description of the parallel port for the definition of this
pin in ECP and EPP mode.
An active low input on this pin indicates that the printer
has encountered an error condition. Refer to the
description of the parallel port for the definition of this
pin in ECP and EPP mode.
An active low output from this pin causes the printer to
auto feed a line after a line is printed. Refer to the
description of the parallel port for the definition of this
pin in ECP and EPP mode.
An active low output is used to latch the parallel data
into the printer. Refer to the description of the parallel
port for the definition of this pin in ECP and EPP mode.
Parallel port data bus bit 0. Refer to the description of
the parallel port for the definition of this pin in ECP and
EPP mode.
Parallel port data bus bit 1.
Parallel port data bus bit 2.
Parallel port data bus bit 3.
Parallel port data bus bit 4.
Parallel port data bus bit 5.
13
July, 2008
V0.29P
F71863
115
116
6.6
PD6
PD7
I/O12ts5v
I/O12ts5v
VCC
VCC
Parallel port data bus bit 6.
Parallel port data bus bit 7.
Type
AIN
AIN
AIN
AIN
AIN
AIN
INt s 5 v
OD12-5v
AOUT
INt s 5 v
OD12-5v
AOUT
INt s 5 v
I/OOD12t
PWR
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
Description
Voltage Input 6.
Voltage Input 5.
Voltage Input for VDIMM DUAL STR (2.5V/1.8V).
Voltage Input for VDDA (2.5V).
Voltage Input for VLDT (1.2V).
Voltage Input for Vcore.
Fan 1 tachometer input.
Fan 1 control output. This pin provides PWM
duty-cycle output or a voltage output.
Fan 2 tachometer input.
Fan 2 control output. This pin provides PWM
duty-cycle output or a voltage output.
Fan 3 speed input.
General purpose IO.
VCC
Fan 3 control output. This pin provides PWM
duty-cycle output or a voltage output.
*This pin default function is FANCTL (PWM signal
output), please take care the application if user want to
implement GPIO function.
General purpose IO.
VSB
Thermal diode/transistor temperature sensor input for
system use.
Thermal diode/transistor temperature sensor input.
CPU thermal diode/transistor temperature sensor
input. This pin is for CPU use.
Voltage sensor output.
Generated PME event. It supports the PCI PME#
interface. This signal allows the peripheral to request
the system to wake up from the S3 state.
General Purpose IO.
General purpose IO.
Serial clock output pin for SPI device.
General purpose IO.
VSB
Function A: When using firmware hub BIOS for
primary BIOS and SPI BIOS for second BIOS, please
connect this pin to SPI BIOS chip select pin.
Function B: When using two SPI Flashes for primary
and back up BIOS, please connect this pin to primary
BIOS chip select pin.
General purpose IO.
Hardware Monitor
Pin No.
93
94
95
96
97
98
21
22
Pin Name
VIN6
VIN5
VDIMM(VIN4)
VDDA(VIN3)
VLDT(VIN2)
Vcore(VIN1)
FANIN1
FANCTL1
23
24
FANIN2
FANCTL2
25
FANIN3
GPIO40
26
FANCTL3*
OD12-5V
AOUT
GPIO41
I/OOD12t
89
D3+(System)
AIN
VCC
90
91
D2+
D1+(CPU)
AIN
AIN
VCC
VCC
92
79
VREF
PME#
AOUT
OD12-5v
VCC
VSB
GPIO25
GPIO10
SPI_SLK
GPIO11
I/OOD12t
I/OOD12t
O12
I/OOD12t
SPI_CS0#
O12
GPIO12
I/OOD12t
59
60
61
VCC
VCC
VCC
VSB
14
July, 2008
V0.29P
F71863
62
63
67
6.7
Pin No.
64
SPI_MISO
INt 5 v
SPI master in/slave out pin.
FANCTL1_1
OD12-5v
Fan 1 control output. This pin provides PWM
duty-cycle open drain output for Intel 4-pin Fan.
GPIO13
I/OOD12t
SPI_MOSI
O12
SPI master out/slave in pin.
BEEP
OD24
Beep pin.
GPIO14
I/OOD12t
FWH_DIS
WDTRST#
SPI_CS1#
O12
OD12-5v
O12
OVT#
OD12-5v
VSB
VSB
General purpose IO.
VSB
Firmware hub disable
Watch dog timer signal output.
When using two SPI Flashes for primary and back up
BIOS, please connect this pin to back up BIOS chip
select pin.
Over temperature signal output.
ACPI Function Pins
Pin Name
GPIO15
LED_VSB
ALERT#
GPIO16
Type
I/OOD12t
OD12
OD12
I/OOD12t
76
LED_VCC
PCIRST1#
GPIO20
PCIRST2#
GPIO21
PCIRST3#
OD12
OD12
I/OOD12
O12
I/OOD12
O12
77
GPIO22
S5#
I/OOD12
INts5v
84
ATXPG_IN
GPIO24
PWROK
AIN
I/OOD12t
OD12
80
GPIO32
PWSIN#
I/OOD12t
INts5v
81
GPIO26
PWSOUT#
I/OOD12t
OD12
VSB
82
GPIO27
S3#
I/OOD12t
INts5v
VSB
83
GPIO30
PS_ON#
I/OOD12t
OD12-5v
65
74
75
78
General purpose IO.
PWR
VSB
Description
General purpose IO.
Power LED for VSB.
Alert a signal when temperature over limit setting.
General purpose IO.
VSB
VSB
Power LED for VCC.
It is a output buffer of LRESET#.
General purpose IO.
It is a output buffer of LRESET#.
General purpose IO.
It is a output buffer of LRESET#.
VSB
General purpose IO.
S5# signal input.
VSB
VSB
VSB
ATX Power Good input.
General purpose IO.
PWROK function, It is power good signal of VCC,
which is delayed 400ms (default) as VCC arrives at
2.8V.
General purpose IO.
Main power switch button input.
VBAT
VSB
General purpose IO.
Panel Switch Output. This pin is low active and pulse
output. It is power on request output#.
General purpose IO.
S3# Input is Main power on-off switch input.
General purpose IO.
Power supply on-off control output. Connect to ATX
power supply PS_ON# signal.
VSB
15
July, 2008
V0.29P
F71863
85
GPIO31
RSMRST#
I/OOD12t
OD12
VBAT
87
GPIO33
COPEN#
I/OOD12t
INts5v
VBAT
6.8
General purpose IO.
Resume Reset# function, It is power good signal of
VSB, which is delayed 66ms as VSB arrives at 2.3V.
General purpose IO.
Case Open Detection #. This pin is connected to a
specially designed low power CMOS flip-flop backed
by the battery for case open state preservation during
power loss.
VID Controller and Others
Pin No.
45-42
Pin Name
VIDIN[D:A]
Type
INts5v
PWR
VCC
52-49
VIDOUT[D:A]
OD12
VSB
46
Vcore_EN
OD12
VCC
Active high. The function of this pin is to enable the
PWM for CPU Vcore. The external pull high resistor is
required.
47
VLDT_EN
OD12
VCC
Active high. The function of this pin is to enable the
VLDT voltage. The external pull high resistor is
required.
53
VDDA_EN
OD12
VSB
54
VDIMM_EN
OD12
VSB
55
ST2
OD12
VSB
SLOTOCC#
INts5v
Active high. The function of this pin is to enable the
VDDA power for AMD K8 and after CPU. The external
pull high resistor is required.
Active high. The function of this pin is to enable the
PWM for VDIMM_STR dual voltage. The external pull
high resistor is required.
Status Pin2 for S0#/S3#/S5# states application.
In S0# Æ ST2 pin status is Tri-state.
In S3# Æ ST2 pin status is Low level.
In S5# Æ ST2 pin status is Low level, and can be
programmed to Tri-state.
CPU SLOTOCC# input.
GPIO02
ST1
I/OOD12t
OD12
GPIO03
I/OOD12t
General purpose pin.
Status Pin1 for S0#/S3#/S5# states application.
In S0# Æ ST1 pin status is Tri-state.
In S3# Æ ST1 pin status is Low level.
In S5# Æ ST1 pin status is Tri-state.
General purpose pin.
WDTRST#
OD12-5v
Watch dog timer signal output.
AMDSI_CLK
PECI
AMDSI_DAT_1
OD12
VSB
ILv/OD8-S1 VSB
ILv/OD12
AMDSI interface clock output.
Intel PECI hardware monitor interface.
AMDSI interface data input.
56
57
58
Description
CPU VID input pins.
Special level input VIHÆ 0.9, VIL Æ 0.6
CPU VID output pins.
VSB
16
July, 2008
V0.29P
F71863
6.9
KBC Function
Pin No.
40
Pin Name
KBRST#
Type
OD16-u10,5V
PWR
VCC
41
GA20
OD16-u10,5V
VCC
69
KDATA
I/OD16t,5V
VSB
Description
Keyboard reset. This pin is high after system reset.
Internal pull high 3.3V with 10k ohms. (KBC P20)
Gate A20 output. This pin is high after system reset.
Internal pull high 3.3V with 10k ohms. (KBC P21)
Keyboard Data.
70
KCLK
I/OD16t,5V
VSB
Keyboard Clock.
71
MDATA
I/OD16t,5V
VSB
PS2 Mouse Data.
72
MCLK
I/OD16t,5V
VSB
PS2 Mouse Clock.
17
July, 2008
V0.29P
F71863
7. Function Description
7.1
Power on Strapping Option
The F71863 provides four pins for power on hardware strapping to select functions. There
is a form to describe how to set the functions you want.
Pin No.
1
7.2
Symbol
FWH_TRAP
2
PWM_DC
5
SPI_TRAP
121
FAN60_100
124
Config4E_2E
Value
1
0
1
0
1
0
1
0
1
0
Description
SPI as a backup BIOS (Default)
SPI as a primary BIOS
Fan control mode: PWM mode. ( Default)
Fan control mode: Linear mode.
SPI function disable (Default)
SPI function enable
Power on Fan speed default duty is 60%(PWM)(Default)
Power on Fan speed default duty is 100%(PWM)
Configuration Register I/O port is 4E/4F. (Default)
Configuration Register I/O port is 2E/2F.
FDC
The Floppy Disk Controller provides the interface between a host processor and one
floppy disk drives. It integrates a controller and a digital data separator with write
pre-compensation, data rate selection logic, microprocessor interface, and a set of registers.
The FDC supports data transfer rates of 250 Kbps, 300 Kbps, 500 Kbps, and 1 Mbps. It
operates in PC/AT mode and supports 3-mode type drives.
The FDC configuration is handled by software and a set of Configuration registers.
Status, Data, and Control registers facilitate the interface between the host microprocessor
and the disk drive, providing information about the condition and/or state of the FDC. These
configuration registers can select the data rate, enable interrupts, drives, and DMA modes,
and indicate errors in the data or operation of the FDC/FDD. The controller manages data
transfers using a set of data transfer and control commands. These commands are handled
in three phases: Command, Execution, and Result. Not all commands utilize all these three
phases.
The below content is about the FDC device register descriptions. All the registers are
for software porting reference.
18
July, 2008
V0.29P
F71863
Status Register A (PS/2 mode)  Base + 0
Bit
Name
R/W Default
Description
7
INTPEND
R
0
This bit indicates the state of the interrupt output.
6
DRV2_N
R
-
0: a second drive has been installed.
1: a second drive has not been installed.
5
STEP
R
0
This bit indicates the complement of STEP# disk interface output.
4
TRK0_N
R
-
This bit indicates the state of TRK0# disk interface input.
3
HDSEL
R
0
This bit indicates the complement of HDSEL# disk interface output.
0: side 0.
1: side 1.
2
INDEX_N
R
-
This bit indicates the state of INDEX# disk interface input.
1
WPT_N
R
-
This bit indicates the state of WPT# disk interface input.
0: disk is write-protected.
1: disk is not write-protected.
0
DIR
R
0
This bit indicates the complement of DIR# disk interface output.
Status Register A (Model 30 mode)  Base + 0
Bit
Name
R/W Default
Description
7
INTPEND
R
0
This bit indicates the state of the interrupt output.
6
DRQ
R
0
This bit indicates the state of the DRQ signal.
5
STEP_FF
R
0
This bit indicates the complement of latched STEP# disk interface output.
4
TRK0
R
-
This bit indicates the complement of TRK0# disk interface input.
3
HDSEL_N
R
1
This bit indicates the state of HDSEL# disk interface output.
0: side 0.
1: side 1.
2
INDEX
R
-
This bit indicates the complement of INDEX# disk interface input.
1
WPT
R
-
This bit indicates the complement of WPT# disk interface input.
0: disk is write-protected.
1: disk is not write-protected.
0
DIR_N
R
1
This bit indicates the state of DIR# disk interface output.
0: head moves in inward direction.
1: head moves in outward direction.
Status Register B (PS/2 Mode)  Base + 1
Bit
Name
7-6 Reserved
R/W Default
Description
R
11
Reserved. Return 11b when read.
5
DR0
R
0
Drive select 0. This bit reflects the bit 0 of Digital Output Register.
4
WDATA
R
0
This bit changes state at every rising edge of WDATA#.
3
RDATA
R
0
This bit changes state at every rising edge of RDATA#.
2
WGATE
R
0
This bit indicates the complement of WGATE# disk interface output.
1
MOTEN1
R
0
This bit indicates the complement of MOB# disk interface output. Not support
in this design.
19
July, 2008
V0.29P
F71863
0
MOTEN0
R
0
This bit indicates the complement of MOA# disk interface output.
Status Register B (Model 30 Mode)  Base + 1
Bit
Name
R/W Default
Description
7
DRV2_N
R
-
0: a second drive has been installed.
1: a second drive has not been installed.
6
DSB_N
R
1
This bit indicates the state of DRVB# disk interface output. Not support in this
design.
5
DSA_N
R
1
This bit indicates the state of DRVA# disk interface output.
4
WDATA_FF
R
0
This bit is latched at the rising edge of WDATA# and is cleared by a read from
the Digital Input Register.
3
RDATA_FF
R
0
This bit is latched at the rising edge of RDATA# and is cleared by a read form
the Digital Input Register.
2
WGATE_FF
R
0
This bit is latched at the falling edge of WGATE# and is cleared by a read from
the Digital Input Register.
1
DSD_N
R
1
This bit indicates the complement of DRVD# disk interface output. Not support
in this design.
0
DSC_N
R
1
This bit indicates the complement of DRVC# disk interface output. Not support
in this design.
Digital Output Register  Base + 2
Bit
Name
R/W Default
Description
7
MOTEN3
R
0
Motor enable 3. Not support in this design.
6
MOTEN2
R
0
Motor enable 2. Not support in this design.
5
MOTEN1
R/W
0
Motor enable 1. Used to control MOB#. MOB# is not support in this design.
4
MOTEN0
R/W
0
Motor enable 0. Used to control MOA#.
3
DAMEN
R/W
0
DMA enable. This bit has two mode of operation.
PC-AT and Model 30 mode: write 1 will enable DMA and IRQ, write 0 will
disable DMA and IRQ.
PS/2 mode: This bit is reserved. DMA and IRQ are always enabled in PS/2
mode.
2
RESET
R
0
Write 0 to this bit will reset the controller. I will remain in reset condition until a 1
is written.
1
DSD_N
R
1
This bit indicates the complement of DRVD# disk interface output. Not support
in this design.
0
DSC_N
R
1
This bit indicates the complement of DRVC# disk interface output. Not support
in this design.
Tape Drive Register  Base + 3
Bit
Name
R/W Default
Description
7-6 Reserved
R
00
Reserved. Return 00b when read.
5-4 TYPEID
R
11
Reserved in normal function, return 11b when read.
If 3 mode FDD function is enabled. These bits indicate the drive type ID.
20
July, 2008
V0.29P
F71863
3-2 Reserved
R
11
Reserved. Return 11b when read in normal function.
Return 00b when read in 3 mode FDD function.
1-0 TAPESEL
R/W
0
These bits assign a logical drive number to be a tape drive.
Main Status Register  Base + 4
Bit
Name
R/W Default
Description
7
RQM
R
0
Request for Master indicates that the controller is ready to send or receive data
from the uP through the FIFO.
6
DIO
R
0
Data I/O (direction):
0: the controller is expecting a byte to be written to the Data Register.
1: the controller is expecting a byte to be read from the Data Register.
5
NON_DMA
R
0
Non DMA Mode:
0: the controller is in DAM mode.
1: the controller is interrupt or software polling mode.
4
FDC_BUSY
R
0
This bit indicate that a read or write command is in process.
3
DRV3_BUSY
R
0
FDD number 3 is in seek or calibration condition. FDD number 3 is not support
in this design.
2
DRV2_BUSY
R
0
FDD number 2 is in seek or calibration condition. FDD number 2 is not support
in this design.
1
DRV1_BUSY
R
0
FDD number 1 is in seek or calibration condition. FDD number 1 is not support
in this design.
0
DRV0_BUSY
R
0
FDD number 0 is in seek or calibration condition.
Data Rate Select Register  Base + 4
Bit
7
6
Name
SOFTRST
PWRDOWN
5 Reserved
4-2 PRECOMP
1-0 DRATE
R/W Default
W
W
0
0
W
000
W
10
Description
A 1 written to this bit will software reset the controller. Auto clear after reset.
A 1 to this bit will put the controller into low power mode which will turn off the
oscillator and data separator circuits.
Return 0 when read.
Select the value of write precompensation:
250K-1Mbps
2Mbps
000: default delays
default delays
001: 41.67ns
20.8ns
010: 83.34ns
41.17ns
011: 125.00ns
62.5ns
100: 166.67ns
83.3ns
101: 208.33ns
104.2ns
110: 250.00ns
125.00ns
111: 0.00ns (disabled)
0.00ns (disabled)
The default value of corresponding data rate:
250Kbps: 125ns
300Kbps: 125ns
500Kbps: 125ns
1Mbps: 41.67ns
2Mbps: 20.8ns
Data rate select:
MFM
FM
00: 500Kbps
250Kbps
01: 300Kbps
150Kbps
10: 250Kbps
125Kbps
11: 1Mbps
illegal
21
July, 2008
V0.29P
F71863
Data (FIFO) Register  Base + 5
Bit
Name
7-0 DATA
R/W Default
R/W
00h
Description
The FIFO is used to transfer all commands, data and status between controller
and the system. The Data Register consists of four status registers in a stack
with only one register presented to the data bus at a time. The FIFO is default
disabled and could be enabled via the CONFIGURE command.
Status Registers 0
Bit
Name
7-6 IC
R/W Default
Description
R
-
Interrupt code :
00: Normal termination of command.
01: Abnormal termination of command.
10: Invalid command.
11: Abnormal termination caused by poling.
5
SE
R
-
Seek end.
Set when a SEEK or RECALIBRATE or a READ or WRITE with implied seek
command is completed.
4
EC
R
-
Equipment check.
0: No error
1: When a fault signal is received form the FDD or the TRK0# signal fails to
occur after 77 step pulses.
3
NR
R
-
Not ready.
0: Drive is ready
1: Drive is not ready.
2
HD
R
-
Head address.
The current head address.
1-0 DS
R
-
Drive select.
00: Drive A selected.
01: Drive B selected.
10: Drive C selected.
11: Drive D selected.
Status Registers 1
Bit
Name
R/W Default
Description
7
EN
R
-
End of Track.
Set when the FDC tries to access a sector beyond the final sector of a cylinder.
6
DE
R
-
Data Error.
The FDC detect a CRC error in either the ID field or the data field of a sector.
4
OR
R
-
Overrun/Underrun.
Set when the FDC is not serviced by the host system within a certain time
interval during data transfer.
3
Reserved
-
-
Unused. This bit is always “0”
22
July, 2008
V0.29P
F71863
2
ND
R
-
No Data.
Set when the following conditions occurred:
1. The specified sector is not found during any read command.
2. The ID field cannot be read without errors during a READ ID command.
3. The proper sector sequence cannot be found during a READ TRACK
command.
1
NW
R
-
No Writable
Set when WPT# is active during execution of write commands.
0
MA
R
-
Missing Address Mark.
Set when the following conditions occurred:
1. Cannot detect an ID address mark at the specified track after
encountering the index pulse form the INDEX# pin twice.
2. Cannot detect a data address mark or a deleted data address mark on the
specified track.
Status Registers 2
Bit
Name
R/W Default
Description
7
Reserved
-
-
Unused. This bit is always “0”.
6
CM
R
-
Control Mark.
Set when following conditions occurred:
1. Encounters a deleted data address mark during a READ DATA command.
2. Encounters a data address mark during a READ DELETED DATA
command.
5
DD
R
-
Data Error in Data Field.
The FDC detects a CRC error in the data field.
4
WC
R
-
Wrong Cylinder.
Set when the track address from the sector ID field is different from the track
address maintained inside the FDC.
3
SE
R
-
Scan Equal.
Set if the equal condition is satisfied during execution of the SCAN command.
2
SN
R
-
Scan Not Satisfied.
Set when the FDC cannot find a sector on the track which meets the desired
condition during any scan command.
1
BC
R
-
Bad Cylinder.
The track address from the sector ID field is different from the track address
maintained inside the FDC and is equal to FFh which indicates a bad track.
0
MD
R
-
Missing Data Address Mark.
Set when the FDC cannot detect a data address mark or a deleted data
address mark.
Status Registers 3
Bit
Name
R/W Default
Description
7
Reserved
-
-
Unused. This bit is always “0”.
6
WP
R
-
Write Protect.
Indicates the status of WPT# pin.
5
Reserved
R
-
Unused. This bit is always “1”.
23
July, 2008
V0.29P
F71863
4
T0
R
-
Track 0.
Indicates the status of the TRK0# pin.
3
Reserved.
R
-
Unused. This bit is always “1”.
2
HD
R
-
Head Address.
Indicates the status of the HDSEL# pin.
1
DS1
R
-
0
DS0
R
-
Drive Select.
These two bits indicate the DS1, DS0 bits in the command phase.
Digital Input Register (PC-AT Mode)  Base + 7
Bit
7
Name
R/W Default
Description
DSKCHG
R
-
This bit indicates the complement of DSKCHG# disk interface input.
6-0 Reserved
R
-
Reserved.
Digital Input Register (PS/2 Mode)  Base + 7
Bit
7
Name
R/W Default
Description
DSKCHG
R
-
This bit indicates the complement of DSKCHG# disk interface input.
6-3 Reserved
-
-
Reserved.
2-1 DRATE
R
10
These bits indicate the status of the DRATE programmed through the Data
Rate Select Register or Configuration Control Register.
R
1
0: 1Mbps or 500Kbps data rate is chosen.
1: 300Kbps or 250Kbps data rate is chosen.
0
HIGHDEN_N
Digital Input Register (Model 30 Mode)  Base + 7
Bit
7
Name
DSKCHG_N
6-4 Reserved
R/W Default
Description
R
-
This bit indicates the state of DSKCHG# disk interface input.
-
-
Reserved.
3
DMAEN
R
0
This bit reflects the DMA bit in Digital Output Register.
2
NOPRE
R
0
This bit reflects the NOPRE bit in Configuration Control Register.
1-0 DRATE
R
10
These bits indicate the status of DRATE programmed through the Data Rate
Select Register or Configuration Control Register.
Configuration Control Register (PC-AT and PS/2 Mode)  Base + 7
Bit
Name
7-2 Reserved
1-0 DRATE
R/W Default
-
-
W
10
Description
Reserved.
These bit determine the data rate of the floppy controller. See DRATE bits in
Data Rate Select Register.
24
July, 2008
V0.29P
F71863
Configuration Control Register (Model 30 Mode)  Base + 7
Bit
Name
7-3 Reserved
R/W Default
Description
-
-
Reserved.
NOPRE
W
0
This bit could be programmed through Configuration Control Register and be
read through the bit 2 in Digital Input Register in Model 30 Mode. But it has no
functionality.
1-0 DRATE
W
10
These bit determine the data rate of the floppy controller. See DRATE bits in
Data Rate Select Register.
2
FDC Commands
Terminology:
C
D
DIR
Cylinder Number 0 -256
Data Pattern
Step Direction
0: step out
1: step in
DS0
Drive Select 0
DS1
Drive Select 1
DTL
Data Length
EC
Enable Count
EOT
End of Track
EFIFO
Enable FIFO
0: FIFO is enabled.
1: FIFO is disabled.
EIS
Enable Implied Seek
FIFOTHR FIFO Threshold
GAP
Alters Gap Length
GPL
Gap Length
H/HDS
Head Address
HLT
Head Load Time
HUT
Head Unload Time
LOCK
Lock EFIFO, FIFOTHR, PTRTRK bits.
Prevent these bits from being affected by software reset.
MFM
MFM or FM mode
0: FM
1: MFM
MT
Multi-Track
N
Sector Size Code. All values up to 07h are allowable.
00:
128 bytes
01:
256 bytes
..
..
07
16 Kbytes
NCN
New Cylinder Number
ND
Non-DMA Mode
OW
Overwritten
PCN
Present Cylinder Number
POLL
Polling disable
0: polling is enabled.
1: polling is disabled.
PRETRK Precompensation Start Track Number
R
Sector address
RCN
Relative Cylinder Number
25
July, 2008
V0.29P
SC
SK
SRT
ST0
ST1
ST2
ST3
WGATE
Read Data
Phase
Command
F71863
Sector per Cylinder
Skip deleted data address mark
Step Rate Time
Status Register 0
Status Register 1
Status Register 2
Status Register 3
Write Gate alters timing of WE.
R/W
W
D7
MT
D6
MFM
D5
SK
D4
0
D3
0
D2
1
D1
1
D0
0
W
0
0
0
0
0
HDS
DS1
DS0
W
----------------------------- C ---------------------------
W
----------------------------- H ---------------------------
W
----------------------------- R ---------------------------
W
------------------------------ N ---------------------------
W
---------------------------- EOT --------------------------
W
---------------------------- GPL --------------------------
W
---------------------------- DTL --------------------------
Sector ID
information prior to
command
execution
Execution
Result
R
R
---------------------------- ST0 ------------------------------------------------------ ST1 --------------------------
R
---------------------------- ST2 --------------------------
R
----------------------------- C ---------------------------
R
----------------------------- H ---------------------------
R
----------------------------- R ---------------------------
R
----------------------------- N ---------------------------
Read Deleted Data
Phase
R/W
Command
W
W
Data transfer
between the FDD
and system
Status information
after command
execution.
Sector ID
information after
command
execution.
D7
MT
D6
MFM
D5
SK
D4
0
D3
1
D2
1
D1
0
D0
0
0
0
0
0
0
HDS
DS1
DS0
W
----------------------------- C ---------------------------
W
----------------------------- H ---------------------------
W
----------------------------- R ---------------------------
W
------------------------------ N ---------------------------
W
---------------------------- EOT --------------------------
W
---------------------------- GPL --------------------------
26
Remark
Command code
Remark
Command code
Sector ID
information prior to
command
execution
July, 2008
V0.29P
F71863
W
---------------------------- DTL --------------------------
Execution
Result
R
R
---------------------------- ST0 ------------------------------------------------------ ST1 --------------------------
R
---------------------------- ST2 --------------------------
R
----------------------------- C ---------------------------
R
----------------------------- H ---------------------------
R
----------------------------- R ---------------------------
R
----------------------------- N ---------------------------
Read A Track
Phase
R/W
Command
W
W
Data transfer
between the FDD
and system
Status information
after command
execution.
Sector ID
information after
command
execution.
D7
0
D6
MFM
D5
0
D4
0
D3
0
D2
0
D1
1
D0
0
0
0
0
0
0
HDS
DS1
DS0
W
----------------------------- C ---------------------------
W
----------------------------- H ---------------------------
W
----------------------------- R ---------------------------
W
------------------------------ N ---------------------------
W
---------------------------- EOT --------------------------
W
---------------------------- GPL --------------------------
W
---------------------------- DTL --------------------------
Sector ID
information prior to
command
execution
Execution
Result
Remark
Command code
R
R
---------------------------- ST0 ------------------------------------------------------ ST1 --------------------------
R
---------------------------- ST2 --------------------------
R
----------------------------- C ---------------------------
R
----------------------------- H ---------------------------
R
----------------------------- R ---------------------------
R
----------------------------- N ---------------------------
Data transfer
between the FDD
and system. FDD
reads contents of
all cylinders from
index hole to EOT.
Status information
after command
execution.
Sector ID
information after
command
execution.
Read ID
Phase
R/W
D7
D6
D5
D4
D3
D2
D1
D0
Command
W
0
MFM
0
0
1
0
1
0
W
0
0
0
0
0
HDS
DS1
DS0
27
Remark
Command code
July, 2008
V0.29P
F71863
Execution
Result
The first correct ID
information on the
cylinder is stored in
Data Register.
R
---------------------------- ST0 --------------------------
R
----------------------------- ST1 --------------------------
R
---------------------------- ST2 --------------------------
R
----------------------------- C ---------------------------
R
----------------------------- H ---------------------------
R
----------------------------- R ---------------------------
R
----------------------------- N ---------------------------
Status information
after command
execution.
Disk status after
the command has
been completed.
Verify
Phase
R/W
D7
D6
D5
D4
D3
D2
D1
D0
Command
W
MT
MFM
SK
1
0
1
1
0
W
EC
0
0
0
0
HDS
DS1
DS0
W
----------------------------- C ---------------------------
W
----------------------------- H ---------------------------
W
----------------------------- R ---------------------------
W
------------------------------ N ---------------------------
W
---------------------------- EOT --------------------------
W
---------------------------- GPL --------------------------
W
-------------------------- DTL/SC ------------------------
Command code
Sector ID
information prior to
command
execution
Execution
Result
Remark
No data transfer
R
---------------------------- ST0 --------------------------
R
----------------------------- ST1 --------------------------
R
---------------------------- ST2 --------------------------
R
----------------------------- C ---------------------------
R
----------------------------- H ---------------------------
R
----------------------------- R ---------------------------
R
----------------------------- N ---------------------------
Status information
after command
execution.
Sector ID
information after
command
execution.
Version
Phase
R/W
D7
D6
D5
D4
D3
D2
D1
D0
Command
W
0
0
0
1
0
0
0
0
Command code
Result
R
1
0
0
1
0
0
0
0
Enhanced
controller
28
Remark
July, 2008
V0.29P
F71863
Write Data
Phase
R/W
D7
D6
D5
D4
D3
D2
D1
D0
Command
W
MT
MFM
0
0
0
1
0
1
W
0
0
0
0
0
HDS
DS1
DS0
W
----------------------------- C ---------------------------
W
----------------------------- H ---------------------------
W
----------------------------- R ---------------------------
W
------------------------------ N ---------------------------
W
---------------------------- EOT --------------------------
W
---------------------------- GPL --------------------------
W
---------------------------- DTL --------------------------
Command code
Sector ID
information prior to
command
execution
Execution
Result
Remark
Data transfer
between the FDD
and system.
R
---------------------------- ST0 --------------------------
R
----------------------------- ST1 --------------------------
R
---------------------------- ST2 --------------------------
R
----------------------------- C ---------------------------
R
----------------------------- H ---------------------------
R
----------------------------- R ---------------------------
R
----------------------------- N ---------------------------
Status information
after command
execution.
Sector ID
information after
command
execution.
Write Deleted Data
Phase
R/W
D7
D6
D5
D4
D3
D2
D1
D0
Command
W
MT
MFM
0
0
1
0
0
1
W
0
0
0
0
0
HDS
DS1
DS0
W
----------------------------- C ---------------------------
W
----------------------------- H ---------------------------
W
----------------------------- R ---------------------------
W
------------------------------ N ---------------------------
W
---------------------------- EOT --------------------------
W
---------------------------- GPL --------------------------
W
---------------------------- DTL --------------------------
Execution
Result
Remark
Command code
Sector ID
information prior to
command
execution
Data transfer
between the FDD
and system.
R
---------------------------- ST0 --------------------------
R
----------------------------- ST1 --------------------------
29
Status information
after command
July, 2008
V0.29P
F71863
R
---------------------------- ST2 --------------------------
execution.
R
----------------------------- C ---------------------------
R
----------------------------- H ---------------------------
R
----------------------------- R ---------------------------
Sector ID
information after
command
execution.
R
----------------------------- N ---------------------------
Format A Track
Phase
R/W
D7
D6
D5
D4
D3
D2
D1
D0
Command
W
0
MFM
0
0
1
1
0
1
W
0
0
0
0
0
HDS
DS1
DS0
Execution
for each
sector
( repeat )
Result
Remark
Command code
W
------------------------------ N ---------------------------
Bytes/Sector
W
---------------------------- SC --------------------------
Sectors/Cylinder
W
---------------------------- GPL --------------------------
Gap 3 Length
W
----------------------------- D ---------------------------
Data Pattern
------------------------------ C ---------------------------
Input sector
parameter.
W
------------------------------ H ---------------------------
W
------------------------------ R ---------------------------
W
----------------------------- N --------------------------
R
---------------------------- ST0 --------------------------
R
----------------------------- ST1 --------------------------
R
---------------------------- ST2 --------------------------
R
------------------------- Undefined ----------------------
R
------------------------- Undefined ----------------------
R
-------------------------- Undefined -----------------------
R
------------------------- Undefined ----------------------
Status information
after command
execution.
Recalibrate
Phase
R/W
D7
D6
D5
D4
D3
D2
D1
D0
Command
W
0
0
0
0
0
1
1
1
W
0
0
0
0
0
0
DS1
DS0
Execution
Remark
Command code
Head retracted to
track 0
Sense Interrupt Status
Phase
R/W
D7
D6
D5
D4
D3
D2
D1
D0
Command
W
0
0
0
0
1
0
0
0
Result
R
---------------------------- ST0 --------------------------
R
---------------------------- PCN --------------------------
30
Remark
Command code
July, 2008
V0.29P
F71863
Specify
Phase
R/W
D7
D6
D5
D4
D3
D2
D1
D0
Command
W
0
0
0
0
0
0
1
1
W
|------------------ SRT -------------------|
W
|------------------------------------- SRT ---------------------------------------|
Remark
Command code
|------------------ HUT -------------------|
ND
Seek
Phase
R/W
D7
D6
D5
D4
D3
D2
D1
D0
Command
W
0
0
0
0
1
1
1
1
W
0
0
0
0
0
HDS
DS1
DS0
W
Remark
Command code
---------------------------- NCN --------------------------
Execution
Head positioned
over proper
cylinder on diskette
Configure
Phase
R/W
D7
D6
D5
D4
D3
D2
D1
D0
Command
W
0
0
0
1
0
0
1
1
W
0
0
0
0
0
HDS
DS1
DS0
W
0
EIS
EFIFO
POLL
W
Remark
Command code
|---------------- FIFOTHR ---------------|
---------------------------- PRETRK --------------------------
Execution
Internal registers
written
Relative Seek
Phase
R/W
D7
D6
D5
D4
D3
D2
D1
D0
Command
W
1
DIR
0
0
1
1
1
1
W
0
0
0
0
0
HDS
DS1
DS0
W
Remark
Command code
---------------------------- RCN --------------------------
Perpendicular Mode
Phase
R/W
D7
D6
D5
D4
D3
D2
D1
D0
Command
W
0
0
0
1
0
0
1
0
W
OW
0
D3
D2
D1
D0
GAP
WGATE
Phase
R/W
D7
D6
D5
D4
D3
D2
D1
D0
Command
W
LOCK
0
0
1
0
1
0
0
Result
R
0
0
0
LOCK
0
0
0
0
Remark
Command code
Lock
31
Remark
Command code
July, 2008
V0.29P
F71863
Dumpreg
Phase
R/W
D7
D6
D5
D4
D3
D2
D1
D0
Command
W
0
Result
R
-------------------------- PCN ( Drive 0 ) ------------------------
0
0
0
1
1
1
0
R
-------------------------- PCN ( Drive 0 ) ------------------------
R
-------------------------- PCN ( Drive 0 ) ------------------------
R
-------------------------- PCN ( Drive 0 ) ------------------------
R
|------------------ SRT -------------------|
R
|------------------------------------- SRT ---------------------------------------|
R
Remark
Command code
|------------------ HUT -------------------|
ND
-------------------------- SC/EOT ------------------------
R
LOCK
0
D3
D2
R
0
EIS
EFIFO
POLL
R
D1
D0
GAP
WGATE
|---------------- FIFOTHR ---------------|
---------------------------- PRETRK --------------------------
Sense Drive Status
Phase
R/W
D7
D6
D5
D4
D3
D2
D1
D0
Command
W
0
0
0
0
0
1
0
0
W
0
0
0
0
0
HDS
DS1
DS0
Result
R
---------------------------- ST3 --------------------------
Remark
Command code
Status information
abut disk drive
Invalid
Phase
R/W
Command
W
---------------------------- Invalid Codes --------------------------
Result
R
---------------------------- ST0 --------------------------
7.3
D7
D6
D5
D4
D3
D2
D1
D0
Remark
FDC goes to
standby state.
ST0 = 80h
UART
The F71863 provides two UART ports and supports IRQ sharing for system
application. The UARTs are used to convert data between parallel format and serial format.
They convert parallel data into serial format on transmission and serial format into parallel
data on receiver side. The serial format is formed by one start bit, followed by five to eight
data bits, a parity bit if programmed and one ( 1.5 or 2 ) stop bits. The UARTs include
complete modem control capability and an interrupt system that may be software trailed to
the computing time required to handle the communication link. They have FIFO mode to
reduce the number of interrupts presented to the host. Both receiver and transmitter have a
32
July, 2008
V0.29P
F71863
16-byte FIFO.
The below content is about the UART1 and UART2 device register descriptions. All
the registers are for software porting reference.
Receiver Buffer Register  Base + 0
Bit
Name
7-0 RBR
R/W Default
R
Description
The data received.
Read only when LCR[7] is 0
00h
Transmitter Holding Register  Base + 0
Bit
Name
7-0 THR
R/W Default
W
00h
Description
Data to be transmitted.
Write only when LCR[7] is 0
Divisor Latch (LSB)  Base + 0
Bit
Name
7-0 DLL
R/W Default
R/W
01h
Description
Baud generator divisor low byte.
Access only when LCR[7] is 1.
Divisor Latch (MSB)  Base + 1
Bit
Name
7-0 DLM
R/W Default
R/W
00h
Description
Baud generator divisor high byte.
Access only when LCR[7] is 1.
Interrupt Enable Register  Base + 1
Bit
Name
7-4 Reserved
R/W Default
Description
-
-
Reserved.
3
EDSSI
R/W
0
Enable Modem Status Interrupt. Access only when LCR[7] is 0.
2
ELSI
R/W
0
Enable Line Status Error Interrupt. Access only when LCR[7] is 0.
1
ETBFI
R/W
0
Enable Transmitter Holding Register Empty Interrupt. Access only when
LCR[7] is 0.
0
ERBFI
R/W
0
Enable Received Data Available Interrupt. Access only when LCR[7] is 0.
Interrupt Identification Register  Base + 2
Bit
Name
R/W Default
Description
7
FIFO_EN
R
0
0: FIFO is disabled
1: FIFO is enabled.
6
FIFO_EN
R
0
0: FIFO is disabled
1: FIFO is enabled.
5-4 Reserved
-
-
Reserved.
33
July, 2008
V0.29P
F71863
3-1 IRQ_ID
0
IRQ_PENDN
R
000
R
1
000: Interrupt is caused by Modem Status
001: Interrupt is caused by Transmitter Holding Register Empty
010: Interrupt is caused by Received Data Available.
110: Interrupt is caused by Character Timeout
011: Interrupt is caused by Line Status.
1: Interrupt is not pending.
0: Interrupt is pending.
FIFO Control Register  Base + 2
Bit
Name
7-6 RCV_TRIG
5-3 Reserved
R/W Default
Description
00: Receiver FIFO trigger level is 1.
01: Receiver FIFO trigger level is 4.
10: Receiver FIFO trigger level is 8.
11: Receiver FIFO trigger level is 14.
W
00
-
-
Reserved.
2
CLRTX
R
0
Reset the transmitter FIFO.
1
CLRRX
R
0
Reset the receiver FIFO.
0
FIFO_EN
R
0
0: Disable FIFO.
1: Enable FIFO.
Line Control Register  Base + 3
Bit
Name
R/W Default
7
DLAB
R/W
0
6
SETBRK
R/W
0
5
STKPAR
R/W
0
4
EPS
R/W
0
3
PEN
R/W
0
2
STB
R/W
0
1-0 WLS
R/W
00
Description
0: Divisor Latch can’t be accessed.
1: Divisor Latch can be accessed via Base and Base+1.
0: Transmitter is in normal condition.
1: Transmit a break condition.
XX0: Parity Bit is disable
001: Parity Bit is odd.
011: Parity Bit is even
101: Parity Bit is logic 1
111: Parity Bit is logic 0
0: Stop bit is one bit
1: When word length is 5 bit stop bit is 1.5 bit
else stop bit is 2 bit
00: Word length is 5 bit
01: Word length is 6 bit
10: Word length is 7 bit
11: Word length is 8 bit
MODEM Control Register  Base + 4
Bit
Name
7-5 Reserved
R/W Default
Description
-
-
Reserved.
0: UART in normal condition.
1: UART is internal loop back
0: All interrupt is disabled.
1: Interrupt is enabled
(disabled) by IER.
Read from MSR[6] is loop back mode
4
LOOP
R/W
0
3
OUT2
R/W
0
2
OUT1
R/W
0
1
RTS
R/W
0
0: RTS# is forced to logic 1
1: RTS# is forced to logic 0
34
July, 2008
V0.29P
F71863
0
DTR
R/W
0
0: DTR# is forced to logic 1
1: DTR# is forced to logic 0
Line Status Register  Base + 5
Bit
Name
R/W Default
7
RCR_ERR
R
0
6
TEMT
R
1
5
THRE
R
1
4
BI
R
0
3
FE
R
0
2
PE
R
0
1
OE
R
0
0
DR
R
0
Description
0: No error in the FIFO when FIFO is enabled
1: Error in the FIFO when FIFO is enabled.
0: Transmitter is in transmitting.
1: Transmitter is empty.
0: Transmitter Holding Register is not empty.
1: Transmitter Holding Register is empty.
0: No break condition detected.
1: A break condition is detected.
0: Data received has no frame error.
1: Data received has frame error.
0: Data received has no parity error.
1: Data received has parity error.
0: No overrun condition occurred.
1: An overrun condition occurred.
0: No data is ready for read.
1: Data is received.
MODEM Status Register  Base + 6
Bit
Name
R/W Default
7
DCD
R
-
6
RI
R
-
5
DSR
R
-
4
CTS
R
-
3
DDCD
R
0
2
TERI
R
0
1
DDSR
R
0
0
DCTS
R
0
Description
Complement of DCD# input. In loop back mode, this bit is equivalent to OUT2
in MCR.
Complement of RI# input. In loop back mode , this bit is equivalent to OUT1 in
MCR
Complement of DSR# input. In loop back mode , this bit is equivalent to DTR in
MCR
Complement of CTS# input. In loop back mode , this bit is equivalent to RTS in
MCR
0: No state changed at DCD#.
1: State changed at DCD#.
0: No Trailing edge at RI#.
1: A low to high transition at RI#.
0: No state changed at DSR#.
1: State changed at DSR#.
0: No state changed at CTS#.
1: State changed at CTS#.
Scratch Register  Base + 7
Bit
7-0 SCR
Name
R/W Default
R/W
00h
Description
Scratch register.
35
July, 2008
V0.29P
F71863
7.4
Parallel Port
The parallel port in F71863 supports an IBM XT/AT compatible parallel port ( SPP ),
bi-directional paralle port ( BPP ), Enhanced Parallel Port ( EPP ), Extended Capabilities
Parallel Port ( ECP ) mode. Refer to the configuration registers for more information on
selecting the mode of operation.
The below content is about the Parallel Port device register descriptions. All the
registers are for software porting reference.
Parallel Port Data Register  Base + 0
Bit
Name
7-0 DATA
R/W Default
R/W
00h
Description
The output data to drive the parallel port data lines.
ECP Address FIFO Register  Base + 0
Bit
Name
7-0 ECP_AFIFO
R/W Default
R/W
00h
Description
Access only in ECP Parallel Port Mode and the ECP_MODE programmed in
the Extended Control Register is 011.
The data written to this register is placed in the FIFO and tagged as an
Address/RLE. It is auto transmitted by the hardware. The operation is only
defined for forward direction. It divide into two parts :
Bit 7 :
0: bits 6-0 are run length, indicating how many times the next byte to appear (0
= 1time, 1 = 2times, 2 = 3times and so on).
1: bits 6-0 are a ECP address.
Bit 6-0 :
Address or RLE depends on bit 7.
Device Status Register  Base + 1
Bit
Name
R/W Default
Description
7
BUSY_N
R
-
Inverted version of parallel port signal BUSY.
6
ACK_N
R
-
Version of parallel port signal ACK#.
5
PERROR
R
-
Version of parallel port signal PE.
4
SELECT
R
-
Version of parallel port signal SLCT.
3
ERR_N
R
-
Version of parallel port signal ERR#.
R
11
R
-
2-1 Reserved
0
TMOUT
Reserved. Return 11b when read.
This bit is valid only in EPP mode. Return 1 when in other modes.
It indicates that a 10uS time out has occurred on the EPP bus.
0: no time out error.
1: time out error occurred, write 1 to clear.
36
July, 2008
V0.29P
F71863
Device Control Register  Base + 2
Bit
Name
7-6 Reserved
R/W Default
Description
-
11
Reserved. Return 11b when read.
5
DIR
R/W
0
0: the parallel port is in output mode.
1: the parallel port is in input mode.
It is auto reset to 0 when in SPP mode.
4
ACKIRQ_EN
R/W
0
Enable an interrupt at the rising edge of ACK#.
3
SLIN
R/W
0
Inverted and then drives the parallel port signal SLIN#.
When read, the status of inverted SLIN# is return.
2
INIT_N
R/W
0
Drives the parallel port signal INIT#.
When read, the status of INIT# is return.
1
AFD
R/W
0
Inverted and then drives the parallel port signal AFD#.
When read, the status of inverted AFD# is return.
0
STB
R/W
0
Inverted and then drives the parallel port signal STB#.
When read, the status of inverted STB# is return.
EPP Address Register  Base + 3
Bit
Name
7-0 EPP_ADDR
R/W Default
R/W
00h
Description
Write this register will cause the hardware to auto transmit the written data to
the device with the EPP Address Write protocol.
Read this register will cause the hardware to auto receive data from the device
by with the EPP Address Read protocol.
EPP Data Register  Base + 4 – Base + 7
Bit
Name
7-0 EPP_DATA
R/W Default
R/W
00h
Description
Write this register will cause the hardware to auto transmit the written data to
the device with the EPP Data Write protocol.
Read this register will cause the hardware to auto receive data from the device
by with the EPP Data Read protocol.
Parallel Port Data FIFO  Base + 400h
Bit
Name
7-0 C_FIFO
R/W Default
R/W
00h
Description
Data written to this FIFO is auto transmitted by the hardware to the device by
using standard parallel port protocol.
It is only valid in ECP and the ECP_MODE is 010b.The operation is only for
forward direction.
ECP Data FIFO  Base + 400h
Bit
Name
R/W Default
Description
37
July, 2008
V0.29P
F71863
7-0 ECP_DFIFO
R/W
00h
Data written to this FIFO when DIR is 0 is auto transmitted by the hardware to
the device by using ECP parallel port protocol.
Data is auto read from device into the FIFO when DIR is 1 by the hardware by
using ECP parallel port protocol. Read the FIFO will return the content to the
system.
It is only valid in ECP and the ECP_MODE is 011b.
ECP Test FIFO  Base + 400h
Bit
Name
7-0 T_FIFO
R/W Default
R/W
00h
Description
Data may be read, written from system to the FIFO in any Direction. But no
hardware handshake occurred on the parallel port lines. It could be used to test
the empty, full and threshold of the FIFO.
It is only valid in ECP and the ECP_MODE is 110b.
ECP Configuration Register A  Base + 400h
Bit
7
Name
IRQ_MODE
6-4 IMPID
R/W Default
R
0
R
001
Description
0: interrupt is ISA pulse.
1: interrupt is ISA level.
Only valid in ECP and ECP_MODE is 111b.
000: the design is 16-bit implementation.
001: the design is 8-bit implementation (default).
010: the design is 32-bit implementation.
011-111: Reserved.
Only valid in ECP and ECP_MODE is 111b.
3
Reserved
-
-
Reserved.
2
BYTETRAN_N
R
1
0: when transmitting there is 1 byte waiting in the transceiver that does not
affect the FIFO full condition.
1: when transmitting the state of the full bit includes the byte being transmitted.
Only valid in ECP and ECP_MODE is 111b.
R
00
Return 00 when read.
Only valid in ECP and ECP_MODE is 111b.
1-0 Reserved
ECP Configuration Register B  Base + 401h
Bit
Name
R/W Default
Description
7
COMP
R
0
0: only send uncompressed data.
1: compress data before sending.
Only valid in ECP and ECP_MODE is 111b.
6
Reserved
R
1
Reserved. Return 1 when read.
Only valid in ECP and ECP_MODE is 111b.
38
July, 2008
V0.29P
F71863
5-3 ECP_IRQ_CH
R
001
000: the interrupt selected with jumper.
001: select IRQ 7 (default).
010: select IRQ 9.
011: select IRQ 10.
100: select IRQ 11.
101: select IRQ 14.
110: select IRQ 15.
111: select IRQ 5.
Only valid in ECP and ECP_MODE is 111b.
2-0 ECP_DMA_CH
R
011
Return the DMA channel of ECP parallel port.
Only valid in ECP and ECP_MODE is 111b.
Extended Control Register  Base + 402h
Bit
Name
7-5 ECP_MODE
R/W Default
R/W
000
Description
000: SPP Mode.
001: PS/2 Parallel Port Mode.
010: Parallel Port Data FIFO Mode.
011: ECP Parallel Port Mode.
100: EPP Mode.
101: Reserved.
110: Test Mode.
111: Configuration Mode.
Only valid in ECP.
4
ERRINTR_EN
R/W
0
0: disable the interrupt generated on the falling edge of ERR#.
1: enable the interrupt generated on the falling edge of ERR#.
3
DAMEN
R/W
0
0: disable DMA.
1: enable DMA. DMA starts when SERVICEINTR is 0.
2
SERVICEINTR
R/W
1
0: enable the following case of interrupt.
DMAEN = 1: DMA mode.
DMAEN = 0, DIR = 0: set to 1 whenever there are writeIntrThreshold or more
bytes are free in the FIFO.
DMAEN = 0, DIR = 0: set to 1 whenever there are readIntrThreshold or more
bytes are valid to be read in the FIFO.
1
FIFOFULL
R
0
0: The FIFO has at least 1 free byte.
1: The FIFO is completely full.
0
FIFOEMPTY
R
0
0: The FIFO contains at least 1 byte.
1: The FIFO is completely empty.
7.5
Keyboard Contoller
The KBC circuit provides the functions included a keyboard and/or a PS/2 mouse, and
can be used with IBM-compatible personal computers or PS/2-based systems. The
controller receives serial data from the keyboard or PS/2 mouse, checks the parity of the
data, and presents the data to the system as a byte of data in its output buffer. The controller
will assert an interrupt to the system when data are placed in its output buffer.
39
July, 2008
V0.29P
F71863
Output Buffer
The output buffer is an 8-bit read-only register at I/O address 60H.
The keyboard
controller uses the output buffer to send the scan code received from the keyboard and data
bytes required by commands to the system.
Input Buffer
The input buffer is an 8-bit write-only register at I/O address 60H or 64H. Writing to
address 60H sets a flag to indicate a data write; writing to address 64H sets a flag to
indicate a command write.
Data written to I/O address 60H is sent to keyboard through the
controller's input buffer only if the input buffer full bit in the status register is “0”.
Status Register
The status register is an 8-bit read-only register at I/O address 64H, that holds
information about the status of the keyboard controller and interface.
It may be read at any
time.
BIT
BIT FUNCTION
DESCRIPTION
0
Output Buffer Full
0: Output buffer empty
1: Output buffer full
1
Input Buffer Full
0: Input buffer empty
1: Input buffer full
2
System Flag
This bit may be set to 0 or 1 by writing to the system flag bit in the
command byte of the keyboard controller (KCCB). It defaults to
0 after a power-on reset.
3
Command/Data
0: Data byte
1: Command byte
4
Inhibit Switch
0: Keyboard is inhibited
1: Keyboard is not inhibited
5
Mouse Output Buffer
0: Muse output buffer empty
1: Mouse output buffer full
6
General Purpose
Time-out
0: No time-out error
1: Time-out error
7
Parity Error
0: Odd parity
1: Even parity (error)
Commands
COMMAND
FUNCTION
20h
Read Command Byte
40
July, 2008
V0.29P
F71863
60h
Write Command Byte
BIT
DESCRIPTION
0
Enable Keyboard Interrupt
1
Enable Mouse Interrupt
2
System flag
3
Reserve
4
Disable Keyboard Interface
5
Disable Mouse interface
6
IBM keyboard Translate Mode
7
Reserve
A7h
Disable Auxiliary Device Interface
A8h
Enable Auxiliary Device Interface
A9h
Auxiliary Interface Test
8’h00: indicate Auxiliary interface is ok.
8’h01: indicate Auxiliary clock is low.
8’h02: indicate Auxiliary clock is high
8’h03: indicate Auxiliary data is low
8’h04: indicate Auxiliary data is high
AAh
Self-test
Returns 055h if self test succeeds
ABh
keyboard Interface Test
8’h00: indicate keyboard
8’h01: indicate keyboard
8’h02: indicate keyboard
8’h03: indicate keyboard
8’h04: indicate keyboard
interface is ok.
clock is low.
clock is high
data is low
data is high
ADh
Disable Keyboard Interface
AEh
Enable Keyboard Interface
C0h
Read Input Port(P1) and send data to the system
C1h
Continuously puts the lower four bits of Port1 into STATUS register
C2h
Continuously puts the upper four bits of Port1 into STATUS register
D0h
Send Port2 value to the system
D1h
Only set/reset GateA20 line based on the system data bit 1
D2h
Send data back to the system as if it came from Keyboard
D3h
Send data back to the system as if it came from Muse
D4h
Output next received byte of data from system to Mouse
FEh
Pulse only RC(the reset line) low for 6µS if Command byte is even
KBC Command Description
41
July, 2008
V0.29P
F71863
PS2 wakeup function
The KBC supports keyboard and mouse wakeup function, keyboard wakeup
function has 4 kinds of conditions, when key is pressed combinational key (1) CTRL +ESC
(2) CTRL+F1 (3) CTRL+SPACE (4) ANY KEY (5) windows 98 wakeup up key, KBC will
assert PME signal. Mouse wakeup function has 2 kinds of conditions, when mouse (1)
BUTTON CLICK or (2) BUTTON CLICK AND MOVEMENT, KBC will assert PME signal.
Those wakeup conditions are controlled by configuration register.
7.6
Hardware Monitor
For the 8-bit ADC has the 8mv LSB, the maximum input voltage of the analog pin is
2.048V. Therefore the voltage under 2.048V (ex:1.5V) can be directly connected to these
analog inputs. The voltage higher than 2.048V should be reduced by a factor with external
resistors so as to obtain the input range. Only 3VCC/VSB/VBAT is an exception for it is main
power of the F71863. Therefore 3VCC/VSB/VBAT can directly connect to this chip’s power
pin and need no external resistors. There are two functions in this pin with 3.3V. The first
function is to supply internal analog power of the F71863 and the second function is that
voltage with 3.3V is connected to internal serial resistors to monitor the +3.3V voltage. The
internal serial resistors are two 150K ohm, so that the internal reduced voltage is half of
+3.3V.
There are four voltage inputs in the F71863 and the voltage divided formula is shown as
follows:
VIN = V+12V ×
R2
R1 + R2
where V+12V is the analog input voltage, for example.
If we choose R1=27K, R2=5.1K, the exact input voltage for V+12v will be 1.907V,
which is within the tolerance. As for application circuit, it can be refer to the figure shown as
follows.
42
July, 2008
V0.29P
F71863
Voltage Inputs
150K
(directly connect to the chip)
3VCC/VSB
VIN (Lower than 2.048V)
VIN3.3
(directly connect to the chip)
150K
VIN1(Max2.048V)
VIN(Higher than 2.048V)
R1
R2
8-bit ADC
with
8 mV LSB
VREF
R
10K, 1%
D+
Typical BJT
Connection
D-
Typical Thermister
Connection
RTHM
10K, 25 C
2N3906
Fig 7-1
The F71863 monitors three remote temperature sensors.These sensors can be measured
from -40°C to 127°C. More detail please refer register description.
Remote-sensor transistor manufacturers
Manufacturer
Model Number
Panasonic
2SB0709 2N3906
Philips
PMBT3906
Monitor Temperature from “thermistor”
The F71863 can connect three thermistor to measure environment temperature or
remote temperature. The specification of thermistor should be considered to (1) β value is
3435K (2) resistor value is 10K ohm at 25°C. In the Figure 7-1, the thermistor is connected
by a serial resistor with 10K ohm, then connected to VREF.
Monitor Temperature from “thermal diode”
Also, if the CPU, GPU or external circuits provide thermal diode for temperature
measurement, the F71863 is capable to these situations. The build-in reference table is for
PNP 2N3906 transistor. In the Figure 7-1, the transistor is directly connected into
temperature pins.
43
July, 2008
V0.29P
F71863
ADC Noise Filtering
The ADC is integrating type with inherently good noise rejection. Micro-power
operation places constraints on high-frequency noise rejection; therefore, careful PCB
board layout and suitable external filtering are required for high-accuracy remote
measurement in electronically noisy environment. High frequency EMI is best filtered at D+
and D- with an external 2200pF capacitor. Too high capacitance may introduce errors due to
the rise time of the switched current source. Nearly all noise sources tested cause the ADC
measurement to be higher than the actual temperature, depending on the frequency and
amplitude.
Over Temperature Signal (OVT#)
OVT# alert for temperature is shown as figure 7-2. When monitored temperature
exceeds the over-temperature threshold value, OVT# will be asserted until the temperature
goes below the hysteresis temperature.
To
T
HYST
OVT#
Fig 7-2
Temperature PME#
PME# interrupt for temperature is shown as figure 7-3. Temperature exceeding high
limit or going below hysteresis will cause an interrupt if the previous interrupt has been reset
by writing “1” all the interrupt Status Register.
44
July, 2008
V0.29P
F71863
To
T HYST
SMI#
(pulse mode)
*
*
*
(level mode
active low)
*
*Interrupt Reset when Interrupt Status Registers are written 1
Fig 7-3
Fan speed count
Inputs are provided by the signals from fans equipped with tachometer outputs. The
level of these signals should be set to TTL level, and maximum input voltage cannot be over
5V. If the input signals from the tachometer outputs are over the 5V, the external trimming
circuit should be added to reduce the voltage to obtain the input specification. The normal
circuit and trimming circuits are shown as follows:
+12V
+12V
Pull-up resister
4.7K Ohms
Pull-up resister < 1K
or totem-pole output
+12V
FAN Out
22K~30K
Fan Input
+12V
FANIN 1
GND
10K
> 1K
FAN Out
Fan Input
FANIN 1
GND
F71863
3.3V Zener
FAN
Connector
F71863
Fan with Tach Pull-Up to +12V, or
Totem-Pole Putput and Zener Clamp
Fan with Tach Pull-Up to +12V, or Totern-Pole
Output and Register Attenuator
Fig 7-4 / 7-5
45
July, 2008
V0.29P
F71863
+5V
+5V
Pull-up resister
4.7K Ohms
Pull-up resister < 1K
or totem-pole output
+5V
1K~2.7K
FAN Out
Fan Input
+5V
FANIN1
GND
10K
> 1K
FAN Out
Fan Input
FANIN1
GND
F71863
3.3V Zener
FAN
Connector
F71863
Fan with Tach Pull-Up to +5V, or
Totem-Pole Putput and Zener Clamp
Fan with Tach Pull-Up to +5V, or Totern-Pole
Output and Register Attenuator
Fig 7-6 / 7-7
Determine the fan counter according to:
Count =
1.5 × 10 6
RPM
In other words, the fan speed counter has been read from register, the fan speed can
be evaluated by the following equation. As for fan, it would be best to use 2 pulses
tachometer output per round.
RPM =
1.5 × 10 6
Count
Fan speed control
The F71863 provides 2 fan speed control methods:
1. DAC FAN CONTROL 2. PWM DUTY CYCLE
DAC Fan Control
The range of DC output is 0~3.3V, controlled by 8-bit register. 1 LSB is about 0.013V.
The output DC voltage is amplified by external OP circuit, thus to reach maximum FAN
OPERATION VOLTAGE, 12V. The output voltage will be given as followed:
Output_voltage (V) = 3.3 ×
Programmed 8bit Register Value
255
And the suggested application circuit for linear fan control would be:
46
July, 2008
V0.29P
F71863
8
12V
3
2
+
-
PMOS
1
D1
1N4148
LM358
4
DC OUTPUT VOLTAGE
R
4.7K
JP1
R 10K
C
47u
R 27K FANIN MONITOR
3
2
1
C
0.1u
R
10K
CON3
R
3.9K
DC FAN Control with OP
Fig 7-8
PWM duty Fan Control
The duty cycle of PWM can be programmed by a 8-bit register. The default duty cycle
is set to 100%, that is, the default 8-bit registers is set to FFh. The expression of duty can be
represented as follows.
Duty_cycle(%) =
Programmed 8bit Register Value
× 100%
255
+5V
+12V
R1
R1
R2
R2
PNP Transistor
D
PNP Transistor
D
G
G
NMOS
PWM Clock Input
S
PWM Clock Input
NMOS
S
+
C
+
C
FAN
FAN
-
-
Fig 7-9
Fan speed control mechanism
There are some modes to control fan speed and they are 1.Manual mode, 2.Stage
auto mode, 3. Linear auto mode. More detail, please refer the description of registers.
Manual mode
For manual mode, it generally acts as software fan speed control.
Stage auto mode
At this mode, the F71863 provides automatic fan speed control related to temperature
47
July, 2008
V0.29P
F71863
variation of CPU/GPU or the system. The F71863 can provide two temperature boundaries
and three intervals, and each interval has its related fan speed PWM duty. All these values
should be set by BIOS first. Take figure 7-10 as example. When temperature boundaries are
set as 45 and 75°C and there are three intervals. The related desired fan speed for each
interval are 40%, 80% and 100% (fixed). When the temperature is within 45~75’C, the fan
speed will follow 80% PWM duty and that define in registers. It can be said that the fan will
be turned on with a specific speed set by BIOS and automatically controlled with the
temperature variation. The F71863 will take charge of all the fan speed control and need no
software support.
Temperature
PWM Duty
100%
75 Degree C
80%
45 Degree C
40%
Temperature
Fan Speed
Figure 7-10
Below is a sample for Stage auto mode:
Set temperature as 60°C, 40°C and Duty as 100%, 70%, 50%
PWM duty
100%
60 Degree C
hysteresis 57 Degree C
70%
40 Degree C
50%
Temp.
Fan Speed
a
b
c
d
a. Once temp. is under 40°C, the lowest fan speed keeps 50% PWM duty
b. Once temp. is over 40°C,60°C, the fan speed will vary from 70% to 100% PWM duty
and increase with temp. level.
c.
Once temp. keeps in 55°C, fan speed keeps in 70% PWM duty
d. If set the hysteresis as 3°C (default 4°C), once temp reduces under 57°C, fan speed
reduces to 70% PWM duty and stays there.
48
July, 2008
V0.29P
F71863
Linear auto mode
Otherwise, F71863 supports linear auto mode. Below has a example to describe this
mode. More detail, please refer the register description.
A. Linear auto mode (PWM Duty I)
Set temperature as 70°C, 40°C and Duty as 100%, 70%, 40%
PWM duty
100%
70 Degree C
hysteresis 65 Degree C
70%
40 Degree C
Temp.
Fan Speed
40%
a
b
c
d
a. Once temp. is under 40°C, the lowest fan speed keeps 40% PWM duty
b. Once temp. is over 40°C and under 70°C, the fan speed will vary from 40% to 70%
PWM duty and linearly increase with temp. variation.
The temp.-fan speed monitoring
and flash interval is 1sec.
c. Once temp. goes over 70°C, fan speed will directly increase to 100% PWM duty (full
speed)
d. If set the hysteresis as 5°C(default is 4°C), once temp reduces under 65°C (not 70°C),
fan speed reduces from 100% PWM duty and decrease linearly with temp..
FAN_FAULT#
Fan_Fault# will be asserted when the fan speed doesn’t meet the expected fan speed
within a programmable period (default is 11 seconds) or when fan stops with respect to
PWM duty-cycle which should be able to turn on the fan. There are two conditions may
cause the FAN_FAULT# event.
(1). When PWM_Duty reaches 0xFF, the fan speed count can’t reach the fan expected
count in time. (Figure 7-11)
49
July, 2008
V0.29P
F71863
11 sec(default)
Current Fan Count
Expected Fan Count
100%
Duty-cycle
Fan_Fault#
Fig 7-11
(2). After the period of detecting fan full speed, when PWM_Duty > Min. Duty, and fan
count still in 0xFFF.
7.7
SPI Interface
Communication between the two devices is handling the serial peripheral interface
(SPI). Every SPI system consist of one master and one or more slaves, where a master
provides the SPI clock and slave receives clock from the master.
This design is only master function, for basic signal, master-out/slave-in (MOSI),
master-in/slave-out (MISO), serial clock (SCK), and 4 slaves select (SS), are needed for
SPI interface. Each of slave select supports from 512kbits to 4096kbits flash is decided by
configuration register. Serial clock (SCK) signal frequency is varied from 24MHz to 187.5
KHz. The serial data (MOSI) for SPI interface translates to depend on SCK rising edge or
falling edge is decided by configuration register.
7.8
ACPI Function
The Advanced Configuration and Power Interface (ACPI) is a system for controlling the
use of power in a computer. It lets computer manufacturer and user to determine the
computer’s power usage dynamically.
There are three ACPI states that are of primary concern to the system designer and they
are designated S0, S3 and S5. S0 is a full-power state; the computer is being actively used in
this state. The other two are called sleep states and reflect different power consumption when
power-down. S3 is a state that the processor is powered down but the last procedural state is
being stored in memory which is still active. S5 is a state that memory is off and the last
procedural state of the processor has been stored to the hard disk. Take S3 and S5 as
comparison, since memory is fast, the computer can quickly come back to full-power state, the
disk is slower than the memory and the computer takes longer time to come back to full-power
state. However, since the memory is off, S5 draws the minimal power comparing to S0 and S3.
It is anticipated that only the following state transitions may happen:
S0→S3, S0→S5, S5→S0, S3→S0 and S3→S5.
50
July, 2008
V0.29P
F71863
Among them, S3→S5 is illegal transition and won’t be allowed by state machine. It is
necessary to enter S0 first in order to get to S5 from S3. As for transition S5→S3 will occur only
as an immediate state during state transition from S5→S0. It isn’t allowed in the normal state
transition.
The below diagram described the timing, the always on and always off, keep last state
could be set in control register. In keep last state mode, one register will keep the status of
before power loss. If it is power on before power loss, it will remain power on when power is
resumed, otherwise, if it is power off before power loss, it will remain power off when power is
resumed.
VBAT
VSB
RSMRST#
S3#
PS_ON#
PSIN#
PSOUT#
VCC3V
DEFAULT TIMING
Always off
VBAT
VSB
RSMRST#
S3#
PS_ON#
PSIN#
PSOUT#
VCC3V
ALways ON TIMING
51
July, 2008
V0.29P
F71863
K8 Power Sequence Timing diagram
52
July, 2008
V0.29P
F71863
ST1/ST2 Pins Timing diagram:
53
July, 2008
V0.29P
F71863
PCI Reset and PWROK Signals
The F71863 supports 3 output buffers for 3 reset signals.
+3.3V
Delay
PWROK
LRESET#
Buffer
PCIRST1~3#
ATXPG
So far as the PWROK issue is as the figure above. PWROK is delayed 400ms (default) as
VCC arrives 2.8V, and the delay timing can be programmed by register. (100ms ~ 400ms)
7.9
AMDSI and Intel PECI Function
The F71863 provides Intel PECI/AMDSI interfaces for new generational CPU temperature
sensing. In AMDSI interface, there are SIC and SID signals for temperature information reading
from AMD CPU. The SIC signal is for clocking use, the other is for data transferring. More detail
please refer register description.
54
July, 2008
V0.29P
F71863
VDDIO
300
AMD CPU
300
SIC
SIC
SID
F71863
SID
In Intel PECI interface, the F71863 can connect to CPU directly. The F71863 can read the
temperature data from CPU, than the fan control machine of F71863 can implement the Fan to cool
down CPU temperature. The application circuit is as below. More detail please refer the register
description.
Intel
F71863
CPU
avoid pre-BIOS floating
PECI
PECI
100K
55
July, 2008
V0.29P
F71863
8. Register Description
The configuration register is used to control the behavior of the corresponding devices. To configure
the register, using the index port to select the index and then writing data port to alter the parameters. The
default index port and data port are 0x4E and 0x4F respectively. Pull down the SOUT1 pin to change the
default value to 0x2E/0x2F. To enable configuration, the entry key 0x87 must be written to the index port.
To disable configuration, write exit key 0xAA to the index port. Following is a example to enable
configuration and disable configuration by using debug.
-o 4e 87
-o 4e 87
( enable configuration )
-o 4e aa
( disable configuration )
The Following is a register map (total devices) grouped in hexadecimal address order, which shows a
summary of all registers and their default value. Please refer each device chapter if you want more detail
information.
Global Control Registers
“-“ Reserved or Tri-State
Global Control Registers
Register
0x[HEX]
Register Name
Default Value
MSB
LSB
02
Software Reset Register
-
-
-
-
-
-
-
0
07
Logic Device Number Register (LDN)
0
0
0
0
0
0
0
0
20
Chip ID Register
0
0
0
0
0
1
1
0
21
Chip ID Register
0
0
0
0
0
0
0
1
23
Vender ID Register
0
0
0
1
1
0
0
1
24
Vender ID Register
0
0
1
1
0
1
0
0
25
Software Power Down Register
-
-
0
0
0
0
0
0
26
UART IRQ Sharing Register
0
-
-
-
-
-
0
0
27
ROM Address Select Register
0
0/1
1/0
1/0
0/1
0/1
0/1
0
28
Power LED Function Select Register
-
-
-
-
0
0
0
0
29
Multi Function Select 1 Register
-
0
0
0
-
0
0
0
2A
Multi Function Select 2 Register
0
0
0
0
0
0
0
0
2B
Multi Function Select 3 Register
0
0
0
0
0
0
0
0
2C
Multi Function Select 4 Register
0
0
0
0
0
0
0
0
2D
Wakeup Control Register
0
-
-
-
1
0
0
0
56
July, 2008
V0.29P
F71863
Device Configuration Registers
“-“ Reserved or Tri-State
FDC Device Configuration Registers (LDN CR00)
Register
0x[HEX]
Register Name
Default Value
MSB
LSB
30
FDC Device Enable Register
-
-
-
-
-
-
-
1
60
Base Address High Register
0
0
0
0
0
0
1
1
61
Base Address Low Register
1
1
1
1
0
0
0
0
70
IRQ Channel Select Register
-
-
-
-
0
1
1
0
74
DMA Channel Select Register
-
-
-
-
-
0
1
0
F0
FDD Mode Register
-
-
-
-
1
1
1
0
F2
FDD Drive Type Register
-
-
-
-
-
-
1
1
F4
FDD Selection Register
-
-
-
0
0
-
0
0
UART1 Device Configuration Registers (LDN CR01)
Register
0x[HEX]
Register Name
Default Value
MSB
LSB
30
UART1 Device Enable Register
-
-
-
-
-
-
-
1
60
Base Address High Register
0
0
0
0
0
0
1
1
61
Base Address Low Register
1
1
1
1
1
0
0
0
70
IRQ Channel Select Register
-
-
-
-
0
1
0
0
F0
RS485 Enable Register
-
-
-
0
-
-
-
-
UART2 Device Configuration Registers (LDN CR02)
Register
0x[HEX]
Register Name
Default Value
MSB
LSB
30
UART2 Device Enable Register
-
-
-
-
-
-
-
1
60
Base Address High Register
0
0
0
0
0
0
1
0
61
Base Address Low Register
1
1
1
1
1
0
0
0
70
IRQ Channel Select Register
-
-
-
-
0
0
1
1
F0
RS485 Enable Register
-
-
-
0
0
0
-
-
F1
SIR Mode Control Register
-
-
-
0
0
1
0
0
Parallel Port Device Configuration Registers (LDN CR03)
Register
0x[HEX]
Register Name
Default Value
MSB
LSB
30
Parallel Port Device Enable Register
-
-
-
-
-
-
-
1
60
Base Address High Register
0
0
0
0
0
0
1
1
61
Base Address Low Register
0
1
1
1
1
0
0
0
70
IRQ Channel Select Register
-
-
-
-
0
1
1
1
74
DMA Channel Select Register
-
-
-
0
-
0
1
1
57
July, 2008
V0.29P
F71863
F0
PRT Mode Select Register
0
1
0
0
0
0
1
0
Hardware Monitor Device Configuration Registers (LDN CR04)
Register
0x[HEX]
Register Name
Default Value
MSB
LSB
30
H/W Monitor Device Enable Register
-
-
-
-
-
-
-
1
60
Base Address High Register
0
0
0
0
0
0
1
0
61
Base Address Low Register
1
0
0
1
0
1
0
1
70
IRQ Channel Select Register
-
-
-
-
0
0
0
0
KBC Device Configuration Registers (LDN CR05)
Register
0x[HEX]
Register Name
Default Value
MSB
LSB
30
KBC Device Enable Register
-
-
-
-
-
-
-
1
60
Base Address High Register
0
0
0
0
0
0
0
0
61
Base Address Low Register
0
1
1
0
0
0
0
0
70
KB IRQ Channel Select Register
-
-
-
-
0
0
0
0
72
Mouse IRQ Channel Select Register
-
-
-
-
0
0
0
0
GPIO Device Configuration Registers (LDN CR06)
Register
0x[HEX]
Register Name
Default Value
MSB
LSB
F0
GPIO Output Enable Register
-
-
-
-
0
0
0
0
F1
GPIO Output Data Register
-
-
-
-
1
1
1
1
F2
GPIO Pin Status Register
-
-
-
-
-
-
-
-
F3
GPIO Drive Enable Register
0
0
0
0
0
0
0
0
E0
GPIO1 Output Enable Register
0
0
0
0
0
0
0
0
E1
GPIO1 Output Data Register
1
1
1
1
1
1
1
1
E2
GPIO1 Pin Status Register
-
-
-
-
-
-
-
-
E3
GPIO1 Drive Enable Register
0
0
0
0
0
0
0
0
D0
GPIO2 Output Enable Register
0
0
0
0
0
0
0
0
D1
GPIO2 Output Data Register
1
1
1
1
1
1
1
1
D2
GPIO2 Pin Status Register
-
-
-
-
-
-
-
-
D3
GPIO2 Drive Enable Register
0
0
0
0
0
0
0
0
C0
GPIO3 Output Enable Register
-
-
-
-
0
0
0
0
C1
GPIO3 Output Data Register
-
-
-
-
1
1
1
1
C2
GPIO3 Pin Status Register
-
-
-
-
-
-
-
-
C3
GPIO3 Drive Enable Register
-
-
-
-
0
0
0
0
B0
GPIO4 Output Enable Register
-
-
0
0
0
0
0
0
B1
GPIO4 Output Data Register
-
-
1
1
1
1
1
1
B2
GPIO4 Pin Status Register
-
-
-
-
-
-
-
-
B3
GPIO4 Drive Enable Register
-
-
0
0
0
0
0
0
58
July, 2008
V0.29P
F71863
VID Device Configuration Registers (LDN CR07)
Register
0x[HEX]
Register Name
Default Value
MSB
LSB
30
VID Device Enable Register
-
-
-
-
-
-
-
0
60
Base Address High Register
0
0
0
0
0
0
0
0
61
Base Address Low Register
0
0
0
0
0
0
0
0
SPI Device Configuration Registers (LDN CR08)
Register
0x[HEX]
Register Name
Default Value
MSB
LSB
F0
SPI Control Register
0
0
0
1
0
0
0
0
F1
SPI Timeout Value Register
0
0
0
0
0
1
0
0
F2
SPI Baud Rate Divisor Register
-
-
-
-
-
0
0
1
F3
SPI Status Register
0
-
-
-
0
-
-
-
F4
SPI High Byte Data Register
0
0
0
0
0
0
0
0
F5
SPI Command Data Register
0
0
0
0
0
0
0
0
F6
SPI Chip Select Register
-
-
-
-
0
0
0
0
F7
SPI Memory Mapping Register
-
-
-
-
-
-
-
-
F8
SPI Operate Register
0
0
0
0
0
0
0
0
FA
SPI Low Byte Data Register
0
0
0
0
0
0
0
0
FB
SPI Address High Byte Register
0
0
0
0
0
0
0
0
FC
SPI Address Medium Byte Register
0
0
0
0
0
0
0
0
FD
SPI Address Low Byte Register
0
0
0
0
0
0
0
0
FE
SPI Program Byte Register
0
0
0
0
0
0
0
0
FF
SPI Write Data Register
0
0
0
0
0
0
0
0
PME and ACPI Device Configuration Registers (LDN CR0A)
Register
0x[HEX]
Register Name
Default Value
MSB
LSB
30
PME Device Enable Register
-
-
-
-
-
-
-
0
F0
PME Event Enable Register
-
0
0
0
0
0
0
0
F1
PME Event Status Register
-
-
-
-
-
-
-
-
F4
ACPI Control Register
0
0
0
0
0
1
1
0
F5
ACPI Control Register
0
0
0
1
1
1
0
0
59
July, 2008
V0.29P
F71863
8.1 Global Control Registers
8.1.1
Software Reset Register  Index 02h
Bit
Name
7-1 Reserved
0
8.1.2
SOFT_RST
Name
7-0 LDN
Bit
Bit
Bit
Name
Bit
Name
Bit
Name
0
Write 1 to reset the register and device powered by VDD ( VCC ).
R/W Default
00h
Description
00h: Select FDC device configuration registers.
01h: Select UART 1 device configuration registers.
02h: Select UART 2 device configuration registers.
03h: Select Parallel Port device configuration registers.
04h: Select Hardware Monitor device configuration registers.
05h: Select KBC device configuration registers.
06h: Select GPIO device configuration registers.
07h: Select VID device configuration registers.
08h: Select SPI device configuration registers.
0ah: Select PME & ACPI device configuration registers.
R/W Default
R
06h
Description
Chip ID 1 of F71863FG.
R/W Default
R
01h
Description
Chip ID2 of F71863FG.
R/W Default
R
19h
Description
Vendor ID 1 of Fintek devices.
Vendor ID Register  Index 24h
Name
R/W Default
R
34h
Description
Vendor ID 2 of Fintek devices.
Software Power Down Register  Index 25h
Name
7-6 Reserved
5
R/W
Vendor ID Register  Index 23h
7-0 VENDOR_ID2
8.1.7
Reserved
Chip ID Register  Index 21h
7-0 VENDOR_ID1
8.1.6
-
Chip ID Register  Index 20h
7-0 CHIP_ID2
8.1.5
-
R/W
7-0 CHIP_ID1
8.1.4
Description
Logic Device Number Register (LDN)  Index 07h
Bit
8.1.3
R/W Default
Reserved
R/W Default
Description
-
-
Reserved
R/W
0
Dummy register.
60
July, 2008
V0.29P
F71863
4
SOFTPD_HM
R/W
0
Power down the Hardware Monitor device. This will stop the Hardware Monitor
clock.
3
SOFTPD_PRT
R/W
0
Power down the Parallel Port device. This will stop the Parallel Port clock.
2
SOFTPD_UR2
R/W
0
Power down the UART 2 device. This will stop the UART 2 clock.
1
SOFTPD_UR1
R/W
0
Power down the UART 1 device. This will stop the UART 1 clock.
0
SOFTPD_FDC
R/W
0
Power down the FDC device. This will stop the FDC clock.
8.1.8
Bit
7
UART IRQ Sharing Register  Index 26h
Name
CLK24M_SEL
R/W Default
R/W
0
Description
0: CLKIN is 48MHz
1: CLKIN is 24MHz
6-2 Reserved
1
IRQ_MODE
-
-
Reserved.
R/W
0
0: PCI IRQ sharing mode (low level).
1: ISA IRQ sharing mode (low pulse).
o
IRQ_SHAR
R/W
0
0: disable IRQ sharing of two UART devices.
1: enable IRQ sharing of two UART devices.
8.1.9
Bit
7
ROM Address Select Register  Index 27h
Name
ROM_WR_EN
R/W Default
R/W
0
Description
0: disable ROM writing
1: enable ROM writing
6
SPI_EN
R/W
-
0: SPI disable
1: SPI enable
This register is power on trapped by SOUT2/SPI_TRAP. Pull down to enable
SPI.
5
SPI_BIOS_EN
R/W
-
0: use SPI bridge for BIOS
1: Reserved
This register is power on trapped by DTR2#/FWH_TRAP. Pull down to enable
SPI bridge for BIOS.
4
PORT_4E_EN
R/W
-
0: The configuration register port is 2E/2F.
1: The configuration register port is 4E/4F.
This register is power on trapped by SOUT1/ Config4E_2E. Pull down to select
port 2E/2F.
3
SEG_000E_EN
R/W
-
0: disable address 0x000E0000 – 0x000EFFFF decode
1: enable address 0x000E0000 – 0x000EFFFF decode
This register is power on trapped by SOUT2/SPI_DIS. Pull down to enable.
2
SEG_FFF8_EN
R/W
-
0: disable address 0xFFF80000 – 0xFFFFFFFF and 0x000F0000 –
0x000FFFFF decode
1: enable address 0xFFF80000 – 0xFFFFFFFF and 0x000F0000 –
0x000FFFFF decode
This register is power on trapped by SOUT2/SPI_DIS. Pull down to enable.
61
July, 2008
V0.29P
F71863
1
SEG_FFEF_EN
R/W
-
0: disable address 0xFFEE – 0xFFEFFFFF decode
1: enable address 0xFFEE0000 – 0xFFEFFFFF decode
This register is power on trapped by SOUT2/SPI_DIS. Pull down to enable.
0
SEG_FFF0_EN
R/W
0
0: disable address 0xFFF00000 – 0xFFF7FFFF decode
1: enable address 0xFFF00000 – 0xFFF7FFFF decode
8.1.10
Bit
Power LED Function Select Register  Index 28h
Name
7-4 Reserved
3
GPIO43_SEL
R/W Default
Description
-
-
Reserved.
R/W
0
0: IRRX/GPIO43 functions as IRRX.
1: IRRX/GPIO43 functions as GPIO43.
2
GPIO42_SEL
R/W
0
0: IRTX/GPIO42 functions as IRTX.
1: IRTX/GPIO42 functions as GPIO42.
1
GPIO41_SEL
R/W
0
0: FANCTRL3/GPIO41 functions as FANCTRL3.
1: FANCTRL3/GPIO41 functions as GPIO41.
0
GPIO40_SEL
R/W
0
0: FANIN3/GPIO40 functions as FANIN3.
1: FANIN3/GPIO40 functions as GPIO40.
8.1.11
Bit
Multi Function Select 1 Register  Index 29h (Powered by VSB3V)
Name
R/W Default
Description
7
Reserved
R/W
-
Reserved
6
FDD_PROT_STS
R/W
0
0: FDD write-protect status depends on PIN18(WPT#)
1: FDD is write-protected
5
LEC_VCC_PRO
R/W
0
0: LED_VCC (PIN65) is tri-state if VCC power loss
1: LED_VCC (PIN65) is still programmable while VCC power loss
4
KB_MO_SWP
R/W
0
0: KB/MOUSE signal as default.
1: KB/MOUSE signal swapped.
3
Reserved
R/W
-
Reserved
2
GPIO02_SEL
R/W
0
0: SLOTOCC#/GPIO02 will functions as SLOTOCC#.
1: SLOTOCC#/GPIO02 will functions as GPIO02.
1
WDT_GP03_EN
R/W
0
0: GPIO03/WDTRST# will function as GPIO03
1: GPIO03/WDTRST# will function as WDTRST#.
0
ALERT_GP_EN
R/W
0
0: GPIO15/LED_VSB/ALERT# will function as GPIO15/LED_VSB controlled
by GPIO15_SEL register.
1: GPIO15/LED_VSB/ALERT# will function as ALERT#.
8.1.12
Bit
Multi Function Select 2 Register  Index 2Ah (Powered by VSB3V)
Name
R/W Default
Description
62
July, 2008
V0.29P
F71863
7-6 VSBLED_SEL
R/W
2’b00 VSBLED function select, powered by VSB.
00: VSBLED always output low.
01: VSBLED tri-state
10: VSBLED output 0.5Hz clock.
11: VSBLED output 1Hz clock.
( clock output is inverse with VDDLED clock output )
5-4 VDDLED_SEL
R/W
2’b00 VDDLED function select, powered by VDD.
00: VDDLED always output low.
01: VDDLED tri-state
10: VDDLED output 0.5Hz clock.
11: VDDLED output 1Hz clock.
( clock output is inverse with VSBLED clock output )
3
GPIO33_SEL
R/W
0
2
GPIO32_SEL
R/W
0
1
GPIO31_SEL
R/W
0
0
GPIO30_SEL
R/W
0
0: RSMRST#/GPIO33 functions as RSMRST#.
1: RSMRST#/GPIO33 functions as GPIO33.
0: PWROK/GPIO32 functions as PWROK.
1: PWROK/GPIO32 functions as GPIO32.
0: PS_ON#/GPIO31 functions as PS_ON#.
1: PS_ON#/GPIO31 functions as GPIO31.
0: S3#/GPIO30 functions as S3#.
1: S3#/GPIO30 functions as GPIO30.
8.1.13
Bit
Multi Function Select 3 Register  Index 2Bh (Powered by VSB3V)
Name
R/W Default
Description
7
Reserved
R/W
0
Dummy register.
6
GPIO16_SEL
R/W
0
0: GPIO16/LED_VCC functions as GPIO16.
1: GPIO16/LED_VCC functions as LED_VCC.
5
GPIO15_SEL
R/W
0
When register ALERT_GP_EN is 0, the register functions as:
0: GPIO15/LED_VSB/ALERT# functions as GPIO15.
1: GPIO15/LED_VSB/ALERT# functions as LED_VSB.
4
GPIO14_SEL
R/W
0
0: GPIO14/FWH_DIS/WDTRST# functions as GPIO14 when SPI is disabled.
1: GPIO14/FWH_DIS/WDTRST# functions as WDTRST# when SPI is
disabled.
3
GPIO13_SEL
R/W
0
0: GPIO13/SPI_MOSI/BEEP functions as GPIO13 when SPI is disabled.
1: GPIO13/SPI_MOSI/BEEP functions as BEEP when SPI is disabled.
2
GPIO12_SEL
R/W
0
0: GPIO12/SPI_MISO/FANCTRL1_1 functions as GPIO12 when SPI is
disabled.
1: GPIO12/SPI_NISO/FANCTRL1_1 functions as FANCTRL1_1 when SPI is
disabled.
1-0 Reserved
8.1.14
Bit
R/W
0
Reserved
Multi Function Select 4 Register  Index 2Ch (Powered by VSB3V)
Name
R/W Default
Description
63
July, 2008
V0.29P
F71863
7
GPIO27_SEL
R/W
0
0: PWSOUT#/GPIO27 functions as PWSOUT#.
1: PWSOUT#/GPIO27 functions as GPIO27.
6
GPIO26_SEL
R/W
0
0: PWSIN#/GPIO26 functions as PWSIN#.
1: PWSIN#/GPIO26 functions as GPIO26.
5
GPIO25_SEL
R/W
0
0: PME#/GPIO25 functions as PME#.
1: PME#/GPIO25 functions as GPIO25.
4
GPIO24_SEL
R/W
0
0: ATXPG_IN/GPIO24 functions as ATXPG_IN.
1: ATXPG_IN/GPIO24 functions as GPIO24.
3
Reserved
R/W
0
Reserved
2
GPIO22_SEL
R/W
0
0: PCIRST3#/GPIO22 functions as PCIRST3#.
1: PCIRST3#/GPIO22 functions as GPIO22.
1
GPIO21_SEL
R/W
0
0: PCIRST2#/GPIO21 functions as PCIRST2#.
1: PCIRST2#/GPIO21 functions as GPIO21.
0
GPIO20_SEL
R/W
0
0: PCIRST1#/GPIO20 functions as PCIRST1#.
1: PCIRST1#/GPIO20 functions as GPIO20.
8.1.15
Bit
7
Wakeup Control Register  Index 2Dh (Powered by VBAT)
Name
SPI_CS1_EN
R/W Default
R/W
0
Description
This register decides the architecture of SPI when used as primary BIOS.
1: use two 4Mbits. (FWH_DIS will multi-functions as SPI_CS1#)
0: use one 8Mbits. (Divided into two 4Mbits. Originally use the higher part. If
the higher part is booting fail, the memory address will be auto mapped to
lower part.)
6-4 Reserved
3
WAKEUP_EN
R/W
0
Dummy register.
R/W
1
0: disable keyboard/mouse wake up.
1: enable keyboard/mouse wake up.
2-1 KEY_SEL
R/W
00
This registers select the keyboard wake up key.
When KEY_SEL_ADD is low, the register indicates
00: Wake up key is Ctrl + Esc.
01: Wake up key is Ctrl + F1.
10: Wake up key is Ctrl + Space.
11: Wake up key is any key.
Otherwise, wake up key is win98 wakeup key.
0
MO_SEL
R/W
0
This register selects the mouse wake up key.
0: Wake up by click.
1: Wake up by click and movement.
64
July, 2008
V0.29P
F71863
8.2 FDC Registers (CR00)
8.2.1
FDC Configuration Registers
FDC Device Enable Register  Index 30h
Bit
Name
7-1 Reserved
0
FDC_EN
R/W Default
Description
-
-
Reserved
R/W
1
0: disable FDC.
1: enable FDC.
Base Address High Register  Index 60h
Bit
Name
7-0 BASE_ADDR_HI
R/W Default
R/W
03h
Description
The MSB of FDC base address.
Base Address Low Register  Index 61h
Bit
Name
7-0 BASE_ADDR_LO
R/W Default
R/W
F0h
Description
The LSB of FDC base address.
IRQ Channel Select Register  Index 70h
Bit
Name
7-4 Reserved
3-0 SELFDCIRQ
R/W Default
-
-
R/W
06h
Description
Reserved.
Select the IRQ channel for FDC.
DMA Channel Select Register  Index 74h
Bit
Name
7-3 Reserved
2-0 SELFDCDMA
R/W Default
-
-
R/W
010
Description
Reserved.
Select the DMA channel for FDC.
FDD Mode Register  Index F0h
Bit
Name
R/W Default
Description
7-4 Reserved
-
-
Reserved.
3-2 IF_MODE
R/W
11
00: Model 30 mode.
01: PS/2 mode.
10: Reserved.
11: AT mode (default).
1
FDMAMODE
R/W
1
0: enable burst mode.
1: non-busrt mode (default).
0
EN3MODE
R/W
0
0: normal floppy mode (default).
1: enhanced 3-mode FDD.
FDD Drive Type Register  Index F2h
Bit
Name
7-2 Reserved
R/W Default
-
-
Description
Reserved.
65
July, 2008
V0.29P
F71863
1-0 FDD_TYPE
R/W
11
FDD drive type.
FDD Selection Register  Index F4h
Bit
Name
R/W Default
7-5 Reserved
-
-
4-3 FDD_DRT
R/W
00
-
-
R/W
00
2
Reserved
1-0 FDD_DT
Reserved.
FDD_DRT[0]
0
0
0
1
1
0
Data rate table select, refer to table A.
00: select regular drives and 2.88 format.
01: 3-mode drive.
10: 2 mega tape.
11: reserved.
Reserved.
TABLE A
Data Rate Table Select
FDD_DRT[1]
Description
Drive type select, refer to table B.
Data Rate
Selected Data Rate
DENSEL
DATARATE1
DATARATE0
MFM
FM
0
0
500K
250K
1
0
1
300K
150K
0
1
0
250K
125K
0
1
1
1Meg
---
1
0
0
500K
250K
1
0
1
500K
250K
0
1
0
250K
125K
0
1
1
1Meg
---
1
0
0
500K
250K
1
0
1
2Meg
---
0
1
0
250K
125K
0
1
1
1Meg
---
1
TABLE B
Drive Type
DRVDEN0
Remark
0
DENSEL
4/2/1 MB 3.5”
2/1 MB 5.25”
1/1.6/1 MB 3.5” (3-Mode )
0
1
DATARATE1
1
0
DENSEL#
1
1
DATARATE0
FDD_DT1
FDD_DT0
0
66
July, 2008
V0.29P
F71863
8.3 UART1 Registers (CR01)
8.3.1
UART 1 Configuration Registers
UART 1 Device Enable Register  Index 30h
Bit
Name
7-1 Reserved
0
UR1_EN
R/W Default
Description
-
-
Reserved
R/W
1
0: disable UART 1.
1: enable UART 1.
Base Address High Register  Index 60h
Bit
Name
7-0 BASE_ADDR_HI
R/W Default
R/W
03h
Description
The MSB of UART 1 base address.
Base Address Low Register  Index 61h
Bit
Name
7-0 BASE_ADDR_LO
R/W Default
R/W
F8h
Description
The LSB of UART 1 base address.
IRQ Channel Select Register  Index 70h
Bit
Name
7-4 Reserved
3-0 SELUR1IRQ
R/W Default
-
-
R/W
4h
Description
Reserved.
Select the IRQ channel for UART 1.
RS485 Enable Register  Index F0h
Bit
Name
7-5 Reserved
4
RS485_EN
3-0 Reserved
R/W Default
Description
-
-
Reserved.
R/W
0
0: RS232 driver.
1: RS485 driver. Auto drive RTS# low when transmitting data.
-
-
Reserved.
67
July, 2008
V0.29P
F71863
8.4 UART 2 Registers (CR02)
8.4.1
UART 2 Configuration Registers
UART 2 Device Enable Register  Index 30h
Bit
Name
7-1 Reserved
0
UR2_EN
R/W Default
Description
-
-
Reserved
R/W
1
0: disable UART 2.
1: enable UART 2.
Base Address High Register  Index 60h
Bit
Name
7-0 BASE_ADDR_HI
R/W Default
R/W
02h
Description
The MSB of UART 2 base address.
Base Address Low Register  Index 61h
Bit
Name
7-0 BASE_ADDR_LO
R/W Default
R/W
F8h
Description
The LSB of UART 2 base address.
IRQ Channel Select Register  Index 70h
Bit
Name
7-4 Reserved
3-0 SELUR2IRQ
R/W Default
-
-
R/W
3h
Description
Reserved.
Select the IRQ channel for UART 2.
RS485 Enable Register  Index F0h
Bit
Name
7-5 Reserved
R/W Default
Description
-
-
Reserved.
4
RS485_EN
R/W
0
0: RS232 driver.
1: RS485 driver. Auto drive RTS# low when transmitting data.
3
RXW4C_IR
R/W
0
0: No reception delay when SIR is changed form TX to RX.
1: Reception delays 4 characters time when SIR is changed form TX to RX.
2
TXW4C_IR
R/W
0
0: No transmission delay when SIR is changed form RX to TX.
1: Transmission delays 4 characters time when SIR is changed form RX to TX.
-
-
Reserved.
1-0 Reserved
SIR Mode Control Register  Index F1h
Bit
Name
R/W Default
Description
7
Reserved
-
-
Reserved.
6
Reserved
-
-
Reserved.
5
Reserved
-
-
Reserved.
R/W
00
4-3 IRMODE
00: disable IR function.
01: disable IR function.
10: IrDA function, active pulse is 1.6uS.
11: IrDA function, active pulse is 3/16 bit time.
68
July, 2008
V0.29P
F71863
2
HDUPLX
R/W
1
0: SIR is in full duplex mode for loopbak test. TXW4C_IR and RXW4C_IR are
of no use.
1: SIR is in half duplex mode.
1
TXINV_IR
R/W
0
0: IRTX is in normal condition.
1: inverse the IRTX.
0
RXINV_IR
R/W
0
0: IRRX is in normal condition.
1: inverse the IRRX.
69
July, 2008
V0.29P
F71863
8.5 Parallel Port Registers (CR03)
8.5.1
Parallel Port Configuration Registers
Parallel Port Device Enable Register  Index 30h
Bit
Name
7-1 Reserved
0
PRT_EN
R/W Default
Description
-
-
Reserved
R/W
1
0: disable Parallel Port.
1: enable Parallel Port.
Base Address High Register  Index 60h
Bit
Name
7-0 BASE_ADDR_HI
R/W Default
R/W
03h
Description
The MSB of Parallel Port base address.
Base Address Low Register  Index 61h
Bit
Name
7-0 BASE_ADDR_LO
R/W Default
R/W
78h
Description
The LSB of Parallel Port base address.
IRQ Channel Select Register  Index 70h
Bit
Name
7-5 Reserved
3-0 SELPRTIRQ
R/W Default
-
-
R/W
7h
Description
Reserved.
Select the IRQ channel for Parallel Port.
DMA Channel Select Register  Index 74h
Bit
Name
7-5 Reserved
R/W Default
Description
-
-
Reserved.
R/W
0
0: non-burst mode DMA.
1: enable burst mode DMA.
Reserved.
4
ECP_DMA_MODE
3
Reserved
-
-
2-0 SELPRTDMA
R/W
011
Select the DMA channel for Parallel Port.
PRT Mode Select Register  Index F0h
Bit
7
Name
SPP_IRQ_MODE
6-3 ECP_FIFO_THR
R/W Default
R/W
0
R/W
1000
Description
Interrupt mode in non-ECP mode.
0: Level mode.
1: Pulse mode.
ECP FIFO threshold.
70
July, 2008
V0.29P
F71863
2-0 PRT_MODE
R/W
010
000: Standard and Bi-direction (SPP) mode.
001: EPP 1.9 and SPP mode.
010: ECP mode (default).
011: ECP and EPP 1.9 mode.
100: Printer mode.
101: EPP 1.7 and SPP mode.
110: Reserved.
111: ECP and EPP1.7 mode.
71
July, 2008
V0.29P
F71863
8.6 Hardware Monitor Registers (CR04)
8.6.1
Hardware Monitor Configuration Registers
Hardware Monitor Device Enable Register  Index 30h
Bit
Name
7-1 Reserved
0
HM_EN
R/W Default
Description
-
-
Reserved
R/W
1
0: disable Hardware Monitor.
1: enable Hardware Monitor.
Base Address High Register  Index 60h
Bit
Name
7-0 BASE_ADDR_HI
R/W Default
R/W
02h
Description
The MSB of Hardware Monitor base address.
Base Address Low Register  Index 61h
Bit
Name
7-0 BASE_ADDR_LO
R/W Default
R/W
95h
Description
The LSB of Hardware Monitor base address.
IRQ Channel Select Register  Index 70h
Bit
Name
7-4 Reserved
3-0 SELHMIRQ
8.6.2
R/W Default
-
-
R/W
0000
Description
Reserved.
Select the IRQ channel for Hardware Monitor.
Device Registers
Before the device registers, the following is a register map order which shows a summary of all registers.
Please refer each one register if you want more detail information.
Register CR01 ~ CR03 Æ Configuration Registers
Register CR10 ~ CR4F Æ Voltage Setting Register
Register CR60 ~ CR8E Æ Temperature Setting Register
Register CR90 ~ CRDF Æ Fan Control Setting Register
ÆFan1 Detail Setting CRA0 ~ CRAF
ÆFan2 Detail Setting CRB0 ~ CRBF
ÆFan3 Detail Setting CRC0 ~ CRCF
8.6.2.1 Configuration Register  Index 01h
Bit
Name
R/W Default
Description
7-3
Reserved
0h
0
Reserved
2
POWER_DOWN
R/W
0
Hardware monitor function power down.
1
FAN_START
R/W
1
0
V_T_START
R/W
1
Set one to enable startup of fan monitoring operations; a zero puts the part
in standby mode.
Set one to enable startup of temperature and voltage monitoring
operations; a zero puts the part in standby mode.
72
July, 2008
V0.29P
F71863
8.6.2.2 Configuration Register  Index 02h
Bit
Name
R/W Default
7
Reserved
R/W
0
Dummy register.
6
CASE_BEEP_EN
R/W
0
0: Disable case open event output via BEEP.
1: Enable case open event output via BEEP.
00: The OVT# will be low active level mode.
01: The OVT# will be high active level mode.
10: The OVT# will indicate by 1Hz LED function.
11: The OVT# will indicate by (400/800HZ) BEEP output.
Dummy register.
0
5-4
OVT_MODE
R/W
3
Reserved
R/W
0
2
CASE_SMI_EN
R/W
0
0
1-0
ALERT_MODE
R/W
Description
0: Disable case open event output via PME.
1: Enable case open event output via PME.
00: The ALERT# will be low active level mode.
01: The ALERT# will be high active level mode.
10: The ALERT# will indicate by 1Hz LED function.
11: The ALERT# will indicate by (400/800HZ) BEEP output.
8.6.2.3 Configuration Register  Index 03h
Bit
Name
R/W Default
Description
7-1
Reserved
R/W
0
Return 0 when read.
0
CASE_STS
R/W
0
Case open event status, write 1 to clear if case open event cleared.
8.6.2.4 Configuration Register  Index 0Ah
Bit
Name
R/W Default
7-6
Reserved
-
00
Reserved.
5
T1_IIR_EN
R/W
0
4
Reserved
R/W
0
Set 1 to enable IIR for AMDSI/PECI reading.
The reading will be more stable.
Reserved.
0
3-2
VTT_SEL
R/W
00
1-0
MEAS_TYPE
R/W
Description
PECI (Vtt) voltage select.
00: Vtt is 1.23V
01: Vtt is 1.13V
10: Vtt is 1.00V
11: Vtt is 1.00V
CPU Temperature Measurement method.
00: with external diode.
01: with PECI interface.
10: with AMDSI interface.
11: reserved.
8.6.2.5 Configuration Register  Index 0Bh
Bit
Name
(MEAS_TYPE == 2’b01)
R/W Default
0
7-4
CPU_SEL
R/W
3-1
Reserved
-
0
Description
Select the Intel CPU socket number.
0000: no CPU presented. PECI host will use Ping() command to find CPU
address.
0001: CPU is in socket 0, i.e. PECI address is 0x30.
0010: CPU is in socket 0, i.e. PECI address is 0x31.
0100: CPU is in socket 0, i.e. PECI address is 0x32.
1000: CPU is in socket 0, i.e. PECI address is 0x33.
Otherwise are reserved.
Reserved.
73
July, 2008
V0.29P
F71863
0
DOMAIN1_EN
R/W
0
If the CPU selected is dual core. Set this register 1 to read the temperature
of domain1.
8.6.2.6 Configuration Register  Index 0Bh
Bit
Name
7-0
AMDSI_VER
R/W Default
R
-
Description
Return the AMDSI version.
8.6.2.7 Configuration Register  Index 0Ch
Bit
7-0
Name
TCC_TEMP
Name
7-0
NODE_ID
(MEAS_TYPE == 2’b01)
R/W Default
R/W
Description
8’h55 TCC Activation Temperature.
The absolute value of CPU temperature is calculated by the equation:
CPU_TEMP = TCC_TEMP + PECI Reading.
The range of this register is 0 ~ 255.
8.6.2.8 Configuration Register  Index 0Ch
Bit
(MEAS_TYPE ==2’b10)
(MEAS_TYPE ==2’b10)
R/W Default
R
-
Description
Return the AMDSI node id.
8.6.2.9 Configuration Register  Index 0Dh
Bit
Name
7-0
Reserved
R/W Default
-
-
Description
Reserved.
8.6.2.10 Configuration Register  Index 0Eh
Bit
Name
7-4
Reserved
3
PECI_SCALE_ADD
R/W Default
R/W
0
Reserved.
0
This register is used to indicate how to calculate the PECI reading with
PECI_SCALE register.
0: The real value is the reading adds the value calculated by
PECI_SCALE.
1: The real value is the reading adds the value calculated by
PECI_SCALE.
This register is used to control the PECI reading slope. See also
PECI_SCALE_ADD register.
000: The real value is the PECI reading.
001: The real value is (1 ± 1/2) PECI reading.
010: The real value is (1 ± 1/4) PECI reading.
011: The real value is (1 ± 1/8) PECI reading.
100: The real value is (1 ± 1/16) PECI reading.
101: The real value is (1 ± 1/32) PECI reading.
110: The real value is (1 ± 1/64) PECI reading.
111: The real value is (1 ± 1/128) PECI reading.
R/W
0
2-0
PECI_SCALE
Description
R/W
8.6.2.11 Configuration Register  Index 0Fh
Bit
Name
7-0
Reserved.
R/W Default
-
-
Description
Reserved
74
July, 2008
V0.29P
F71863
Voltage Setting
8.6.2.12 Voltage1 Voltage reading and limit Index 20h- 4Fh
Address
Attribute
20h
21h
22h
23h
24h
25h
26h
27h
28h
29~2Fh
30~4Fh
RO
RO
RO
RO
RO
RO
RO
RO
RO
RO
RO
Default
Value
---------FF
FF
Description
VCC3V reading. The unit of reading is 8mV.
V1 (Vcore) reading. The unit of reading is 8mV.
V2 reading. The unit of reading is 8mV.
V3 reading. The unit of reading is 8mV.
V4 reading. The unit of reading is 8mV.
V5 reading. The unit of reading is 8mV.
V6 reading. The unit of reading is 8mV.
VSB3V reading. The unit of reading is 8mV.
VBAT reading. The unit of reading is 8mV.
Reserved
Reserved
Temperature Setting
8.6.2.13 Temperature PME# Enable Register  Index 60h
Bit
7
6
5
4
3
2
1
0
Name
EN_ T3_OVT_PME
EN_ T2_ OVT_PME
EN_ T1_ OVT_PME
Reserved
EN_ T3_EXC_PME
EN_ T2_EXC_PME
EN_ T1_EXC_PME
Reserved
R/W Default
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
Description
If set this bit to 1, PME# signal will be issued when TEMP3 exceeds OVT
limit setting.
If set this bit to 1, PME# signal will be issued when TEMP2 exceeds OVT
setting.
If set this bit to 1, PME# signal will be issued when TEMP1 exceeds OVT
setting.
Reserved
If set this bit to 1, PME# signal will be issued when TEMP3 exceeds high
limit setting.
If set this bit to 1, PME# signal will be issued when TEMP2 exceeds high
limit setting.
If set this bit to 1, PME# signal will be issued when TEMP1 exceeds high
limit setting.
Reserved
8.6.2.14 Temperature Interrupt Status Register  Index 61h
Bit
Name
R/W Default
7
T3_OVT_STS
R/W
6
T2_OVT _STS
R/W
5
T1_OVT _STS
R/W
0
0
0
4
Reserved
R/W
0
0
3
T3_EXC _STS
R/W
Description
A one indicates TEMP3 temperature sensor has exceeded OVT limit or
below the “OVT limit –hysteresis”. Write 1 to clear this bit, write 0 will be
ignored.
A one indicates TEMP2 temperature sensor has exceeded OVT limit or
below the “OVT limit –hysteresis”. Write 1 to clear this bit, write 0 will be
ignored.
A one indicates TEMP1 temperature sensor has exceeded OVT limit or
below the “OVT limit –hysteresis”. Write 1 to clear this bit, write 0 will be
ignored.
Reserved
A one indicates TEMP3 temperature sensor has exceeded high limit or
below the “high limit –hysteresis”. Write 1 to clear this bit, write 0 will be
ignored.
75
July, 2008
V0.29P
F71863
0
2
T2_EXC _STS
R/W
1
T1_EXC _STS
R/W
0
0
Reserved
R/W
0
A one indicates TEMP2 temperature sensor has exceeded high limit or
below the “high limit –hysteresis” limit. Write 1 to clear this bit, write 0 will
be ignored.
A one indicates TEMP1 temperature sensor has exceeded high limit or
below the “high limit –hysteresis” limit. Write 1 to clear this bit, write 0 will
be ignored.
Reserved
8.6.2.15 Temperature Real Time Status Register  Index 62h
Bit
Name
R/W Default
7
T3_OVT
R/W
0
6
T2_OVT
R/W
0
5
T1_OVT
R/W
0
4
Reserved
R/W
0
3
T3_EXC
R/W
0
2
T2_EXC
R/W
0
1
T1_EXC
R/W
0
0
Reserved
R/W
0
Description
Set when the TEMP3 exceeds the OVT limit. Clear when the TEMP3 is
below the “OVT limit –hysteresis” temperature.
Set when the TEMP2 exceeds the OVT limit. Clear when the TEMP2 is
below the “OVT limit –hysteresis” temperature.
Set when the TEMP1 exceeds the OVT limit. Clear when the TEMP1 is
below the “OVT limit –hysteresis” temperature.
Reserved
Set when the TEMP3 exceeds the high limit. Clear when the TEMP3 is
below the “high limit –hysteresis” temperature.
Set when the TEMP2 exceeds the high limit. Clear when the TEMP2 is
below the “high limit –hysteresis” temperature.
Set when the TEMP1 exceeds the high limit. Clear when the TEMP1 is
below the “high limit –hysteresis” temperature.
Reserved
8.6.2.16 Temperature BEEP Enable Register  Index 63h
Bit
7
6
5
4
3
2
1
0
Name
EN_ T3_OVT_BEEP
EN_ T2_ OVT_BEEP
EN_ T1_ OVT_BEEP
Reserved
EN_ T3_EXC_BEEP
EN_ T2_EXC_BEEP
EN_ T1_EXC_BEEP
Reserved
R/W Default
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
Description
If set this bit to 1, BEEP signal will be issued when TEMP3 exceeds OVT
limit setting.
If set this bit to 1, BEEP signal will be issued when TEMP2 exceeds OVT
limit setting.
If set this bit to 1, BEEP signal will be issued when TEMP1 exceeds OVT
limit setting.
Reserved
If set this bit to 1, BEEP signal will be issued when TEMP3 exceeds high
limit setting.
If set this bit to 1, BEEP signal will be issued when TEMP2 exceeds high
limit setting.
If set this bit to 1, BEEP signal will be issued when TEMP1 exceeds high
limit setting.
Reserved
8.6.2.17 OVT Output Enable Register 1  Index 66h
Bit
Name
R/W Default
7
EN_T3_ALERT
R
0
6
EN_T2_ALERT
R
0
5
EN_T1_ALERT
R
0
4
Reserved
R
0
Description
Enable temperature 3 alert event (asserted when temperature over high
limit)
Enable temperature 2 alert event (asserted when temperature over high
limit)
Enable temperature 1 alert event (asserted when temperature over high
limit)
Reserved for temp4
76
July, 2008
V0.29P
F71863
3
EN_T3_OVT
R/W
0
Enable over temperature (OVT) mechanism of temperature3.
2
EN_T2_OVT
R/W
0
Enable over temperature (OVT) mechanism of temperature2.
1
EN_T1_OVT
R/W
1
Enable over temperature (OVT) mechanism of temperature1.
0
Reserved
R
0h
Reserved.
8.6.2.18 Temperature Sensor Type Register  Index 6Bh
Bit
Name
R/W Default
Description
7-4
Reserved
RO
0
--
3
T3_MODE
R/W
1
2
T2_MODE
R/W
1
1
T1_MODE
R/W
1
0
Reserved
R
0h
0: TEMP3 is connected to a thermistor
1: TEMP3 is connected to a BJT.(default)
0: TEMP2 is connected to a thermistor.
1: TEMP2 is connected to a BJT. (default)
0: TEMP1 is connected to a thermistor
1: TEMP1 is connected to a BJT.(default)
--
8.6.2.19 TEMP1 Limit Hystersis Select Register -- Index 6Ch
Bit
Name
R/W Default
7-4
TEMP1_HYS
R/W
4h
3-0
Reserved
R
0h
Description
Limit hysteresis. (0~15 degree C)
Temperature and below the ( boundary – hysteresis ).
--
8.6.2.20 TEMP2 and TEMP3 Limit Hystersis Select Register -- Index 6Dh
Bit
Name
R/W Default
7-4
TEMP3_HYS
R/W
2h
3-0
TEMP2_HYS
R/W
4h
Description
Limit hysteresis. (0~15 degree C)
Temperature and below the ( boundary – hysteresis ).
Limit hysteresis. (0~15 degree C)
Temperature and below the ( boundary – hysteresis ).
8.6.2.21 DIODE OPEN Status Register -- Index 6Fh
Bit
Name
7-4
R/W Default
Reserved
Description
RO
0h
Reserved
3
T3_DIODE_OPEN
RO
0h
External diode 3 is open
2
T2_DIODE_OPEN
RO
0h
External diode 2 is open
1
T1_DIODE_OPEN
RO
0h
This register indicates the abnormality of temperature 1 measurement.
When AMDSI interface is enabled, it indicates the error of not receiving
ACK bit when read TCON command is asserted.
When PECI interface is enabled, it indicates a error code is received from
PECI slave.
When external diode is used, it indicates the BJT is open or short.
R
0h
--
0
Reserved
Temperature  Index 70h- 8Fh
Address
Attribute
70h
Reserved
Default
Value
FFh
Description
Reserved
77
July, 2008
V0.29P
F71863
71h
Reserved
FFh
Reserved
72h
RO
--
73h
RO
--
74h
RO
--
75h
RO
--
76h
RO
--
77-7Bh
7C-7Fh
RO
RO
-FFh
Temperature 1 reading. The unit of reading is 1ºC.At the moment of reading this
register.
Reserved
Temperature 2 reading. The unit of reading is 1ºC.At the moment of reading this
register.
Reserved
Temperature 3 reading. The unit of reading is 1ºC.At the moment of reading this
register.
Reserved
Reserved
80h
Reserved
FFh
Reserved
81h
Reserved
FFh
Reserved
82h
83h
84h
85h
86h
87h
88-8Bh
8C~8Dh
R/W
R/W
R/W
R/W
R/W
R/W
RO
RO
64h
55h
64h
55h
55h
46h
-FFH
Temperature sensor 1 OVT limit. The unit is 1ºC.
Temperature sensor 1 high limit. The unit is 1ºC.
Temperature sensor 2 OVT limit. The unit is 1ºC.
Temperature sensor 2 high limit. The unit is 1ºC.
Temperature sensor 3 OVT limit. The unit is 1ºC.
Temperature sensor 3 high limit. The unit is 1ºC.
Reserved
Reserved
8.6.2.22 Temperature Filter Select Register -- Index 8Eh
Bit
Name
R/W Default
7-6
IIR-QUEUR3
R/W
0h
5-4
IIR-QUEUR2
R/W
0h
3-2
IIR-QUEUR1
R/W
0h
0
Reserved
R
0h
Description
The queue time for second filter to quickly update values.
00: disable.
01: 16 times.
10: 32 times. (default)
11: 48 times.
The queue time for second filter to quickly update values.
00: disable.
01: 16 times.
10: 32 times. (default)
11: 48 times.
The queue time for second filter to quickly update values.
00: disable.
01: 16 times.
10: 32 times. (default)
11: 48 times.
--
Fan Control Setting
8.6.2.23 FAN PME# Enable Register  Index 90h
Bit
Name
1
Description
0h
Reserved
EN_FAN3_PME
R/W
0h
EN_FAN2_PME
R/W
0h
A one enables the corresponding interrupt status bit for PME# interrupt..
Set this bit 1 to enable PME# function for Fan3.
A one enables the corresponding interrupt status bit for PME# interrupt.
Set this bit 1 to enable PME# function for Fan2.
7-3 Reserved
2
R/W Default
RO
78
July, 2008
V0.29P
F71863
0
EN_FAN1_PME
R/W
0h
A one enables the corresponding interrupt status bit for PME# interrupt.
Set this bit 1 to enable PME# function for Fan1.
8.6.2.24 FAN Interrupt Status Register  Index 91h
Bit
7-3
Name
R/W Default
Reserved
RO
0
2
FAN3_STS
R/W
--
1
FAN2_STS
R/W
--
0
FAN1_STS
R/W
--
Description
Reserved
This bit is set when the fan3 count exceeds the count limit. Write 1 to
clear this bit, write 0 will be ignored.
This bit is set when the fan2 count exceeds the count limit. Write 1 to
clear this bit, write 0 will be ignored.
This bit is set when the fan1 count exceeds the count limit. Write 1 to
clear this bit, write 0 will be ignored.
8.6.2.25 FAN Real Time Status Register  Index 92h
Bit
Name
R/W Default
7-3
Reserved
--
0
2
FAN3_EXC
RO
--
1
FAN2_EXC
RO
--
0
FAN1_EXC
RO
--
Description
Reserved
This bit set to high mean that fan3 count can’t meet expect count over than
SMI time(CR9F) or when duty not zero but fan stop over then 3 sec.
This bit set to high mean that fan2 count can’t meet expect count over than
SMI time(CR9F) or when duty not zero but fan stop over then 3 sec.
This bit set to high mean that fan1 count can’t meet expect count over than
SMI time(CR9F) or when duty not zero but fan stop over then 3 sec.
8.6.2.26 FAN BEEP# Enable Register  Index 93h
Bit
Name
R/W Default
Description
7
FULL_WITH_T3_EN R/W
0
Set one will enable FAN to force full speed when T3 over high limit.
6
FULL_WITH_T2_EN R/W
0
Set one will enable FAN to force full speed when T2 over high limit.
5
FULL_WITH_T1_EN R/W
0
Set one will enable FAN to force full speed when T1 over high limit.
4
Reserved
R/W
0
Reserved for local temperature.
3
Reserved
R
0
Reserved.
2
EN_FAN3_ BEEP
R/W
0
A one enables the corresponding interrupt status bit for BEEP.
1
EN_FAN2_ BEEP
R/W
0
A one enables the corresponding interrupt status bit for BEEP.
0
EN_FAN1_ BEEP
R/W
0
A one enables the corresponding interrupt status bit for BEEP.
8.6.2.27 Fan Type Select Register -- Index 94h
Bit
Name
7-6 Reserved
R/W Default
R
5-4
FAN3_TYPE
R/W
3-2
FAN2_TYPE
R/W
0
Description
Reserved.
00: Output PWM mode (pushpull) to control fans.
01: Use linear fan application circuit to control fan speed by fan’s power
2’b 0S terminal .
10: Output PWM mode (open drain) to control Intel 4-wire fans.
11: Reserved.
00: Output PWM mode (pushpull) to control fans.
01: Use linear fan application circuit to control fan speed by fan’s power
2’b 0S terminal .
10: Output PWM mode (open drain) to control Intel 4-wire fans.
11: Reserved.
79
July, 2008
V0.29P
F71863
1-0
FAN1_TYPE
R/W
00: Output PWM mode (push pull) to control fans.
01: Use linear fan application circuit to control fan speed by fan’s power
2’b 0S terminal .
10: Output PWM mode (open drain) to control Intel 4-wire fans.
11: Reserved.
S: Register default values are decided by trapping.
8.6.2.28 Fan mode Select Register -- Index 96h
Bit
Name
7-6 Reserved
R/W Default
R
0
5-4
FAN3_MODE
R/W
1h
3-2
FAN2_MODE
R/W
1h
1-0
FAN1_MODE
R/W
1h
Description
Reserved.
00: Reserved
01: Auto fan speed control, fan speed will follow different temperature by
different duty cycle (voltage) that define in 0xB6-0xBE.
10: Reserved
11: Manual mode fan control, user can write expect duty cycle (PWM fan
type) or voltage(linear fan type) to 0xC3, and F71883FG will output this
value duty or voltage to control fan speed.
00: Reserved.
01: Auto fan speed control, fan speed will follow different temperature by
different duty cycle (voltage) that define in 0xB6-0xBE.
10: Reserved.
11: Manual mode fan control, user can write expect duty cycle (PWM fan
type) or voltage (linear fan type) to 0xB3, and F71883FG will output this
value duty or voltage to control fan speed.
00: Reserved.
01: Auto fan speed control, fan speed will follow different temperature by
different duty cycle that define in 0xA6-0xAE.
10: Reserved.
11: Manual mode fan control, user can write expect duty cycle (PWM fan
type) or voltage(linear fan type) to 0xA3, and F71883FG will output this
value duty or voltage to control fan speed.
8.6.2.29 Auto Fan1 and Fan2 Boundary Hystersis Select Register -- Index 98h
Bit
Name
R/W Default
4h
7-4
FAN2_HYS
R/W
3-0
FAN1_HYS
R/W
4h
Description
0000: Boundary hysteresis. (0~15 degree C)
Segment will change when the temperature over the boundary
temperature and below the ( boundary – hysteresis ).
0000: Boundary hysteresis. (0~15 degree C)
Segment will change when the temperature over the boundary
temperature and below the ( boundary – hysteresis ).
8.6.2.30 Auto Fan3 and Fan4 Boundary Hystersis Select Register -- Index 99h
Bit
Name
7-4 Reserved
3-0
FAN3_HYS
R/W Default
R
Description
0
Reserved.
2h
0000: Boundary hysteresis. (0~15 degree C)
Segment will change when the temperature over the boundary
temperature and below the ( boundary – hysteresis ).
R/W
8.6.2.31 Auto Fan3 and Fan4 Boundary Hystersis Select Register -- Index 9Bh
Bit
Name
7-6 Reserved
R/W Default
R
0
Description
Reserved.
80
July, 2008
V0.29P
F71863
1h
5-4
FAN3_RATE_SEL
R/W
1h
3-2
FAN2_RATE_SEL
R/W
1h
1-0
FAN1_RATE_SEL
R/W
Fan3 duty update rate:
00: 2Hz
01: 5Hz (default)
10: 10Hz
11: 20Hz
Fan2 duty update rate:
00: 2Hz
01: 5Hz (default)
10: 10Hz
11: 20Hz
Fan1 duty update rate:
00: 2Hz
01: 5Hz (default)
10: 10Hz
11: 20Hz
8.6.2.32 FAN1 and FAN2 START UP DUTY-CYCLE/VOLTAGE  Index 9Ch
Bit
Name
R/W Default
5h
7-4
FAN2_STOP_DUTY
R/W
5h
3-0
FAN1_STOP_DUTY
R/W
Description
When fan start, the FAN_CTRL2 will increase duty-cycle from 0 to this
(value x 8) directly. And if fan speed is down, the FAN_CTRL 2 will
decrease duty-cycle to 0 when the PWM duty cycle is less than this (value
x 4).
When fan start, the FAN_CTRL 1 will increase duty-cycle from 0 to this
(value x 8 directly. And if fan speed is down, the FAN_CTRL 1 will
decrease duty-cycle to 0 when the PWM duty cycle is less than this (value
x 4).
8.6.2.33 FAN3 START UP DUTY-CYCLE/VOLTAGE  Index 9Dh
Bit
Name
7-4 Reserved
3-0
FAN3_STOP_DUTY
R/W Default
R
Description
0
Reserved.
5h
When fan start, the FAN_CTRL 3 will increase duty-cycle from 0 to this
(value x 8 directly. And if fan speed is down, the FAN_CTRL 3 will
decrease duty-cycle to 0 when the PWM duty cycle is less than this (value
x 4).
R/W
8.6.2.34 Fan Fault Time Register -- Index 9Fh
Bit
Name
7-5
Reserved
--
4
FULL_DUTY_SEL
R/W
3-0 Reserved
R/W Default
R
Description
--
Reservd
--
0: the full duty is 100%.
1: the full duty is 60% (default).
This register is power on trap by DTR1#.
Reserved.
0
Fan1 Index A0h- AFh
Address
Attribute
Default
Value
Description
81
July, 2008
V0.29P
F71863
A0h
RO
8’h0f
A1h
A2h
RO
-
8’hff
-
A3h
R/W
8’h01
A4h
R/W
8’h03
A5h
R/W
8’hff
FAN1 count reading (MSB). At the moment of reading this register, the LSB will
be latched. This will prevent from data updating when reading. To read the fan
count correctly, read MSB first and followed read the LSB.
FAN1 count reading (LSB).
Reserved
The Value programming in this byte is duty value. In auto fan mode(CR96
bit5Î0) this register is updated by hardware.
Ex: 5Î 5*100/255 %
255 Æ 100%
FAN1 full speed count reading (MSB). At the moment of reading this register, the LSB
will be latched. This will prevent from data updating when reading. To read the fan
count correctly, read MSB first and followed read the LSB.
FAN1 full speed count reading (LSB).
8.6.2.35 VT1 BOUNDARY 1 TEMPERATURE – Index A6h
Bit
7
6-0
Name
Reserved
BOUND1TMP1
R/W
RO
R/W
Default
0
Description
Return 0 when read.
st
3Ch The 1 BOUNDARY temperature for VT1 in temperature mode.
(60oC) When VT1 temperature is exceed this boundary, FAN1 expect value will
load full speed duty 8’hFF.
When VT1 temperature is below this boundary – hysteresis, FAN1 expect
value will load from segment 1 register (index ABh).
8.6.2.36 VT1 BOUNDARY 2 TEMPERATURE – Index A9
Bit
Name
7
Reserved
6-0
BOUND4TMP1
R/W Default
RO
R/W
0
Description
Return 0 when read.
st
1Eh The 2 BOUNDARY temperature for VT1 in temperature mode.
o
(30 C) When VT1 temperature is exceed this boundary, FAN1 expect value will
load from segment 1 register (index ABh).
When VT1 temperature is below this boundary – hysteresis, FAN1 expect
value will load from segment 2 register (index AEh).
8.6.2.37 FAN1 SEGMENT 1 SPEED COUNT
Bit
Name
7-0
SEC1SPEED1
R/W Default
R/W
Description
D9h The value that set in this byte is mean the expect PWM duty-cycle in this
(85%) temperature section.
8.6.2.38 FAN1 SEGMENT 2 SPEED COUNT
Bit
Name
7-0
SEC2SPEED1
Name
7-6
Reserved
5
FAN1_UP_T_EN
– Index AEh
R/W Default
R/W
Description
80h The value that set in this byte is mean the expect PWM duty-cycle in this
(50%) temperature section.
8.6.2.39 FAN1 Temperature Mapping Select
Bit
– Index ABh
– Index AFh
R/W Default
-R/W
Description
0
Reserved
0
Set 1 to force FAN1 to full speed if any temperature over its high limit.
82
July, 2008
V0.29P
FAN1_INTERPOLATION_
R/W
EN
4
3
0
1
This register controls the FAN1 duty movement when temperature over
highest boundary.
0: The FAN1 duty will increases with the slope selected by
FAN1_RATE_SEL register (Index 9Bh).
1: The FAN1 duty will directly jumps to full speed.
This register controls the FAN1 duty movement when temperature under
(highest boundary – hysteresis).
0: The FAN1 duty will decreases with the slope selected by
FAN1_RATE_SEL register (Index 9Bh).
1: The FAN1 duty will directly jumps to the value of SEC1SPEED1
register.
0: reserved.
1: fan1 follow temperature 1.
2: fan1 follow temperature 2.
3: fan1 follow temperature 3.
FAN1_JUMP_HIGH_EN R/W
1
2
FAN1_JUMP_LOW_EN R/W
1-0
Fan1_temp_sel
R/W
F71863
Set 1 will enable the interpolation of the fan expect table.
1h
Fan2 Index B0h- BFh
Address
Attribute
Default
Value
B0h
RO
8’h0f
B1h
B2h
RO
R/W
8’hff
8’h00
B3h
R/W
8’h01
B4h
R/W
8’h03
B5h
R/W
8’hff
Description
FAN1 count reading (MSB). At the moment of reading this register, the LSB will
be latched. This will prevent from data updating when reading. To read the fan
count correctly, read MSB first and followed read the LSB.
FAN1 count reading (LSB).
Reserved
The Value programming in this byte is duty value. In auto fan mode(CR96
bit5Î0) this register is updated by hardware.
Ex: 5Î 5*100/255 %
255 Î 100%
FAN1 full speed count reading (MSB). At the moment of reading this register,
the LSB will be latched. This will prevent from data updating when reading. To
read the fan count correctly, read MSB first and followed read the LSB.
FAN1 full speed count reading (LSB).
8.6.2.40 VT2 BOUNDARY 1 TEMPERATURE – Index B6h
Bit
Name
7
Reserved
6-0
BOUND1TMP2
R/W Default
RO
R/W
0
Description
Return 0 when read.
st
3Ch The 1 BOUNDARY temperature for VT2 in temperature mode.
o
(60 C) When VT2 temperature is exceed this boundary, FAN2 expect value will
load full speed duty 8’hFF.
When VT2 temperature is below this boundary – hysteresis, FAN2 expect
value will load from segment 1 register (index BBh).
8.6.2.41 VT2 BOUNDARY 2 TEMPERATURE – Index B9
Bit
Name
7
Reserved
R/W Default
RO
0
Description
Return 0 when read.
83
July, 2008
V0.29P
F71863
6-0
BOUND2TMP1
R/W
st
1Eh The 2 BOUNDARY temperature for VT1 in temperature mode.
(30oC) When VT1 temperature is exceed this boundary, FAN1 expect value will
load from segment 1 register (index BBh).
When VT1 temperature is below this boundary – hysteresis, FAN1 expect
value will load from segment 2 register (index BEh).
8.6.2.42 FAN2 SEGMENT 1 SPEED COUNT – Index BBh
Bit
Name
7-0
SEC1SPEED2
R/W Default
R/W
Description
D9h The value that set in this byte is mean the expect PWM duty-cycle in this
(85%) temperature section.
8.6.2.43 FAN2 SEGMENT 2 SPEED COUNT
Bit
Name
7-0
SEC2SPEED2
– Index BEh
R/W Default
R/W
Description
80h The value that set in this byte is mean the expect PWM duty-cycle in this
(50%) temperature section.
8.6.2.44 FAN2 Temperature Mapping Select
– Index BFh
Bit
Name
7-6
Reserved
--
0
Reserved
5
FAN2_UP_T_EN
R/W
0
Set 1 to force FAN2 to full speed if any temperature over its high limit.
FAN2_INTERPOLATION_
R/W
EN
0
Set 1 will enable the interpolation of the fan expect table.
1
This register controls the FAN2 duty movement when temperature over
highest boundary.
0: The FAN2 duty will increases with the slope selected by
FAN2_RATE_SEL register (Index 9Bh).
1: The FAN2 duty will directly jumps to full speed.
This register controls the FAN2 duty movement when temperature under
(highest boundary – hysteresis).
0: The FAN2 duty will decreases with the slope selected by
FAN2_RATE_SEL register (Index 9Bh).
1: The FAN2 duty will directly jumps to the value of SEC1SPEED2
register.
0: reserved.
1: fan2 follow temperature 1.
2: fan2 follow temperature 2.
3: fan2 follow temperature 3.
4
3
R/W Default
FAN2_JUMP_HIGH_EN R/W
1
2
FAN2_JUMP_LOW_EN R/W
1-0
Fan2_temp_sel
R/W
2h
Description
Fan3 Index C0h- CFh
Address
Attribute
Default
Value
C0h
RO
8’h0F
C1h
C2h
RO
-
8’hff
-
Description
FAN3 count reading (MSB). At the moment of reading this register, the LSB will
be latched. This will prevent from data updating when reading. To read the fan
count correctly, read MSB first and followed read the LSB.
FAN3 count reading (LSB).
Reserved.
84
July, 2008
V0.29P
F71863
C3h
R/W
8’h01
C4h
R/W
8’h03
C5h
R/W
8’hff
The Value programming in this byte is duty value. In auto fan mode(CR96
bit5Î0) this register is updated by hardware.
Ex: 5Î 5*100/255 %
255 Î 100%
FAN3 full speed count reading (MSB). At the moment of reading this register,
the LSB will be latched. This will prevent from data updating when reading. To
read the fan count correctly, read MSB first and followed read the LSB.
FAN3 full speed count reading (LSB).
8.6.2.45 VT3 BOUNDARY 1 TEMPERATURE – Index C6h
Bit
Name
7
Reserved
6-0
BOUND1TMP3
R/W Default
RO
R/W
0
Description
Return 0 when read.
st
3Ch The 1 BOUNDARY temperature for VT3 in temperature mode.
o
(60 C) When VT3 temperature is exceed this boundary, FAN3 expect value will
load the full speed duty 8’hFF.
When VT3 temperature is below this boundary – hysteresis, FAN3 expect
value will load from segment 1 register (index CBh).
8.6.2.46 VT3 BOUNDARY 2 TEMPERATURE – Index C9
Bit
Name
7
Reserved
6-0
BOUND2TMP3
R/W Default
RO
R/W
0
Description
Return 0 when read.
st
1Eh The 2 BOUNDARY temperature for VT3 in temperature mode.
(30oC) When VT3 temperature is exceed this boundary, FAN3 expect value will
load from segment 1 register (index CBh).
When VT3 temperature is below this boundary – hysteresis, FAN3 expect
value will load from segment 2 register (index CEh).
8.6.2.47 FAN3 SEGMENT 1 SPEED COUNT – Index CBh
Bit
7-0
Name
SEC1SPEED3
R/W Default
R/W
Description
D9h The value that set in this byte is mean the expect PWM duty-cycle in this
(85%) temperature section.
8.6.2.48 FAN3 SEGMENT 2 SPEED COUNT
Bit
7-0
Name
SEC2SPEED3
R/W Default
R/W
Description
80h The value that set in this byte is mean the expect PWM duty-cycle in this
(50%) temperature section.
8.6.2.49 FAN3 Temperature Mapping Select
Bit
Name
– Index CEh
– Index CFh
R/W Default
Description
7-6
Reserved
--
0
Reserved
5
FAN3_UP_T_EN
R/W
0
Set 1 to force FAN3 to full speed if any temperature over its high limit.
FAN3_INTERPOLATION_
R/W
EN
0
Set 1 will enable the interpolation of the fan expect table.
1
This register controls the FAN3 duty movement when temperature over
highest boundary.
0: The FAN3 duty will increases with the slope selected by
FAN3_RATE_SEL register (Index 9Bh).
1: The FAN3 duty will directly jumps to full speed.
4
3
FAN3_JUMP_HIGH_EN R/W
85
July, 2008
V0.29P
F71863
1
2
1-0
FAN3_JUMP_LOW_EN R/W
Fan3_temp_sel
R/W
3h
This register controls the FAN3 duty movement when temperature under
(highest boundary – hysteresis).
0: The FAN3 duty will decreases with the slope selected by
FAN3_RATE_SEL register (Index 9Bh).
1: The FAN3 duty will directly jumps to the value of SEC1SPEED3
register.
0: reserved.
1: fan3 follow temperature 1.
2: fan3 follow temperature 2.
3: fan3 follow temperature 3.
86
July, 2008
V0.29P
F71863
8.7 KBC Registers (CR05)
8.7.1
KBC Configuration Registers
KBC Device Enable Register  Index 30h
Bit
Name
7-1 Reserved
0
KBC_EN
R/W Default
Description
-
-
Reserved
R/W
1
0: disable KBC.
1: enable KBC.
Base Address High Register  Index 60h
Bit
Name
7-0 BASE_ADDR_HI
R/W Default
R/W
00h
Description
The MSB of KBC command port address. The address of data port is
command port address + 4;
Base Address Low Register  Index 61h
Bit
Name
7-0 BASE_ADDR_LO
R/W Default
R/W
60h
Description
The LSB of KBC command port address. The address of data port is command
port address + 4.
KB IRQ Channel Select Register  Index 70h
Bit
Name
R/W Default
7-4 Reserved
-
-
3-0 SELKIRQ
R/W
0h
Description
Reserved.
Select the IRQ channel for keyboard interrupt.
Mouse IRQ Channel Select Register  Index 72h
Bit
Name
R/W Default
7-4 Reserved
-
-
3-0 SELMIRQ
R/W
0h
Description
Reserved.
Select the IRQ channel for PS/2 mouse interrupt.
87
July, 2008
V0.29P
F71863
8.8 GPIO Registers (CR06)
8.8.1
GPIO0 Registers
GPIO0 Output Enable Register  Index F0h
Bit
Name
7-4 Reserved
R/W Default
Description
-
0
Reserved
3
GPIO03_OE
R/W
0
0: GPIO03 is in input mode.
1: GPIO03 is in output mode.
2
GPIO02_OE
R/W
0
0: GPIO02 is in input mode.
1: GPIO02 is in output mode.
1
Reserved
R/W
0
Reserved
0
Reserved
R/W
0
Reserved
GPIO0 Output Data Register  Index F1h
Bit
Name
7-4 Reserved
R/W Default
Description
-
0
Reserved
3
GPIO03_VAL
R/W
1
0: GPIO03 outputs 0 when in output mode.
1: GPIO03 outputs 1 when in output mode.
2
GPIO02_VAL
R/W
1
0: GPIO02 outputs 0 when in output mode.
1: GPIO02 outputs 1 when in output mode.
1
Reserved
R/W
1
Reserved
0
Reserved
R/W
1
Reserved
GPIO0 Pin Status Register  Index F2h
Bit
Name
7-4 Reserved
R/W Default
Description
-
0
Reserved
3
GPIO03_IN
R
-
The pin status of GPIO03/WDTRST#.
2
GPIO02_IN
R
-
The pin status of SLOTOCC#/GPIO02.
1
Reserved
R
-
Reserved
0
Reserved
R
-
Reserved
GPIO0 Drive Enable Register  Index F3h
Bit
Name
7-4 Reserved
R/W Default
Description
-
0
Reserved
3
GPIO03_DRV_EN
R/W
0
0: GPIO03 is open drain in output mode.
1: GPIO03 is push pull in output mode.
2
GPIO02_DRV_EN
R/W
0
0: GPIO02 is open drain in output mode.
1: GPIO02 is push pull in output mode.
1
Reserved
R/W
0
Reserved
0
Reserved
R/W
0
Reserved
88
July, 2008
V0.29P
F71863
8.8.2
GPIO1 Registers
GPIO1 Output Enable Register  Index E0h
Bit
Name
R/W Default
Description
7
Reserved
R/W
0
Reserved
6
GPIO16_OE
R/W
0
0: GPIO16 is in input mode.
1: GPIO16 is in output mode.
5
GPIO15_OE
R/W
0
0: GPIO15 is in input mode.
1: GPIO15 is in output mode.
4
GPIO14_OE
R/W
0
0: GPIO14 is in input mode.
1: GPIO14 is in output mode.
3
GPIO13_OE
R/W
0
0: GPIO13 is in input mode.
1: GPIO13 is in output mode.
2
GPIO12_OE
R/W
0
0: GPIO12 is in input mode.
1: GPIO12 is in output mode.
1
GPIO11_OE
R/W
0
0: GPIO11 is in input mode.
1: GPIO11 is in output mode.
0
GPIO10_OE
R/W
0
0: GPIO10 is in input mode.
1: GPIO10 is in output mode.
GPIO1 Output Data Register  Index E1h
Bit
Name
R/W Default
Description
7
Reserved
R/W
1
Reserved
6
GPIO16_VAL
R/W
1
0: GPIO16 outputs 0 when in output mode.
1: GPIO16 outputs1 when in output mode.
5
GPIO15_VAL
R/W
1
0: GPIO15 outputs 0 when in output mode.
1: GPIO15 outputs 1 when in output mode.
4
GPIO14_VAL
R/W
1
0: GPIO14 outputs 0 when in output mode.
1: GPIO14 outputs 1 when in output mode.
3
GPIO13_VAL
R/W
1
0: GPIO13 outputs 0 when in output mode.
1: GPIO13 outputs 1 when in output mode.
2
GPIO12_VAL
R/W
1
0: GPIO12 outputs 0 when in output mode.
1: GPIO12 outputs 1 when in output mode.
1
GPIO11_VAL
R/W
1
0: GPIO11 outputs 0 when in output mode.
1: GPIO11 outputs 1 when in output mode.
0
GPIO10_VAL
R/W
1
0: GPIO10 outputs 0 when in output mode.
1: GPIO10 outputs 1 when in output mode.
GPIO1 Pin Status Register  Index E2h
Bit
Name
R/W Default
Description
7
Reserved
R
-
Reserved
6
GPIO16_IN
R
-
The pin status of GPIO16/LED_VCC
5
GPIO15_IN
R
-
The pin status of GPIO15/LED_VSB/ALERT#.
4
GPIO14_IN
R
-
The pin status of GPIO14/FWH_DIS/WDTRST#/SPI_CS1#.
3
GPIO13_IN
R
-
The pin status of GPIO13/SPI_MOSI/BEEP.
89
July, 2008
V0.29P
F71863
2
GPIO12_IN
R
-
The pin status of GPIO12/SPI_MISO/FANCTRL1_1.
1
GPIO11_IN
R
-
The pin status of GPIO11/SPI_CS.
0
GPIO10_IN
R
-
The pin status of GPIO10/SPI_CLK.
GPIO1 Drive Enable Register  Index E3h
Bit
Name
R/W Default
Description
7
Reserved
R/W
0
Reserved
6
GPIO16_DRV_EN
R/W
0
0: GPIO16 is open drain in output mode.
1: GPIO16 is push pull in output mode.
5
GPIO15_DRV_EN
R/W
0
0: GPIO15 is open drain in output mode.
1: GPIO15 is push pull in output mode.
4
GPIO14_DRV_EN
R/W
0
0: GPIO14 is open drain in output mode.
1: GPIO14 is push pull in output mode.
3
GPIO13_DRV_EN
R/W
0
0: GPIO13 is open drain in output mode.
1: GPIO13 is push pull in output mode.
2
GPIO12_DRV_EN
R/W
0
0: GPIO12 is open drain in output mode.
1: GPIO12 is push pull in output mode.
1
GPIO11_DRV_EN
R/W
0
0: GPIO11 is open drain in output mode.
1: GPIO11 is push pull in output mode.
0
GPIO10_DRV_EN
R/W
0
0: GPIO10 is open drain in output mode.
1: GPIO10 is push pull in output mode.
8.8.3
GPIO2 Registers
GPIO2 Output Enable Register  Index D0h
Bit
Name
R/W Default
Description
7
GPIO27_OE
R/W
0
0: GPIO27 is in input mode.
1: GPIO27 is in output mode.
6
GPIO26_OE
R/W
0
0: GPIO26 is in input mode.
1: GPIO26 is in output mode.
5
GPIO25_OE
R/W
0
0: GPIO25 is in input mode.
1: GPIO25 is in output mode.
4
GPIO24_OE
R/W
0
0: GPIO24 is in input mode.
1: GPIO24 is in output mode.
3
Reserved
R/W
0
Reserved
2
GPIO22_OE
R/W
0
0: GPIO22 is in input mode.
1: GPIO22 is in output mode.
1
GPIO21_OE
R/W
0
0: GPIO21 is in input mode.
1: GPIO21 is in output mode.
0
GPIO20_OE
R/W
0
0: GPIO20 is in input mode.
1: GPIO20 is in output mode.
GPIO2 Output Data Register  Index D1h
Bit
Name
R/W Default
Description
90
July, 2008
V0.29P
F71863
7
GPIO27_VAL
R/W
1
0: GPIO27 outputs 0 when in output mode.
1: GPIO27 outputs1 when in output mode.
6
GPIO26_VAL
R/W
1
0: GPIO26 outputs 0 when in output mode.
1: GPIO26 outputs1 when in output mode.
5
GPIO25_VAL
R/W
1
0: GPIO25 outputs 0 when in output mode.
1: GPIO25 outputs 1 when in output mode.
4
GPIO24_VAL
R/W
1
0: GPIO24 outputs 0 when in output mode.
1: GPIO24 outputs 1 when in output mode.
3
Reserved
R/W
1
Reserved
2
GPIO22_VAL
R/W
1
0: GPIO22 outputs 0 when in output mode.
1: GPIO22 outputs 1 when in output mode.
1
GPIO21_VAL
R/W
1
0: GPIO21 outputs 0 when in output mode.
1: GPIO21 outputs 1 when in output mode.
0
GPIO20_VAL
R/W
1
0: GPIO20 outputs 0 when in output mode.
1: GPIO20 outputs 1 when in output mode.
GPIO2 Pin Status Register  Index D2h
Bit
Name
R/W Default
Description
7
GPIO27_IN
R
-
The pin status of PWSOUT#/GPIO27.
6
GPIO26_IN
R
-
The pin status of PWSIN#/GPIO26.
5
GPIO25_IN
R
-
The pin status of PME#/GPIO25.
4
GPIO24_IN
R
-
The pin status of ATXPG_IN/GPIO24.
3
Reserved
R
-
Reserved
2
GPIO22_IN
R
-
The pin status of PCIRST3#/GPIO22.
1
GPIO21_IN
R
-
The pin status of PCIRST2#/GPIO21.
0
GPIO20_IN
R
-
The pin status of PCIRST1#/GPIO20.
GPIO2 Drive Enable Register  Index D3h
Bit
Name
R/W Default
Description
7
GPIO27_DRV_EN
R/W
0
0: GPIO27 is open drain in output mode.
1: GPIO27 is push pull in output mode.
6
GPIO26_DRV_EN
R/W
0
0: GPIO26 is open drain in output mode.
1: GPIO26 is push pull in output mode.
5
GPIO25_DRV_EN
R/W
0
0: GPIO25 is open drain in output mode.
1: GPIO25 is push pull in output mode.
4
GPIO24_DRV_EN
R/W
0
0: GPIO24 is open drain in output mode.
1: GPIO24 is push pull in output mode.
3
Reserved
R/W
0
Reserved
2
GPIO22_DRV_EN
R/W
0
0: GPIO22 is open drain in output mode.
1: GPIO22 is push pull in output mode.
1
GPIO21_DRV_EN
R/W
0
0: GPIO21 is open drain in output mode.
1: GPIO21 is push pull in output mode.
0
GPIO20_DRV_EN
R/W
0
0: GPIO20 is open drain in output mode.
1: GPIO20 is push pull in output mode.
91
July, 2008
V0.29P
F71863
8.8.4
GPIO3 Registers
GPIO3 Output Enable Register  Index C0h
Bit
Name
7-4 Reserved
R/W Default
Description
-
-
Reserved.
3
GPIO33_OE
R/W
0
0: GPIO33 is in input mode.
1: GPIO33 is in output mode.
2
GPIO32_OE
R/W
0
0: GPIO32 is in input mode.
1: GPIO32 is in output mode.
1
GPIO31_OE
R/W
0
0: GPIO31 is in input mode.
1: GPIO31 is in output mode.
0
GPIO30_OE
R/W
0
0: GPIO30 is in input mode.
1: GPIO30 is in output mode.
GPIO3 Output Data Register  Index C1h
Bit
Name
7-4 Reserved
R/W Default
Description
-
-
Reserved.
3
GPIO33_VAL
R/W
1
0: GPIO33 outputs 0 when in output mode.
1: GPIO33 outputs 1 when in output mode.
2
GPIO32_VAL
R/W
1
0: GPIO32 outputs 0 when in output mode.
1: GPIO32 outputs 1 when in output mode.
1
GPIO31_VAL
R/W
1
0: GPIO31 outputs 0 when in output mode.
1: GPIO31 outputs 1 when in output mode.
0
GPIO30_VAL
R/W
1
0: GPIO30 outputs 0 when in output mode.
1: GPIO30 outputs 1 when in output mode.
GPIO3 Pin Status Register  Index C2h
Bit
Name
7-4 Reserved
R/W Default
Description
-
-
Reserved.
3
GPIO33_IN
R
-
The pin status of RSMRST#/GPIO33.
2
GPIO32_IN
R
-
The pin status of PWROK/GPIO32.
1
GPIO31_IN
R
-
The pin status of PS_ON#/GPIO31.
0
GPIO30_IN
R
-
The pin status of S3#/GPIO30.
GPIO3 Drive Enable Register  Index C3h
Bit
Name
7-4 Reserved
R/W Default
Description
-
-
Reserved.
3
GPIO33_DRV_EN
R/W
0
0: GPIO33 is open drain in output mode.
1: GPIO33 is push pull in output mode.
2
GPIO32_DRV_EN
R/W
0
0: GPIO32 is open drain in output mode.
1: GPIO32 is push pull in output mode.
1
GPIO31_DRV_EN
R/W
0
0: GPIO31 is open drain in output mode.
1: GPIO31 is push pull in output mode.
92
July, 2008
V0.29P
F71863
0
8.8.5
GPIO30_DRV_EN
R/W
0
0: GPIO30 is open drain in output mode.
1: GPIO30 is push pull in output mode.
GPIO4 Registers
GPIO4 Output Enable Register  Index B0h
Bit
Name
7-4 Reserved
R/W Default
Description
-
-
Reserved.
3
GPIO43_OE
R/W
0
0: GPIO43 is in input mode.
1: GPIO43 is in output mode.
2
GPIO42_OE
R/W
0
0: GPIO42 is in input mode.
1: GPIO42 is in output mode.
1
GPIO41_OE
R/W
0
0: GPIO41 is in input mode.
1: GPIO41 is in output mode.
0
GPIO40_OE
R/W
0
0: GPIO40 is in input mode.
1: GPIO40 is in output mode.
GPIO4 Output Data Register  Index B1h
Bit
Name
7-4 Reserved
R/W Default
Description
-
-
Reserved.
3
GPIO43_VAL
R/W
1
0: GPIO43 outputs 0 when in output mode.
1: GPIO43 outputs 1 when in output mode.
2
GPIO42_VAL
R/W
1
0: GPIO42 outputs 0 when in output mode.
1: GPIO42 outputs 1 when in output mode.
1
GPIO41_VAL
R/W
1
0: GPIO41 outputs 0 when in output mode.
1: GPIO41 outputs 1 when in output mode.
0
GPIO40_VAL
R/W
1
0: GPIO40 outputs 0 when in output mode.
1: GPIO40 outputs 1 when in output mode.
GPIO4 Pin Status Register  Index B2h
Bit
Name
7-4 Reserved
3
GPIO43_IN
R/W Default
Description
-
-
Reserved.
R
-
The pin status of IRRX/GPIO43
2
GPIO42_IN
R
-
The pin status of IRTX/GPIO42.
1
GPIO41_IN
R
-
The pin status of FANCTRL3/GPIO41.
0
GPIO40_IN
R
-
The pin status of FANIN3/GPIO40.
GPIO4 Drive Enable Register  Index B3h
Bit
Name
7-4 Reserved
R/W Default
Description
-
-
Reserved.
3
GPIO43_DRV_EN
R/W
0
0: GPIO43 is open drain in output mode.
1: GPIO43 is push-pull in output mode.
2
GPIO42_DRV_EN
R/W
0
0: GPIO42 is open drain in output mode.
1: GPIO42 is push-pull in output mode.
93
July, 2008
V0.29P
F71863
1
GPIO41_DRV_EN
R/W
0
0: GPIO41 is open drain in output mode.
1: GPIO41 is push-pull in output mode.
0
GPIO40_DRV_EN
R/W
0
0: GPIO40 is open drain in output mode.
1: GPIO40 is push-pull in output mode.
94
July, 2008
V0.29P
F71863
8.9 VID Registers (CR07)
8.9.1
VID Configuration Registers
VID Device Enable Register  Index 30h
Bit
Name
7-1 Reserved
0
VID_EN
R/W Default
Description
-
0
Reserved
R/W
0
0: disable VID.
1: enable VID.
Base Address High Register  Index 60h
Bit
Name
7-0 BASE_ADDR_HI
R/W Default
R/W
00h
Description
The MSB of VID base address.
Base Address Low Register  Index 61h
Bit
Name
7-0 BASE_ADDR_LO
8.9.2
R/W Default
R/W
00h
Description
The LSB of VID base address.
Device Registers
8.9.2.1
Configuration Register  Index 00h ( * cleared by slotocc_n and watch dog timeout)
Bit
Name
7
WDOUT_EN
R/W
0
6-3
Reserved
-
0
If this bit is set to 1 and watchdog timeout event occurs, WDTRST# output
is enabled.
Return 0 when read.
2*
OTF_EN
R/W
0
This bit is used to enable vid on-the-fly function.
1:0
Dummy Reg
R/W
0
Dummy register.
R/W Default
Description
8.9.2.2
VID Offset Register 0  Index 01h
Bit
Name
7:4
3-0
Reserved
VID_OFFSET
R/W Default
Description
R
-
Reserved
R/W
0
VID offset. VID_OFFSET[3] is sign bit.
8.9.2.3
VID Manual Register  Index 02h
Bit
Name
R/W Default
Description
7*
MANUAL_MODE
R/W
0
If this bit is set to 1 and OTF_EN is 0, VIDOUT will be VID_MANUAL
6
KEY_OK
R
-
This bit is 1 represents that the serial key is entered correctly.
5-4
Reserved
R
-
Return 0 when read.
3-0
VID_MANUAL
R/W
0
Manually assigned VIDOUT value
8.9.2.4
Serial Key Data Register  Index 03h
Bit
Name
R/W Default
Description
95
July, 2008
V0.29P
F71863
0
7-0
8.9.2.5
KEY_DATA
R/W
VIDIN Register  Index 04h
Write serial data to this register correctly, the KEY_OK bit will be set to 1.
Hence, users are able to write key protected registers. The sequence to
enable KEY_OK is 0x32, 0x5D, 0x42, 0xAC. When KEY_OK is set, write
this register 0x35 will clear KEY_OK.
( * cleared by slotocc_n and watch dog timeout)
Bit
Name
7-4
Reserved
R/W Default
R
0
Reserved
Description
3-0
VID_IN
R
-
Return the VID_IN status.
8.9.2.6
Watchdog Timer Configuration Register 1 Index 05h
Bit
Name
7
Reserved
R
0
6
WDTMOUT_STS
R/W
0
5
WD_EN
R/W
0
If watchdog timeout event occurs, this bit will be set to 1. Write a 1 to this
bit will clear it to 0.
If this bit is set to 1, the counting of watchdog time is enabled.
4
WD_PULSE
R/W
0
Select output mode (0: level, 1: pulse) of RSTOUT# by setting this bit.
3
WD_UNIT
R/W
0
Select time unit (0: 1sec, 1: 60 sec) of watchdog timer by setting this bit.
2
WD_HACTIVE
R/W
0
1:0
WD_PSWIDTH
R/W
0
R/W Default
Description
Reserved
Select output polarity of RSTOUT# (1: high active, 0: low active) by setting
this bit.
Select output pulse width of RSTOUT#
0: 1 ms
1: 25 ms
2: 125 ms
3: 5 sec
8.9.2.7
Watchdog Timer Configuration Register 2  Index 06h
Bit
Name
7:0
WD_TIME
R/W Default
R/W
0
Description
Time of watchdog timer
8.9.2.8
Output Voltage Control Register 1  Index 07h
Bit
Name
R/W Default
7-6
Dummy Reg
R/W
5
REG_RST_SEL
R/W
4
Reserved
R/W
3-0
Dummy Reg
R/W
( * cleared by slotocc_n and watch dog timeout)
Description
0
Dummy register.
0
0
0: The VID registers is reseted when VDD power lose and watch dog
timeout.
1: The VID registers is reseted by slotcc_n and watch dog timeout.
Reserved
0
Dummy registers.
96
July, 2008
V0.29P
F71863
8.10 SPI Registers (CR08)
8.10.1 Configuration Register
SPI Control Register  Index F0h
Bit
Name
7-6 Reserved
R/W Default
Description
-
-
Reserved.
5
SPTIE
R/W
0
SPI interrupt enable. Set to 1, SPIE interrupt enabled, set to 0 spie interrupt
disabled.
4
MSTR
R/W
1
Master mode select. Set to 1, SPI function is master mode; set to 0 is disable
SPI function
3
CPOL
R/W
0
Clock polarity this bit selects inverted or non-inverted SPI clock. Set to 1, active
low clock selected; SCK idles high. Set to 0, active high clock selected; SCK
idles low.
2
CPHA
R/W
0
Clock phase. This bit is used to shift the SCK serial clock. Set to 1, the first
SCK edge is issued at the beginning of the transfer operation. Set to 0, the first
SCK edge is issued one-half cycle into the transfer operation.
1
Reserved
-
0
Reserved
0
LSBFE
R/W
0
This bit control data shift from lsb or msb. Set to 1, data is transferred from lsb
to msb. Set to 0, data is transferred from msb to lsb.
SPI Timeout Register  Index F1h
Bit
Name
7-0 TIMER_VAL
R/W Default
R/W
Description
8’h04 The time in second to assert FWH_DIS signal when SPI in used as backup
BIOS.
SPI Baud Rate Divisor Register  Index F2h
Bit
Name
7-3 Reserved
2-0 BAUD_VAL
R/W Default
Description
-
0
Reserved
R/W
1
This register decides to SCK frequency. Baud rate divisor equation is
33MHz/2*(BAUD_VAL).
00: 33MHz.
01: 16.7MHz.
SPI Status Register  Index F3h
Bit
Name
R/W Default
Description
7
SPIE
R/W
0
SPI interrupt status. When SPI is transferred or received data from device
finish, this bit will be set. Write 1 to clear this bit.
6
FWH_DIS
R/W
-
When SPI is used as backup BIOS, this bit will set when time in second
reaches the value programmed in TIMER_VAL (CRF1). Write one to clear this
register.
When SPI is used as primary BIOS, this register will always be 1.
5
SPE
R
-
This bit reflects the SPI_EN register. (which will be 1 when SPI is enabled.)
4
SPI0_TIMER_DIS
R/W
-
When SPI is used as primary BIOS, it will also have backup function as used in
backup BIOS. The bit will set to 1 when the time in second reaches the value
programmed in TIMER_VAL (CRF1). That is the first SPI could not function
well. Then a reset signal will asserted and reboot the system with the second
SPI. (I could be another SPI with chip-selected by FWH_DIS or another 4Mbits
of an 8Mbits SPI. The SPI_CS1_EN (CR2D[4]) determines the method). Write
one to clear this bit.
97
July, 2008
V0.29P
F71863
3
SPTEF
2-0 Reserved
R
0
SPI operation status. When SPI is transferred or received data from device,
this bit will be set 1, Clear by SPI operation finish.
-
-
Reserved
SPI High Byte Data Register  Index F4h
Bit
Name
7-0 H_DATA
R/W Default
R
0
Description
When SPI is received 16 bits data from device. This register saves high byte
data.
SPI command data Register  Index F5h
Bit
Name
7-0 CMD_DATA
R/W Default
R/W
0
Description
This register provides command value for flash command.
SPI chip select Register  Index F6h
Bit
Name
7-4 Reserved
R/W Default
Description
-
-
Reserved
3
Dummy_Reg
R/W
0
Dummy register.
2
Dummy_Reg
R/W
0
Dummy register.
1
Dummy_Reg
R/W
0
Dummy register.
0
CS0
R/W
0
Chip select 0. To select device 0
SPI memory mapping Register  Index F7h
Bit
Name
R/W Default
Description
7-3 Reserved
-
0
Reserved
2-0 Mem_map
R/W
-
This register decides memory size.
3’b000: one of the memory sizes is 512k bytes.
3’b001: one of the memory sizes is 1024k bytes.
3’b100: one of the memory sizes is 2048k bytes.
3’b011: one of the memory sizes is 4096k bytes.
3’b100: one of the memory sizes if 8092k bytes.
SPI operate Register  Index F8h
Bit
Name
R/W Default
Description
7
TYPE
R/W
0
This bit decide flash continuous programming mode. Set to 1, if programming
continuous mode is same as the SST flash. Set to 0 if programming continuous
mode is same as the ATMEL flash
6
IO_SPI
R/W
0
This bit control SPI function transfer 8 bit command to device. Clear 0 by
operation finish.
5
RDSR
R/W
0
This bit control SPI function read status from to device. Clear 0 by operation
finish.
4
WRSR
R/W
0
This bit control SPI function write status to device. Clear 0 by operation finish.
3
SECTOR_ERASE
R/W
0
This bit control SPI function sector erase device. Clear 0 by operation finish.
2
READ_ID
R/W
0
This bit control SPI function read id from device. Clear 0 by operation finish.
98
July, 2008
V0.29P
F71863
1
PROG
R/W
0
This bit control SPI function program data to device or set to 1 when memory
cycle for LPC interface program flash. Clear 0 by operation finish.
0
READ
R/W
0
This bit control SPI function read data from device or set to 1 when memory
cycle for LPC interface read flash. Clear 0 by operation finish.
SPI Low Byte Data Register  Index FAh
Bit
Name
7-0 L_DATA
R/W Default
R
0
Description
When SPI is received 16 bits or 8 bits data from device. This register saves low
byte data.
SPI address high byte Register  Index FBh
Bit
Name
7-0 Addr_H_byte
R/W Default
R/W
0
Description
This register provides high byte address for sector erase, program, read
operation.
SPI address medium byte Register  Index FCh
Bit
Name
7-0 Addr_M_byte
R/W Default
R/W
0
Description
This register provides medium byte address for sector erase, program, read
operation.
SPI address low byte Register  Index FDh
Bit
Name
7-0 Addr_L_byte
R/W Default
R/W
0
Description
This register provides low byte address for sector erase, program, read
operation.
SPI program byte Register  Index FEh
Bit
Name
7-0 PORG_BYTE
R/W Default
R/W
0
Description
This register provides number to program flash for continuous mode.
SPI write data Register  Index FFh
Bit
Name
7-0 WR_dat
R/W Default
R/W
0
Description
This register provides data to write flash for program, write status function.
99
July, 2008
V0.29P
F71863
8.11 PME and ACPI Registers (CR0A)
8.11.1 Configuration Register
Device Enable Register  Index 30h
Bit
Name
7-1 Reserved
0
PME_EN
R/W Default
Description
-
-
Reserved
R/W
0
0: disable PME.
1: enable PME.
PME Event Enable Register  Index F0h
Bit
Name
7
Reserved
6
R/W Default
Description
-
-
Reserved
MO_PME_EN
R/W
0
Mouse PME event enable.
0: disable mouse PME event.
1: enable mouse PME event.
5
KB_PME_EN
R/W
0
Keyboard PME event enable.
0: disable keyboard PME event.
1: enable keyboard PME event.
4
HM_PME_EN
R/W
0
Hardware monitor PME event enable.
0: disable hardware monitor PME event.
1: enable hardware monitor PME event.
3
PRT_PME_EN
R/W
0
Parallel port PME event enable.
0: disable parallel port PME event.
1: enable parallel port PME event.
2
UR2_PME_EN
R/W
0
UART 2 PME event enable.
0: disable UART 2 PME event.
1: enable UART 2 PME event.
1
UR1_PME_EN
R/W
0
UART 1 PME event enable.
0: disable UART 1 PME event.
1: enable UART 1 PME event.
0
FDC_PME_EN
R/W
0
FDC PME event enable.
0: disable FDC PME event.
1: enable FDC PME event.
PME Event Status Register  Index F1h
Bit
Name
7
Reserved
6
5
R/W Default
Description
-
-
Reserved
MO_PME_ST
R/W
-
Mouse PME event status.
0: Mouse has no PME event.
1: Mouse has a PME event to assert. Write 1 to clear to be ready for next PME
event.
KB_PME_ST
R/W
-
Keyboard PME event status.
0: Keyboard has no PME event.
1: Keyboard has a PME event to assert. Write 1 to clear to be ready for next
PME event.
100
July, 2008
V0.29P
F71863
4
HM_PME_ST
R/W
-
Hardware monitor PME event status.
0: Hardware monitor has no PME event.
1: Hardware monitor has a PME event to assert. Write 1 to clear to be ready for
next PME event.
3
PRT_PME_ST
R/W
-
Parallel port PME event status.
0: Parallel port has no PME event.
1: Parallel port has a PME event to assert. Write 1 to clear to be ready for next
PME event.
2
UR2_PME_ST
R/W
-
UART 2 PME event status.
0: UART 2 has no PME event.
1: UART 2 has a PME event to assert. Write 1 to clear to be ready for next
PME event.
1
UR1_PME_ST
R/W
-
UART 1 PME event status.
0: UART 1 has no PME event.
1: UART 1 has a PME event to assert. Write 1 to clear to be ready for next
PME event.
0
FDC_PME_ST
R/W
-
FDC PME event status.
0: FDC has no PME event.
1: FDC has a PME event to assert. Write 1 to clear to be ready for next PME
event.
ACPI Control Register  Index F4h
Bit
7
Name
TS3
R/W Default
R/W
0
R/W
0
5 KEY_SEL_ADD R/W
0
4 EN_KBWAKEU R/W
P
3 EN_MOWAKEU R/W
P
2-1 PWRCTRL
R/W
0
6 SPI_RST_EN
0
11
0 VSB_PWR_LOS R/W
S
0
Description
Set to 1 into
S1 state.
Two wake up methods:
1. PME wake up event ( Must write this bit to 0.
2. PS_OUT# wake up event ( Auto clear this bit.
Set one to enable the reset signal from SPI via the PWROK or
PCIRST#. (SPI as backup BIOS will assert a reset signal when
FWH doesn’t response in 4 seconds)
Set this bit one and KEY_SEL (CR2D[2:1]) 2’b00 will select
windows 98 wakeup key as keyboard wakeup key.
Set one to enable keyboard wakeup event asserted via
PWSOUT#.
Set one to enable mouse wakeup event asserted via PWSOUT#.
The ACPI Control the PSON_N to always on or always off or
keep last state
00 : keep last state
10 : Always on
01 : Reserved (always on)
11: Always off
When VSB 3V comes, it will set to 1, and write 1 to clear it
ACPI Control Register  Index F5h
Bit
Name
R/W Default
Description
101
July, 2008
V0.29P
F71863
7
SEL_S3
R/W
0
1:selected by TS3
TS3
0: chip decided into S3 state from S3 pin
1 : chip direct into S3 state
0: chip decided into S3 state from VDD (VCC) power detect ok., which chip
detects voltage circuit
6
5
Reserved
R/W
0
Dummy register
RSTCON_EN
R/W
0
0: Enable RSTCON# output via PWROK.
1: Enable RSTCON# output via PCIRST#.
R/W
11
The PWROK delay timing from VDD3VOK by followed setting
00 : 100ms
4-3 DELAY
01 : 200ms
10 : 300ms
11 : 400ms
2
VINDB_EN
R/W
1
Enable the PCIRSTIN_N and ATXPWGD de-bounce.
1
PCIRST_DB_EN
R/W
0
Enable the LRESET_N de-bounce.
0
Reserved
R/W
0
Dummy register.
ACPI Control Register  Index F7h
Bit
Name
R/W Default
Description
7-4 Reserved
R/W
0
Reserved.
3-2 Reserved
R/W
0
Dummy registers.
1
PWR_STS2_TRI
R/W
0
Set this bit to one will cuase Pin55 be tri-state Status in S5 state.
0
PWR_STS_EN
R/W
1
Enable power status pins. Pin77 will be S5# function. P56 will be ST1 function.
P55 will be ST2 function.
102
July, 2008
V0.29P
F71863
9. Electron Characteristic
9.1
Absolute Maximum Ratings
PARAMETER
Power Supply Voltage
Input Voltage
Operating Temperature
Storage Temperature
RATING
-0.5 to 5.5
-0.5 to VDD+0.5
0 to 70
-55 to 150
UNIT
V
V
°C
°C
Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may
adversely affect the life and reliability of the device
9.2
DC Characteristics
(TA = 0° C to 70° C, VDD = 3.3V ± 10%, VSS = 0V )
Parameter
Conditions
Temperature Error, Remote
60 oC < TD < 145 oC, VCC = 3.0V to 3.6V
Diode
0 oC <TD < 60oC 100 oC <TD < 145oC
Supply Voltage range
Average operating supply current
Standby supply current
Resolution
Power on reset threshold
Diode source current
High Level
Low Level
9.3
MIN
3.0
TYP
±1
±1
3.3
10
5
1
2.2
95
10
MAX
±3
±3
3.6
2.4
Unit
o
C
V
mA
uA
o
C
V
uA
uA
DC Characteristics Continued
(Ta = 0° C to 70° C, VDD = 3.3V ± 10%, VSS = 0V)
PARAMETER
SYM. MIN. TYP.
MAX.
UNIT
CONDITIONS
I/OD12ts5v-TTL level bi-directional pin with schmitt trigger, Open-drain output with12 mA sink
capability, 5V tolerance.
Input Low Voltage
VIL
0.8
V
Input High Voltage
VIH
2.0
V
Output Low Current
IOL
+12
mA
VOL = 0.4V
Input High Leakage
ILIH
+1
µA
VIN = VDD
Input Low Leakage
ILIL
-1
µA
VIN = 0V
I/OD16t5v-TTL level bi-directional pin, Open-drain output with16 mA sink capability, 5V tolerance.
Input Low Voltage
VIL
0.8
V
Input High Voltage
VIH
2.0
V
Output Low Current
IOL
+16
mA
VOL = 0.4V
103
July, 2008
V0.29P
F71863
Input High Leakage
ILIH
+1
µA
VIN = VDD
Input Low Leakage
ILIL
-1
µA
VIN = 0V
I/OOD12t-TTL level bi-directional pin, Output pin with 12mA source-sink capability, and can
programming to open-drain function.
Input Low Threshold Voltage
Vt0.8
V
VDD = 3.3 V
Input High Threshold Voltage
Vt+
2.0
V
VDD = 3.3 V
Output Low Current
IOL
-12
-9
mA
VOL = 0.4 V
Output High Current
IOH
+9
+12
mA
VOH = 2.4V
Input High Leakage
ILIH
+1
µA
VIN = VDD
Input Low Leakage
ILIL
-1
µA
VIN = 0V
I/O12t- TTL level bi-directional pin, Output pin with 12mA source-sink capability.
Input Low Threshold Voltage
Vt0.6
V
VDD = 3.3 V
Input High Threshold Voltage
Vt+
0.9
V
VDD = 3.3 V
Output High Current
IOH
+9
+12
mA
VOH = 2.4V
Input High Leakage
ILIH
+1
µA
VIN = 1.2V
Input Low Leakage
ILIL
-1
µA
VIN = 0V
INts - TTL level input pin with schmitt trigger
Input Low Voltage
VIL
0.8
V
Input High Voltage
VIH
2.0
V
Input High Leakage
ILIH
+1
µA
VIN = VDD
Input Low Leakage
ILIL
-1
µA
VIN = 0 V
INt5v - TTL level input pin with 5V tolerance.
Input Low Voltage
VIL
0.8
V
Input High Voltage
VIH
2.0
V
Input High Leakage
ILIH
+1
µA
VIN = VDD
Input Low Leakage
ILIL
-1
µA
VIN = 0 V
INts5v - TTL level input pin with schmitt trigger, 5V tolerance.
Input Low Voltage
VIL
0.8
V
Input High Voltage
VIH
2.0
V
Input High Leakage
ILIH
+1
µA
VIN = VDD
Input Low Leakage
ILIL
-1
µA
VIN = 0 V
OD12-Open-drain output with12 mA sink capability.
Output Low Current
IOL
-12
mA
VOL = 0.4V
OD12-5v-Open-drain output with12 mA sink capability, 5V tolerance.
Output Low Current
IOL
-12
mA
VOL = 0.4V
OD24-Open-drain output with 24 mA sink capability.
Output Low Current
IOL
-24
mA
VOL = 0.4V
OD16-u10-5v-Open-drain output with 16 mA sink capability, pull-up 10k ohms, 5V tolerance.
Output Low Current
IOL
-16
mA
VOL = 0.4V
O8- Output pin with 8 mA source-sink capability.
Output High Current
IOH
+6
+8
mA
VOH = 2.4V
O8-u47-5v- Output pin with 8 mA source-sink capability, pull-up 47k ohms, 5V tolerance.
Output High Current
IOH
+6
+8
mA
VOH = 2.4V
O12- Output pin with 12 mA source-sink capability.
Output High Current
IOH
+9
+12
mA
VOH = 2.4V
O30- Output pin with 30 mA source-sink capability.
Output High Current
IOH
+26
+30
mA
VOH = 2.4V
104
July, 2008
V0.29P
F71863
10. Ordering Information
Part Number
Package Type
Production Flow
F71863FG
128-PQFP Green Package
Commercial, 0°C to +70°C
11.Package Dimensions
128 PQFP
Feature Integration Technology Inc.
Headquarters
Taipei Office
3F-7, No 36, Tai Yuan St.,
Bldg. K4, 7F, No.700, Chung Cheng Rd.,
Chupei City, Hsinchu, Taiwan 302, R.O.C.
Chungho City, Taipei, Taiwan 235, R.O.C.
TEL : 886-3-5600168
TEL : 866-2-8227-8027
FAX : 886-3-5600166
FAX : 866-2-8227-8037
www: http://www.fintek.com.tw
Please note that all datasheet and specifications are subject to change without notice. All the trade
marks of products and companies mentioned in this datasheet belong to their respective owner
105
July, 2008
V0.29P
F71863
12.F71863 Application Circuit
(GND close to IC)
VCC3V
VBAT
VSB3V
RSMRST#
COPEN#
DD3+
D2+
D1+
VREF
VIN6
VIN5
VDIMM(VIN4)
VDDA(VIN3)
VLDT(VIN2)
VCORE(VIN1)
SLCT
PE
BUSY
S3
ACK#
SLIN#
INIT#
ERR#
AFD#
STB#
PD0
PD1
PD2
PD3
PD4
PD5
PD6
PD7
GND
DCD1#
RI1#
CTS1#
DTR1#/FAN60_100
RTS1#
DSR1#
SOUT1/Conf ig4E_2E
SIN1
DCD2#
RI2#
CTS2#
GPIO15/LED_VSB/ALERT#
GPIO14/FWH_DIS/WDTRST#/SPI_CS1#
GPIO13/SPI_MOSI/BEEP
GPIO12/SPI_MISO/FANCTL1_1
GPIO11/SPI_CS0
GPIO10/SPI_CLK
PECI/AMDSI_DAT
AMDSI_CLK
ST1/GPIO03/WDTRST#
ST2/SLOTOCC#/GPIO02
VDIMM_EN
VDDA_EN
VIDOUTD
VIDOUTC
VIDOUTB
VIDOUTA
GND
VLDT_EN
Vcore_EN
VIDIND
VIDINC
VIDINB
VIDINA
GA20
KBRST#
CLKIN
F71863FG
DTR2#/FWH_TRAP
RTS2#/PWM_DC
DSR2#
VCC
SOUT2/SPI_TRAP
SIN2
DENSEL#
MOA#
DRVA#
WDATA#
DIR#
STEP#
HDSEL#
WGATE#
RDATA#
TRK0#
INDEX#
WPT#
DSKCHG#
GND
FANIN1
FANCTL1
FANIN2
FANCTL2
FANIN3/GPIO40
FANCTL3/GPIO41
IRTX/GPIO42
IRRX/GPIO43
LRESET#
LDRQ#
SERIRQ
LFRAM#
LAD0
LAD1
LAD2
LAD3
VCC
PCICLK
J1
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
WPT#
INDEX#
TRK0#
RDATA#
DSKCHG#
VCC3V
R107
4.7k
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
DENSEL#
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
INDEX#
MOA#
DRVA#
DIR#
STEP#
WDATA#
WGATE#
TRK0#
WPT#
RDATA#
HDSEL#
DSKCHG#
HEADER 17X2
RSMRST#
PWOK
FLOPPY CONN.
RSMRST# and PWROK pull-up
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
SLOTOCC#
LED_VSB
FWH_DIS
MOSI
MISO
SPI_CS0#
SCK
PECI/AMDSI_DAT
AMDSI_CLK
GPIO03
SOUT2
SOUT1
RTS2#
DTR2#
DTR1#
VDIMM_EN
VDDA_EN
VIDOUTD
VIDOUTC
VIDOUTB
VIDOUTA
R6
1K
R7
1K
R8
1K
R9
1K
R10
1K
VSB3V
VLDT_EN
Vcore_EN
VIDIND
VIDINC
VIDINB
VIDINA
GA20
KBRST#
CLK_24/48M
R93
4.7k
POWER-ON TRIP
R92
4.7k
R6
R7
R8
R9
R10
GPIO03
OFF:
OFF:
OFF:
OFF:
OFF:
FAN START DUTY 60% ON: FAN START DUTY 100%
SPI Back-up
ON: SPI Primary
PWM FAN
ON: LINEAR FAN
4E
ON: 2E
SPI_DISABLE
ON: SPI_ENABLE
SLOTOCC#
ST1 & ST2 Pull-up R
VSB3V
PCICLK
LAD3
LAD2
LAD1
LAD0
LFRAME#
SERIRQ
LDRQ#
LRESET#
IRRX
IRTX
FANCTL3
FANIN3
FANCTL2
FANIN2
FANCTL1
FANIN1
VCC3V
R11
4.7k
0.1U
C4
1
0.1UF
VBAT
2
C3
1
0.1U
1
C2
VSB3V
2
0.1U
VCC3V
2
C1
VCC3V
1
VCC3V
2
DENSEL#
MOA#
DRVA#
WDATA#
DIR#
STEP#
HDSEL#
WGATE#
RDATA#
TRK0#
INDEX#
WPT#
DSKCHG#
1
DTR2#
RTS2#
DSR2#
SOUT2
SIN2
2
DCD1#
RI1#
CTS1#
DTR1#
RTS1#
DSR1#
SOUT1
SIN1
DCD2#
RI2#
CTS2#
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
VSB3V
1K
1K
1K
1K
1K
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
ACK#
SLIN#
INIT#
ERR#
AFD#
STB#
PD0
PD1
PD2
PD3
PD4
PD5
PD6
PD7
R1
R4
R3
R2
R5
R106
4.7k
BUSY
PE
SLCT
VCC
Vcore(VIN1)
VLDT(VIN2)
VDDA(VIN3)
VDIMM(VIN4)
VIN5
VIN6
VREF
D1+(CPU)
D2+
D3+(System)
AGND(D-)
COPEN#
VBAT
RSMRST#/GPIO33
PWOK/GPIO32
PS_ON#/GPIO31
S3#/GPIO30
PWSOUT#/GPIO27
PWSIN#/GPIO26
PME#/GPIO25
ATXPG_IN/GPIO24
S5#
PCIRST3#/GPIO22
PCIRST2#/GPIO21
PCIRST1#/GPIO20
GND
MCLK
MDATA
KCLK
KDATA
VSB
OVT#
CPU_PWRGD
GPIO16/LED_VCC
U1
VCC5V
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
ATXPG_IN
PWOK
PSON#
S3#
PWSOUT#
PWSIN#
PME#
ATXPG_IN
S5#
PCIRST3#
PCIRST2#
PCIRST1#
MCLK
MDAT
KCLK
KDAT
OVT#
CPU_PWRGD
LED_VCC
SLOTOCC#
SLOTOCC#_CPU
SLOT_OCC#
C5
0.1U
Title
Feature Integration Technology Inc.
VCC3V
(Place capacitor close to IC)
Size
B
Date:
106
Document Number
F71863F&FDD
Monday , July 21, 2008
Rev
0.11
Sheet
1
of
7
July, 2008
V0.29P
F71863
RN1
RN2
RN3
D1
1
VCC5V
1N5819
FOR LEKAGE TO POWER
2
4
6
8
2
4
6
8
2
4
6
8
2
4
6
8
2
RN4
VCC5V
RI1#
CTS1#
DSR1#
RTS1#
DTR1#
SIN1
SOUT1
DCD1#
1
3
5
7
1
3
5
7
1
3
5
7
1
3
5
7
2.7K-8P4R 2.7K-8P4R 2.7K-8P4R 2.7K-8P4R
R12
2.7K
RN5
1
3
5
7
STB#
AFD#
INIT#
SLIN#
2
4
6
8
1
14
2
15
3
16
4
17
5
18
6
19
7
20
8
21
9
22
10
23
11
24
12
25
13
33-8P4R
RN6
1
3
5
7
PD0
PD1
PD2
PD3
2
4
6
8
33-8P4R
RN7
1
3
5
7
PD4
PD5
PD6
PD7
2
4
6
8
33-8P4R
ERR#
ACK#
BUSY
PE
SLCT
J2
180pC14
C8
C9
C10
180p
180p
180p
180p
C15
C16
C17
180p
180p
180p
180p
C11
C18
C12
180p
180p
C19
180p
180p
C13
C20
U2
VCC
+12V
RY1
RY2
RY3
DA1
DA2
RY4
DA3
RY5
RA1
RA2
RA3
DY1
DY2
RA4
DY3
RA9
GND
-12V
UART
VCC5V
RI2#
CTS2#
DSR2#
RTS2#
DTR2#
SIN2
SOUT2
DCD2#
20
19
18
17
16
15
14
13
12
11
1
2
3
4
5
6
7
8
9
10
+12V
GND
RIN1
DTRN1
CTSN1
SOUTN1
RTSN1
SINN1
DSRN1
DCDN1
RIN1
CTSN1
DSRN1
RTSN1
DTRN1
SINN1
SOUTN1
DCDN1
P1
5
9
4
8
3
7
2
6
1
UART DB9
-12V
1 PORT INTERFACE
U3
VCC
+12V
RY1
RY2
RY3
DA1
DA2
RY4
DA3
RY5
RA1
RA2
RA3
DY1
DY2
RA4
DY3
RA9
GND
-12V
UART
1
2
3
4
5
6
7
8
9
10
2
+12V
GND
RIN2
DTRN2
CTSN2
SOUTN2
RTSN2
SINN2
DSRN2
DCDN2
RIN2
CTSN2
DSRN2
RTSN2
DTRN2
SINN2
SOUTN2
DCDN2
5
9
4
8
3
7
2
6
1
P2
UART DB9
-12V
PORT INTERFACE
C22
180p
C21 180p
180p
19
18
17
16
15
14
13
12
11
DB25
(FEMALE)
C7
C6
20
RING-IN Wake-up not supported by F71863.
Please use chipset RING-IN for wake-up function
180p
VCC5V/3V
PARALLEL PORT INTERFACE
JP1
1
2
3
4
5
VSB5V
IRTX
J3
IRRX
1
2
3
C23
F2
CON3
VCC5V
R13
4.7K
R14
4.7K
F1
M-DIN_6-R JS1
FUSE
1
2
3
6
5
4
R15
4.7K
R16
4.7K
L1
MDAT
FUSE
1
2
3
HEADER 5
0.1U
6
5
4
L2
KDAT
FB
IR INTERFACE
FB
L3
MCLK
M-DIN_6-R JS2
L4
KCLK
FB
FB
C24
C25
C26
C27
C28
C29
100P
100P
0.1U
100P
100P
0.1U
PS2 MOUSE INTERFACE
Title
PS2 KEYBOARD INTERFACE
Size
B
Date:
107
Feature Integration Technology Inc.
Document Number
Printer &UART
Friday , May 02, 2008
Rev
0.11
Sheet
2
of
7
July, 2008
V0.29P
F71863
VBAT
D1+
VOLTAGE SENSING.
THERMDA
C30
3300P
D-
R17
THERMDC
R112
1K
R36
1K
VCORE(VIN1)
C32
3300P
for
SYSTEM
D3+
R37
C33
10K
for
SYSTEM
R30
VREF
10K
VIN5
VCC1.5V
200K
10K 1%
R32
10K 1%
RT2
S#
Q
W#
VSS
VCC
HOLD#
C
D
10K 1%
RT3
LED_VCC
(for system)
R101
4.7K
PLED
LED_VSB
1uF
R102
4.7K
R94
0
R95
0
CHIPSET_PWROK
CHIPSET_RESET
Q3
MOSFET N
FWH_DIS
VSB5V
VSB3V
R100
4.7K
Q13
MOSI
THERMISTOR SENSING CIRCUIT
VSB5V
R99
4.7K
SCK
10K 1%
C34
OVT#
R28
4.7K
SPI FLASH MEMORY
10K 1%
Temperature Sensing
R35
4.7K
R27
4.7K
THERMISTOR
D3+
*VIN1 VIN2 VIN3 VIN4 internal pull-down 225K ohm
VSB3V
VCC3V
(for system)
R33
VREF
VCC3V
8
7
6
5
THERMISTOR
D2+
The best voltage input level is about 1V.
SPI_CS0#
MISO
(for system)
VREF
VIN6
10K 1%
U4
1
2
3
4
THERMISTOR
D1+
R110 20K
RT1
T
R108 10K
R109
VCC3V
R25
4.7K
VDIMM(VIN4)
VDIMM
R111
VCC3V
DIODE SENSING CIRCUIT
T
10K
10K
T
R39
+12V
3300P
DR38
CASE OPEN CIRCUIT
Q2
PNP
3906
VDDA(VIN3)
VDDA
C31
1000P
D-
VLDT(VIN2)
VLDT
Q1
PNP
3906
SW1
1
2
COPEN#
D2+
VCORE
2M
from CPU
R34
100K
SUSLED
Q14
BACK_UP BIOS RESET CIRCUIT
OVT Pull-up
Title
Size
B
Date:
108
Feature Integration Technology Inc
Document Number
Hardware Monitor, SPI Flash
Monday , July 21, 2008
Rev
0.11
Sheet
3
of
July, 2008
V0.29P
7
F71863
12V
+12V
8
R103
4.7K
VCC5V
2
FANCTL1
4 HEADER
C35
4
3
2
1
+
47U
R48 100
R40
4.7K
+
R41
27K
FANIN1
C36
0.1U
JP2
D3
1N4148
1
R43
4.7K
LM358
JP3
R45 10K
R42
10K
(4 PIN FAN Control)
PMOS
Q6
4
R49
10K
FANCTL1
3
D2
1N4148
U5A
C37
47u
R44 27K
3
2
1
C38
CON3
R46
3.9K
FANIN1
0.1u R47
10K
DC FAN Control with OP 1
PWM FAN 1
SPEED CONTROL
12V
+12V
R104
4.7K
4.7K
8
R50
4.7K
Q7
PNP
D4
1N4148
R52
4.7K
FANCTL2
R55
330
C39
Q9
+
MOSFET N
2N7002 47U
5
R53
4.7K
JP4
R56
3
2
1
27K
FANIN2
VCC3V
SPEED CONTROL
4.7K
R67
330
R57 27K
3
2
1
FANIN2
C41
0.1u R61
10K
12V
8
R105
4.7K
Q10
PNP
C43
Q12
+
MOSFET N
2N7002 47U
D6
1N4148
JP6
3
2
1
3
R65
4.7K
2
FANCTL3
R68
HEADER 3
27K
+
PMOS
Q11
U6A
D7
1N4148
1
-
R66
4.7K
LM358
JP7
FANIN3
R69
10K
R70 10K
C45
0.1U
R72
3.9K
PWM FAN 3
C40
47u
DC FAN Control with OP 2
4.7K
R64
4.7K
FANCTL3
JP5
CON3
4
R63
R54
4.7K
LM358
R60
3.9K
+12V
R62
D5
1N4148
R59 10K
C42
0.1U
PMOS
Q8
7
-
R58
10K
HEADER 3
PWM FAN 2
6
FANCTL2
+
4
R51
VCC3V
U5B
SPEED CONTROL
C44
47u
R71 27K
3
2
1
C46
CON3
FANIN3
0.1u R73
10K
DC FAN Control with OP 3
FAN CONTROL FOR PWM OR DC
Title
Feature Integration Technology Inc.
Size
B
Date:
109
Document Number
FAN Control
Friday , May 02, 2008
Rev
0.11
Sheet
4
of
7
July, 2008
V0.29P
F71863
CPU
PWM Controller
VCC3V
R74
4.7k
R75
4.7k
R76
4.7k
R77
4.7k
VIDINA
VCC3V
R78
4.7k
R79
4.7k
R80
4.7k
VIDINB
VIDINC
R81
4.7k
VIDIND
VIDOUTA
VIDOUTB
VIDOUTC
VIDOUTD
Title
Size
B
Date:
110
Feature Integration Technology Inc.
Document Number
VID
Friday , May 02, 2008
Rev
0.11
Sheet
5
of
7
July, 2008
V0.29P
F71863
VDDIO
R82
300
R83
300
AMDSI_CLK
SIC
PECI/AMDSI_DAT
SID
PECI/AMDSI_DAT
PECI_Client
R84
100K
(avoid pre-bios floating)
Client
Client
AMDSI
PECI
VSB3V
R85
4.7K
VCC3V
R88
4.7K
VCC3V
R96
4.7K
VCC3V
2.5V
R97
4.7K
VDIMM_EN
VDDA_EN
VLDT_EN
Vcore_EN
R98
4.7K
CPU_PWRGD
CPU_PWRGD Pull-Up
Power Sequence Pull-up R
Title
Size
A
Date:
111
Feature Integration Technology Inc.
Document Number
AMDSI/PECI
Friday , May 02, 2008
Rev
0.11
Sheet
6
of
7
July, 2008
V0.29P
F71863
CPU
NORTH BRIDGE
PCIRST3#
IDE
PCIRST3#
PCIRST2#
ATA 133
PCIRST2#
1
SATA*2
VSB3
FRONT PANEL
R86
4.7K
SOUTH BRIDGE
RSTGND
PSW+
RESET
PSW-
8
-PWR_BTN
1
2
R87
2
7
6
1 2
5
C47
0.1UF
Front Panel
LRESET#
PWSIN#
F71863
ATXPG_IN
PSON#
PCI
1
3
1 1K
2 4.7K
4 4.7K
2
VSB3
VCC3
VCC5
1
2
3
4
5
6
7
8
9
10
VCC3
VCC5
+12V
VSB5
ATX CONNECTOR
ATX CONNECTOR
VSB5
1
ATX1
3V3
3V3
-12V
3V3
GND
GND
PS-ON
5V
GND
GND
GND
5V
GND
GND
-5V
PW-OK
5V
5VSB
5V
12V
R91
4.7K
2
-12V
11
12
13
14
15
16
17
18
19
20
1
R90
4.7K
2
1
VSB5
2
PCLK_1,2,3(33MHz)
S3#
PWSOUT#
RSMRST#
PCIRST1#
TC1
22uF
Title
Size
A
Date:
112
Feature Integration Technology Inc.
Document Number
Example_ACPI
Friday , May 02, 2008
Rev
0.11
Sheet
7
of
7
July, 2008
V0.29P