ETC RTL8309SB

RTL8309SB
SINGLE-CHIP 9-PORT 10/100MBPS SWITCH CONTROLLER
DATASHEET
Rev. 1.4
09 July 2004
Track ID: JATR-1076-21
RTL8309SB
Datasheet
COPYRIGHT
©2004 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written
permission of Realtek Semiconductor Corp.
DISCLAIMER
Realtek provides this document “as is”, without warranty of any kind, neither expressed nor implied, including, but not limited
to, the particular purpose. Realtek may make improvements and/or changes in this document or in the product described in this
document at any time. This document could include technical inaccuracies or typographical errors.
TRADEMARKS
Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are
trademarks/registered trademarks of their respective owners.
USING THIS DOCUMENT
This document provides detailed user guidelines to achieve the best performance when implementing a 2-layer board PC
design with the RTL8309SB Single-Chip 9-port 10/100Mbps Switch Controller.
Though every effort has been made to assure that this document is current and accurate, more information may have become
available subsequent to the production of this guide. In that event, please contact your Realtek representative for additional
information that may help in the development process.
Single-Chip 9-Port 10/100Mbps Switch Controller
ii
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
REVISION HISTORY
Revision
1.0
1.1
Release Date
2003/04/12
2003/05/15
1.2
2003/12/01
1.3
2004/06/10
1.4
2004/07/09
Summary
First release.
Revised pin descriptions.
Revised description for Bi-color LED.
New Bi-color LED Reference Schematic figure.
Add 3.3V items to electrical characteristics.
Add thermal operating range temperatures.
Revised pin description of Dis_VLAN.
Revised pin description of Max_Pause_Count.
Revised default VLAN membership configuration for Disable VLAN
function in PHY register 16.11.
Update default value of Differential Service Code Point [B] in EEPROM
and PHY registers.
Update default value of VLAN ID [A] membership in EERPOM.
Update default value of ISP MAC Address in EEPROM.
Update default value of Port 8 VLAN Index in EEPROM.
Revised the definition for WAN port specification in EEPROM and PHY
registers.
Revised the definition for CPU port specification in EEPROM and PHY
registers.
Removed the Bypass CRC function in EEPROM.
Removed the Good Link Quality Threshold function in EEPROM and
PHY registers.
Add explanation of Indirect Access Data in PHY 7 Register 17~20.
Removed PHY0~PHY7 REG2 and REG3 info.
Update pin number ordering on Pin Description Table.
Change the term “Auto MDIX” to “Crossover Detection and auto
correction”.
Removed QoS feature for IPv6.
Single-Chip 9-Port 10/100Mbps Switch Controller
iii
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Table of Contents
1.
GENERAL DESCRIPTION................................................................................................................................................1
2.
FEATURES...........................................................................................................................................................................3
3.
BLOCK DIAGRAM.............................................................................................................................................................4
4.
PIN ASSIGNMENTS ...........................................................................................................................................................5
5.
PIN DESCRIPTIONS ..........................................................................................................................................................7
6.
5.1.
MEDIA CONNECTION PINS ..........................................................................................................................................7
5.2.
MII PORT MAC INTERFACE PINS ...............................................................................................................................7
5.3.
MISCELLANEOUS PINS ................................................................................................................................................9
5.4.
PORT LED PINS ..........................................................................................................................................................9
5.5.
SERIAL EEPROM AND SMI PINS .............................................................................................................................11
5.6.
STRAPPING PINS........................................................................................................................................................12
5.7.
POWER PINS ..............................................................................................................................................................16
EEPROM REGISTER DESCRIPTION ..........................................................................................................................17
6.1.
GLOBAL CONTROL REGISTERS..................................................................................................................................17
6.1.1.
Global Control Register0 ...................................................................................................................................17
6.1.2.
Global Control Register1 ...................................................................................................................................17
6.1.3.
Global Control Register2 ...................................................................................................................................18
6.1.4.
Global Control Register3 ...................................................................................................................................18
6.1.5.
Global Control Register4 ...................................................................................................................................19
6.1.6.
Global Control Register5 ...................................................................................................................................19
6.1.7.
Global Control Register6 ...................................................................................................................................19
6.1.8.
Global Control Register7 ...................................................................................................................................19
6.2.
PORT 0~7 CONTROL PINS ..........................................................................................................................................20
6.2.1.
Port 0 Control 0..................................................................................................................................................20
6.2.2.
Port 0 Control 1..................................................................................................................................................20
6.2.3.
Port 0 Control 2..................................................................................................................................................21
6.2.4.
Port 0 Control 3..................................................................................................................................................21
6.2.5.
Port 0 Control 4..................................................................................................................................................21
6.2.6.
IP Address...........................................................................................................................................................22
6.2.7.
Port 1 Control 0..................................................................................................................................................23
6.2.8.
Port 1 Control 1..................................................................................................................................................23
Single-Chip 9-Port 10/100Mbps Switch Controller
iv
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
6.2.9.
Port 1 Control 2..................................................................................................................................................24
6.2.10.
Port 1 Control 3..................................................................................................................................................24
6.2.11.
Port 1 Control 4..................................................................................................................................................24
6.2.12.
IP Mask ..............................................................................................................................................................25
6.2.13.
Port 2 Control 0..................................................................................................................................................25
6.2.14.
Port 2 Control 1..................................................................................................................................................26
6.2.15.
Port 2 Control 2..................................................................................................................................................26
6.2.16.
Port 2 Control 3..................................................................................................................................................26
6.2.17.
Port 2 Control 4..................................................................................................................................................27
6.2.18.
Switch MAC Address ..........................................................................................................................................27
6.2.19.
Port 3 Control 0..................................................................................................................................................28
6.2.20.
Port 3 Control 1..................................................................................................................................................28
6.2.21.
Port 3 Control 2..................................................................................................................................................29
6.2.22.
Port 3 Control 3..................................................................................................................................................29
6.2.23.
Port 3 Control 4..................................................................................................................................................29
6.2.24.
ISP MAC Address ...............................................................................................................................................30
6.2.25.
Port 4 Control 0..................................................................................................................................................30
6.2.26.
Port 4 Control 1..................................................................................................................................................30
6.2.27.
Port 4 Control 2..................................................................................................................................................31
6.2.28.
Port 4 Control 3..................................................................................................................................................31
6.2.29.
Port 4 Control 4..................................................................................................................................................31
6.3.
MII PORT CONTROL PINS..........................................................................................................................................32
6.3.1.
MII Port Control 0..............................................................................................................................................32
6.3.2.
MII Port Control 1..............................................................................................................................................32
6.3.3.
MII Port Control 2..............................................................................................................................................33
6.3.4.
CPU Port and WAN Port....................................................................................................................................33
6.4.
PORT 5~7 CONTROL PINS ..........................................................................................................................................34
6.4.1.
Port 5 Control 0..................................................................................................................................................34
6.4.2.
Port 5 Control 1..................................................................................................................................................34
6.4.3.
Port 5 Control 2..................................................................................................................................................35
6.4.4.
Port 5 Control 3..................................................................................................................................................35
6.4.5.
Port 5 Control 4..................................................................................................................................................35
6.4.6.
Port 6 Control 0..................................................................................................................................................36
6.4.7.
Port 6 Control 1..................................................................................................................................................36
6.4.8.
Port 6 Control 2..................................................................................................................................................36
Single-Chip 9-Port 10/100Mbps Switch Controller
v
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
7.
6.4.9.
Port 6 Control 3..................................................................................................................................................37
6.4.10.
Port 6 Control 4..................................................................................................................................................37
6.4.11.
Port 7 Control 0..................................................................................................................................................38
6.4.12.
Port 7 Control 1..................................................................................................................................................38
6.4.13.
Port 7 Control 2..................................................................................................................................................38
6.4.14.
Port 7 Control 3..................................................................................................................................................39
6.4.15.
Port 7 Control 4..................................................................................................................................................39
PHY REGISTERS DESCRIPTION .................................................................................................................................40
7.1.
PHY 0 REGISTERS ....................................................................................................................................................40
7.1.1.
PHY 0 Register 0: Control..................................................................................................................................40
7.1.2.
PHY 0 Register 1: Status ....................................................................................................................................41
7.1.3.
PHY 0 Register 4: Auto-Negotiation Advertisement...........................................................................................42
7.1.4.
PHY 0 Register 5: Auto-Negotiation Link Partner Ability..................................................................................42
7.1.5.
PHY 0 Register 6: Auto-Negotiation Expansion.................................................................................................43
7.1.6.
PHY 0 Register 16: Global Control 0.................................................................................................................43
7.1.7.
PHY 0 Register 17: Global Control 1.................................................................................................................45
7.1.8.
PHY 0 Register 18: Global Control 2.................................................................................................................46
7.1.9.
PHY 0 Register 19: Global Control 3.................................................................................................................46
7.1.10.
PHY 0 Register 22: Port 0 Control 0..................................................................................................................46
7.1.11.
PHY 0 Register 23: Port 0 Control 1..................................................................................................................48
7.1.12.
PHY 0 Register 24: Port 0 Control 2 & VLAN Entry [A]...................................................................................48
7.1.13.
PHY 0 Register 25: VLAN Entry [A] ..................................................................................................................48
7.2.
PHY 1 REGISTERS ....................................................................................................................................................49
7.2.1.
PHY 1 Register 0: Control..................................................................................................................................49
7.2.2.
PHY 1 Register 1: Status ....................................................................................................................................49
7.2.3.
PHY 1 Register 4: Auto-Negotiation Advertisement...........................................................................................49
7.2.4.
PHY 1 Register 5: Auto-Negotiation Link Partner Ability..................................................................................49
7.2.5.
PHY 1 Register 6: Auto-Negotiation Expansion.................................................................................................49
7.2.6.
PHY 1 Register 16~17: IP Priority Address [A].................................................................................................49
7.2.7.
PHY 1 Register 18~19: IP Priority Address [B].................................................................................................49
7.2.8.
PHY 1 Register 22: Port 1 Control 0..................................................................................................................50
7.2.9.
PHY 1 Register 23: Port 1 Control 1..................................................................................................................50
7.2.10.
PHY 1 Register 24: Port 1 Control 2 & VLAN Entry [B]...................................................................................50
7.2.11.
PHY 1 Register 25: VLAN Entry [B] ..................................................................................................................50
Single-Chip 9-Port 10/100Mbps Switch Controller
vi
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
7.3.
PHY 2 REGISTERS ....................................................................................................................................................50
7.3.1.
PHY 2 Register 0: Control..................................................................................................................................50
7.3.2.
PHY 2 Register 1: Status ....................................................................................................................................50
7.3.3.
PHY 2 Register 4: Auto-Negotiation Advertisement...........................................................................................50
7.3.4.
PHY 2 Register 5: Auto-Negotiation Link Partner Ability..................................................................................51
7.3.5.
PHY 2 Register 6: Auto-Negotiation Expansion.................................................................................................51
7.3.6.
PHY 2 Register 16~17: IP Priority Mask [A] ....................................................................................................51
7.3.7.
PHY 2 Register 18~19: IP Priority Mask [B] ....................................................................................................51
7.3.8.
PHY 2 Register 22: Port 2 Control 0..................................................................................................................51
7.3.9.
PHY 2 Register 23: Port 2 Control 1..................................................................................................................51
7.3.10.
PHY 2 Register 24: Port 2 Control 2 & VLAN Entry [C]...................................................................................52
7.3.11.
PHY 2 Register 25: VLAN Entry [C]..................................................................................................................52
7.4.
PHY 3 REGISTERS ....................................................................................................................................................52
7.4.1.
PHY 3 Register 0: Control..................................................................................................................................52
7.4.2.
PHY 3 Register 1: Status ....................................................................................................................................52
7.4.3.
PHY 3 Register 4: Auto-Negotiation Advertisement...........................................................................................52
7.4.4.
PHY 3 Register 5: Auto-Negotiation Link Partner Ability..................................................................................52
7.4.5.
PHY 3 Register 6: Auto-Negotiation Expansion.................................................................................................52
7.4.6.
PHY 3 Register 16~18: Switch MAC Address ....................................................................................................52
7.4.7.
PHY 3 Register 22: Port 3 Control 0..................................................................................................................53
7.4.8.
PHY 3 Register 23: Port 3 Control 1..................................................................................................................53
7.4.9.
PHY 3 Register 24: Port 3 Control 2 & VLAN Entry [D] ..................................................................................53
7.4.10.
PHY 3 Register 25: VLAN Entry [D]..................................................................................................................53
7.5.
PHY 4 REGISTERS ....................................................................................................................................................54
7.5.1.
PHY 4 Register 0: Control..................................................................................................................................54
7.5.2.
PHY 4 Register 1: Status ....................................................................................................................................54
7.5.3.
PHY 4 Register 4: Auto-Negotiation Advertisement...........................................................................................54
7.5.4.
PHY 4 Register 5: Auto-Negotiation Link Partner Ability..................................................................................54
7.5.5.
PHY 4 Register 6: Auto-Negotiation Expansion.................................................................................................54
7.5.6.
PHY 4 Register 16~18: ISP MAC Address .........................................................................................................54
7.5.7.
PHY 4 Register 22: Port 4 Control 0..................................................................................................................54
7.5.8.
PHY 4 Register 23: Port 4 Control 1..................................................................................................................54
7.5.9.
PHY 4 Register 24: Port 4 Control 2 & VLAN Entry [E]...................................................................................55
7.5.10.
PHY 4 Register 25: VLAN Entry [E] ..................................................................................................................55
Single-Chip 9-Port 10/100Mbps Switch Controller
vii
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
7.6.
PHY 5 REGISTERS ....................................................................................................................................................55
7.6.1.
PHY 5 Register 0: Control..................................................................................................................................55
7.6.2.
PHY 5 Register 1: Status ....................................................................................................................................55
7.6.3.
PHY 5 Register 4: Auto-Negotiation Advertisement...........................................................................................55
7.6.4.
PHY 5 Register 5: Auto-Negotiation Link Partner Ability..................................................................................55
7.6.5.
PHY 5 Register 6: Auto-Negotiation Expansion.................................................................................................55
7.6.6.
PHY 5 Register 16: MII Port Control 0..............................................................................................................56
7.6.7.
PHY 5 Register 17: MII Port Control 1 & VLAN Entry [I]................................................................................57
7.6.8.
PHY 5 Register 18: VLAN Entry [I] ...................................................................................................................57
7.6.9.
PHY 5 Register 19: CPU Port & WAN Port.......................................................................................................57
7.6.10.
PHY 5 Register 22: Port 5 Control 0..................................................................................................................58
7.6.11.
PHY 5 Register 23: Port 5 Control 1..................................................................................................................58
7.6.12.
PHY 5 Register 24: Port 5 Control 2 & VLAN Entry [F]...................................................................................58
7.6.13.
PHY 5 Register 25: VLAN Entry [F] ..................................................................................................................58
7.7.
PHY 6 REGISTERS ....................................................................................................................................................59
7.7.1.
PHY 6 Register 0: Control..................................................................................................................................59
7.7.2.
PHY 6 Register 1: Status ....................................................................................................................................59
7.7.3.
PHY 6 Register 4: Auto-Negotiation Advertisement...........................................................................................59
7.7.4.
PHY 6 Register 5: Auto-Negotiation Link Partner Ability..................................................................................59
7.7.5.
PHY 6 Register 6: Auto-Negotiation Expansion.................................................................................................59
7.7.6.
PHY 6 Register 22: Port 6 Control 0..................................................................................................................59
7.7.7.
PHY 6 Register 23: Port 6 Control 1..................................................................................................................59
7.7.8.
PHY 6 Register 24: Port 6 Control 2 & VLAN Entry [G] ..................................................................................60
7.7.9.
PHY 6 Register 25: VLAN Entry [G]..................................................................................................................60
7.8.
PHY 7 REGISTERS ....................................................................................................................................................61
7.8.1.
PHY 7 Register 0: Control..................................................................................................................................61
7.8.2.
PHY 7 Register 1: Status ....................................................................................................................................61
7.8.3.
PHY 7 Register 4: Auto-Negotiation Advertisement...........................................................................................61
7.8.4.
PHY 7 Register 5: Auto-Negotiation Link Partner Ability..................................................................................61
7.8.5.
PHY 7 Register 6: Auto-Negotiation Expansion.................................................................................................61
7.8.6.
PHY 7 Register 16: indirect Access Control.......................................................................................................61
7.8.7.
PHY 7 Register 17~20: Indirect Access Data.....................................................................................................62
7.8.8.
PHY 7 Register 22: Port 7 Control 0..................................................................................................................62
7.8.9.
PHY 7 Register 23: Port 7 Control 1..................................................................................................................62
Single-Chip 9-Port 10/100Mbps Switch Controller
viii
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
7.8.10.
PHY 7 Register 24: Port 7 Control 2 & VLAN Entry [H] ..................................................................................62
7.8.11.
PHY 7 Register 25: VLAN Entry [H]..................................................................................................................63
7.9.
8.
PHY 8 REGISTERS ....................................................................................................................................................63
7.9.1.
PHY 8 Register 0: Control..................................................................................................................................63
7.9.2.
PHY 8 Register 1: Status ....................................................................................................................................64
7.9.3.
PHY 8 Register 4: Auto-Negotiation Advertisement...........................................................................................64
7.9.4.
MII Port NWay Mode .........................................................................................................................................65
7.9.5.
MII Port Force Mode .........................................................................................................................................65
FUNCTIONAL DESCRIPTION.......................................................................................................................................66
8.1.
PHYSICAL LAYER TRANSCEIVER FUNCTIONAL OVERVIEW .......................................................................................66
8.1.1.
Auto Negotiation for UTP ..................................................................................................................................66
8.1.2.
100Base-Tx Transmit Function ..........................................................................................................................66
8.1.3.
100Base-Tx Receive Function ............................................................................................................................66
8.1.4.
10Base-T Transmit Function ..............................................................................................................................67
8.1.5.
10Base-T Receive Function ................................................................................................................................67
8.1.6.
Link Monitor.......................................................................................................................................................67
8.1.7.
Power Saving Mode............................................................................................................................................67
8.1.8.
Power-Down Mode.............................................................................................................................................67
8.1.9.
Auto Crossover Detection...................................................................................................................................68
8.2.
SWITCH CORE FUNCTIONAL OVERVIEW....................................................................................................................68
8.2.1.
Address Search, Learning, and Aging ................................................................................................................68
8.2.2.
Flow Control ......................................................................................................................................................69
8.2.3.
Half Duplex Operation .......................................................................................................................................69
8.2.4.
Backpressure ......................................................................................................................................................70
8.2.5.
UTP Port Status Configuration ..........................................................................................................................70
8.2.6.
MII Port (The 9th Port) ......................................................................................................................................70
8.3.
ADVANCED FUNCTIONALITY OVERVIEW ...................................................................................................................74
8.3.1.
Port-Based VLAN ...............................................................................................................................................74
8.3.2.
802.1Q Tagged-VID based VLAN.......................................................................................................................76
8.3.3.
QoS Operation....................................................................................................................................................77
8.3.4.
Insert/Remove VLAN Priority Tag......................................................................................................................78
8.3.5.
Port VID (PVID) ................................................................................................................................................79
8.3.6.
Port Trunking .....................................................................................................................................................79
8.3.7.
ISP MAC Address Translation ............................................................................................................................79
8.3.8.
Lookup Table Access...........................................................................................................................................81
Single-Chip 9-Port 10/100Mbps Switch Controller
ix
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
9.
8.3.9.
Serial Management Interface (SMI) ...................................................................................................................81
8.3.10.
Broadcast Storm Control ....................................................................................................................................82
8.3.11.
Broadcast In/Out Drop .......................................................................................................................................82
8.3.12.
EEPROM Configuration Interface .....................................................................................................................83
8.3.13.
24LC02 Device Operation..................................................................................................................................83
8.3.14.
Head-of-Line Blocking .......................................................................................................................................84
8.3.15.
MII Port Diagnostic Loopback...........................................................................................................................85
8.3.16.
Loop Detection ...................................................................................................................................................86
8.3.17.
LEDs (Light Emitting Diodes)............................................................................................................................87
CHARACTERISTICS .......................................................................................................................................................90
9.1.
ABSOLUTE MAXIMUM RATINGS................................................................................................................................90
9.2.
OPERATING RANGE ...................................................................................................................................................90
9.3.
DC CHARACTERISTICS .............................................................................................................................................90
9.4.
AC CHARACTERISTICS .............................................................................................................................................91
9.5.
DIGITAL TIMING CHARACTERISTICS .........................................................................................................................92
9.6.
THERMAL CHARACTERISTICS ...................................................................................................................................94
10.
SYSTEM APPLICATIONS ...........................................................................................................................................95
11.
DESIGN AND LAYOUT GUIDE..................................................................................................................................96
12.
MECHANICAL DIMENSIONS ...................................................................................................................................99
12.1.
NOTES FOR 128-PIN LQFP DIMENSIONS ................................................................................................................100
Single-Chip 9-Port 10/100Mbps Switch Controller
x
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
List of Tables
Table 1. Pin Assignments.............................................................................................................................6
Table 2. Media Connection Pins ..................................................................................................................7
Table 3. MII Port MAC Interface Pins ........................................................................................................7
Table 4. Miscellaneous Pins.........................................................................................................................9
Table 5. Port LED Pins ................................................................................................................................9
Table 6. Serial EEPROM and SMI Pins ....................................................................................................11
Table 7. Strapping Pins ..............................................................................................................................12
Table 8. Power Pins ...................................................................................................................................16
Table 9. Global Control Register0 .............................................................................................................17
Table 10. Global Control Register1 .............................................................................................................17
Table 11. Global Control Register2 .............................................................................................................18
Table 12. Global Control Register3 .............................................................................................................18
Table 13. Global Control Register4 .............................................................................................................19
Table 14. Global Control Register5 .............................................................................................................19
Table 15. Global Control Register6 .............................................................................................................19
Table 16. Global Control Register7 .............................................................................................................19
Table 17. Port 0 Control 0............................................................................................................................20
Table 18. Port 0 Control 1............................................................................................................................20
Table 19. Port 0 Control 2............................................................................................................................21
Table 20. Port 0 Control 3............................................................................................................................21
Table 21. Port 0 Control 4............................................................................................................................21
Table 22. IP Address ....................................................................................................................................22
Table 23. Port 1 Control 0............................................................................................................................23
Table 24. Port 1 Control 1............................................................................................................................23
Table 25. Port 1 Control 2............................................................................................................................24
Table 26. Port 1 Control 3............................................................................................................................24
Table 27. Port 1 Control 4............................................................................................................................24
Table 28. IP Mask ........................................................................................................................................25
Table 29. Port 2 Control 0............................................................................................................................25
Table 30. Port 2 Control 1............................................................................................................................26
Table 31. Port 2 Control 2............................................................................................................................26
Table 32. Port 2 Control 3............................................................................................................................26
Table 33. Port 2 Control 4............................................................................................................................27
Single-Chip 9-Port 10/100Mbps Switch Controller
xi
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Table 34. Switch MAC Address ..................................................................................................................27
Table 35. Port 3 Control 0............................................................................................................................28
Table 36. Port 3 Control 1............................................................................................................................28
Table 37. Port 3 Control 2............................................................................................................................29
Table 38. Port 3 Control 3............................................................................................................................29
Table 39. Port 3 Control 4............................................................................................................................29
Table 40. ISP MAC Address........................................................................................................................30
Table 41. Port 4 Control 0............................................................................................................................30
Table 42. Port 4 Control 1............................................................................................................................30
Table 43. Port 4 Control 2............................................................................................................................31
Table 44. Port 4 Control 3............................................................................................................................31
Table 45. Port 4 Control 4............................................................................................................................31
Table 46. MII Port Control 0 .......................................................................................................................32
Table 47. MII Port Control 1 .......................................................................................................................32
Table 48. MII Port Control 2 .......................................................................................................................33
Table 49. CPU Port and WAN Port..............................................................................................................33
Table 50. Port 5 Control 0............................................................................................................................34
Table 51. Port 5 Control 1............................................................................................................................34
Table 52. Port 5 Control 2............................................................................................................................35
Table 53. Port 5 Control 3............................................................................................................................35
Table 54. Port 5 Control 4............................................................................................................................35
Table 55. Port 6 Control 0............................................................................................................................36
Table 56. Port 6 Control 1............................................................................................................................36
Table 57. Port 6 Control 2............................................................................................................................36
Table 58. Port 6 Control 3............................................................................................................................37
Table 59. Port 6 Control 4............................................................................................................................37
Table 60. Port 7 Control 0............................................................................................................................38
Table 61. Port 7 Control 1............................................................................................................................38
Table 62. Port 7 Control 2............................................................................................................................38
Table 63. Port 7 Control 3............................................................................................................................39
Table 64. Port 7 Control 4............................................................................................................................39
Table 65. PHY 0 Register 0: Control ...........................................................................................................40
Table 66. PHY 0 Register 1: Status .............................................................................................................41
Table 67. PHY 0 Register 4: Auto-Negotiation Advertisement...................................................................42
Table 68. PHY 0 Register 5: Auto-Negotiation Link Partner Ability ..........................................................42
Single-Chip 9-Port 10/100Mbps Switch Controller
xii
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Table 69. PHY 0 Register 6: Auto-Negotiation Expansion .........................................................................43
Table 70. PHY 0 Register 16: Global Control 0 ..........................................................................................43
Table 71. PHY 0 Register 17: Global Control 1 ..........................................................................................45
Table 72. PHY 0 Register 18: Global Control 2 ..........................................................................................46
Table 73. PHY 0 Register 19: Global Control 3 ..........................................................................................46
Table 74. PHY 0 Register 22: Port 0 Control 0 ...........................................................................................46
Table 75. PHY 0 Register 23: Port 0 Control 1 ...........................................................................................48
Table 76. PHY 0 Register 24: Port 0 Control 2 & VLAN Entry [A]...........................................................48
Table 77. PHY 0 Register 25: VLAN Entry [A]..........................................................................................48
Table 78. PHY 1 Register 16~17: IP Priority Address [A] ..........................................................................49
Table 79. PHY 1 Register 18~19: IP Priority Address [B] ..........................................................................49
Table 80. PHY 1 Register 24: Port 1 Control 2 & VLAN Entry [B] ...........................................................50
Table 81. PHY 1 Register 25: VLAN Entry [B] ..........................................................................................50
Table 82. PHY 2 Register 16~17: IP Priority Mask [A] ..............................................................................51
Table 83. PHY 2 Register 18~19: IP Priority Mask [B] ..............................................................................51
Table 84. PHY 2 Register 24: Port 2 Control 2 & VLAN Entry [C] ...........................................................52
Table 85. PHY 2 Register 25: VLAN Entry [C] ..........................................................................................52
Table 86. PHY 3 Register 16~18: Switch MAC Address ............................................................................53
Table 87. PHY 3 Register 24: Port 3 Control 2 & VLAN Entry [D]...........................................................53
Table 88. PHY 3 Register 25: VLAN Entry [D]..........................................................................................53
Table 89. PHY 4 Register 16~18: ISP MAC Address .................................................................................54
Table 90. PHY 4 Register 24: Port 4 Control 2 & VLAN Entry [E] ...........................................................55
Table 91. PHY 4 Register 25: VLAN Entry [E] ..........................................................................................55
Table 92. PHY 5 Register 16: MII Port Control 0 .......................................................................................56
Table 93. PHY 5 Register 17: MII Port Control 1 & VLAN Entry [I] ........................................................57
Table 94. PHY 5 Register 18: VLAN Entry [I] ...........................................................................................57
Table 95. PHY 5 Register 19: CPU Port & WAN Port ................................................................................57
Table 96. PHY 5 Register 24: Port 5 Control 2 & VLAN Entry [F] ...........................................................58
Table 97. PHY 5 Register 25: VLAN Entry [F] ..........................................................................................58
Table 98. PHY 6 Register 24: Port 6 Control 2 & VLAN Entry [G]...........................................................60
Table 99. PHY 6 Register 25: VLAN Entry [G]..........................................................................................60
Table 100. PHY 7 Register 16: Indirect Access Control .............................................................................61
Table 101. PHY 7 Register 17~20: Indirect Access Data ............................................................................62
Table 102. PHY 7 Register 24: Port 7 Control 2 & VLAN Entry [H].........................................................62
Table 103. PHY 7 Register 25: VLAN Entry [H]........................................................................................63
Single-Chip 9-Port 10/100Mbps Switch Controller
xiii
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Table 104. PHY 8 Register 0: Control .........................................................................................................63
Table 105. PHY 8 Register 1: Status............................................................................................................64
Table 106. PHY 8 Register 4: Auto-Negotiation Advertisement.................................................................64
Table 107. MII Port NWay Mode ................................................................................................................65
Table 108. MII Port Force Mode .................................................................................................................65
Table 109. 802.1Q VLAN Tag Frame Format .............................................................................................78
Table 110. IPv4 Frame Format ....................................................................................................................78
Table 111. SMI Read/Write Cycles..............................................................................................................81
Table 112. Loop Frame Format ...................................................................................................................86
Table 113. Speed and Bi-Color Link/Act Truth Table .................................................................................88
Table 114. Absolute Maximum Ratings.......................................................................................................90
Table 115. Operating Range ........................................................................................................................90
Table 116. DC Characteristics .....................................................................................................................90
Table 117. AC Characteristics......................................................................................................................91
Table 118. Digital Timing Characteristics ...................................................................................................93
Table 119. Thermal Operating Range ..........................................................................................................94
Table 120. Thermal Resistance....................................................................................................................95
Single-Chip 9-Port 10/100Mbps Switch Controller
xiv
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
List of Figures
Figure 1. Block Diagram .............................................................................................................................4
Figure 2. Pin Assignments ...........................................................................................................................5
Figure 3. MII Port Application ..................................................................................................................71
Figure 4. MII Port Operating Mode Overview..........................................................................................72
Figure 5. VLAN Grouping Example .........................................................................................................75
Figure 6. Tagged and Untagged Packet Forwarding When 802.1Q Tag Aware VLAN is Disabled .........76
Figure 7. ISP MAC Outbound Process ......................................................................................................80
Figure 8. ISP MAC Inbound Process.........................................................................................................80
Figure 9. Input Drop vs. Output Drop .......................................................................................................82
Figure 10. Start and Stop Definition ............................................................................................................83
Figure 11. Output Acknowledge ..................................................................................................................84
Figure 12. Random Read .............................................................................................................................84
Figure 13. Sequential Read..........................................................................................................................84
Figure 14. MII Port Loopback .....................................................................................................................85
Figure 15. Loop Example ............................................................................................................................86
Figure 16. Floating and Pull-down of LED Pins .........................................................................................87
Figure 17. Two-Pin Bi-Color LED for SPD Floating or Pull-high..............................................................88
Figure 18. Two-Pin Bi-Color LED for SPD Pull-down...............................................................................88
Figure 19. Bi-Color LED Reference Schematic ..........................................................................................89
Figure 20. Reception Data Timing of MII/SNI/SMI Interface ....................................................................92
Figure 21. Transmission Data Timing of MII/SNI/SMI Interface...............................................................92
Figure 22. Cross-section of 128-Pin PQFP..................................................................................................94
Figure 23. Application for Transformer with Connected Central Tap .........................................................97
Figure 24. Bob Smith Termination ..............................................................................................................98
Single-Chip 9-Port 10/100Mbps Switch Controller
xv
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
1.
General Description
The RTL8309SB is a 128-pin, ultra low power, high-performance 8-port Fast Ethernet single-chip switch
with one extra MII port for specific applications. It integrates all the functions of a high speed switch
system—including SRAM for packet buffering, non-blocking switch fabric, address management, one
general use MII interface, eight 10/100Base-TX transceivers, and nine Media Access Controllers—into a
single 0.18µm CMOS device. It provides compatibility with all industry standard Ethernet and Fast
Ethernet devices. Only a 25MHz crystal is required; the EEPROM is optional to save BOM costs.
The embedded packet storage SRAM in the RTL8309SB features superior memory management
technology to efficiently utilize the memory space. An integrated 1024-entry look-up table stores MAC
address and associated information in a 10-bit direct mapping scheme. The table provides read/write
access from the SMI interface, and each of the entries can be configured as a static entry. A static entry
indicates that this entry is controlled by the external management processor and automatic aging and
learning of the entry will not take place. To prevent MAC address mapping collisions, the embedded 16entry Content-Addressable Memory (CAM) offers another memory space for recording the MAC address
when the mapped entry in the lookup table is occupied. For each incoming packet, the RTL8309SB
searches the entries in the lookup table and the 16-entry CAM simultaneously. Then it obtains the correct
destination port information to determine which output port the packet should be forwarded to. The aging
time of the RTL8309SB is around 300 seconds (this may be sped up to 800µs via EEPROM
configuration).
The ninth port of the RTL8309SB implements a MAC module without a PHY transceiver to provide an
MII interface for connection with an external PHY or MAC in specific applications. This MII interface
may be set to MII PHY mode, SNI PHY mode, or MII MAC mode to work with an external MAC
module in a routing engine application, PHY module in a HomePNA application, or other physical layer
transceivers. In order to operate correctly, both sides of the connection must be configured to the same
speed, duplex, and flow control settings. Four pins are used for the ninth port to force the link status. This
interface should be 2.5V or 3.3V compatible depending on the voltage supplied to the power pin VDDIO
of this interface.
The RTL8309SB is capable of preventing broadcast storms by setting strapping pins upon system reset.
When this function is enabled, it will drop broadcast packets after receiving 64 continuous broadcast
packets. This counter will be reset to 0 every 800ms or when the RTL8309SB receives a non-broadcast
packet.
The RTL8309SB displays the port status via four LED indicators (with optional blinking time setting).
These LEDs blink for diagnostic purposes at system reset time. The RTL8309SB provides various type of
Single-Chip 9-Port 10/100Mbps Switch Controller
1
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
LED combinations to fit different applications. Eight combinations of link, activity, speed, duplex, and
collision, are available. Bi-color LED mode is also supported on the Link/Act LED.
The RTL8309SB supports standard 802.3x flow control frames for full duplex, and optional backpressure
for half duplex. It determines when to invoke the flow control mechanism by checking the availability of
system resources, including the packet buffers and transmitting queues. If one of the forwarding ports is
blocked, or system resources are unavailable, broadcast frames will be dropped according to the system
configuration. The RTL8309SB support two types of dropping methods. The input dropping method will
not forward broadcast packets to any output ports and will drop these packets directly. The output
dropping method will forward broadcast packets to non-blocked ports only.
To improve real-time and multimedia networking applications, the RTL8309SB supports four types of
QoS (Quality of Service). These are based on (1) Port-based priority, (2) 802.1p/Q VLAN priority tag, (3)
TOS field in IPv4 header, (4) Specific IP address. Each output port supports a weighted ratio of highpriority and low-priority queues to fit bandwidth requirements in different applications.
The RTL8309SB provides 802.1Q port-based VLAN operation to separate logical connectivity from
physical connectivity. Each port may be set to any topology via EEPROM upon reset or SMI after reset.
The RTL8309SB also provides options to meet special application requirements. The first option is the
ARP VLAN function, which is used to select to broadcast ARP frames to all VLANs or only forward
ARP frames to the originating VLAN. The second option is the Leaky VLAN function, which is used to
select to send unicast frames to other VLANs or only forward unicast frames to the originating VLAN.
The VLAN tags can be inserted or removed on a per-port basis.
In router applications, the router may want to know which input port this packet came from. The
RTL8309SB supports Port VID (PVID) for each port to insert a PVID in the VLAN tag on egress. In this
function, the VID information carried in the VLAN tag will be changed to PVID. The RTL8309SB also
provides an option to admit VLAN tagged packet with a specific PVID only. If this function is enabled, it
will drop non-tagged packets and packets with an incorrect PVID.
Each physical layer channel consists of a 4B5B encoder/decoder, Manchester encoder/decoder, transmit
output driver, scrambler/descrambler, output wave shaping, filters, digital adaptive equalizer, PLL circuit,
and DC restoration circuit for clock/data recovery. This integrated chip benefits from low power
consumption and offers advanced functions with flexible configuration for a small workgroup switch,
multimedia, or real-time traffic mixed with other data type traffic, and other applications.
Single-Chip 9-Port 10/100Mbps Switch Controller
2
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
2.
Features
Supports QoS function:
QoS based on: (1) Port-based priority (2)
802.1p VLAN tag (3) DiffServ/TOS field
in TCP/IP header (4) IP address.
Supports two-level priority queues with
various weighting ratios.
Queue service rate based on weighted
round robin algorithm.
Optional auto turn off Flow Control for
1~2 sec to avoid head-of-line blocking.
Supports MII interface connection to external
MAC or PHY via 3 modes.
PHY mode MII for router applications.
PHY mode SNI for router applications.
MAC mode MII for HomePNA or other
PHY applications.
Flexible 802.1Q port/tag-based VLAN.
Optional 802.1Q tag-VID aware function.
Optional VLAN Ingress Tag Admit
Control.
Optional VLAN Ingress Member set
filtering.
Integrates eight 10/100 transceivers and nine
MAC units for 10Base-T and 100Base-TX.
Embedded SRAM for packet storage.
On-chip 1024-entry look-up table in direct
mapping mode.
Embedded 16-entry CAM for hash collision
mapping.
Provides read/write access to look-up table
entries via SMI interface.
Provides non-blocking wire speed reception
and transmission.
Flow control fully supported:
Half-duplex: backpressure flow control.
Full-duplex: IEEE 802.3x flow control.
Support for 4 LEDs per-port in various
combinations for comprehensive
applications.
Optional loop detection function with an
LED to indicate the existence of a loop.
Supports MII loopback.
LEDs blink upon reset for LED diagnostics.
Flexible system configuration by strapping
pins, EEPROM, or SMI interface.
Optional crossover detection and auto
correction for plug-and-play.
Fully compliant with IEEE 802.3/802.3u.
Optional Forwarding/Filtering reserved
control frames (DID=
0180C2000003~0180C200000F).
Optional Broadcast Input/Output Drop flow
control.
Optional maximum packet length
1536/1552 Bytes.
Supports two Power Reduction methods:
Power saving mode (automatic cable
detection).
Power down mode (via PHY
register 0.11).
Single-Chip 9-Port 10/100Mbps Switch Controller
Optional ARP VLAN for broadcast packet.
Optional Leaky VLAN for unicast packet.
Optional 802.1P/Q tag insertion or removal
on per-port basis (egress).
25MHz crystal input.
0.18µm, CMOS technology.
128-pin PQFP package.
1.8V core voltage.
Independent power options for 2.5V or 3.3V
MII interface.
3
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
3.
Block Diagram
Waveform
Shaping
IBREF
10Base-T or
100Base-TX
PHYceiver
10/100
MAC 0
RX+-[1]
TX+-[1]
10Base-T or
100Base-TX
PHYceiver
10/100
MAC 1
RX+-[2]
TX+-[2]
10Base-T or
100Base-TX
PHYceiver
10/100
MAC 2
RX+-[3]
TX+-[3]
10Base-T or
100Base-TX
PHYceiver
10/100
MAC 3
RX+-[4]
TX+-[4]
10Base-T or
100Base-TX
PHYceiver
10/100
MAC 4
RX+-[5]
TX+-[5]
10Base-T or
100Base-TX
PHYceiver
10/100
MAC 5
RX+-[6]
TX+-[6]
10Base-T or
100Base-TX
PHYceiver
10/100
MAC 6
10Base-T or
100Base-TX
PHYceiver
10/100
MAC 7
RX+-[7]
TX+-[7]
MII
Signal
13
/
Flow
Control
Flow
Control
TX/RX
FIFO
Flow
Control
TX/RX
FIFO
Flow
Control
TX/RX
FIFO
Flow
Control
TX/RX
FIFO
Flow
Control
TX/RX
FIFO
Flow
Control
TX/RX
FIFO
Look-up Table
(1024-entries)
Queue
Management
Buffer
Management
Packet Buffer
Flow
Control
TX/RX
FIFO
Flow
Control
10/100
MAC 8
MAC
Mode
RTL8309SB
TX/RX
FIFO
Switch Fabric, VLAN, QoS, Trunking
RX+-[0]
TX+-[0]
TX/RX
FIFO
EEPROM
Interface
Control
Registers
Inter
face
PHY
Mode
Mode
Select
P8MODE[1:0]
Figure 1. Block Diagram
Single-chip 9-port 10/100Mbps Switch Controller
4
Track ID: JATR-1076-21 Rev. 1.4
VDDA
VSSA
TXON[1]
TXOP[1]
VSSA
RXIP[1]
RXIN[1]
VDDA
RXIN[2]
RXIP[2]
VSSA
TXOP[2]
TXON[2]
VDDA
TXON[3]
TXOP[3]
VSSA
RXIP[3]
RXIN[3]
VDDA
RXIN[4]
RXIP[4]
VSSA
TXOP[4]
TXON[4]
VDDA
TXON[5]
TXOP[5]
VSSA
RXIP[5]
RXIN[5]
VDDA
RXIN[6]
RXIP[6]
VSSA
TXOP[6]
TXON[6]
VDDA
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
P2_LED[0]/MII_MODE[0]
P2_LED[1]/MII_MODE[1]
P2_LED[2]/LED_MODE[0]
P2_LED[3]/LED_MODE[1]
P3_LED[0]/LED_MODE[2]
P3_LED[1]/Dis_Trunk
VSSD
VDDD
P3_LED[2]/En_Forward
P3_LED[3]/En_Defer
P4_LED[0]/En_48pass1
P4_LED[1]/En_Agrs_Back
P4_LED[2]/Max_Pkt_Len
P4_LED[3]/Max_Pause_Count
VSSD
VDDD
P5_LED[0]/Sel_PortPri[0]
P5_LED[1]/Sel_PortPri[1]
P5_LED[2]/Dis_VLAN_Pri
P5_LED[3]/Dis_DS_Pri
P6_LED[0]/QWeight[0]
P6_LED[1]/QWeight[1]
VSSD
VDDD
P6_LED[2]/Dis_VLAN
P6_LED[3]/Dis_LeakyVLAN
P7_LED[0]/Dis_ARPVLAN
P7_LED[1]/LED_BLNK_TIME
P7_LED[2]/Port_LED_LOC
P7_LED[3]/Dis_FC_AutoOff
VSSD
VDDD
MRXD[3]/PTXD[3]
MRXD[2]/PTXD[2]
MRXD[1]/PTXD[1]
MRXD[0]/PTXD[0]
MRXDV/PTXEN
MRXC/PTXC
RTL8309SB
Datasheet
4.
Pin Assignments
En_AutoXover/P1_LED[3]
En_ANEG/P1_LED[2]
En_FCTRL/P1_LED[1]
En_BKPRS/P1_LED[0]
VDDD
VSSD
Force_Duplex/P0_LED[3]
Force_Speed/P0_LED[2]
En_BRD_CTRL/P0_LED[1]
En_RST_BLNK/P0_LED[0]
EnEEPROM/LoopLED#
VDDD
VSSD
Test pin
VSSPLL
X1
X2
VDDPLL
Test Pin
IBREF
VDDA
TXON[0]
TXOP[0]
VSSA
RXIP[0]
RXIN[0]
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
RTL8309SB
Single-chip 9-port 10/100Mbps Switch Controller
5
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
MCOL/PCOL
VSSIO
VDDIO
MTXD[3]/PRXD[3]
MTXD[2]/PRXD[2]
MTXD[1]/PRXD[1]
MTXD[0]/PRXD[0]
MTXEN/PRXDV
MTXC/PRXC
SDA_MDIO
SCL_MDC
VSSD
VDDD
MII_LNK_STA#
MII_DUP_STA
MII_SPD_STA
MII_FCTRL_STA
RESET#
NC
Test Pin
VDDA
TXON[7]
TXOP[7]
VSSA
RXIP[7]
RXIN[7]
Figure 2. Pin Assignments
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Codes used in the following tables: ‘A’ stands for analog; ‘D’ stands for digital, ‘I’ stands for input; ‘O’ stands for output.
Table 1. Pin Assignments
Name
VDDA,
VSSA,
TXON[1],
TXOP[1],
VSSA,
RXIP[1],
RXIN[1],
VDDA,
RXIN[2],
RXIP[2],
VSSA,
TXOP[2],
TXON[2],
VDDA,
TXON[3],
TXOP[3],
VSSA,
RXIP[3],
RXIN[3],
VDDA,
RXIN[4],
RXIP[4],
VSSA,
TXOP[4],
TXON[4],
VDDA,
TXON[5],
TXOP[5],
VSSA,
RXIP[5],
RXIN[5],
VDDA,
RXIN[6],
RXIP[6],
VSSA,
TXOP[6],
TXON[6],
VDDA,
RXIN[7],
RXIP[7],
VSSA,
TXOP[7],
TXON[7],
VDDA,
NC,
NC
RESET#
MII_FCTRL_STA,
MII_SPD_STA,
MII_DUP_STA,
MII_LNK_STA#,
VDDD,
VSSD,
SCL_MDC,
SDA_MDIO,
MTXC/PRXC,
MTXEN/PRXDV,
MTXD[0]/PRXD[0],
MTXD[1]/PRXD[1],
MTXD[2]/PRXD[2],
MTXD[3]/PRXD[3],
VDDIO,
VSSIO,
MCOL/PCOL
Pin No.
Type
Name
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64
AVDD
AGND
AO
AO
AGND
AI
AI
AVDD
AI
AI
AGND
AO
AO
AVDD
AO
AO
AGND
AI
AI
AVDD
AI
AI
AGND
AO
AO
AVDD
AO
AO
AGND
AI
AI
AVDD
AI
AI
AGND
AO
AO
AVDD
AI
AI
AGND
AO
AO
AVDD
MRXC / PTXC
MRXDV / PTXDV,
MRXD[0] / PTXD[0],
MRXD[1] / PTXD[1],
MRXD[2] / PTXD[2],
MRXD[3] / PTXD[3],
VDDD,
VSSD,
P7_LED[3] / Dis_FC_AutoOff,
P7_LED[2] / Port_LED_LOC,
P7_LED[1] / LED_BLNK_TIME,
P7_LED[0] / Dis_ARPVLAN,
P6_LED[3] / Dis_LeakyVLAN,
P6_LED[2] / Dis_VLAN,
VDDD,
VSSD,
P6_LED[1] / QWeight[1],
P6_LED[0] / QWeight[0],
P5_LED[3] / Dis_DS_Pri,
P5_LED[2] / Dis_VLAN_Pri,
P5_LED[1] / Sel_PortPri[1],
P5_LED[0] / Sel_PortPri[0],
VDDD,
VSSD,
P4_LED[3] / Max_Pause_Count,
P4_LED[2] / Max_Pkt_Len,
P4_LED[1] / En_Agrs_Back,
P4_LED[0] / En_48pass1,
P3_LED[3] / En_Defer,
P3_LED[2] / En_Forward,
VDDD,
VSSD
P3_LED[1] / Dis_Trunk,
P3_LED[0] / LED_MODE[2],
P2_LED[3] / LED_MODE[1],
P2_LED[2] / LED_MODE[0],
P2_LED[1] / MII_MODE[1],
P2_LED[0] / MII_MODE[0],
P1_LED[3] / En_AutoXover,
P1_LED[2] / En_ANEG,
P1_LED[1] / En_FCTRL
P1_LED[0] / En_BKPRS,
VDDD,
VSSD
P0_LED[3] / Force_Duplex,
P0_LED[2] / Force_Speed,
P0_LED[1] / En_BRD_CTRL,
P0_LED[0] / En_RST_BLNK,
LoopLED#,/EnEEPROM
VDDD,
VSSD,
NC,
VSSPLL,
X1,
X2,
VDDPLL,
NC,
IBREF,
VDDA,
TXON[0],
TXOP[0],
VSSA,
RXIP[0],
RXIN[0],
Single-chip 9-port 10/100Mbps Switch Controller
I
I
I
I
I
DVDD
DGND
I/O
I/O
I/O
O
I/O
I/O
I/O
I/O
DVDD
DGND
I/O
6
Pin No
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79
80,
81,
82,
83,
84,
85,
86,
87,
88,
89,
90,
91,
92,
93,
94,
95,
96,
97,
98,
99,
100,
101,
102,
103,
104,
105,
106,
107,
108,
109,
110,
111,
112,
113,
114,
115,
116,
117,
118,
119,
120,
121,
122,
123,
124,
125,
126,
127,
128
Type
I/O
I
I
I
I
I
DVDD
DGND
I/O
I/O
I/O
I/O
I/O
I/O
DVDD
DGND
I/O
I/O
I/O
I/O
I/O
I/O
DVDD
DGND
I/O
I/O
I/O
I/O
I/O
I/O
DVDD
DGND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
DVDD
DGND
I/O
I/O
I/O
I/O
I/O
DVDD
DGND
AGND
I
O
AVDD
AO
AVDD
AO
AO
AGND
AI
AI
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
5.
Pin Descriptions
“Type” codes used in the following tables: ‘A’ stands for analog; ‘D’ stands for digital, ‘I’ stands for input; ‘O’ stands for
output, ‘Ipu’ stands for input with internal pull-up.
Upon reset: defined as a short time after the end of a hardware reset. After reset: defined as the time after the specified “Upon
Reset” time.
5.1. Media Connection Pins
Table 2. Media Connection Pins
Pin Name
RXIP[7:0]
RXIN[7:0]
TXOP[7:0]
TXON[7:0]
Pin No.
40, 34,
30, 22,
18, 10,
6, 127,
39, 33,
31, 21,
19, 9,
7, 128
42, 36,
28, 24,
16, 12,
4, 125,
43, 37,
27, 25,
15, 13,
3, 124
Type
AI
Description
Differential Receive Data Input shared by 100Base-TX, 10Base-T for
connection to a transformer.
AO
Differential Transmit Data Output shared by 100Base-TX, 10Base-T
for connection to a transformer.
Default
5.2. MII Port MAC Interface Pins
The external device can be either 2.5V or 3.3V compatible depending on the power supplied to VDDIO. The input and
input/output pins listed below do not implement an internal pull-high resistor. An external pull-high resistor is required for
these floating input pins to reduce power consumption.
Table 3. MII Port MAC Interface Pins
Pin Name
MRXD[3:0]
/PTXD[3:0]
MRXDV/PTXEN
Pin No.
70, 69,
68, 67
Type
I
66
I
Description
For MII MAC mode, these pins are MRXD[3:0], MII receive data
nibble.
For MII PHY mode, these pins are PTXD[3:0], MII transmit data
nibble.
For SNI PHY mode, PTXD[0] is serial transmit data.
For MII MAC mode, this pin represents MRXDV, MII receive data
valid.
For MII PHY mode, this pin represents PTXEN, MII transmit enable.
For SNI PHY mode, this pin represents PTXEN, transmit enable.
Single-chip 9-port 10/100Mbps Switch Controller
7
Default
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Pin Name
MRXC/PTXC
Pin No.
65
Type
I/O
MCOL/PCOL
64
I/O
61, 60,
59, 58
O
MTXEN/PRXDV
57
O
MTXC/PRXC
56
I/O
MII_MODE[1:0]
/P2_LED[1:0]
101,
102
Ipu
MII_LNK_STA#
51
Ipu
MII_DUP_STA
50
Ipu
MII_SPD_STA
49
Ipu
MTXD[3:0]
/PRXD[3:0]
MII_FCTRL_STA
48
Ipu
Description
Default
For MII MAC mode, this pin represents MRXC/MII receive clock (acts
as input).
For MII/SNI PHY mode, this pin represent PTXC/MII transmit clock
(acts as output).
For MII MAC mode, this pin represents MCOL, MII collision detect
(acts as input).
For MII/SNI PHY mode, this pin represents PCOL, MII collision detect
(acts as output).
Output after reset.
For MII MAC mode, these pins are MTXD[3:0], MII transmit data of
MAC.
For MII PHY mode, these pins are PRXD[3:0], MII receive data of
MAC.
For SNI PHY mode, PRXD[0] is SNI serial receive data. PRXD[3:1]
are unused.
For MII MAC mode, this pin represents MTXEN, MII transmit enable.
For MII PHY mode, this pin represents PRXDV, MII receive data valid.
For SNI PHY mode, this pin represents PRXDV, SNI receive data
valid.
For MII MAC mode, this pin represents MTXC, MII transmit clock
(acts as input).
For MII/SNI PHY mode, this pin represents MRXC, MII/SNI receive
clock (acts as output).
Input upon reset = Select MII port (9th port) operating mode.
11
11=Tristate MII output.
10=MII MAC mode.
01=MII PHY mode.
00=SNI PHY mode.
Provides MII port (9th port) Link Status for MAC module at MII
1
MAC/MII PHY/SNI PHY operation mode in real time.
This pin sets the link status of the MII port MAC module in real-time.
Provides MII port (9th port) duplex status for MAC module at MII
1
MAC/MII PHY/SNI PHY operation mode in real time.
1: MII port operates in full duplex mode
0: MII port operates in half duplex mode
Provides MII port (9th port) speed status for MAC module at MII
1
MAC/MII PHY/SNI PHY operation mode in real time.
1: MII port operates at 100Mbps speed
0: MII port operates at 10Mbps speed
In an application outlined below, this pin should be left floating:
For HomePNA (MII MAC mode), speed is determined by RXC and
TXC from PHY of HomePNA running at 1Mbps.
For SNI PHY mode, speed is fixed at 10MHz clock rate.
Provides MII port (9th port) flow control status for MAC module at MII
MAC/MII PHY/SNI PHY operation mode in real time.
1: MII port has flow control ability
0: MII port does not have flow control ability
Single-chip 9-port 10/100Mbps Switch Controller
8
1
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
5.3. Miscellaneous Pins
Table 4. Miscellaneous Pins
Pin Name
X1
Pin No.
118
Type
I
X2
119
O
RESET#
47
I
IBREF
122
A
NC
45, 46,
116, 121
Description
25MHz crystal input.
The clock tolerance is +-50ppm.
25MHz crystal output.
Default
Active low reset signal.
To complete the reset function, this pin must be asserted for at least
10ms. After reset, about 30ms is needed for the RTL8309SB to
complete the internal test function and initialization.
Note: This pin is a Schmitt input pin.
Control transmit output waveform Vpp.
This pin should be grounded through a 2.0K ohm resistor.
Not Connected – Floating in normal operation.
5.4. Port LED Pins
Each port supports four LED pins for status indication. The indicated status of these four LED pins may be changed by setting
different values for strapping pin LED_MODE[2:0].
Note 1: All LED statuses are represented as active-low or high depending on input strapping, except Bi-color Link/Act in
Bi-color LED mode, whose polarity depends on Bi-color Speed status.
Note 2: Those pins are dual function pins: output for LED and input for strapping.
Table 5. Port LED Pins
Pin Name
P0_LED[0]
P1_LED[0]
P2_LED[0]
P3_LED[0]
P4_LED[0]
P5_LED[0]
P6_LED[0]
P7_LED[0]
Pin No.
Type
112, 106, Ipu/O
102, 98,
92, 86,
82, 76
Description
Output after reset = used for the 1st LED.
Mode 7: Speed (On =100 Mbps, Off =10Mbps)
Mode 6: Activity (Flash=Tx or Rx activity)
Mode 5: Speed (On =100 Mbps, Off =10Mbps)
Mode 4: Collision (Flash=Collision)
Mode 3: Reserved for internal use
Mode 2: RxAct+10/100 (Flash every 120ms=10Mbps Rx activity,
Flash every 43ms = 100Mbps Rx activity).
Mode 1: Duplex+Collision (On=Full, Off=Half with no collision,
Flash = Collision)
Mode 0: Bi-color Speed. Polarity depends on Bi-color Link+Activity
LED status. Refer to section 8.3.17 LEDs, page 87, for detailed
information.
Single-chip 9-port 10/100Mbps Switch Controller
9
Default
1
1
1
1
1
1
1
1
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Pin Name
P0_LED[1]
P1_LED[1]
P2_LED[1]
P3_LED[1]
P4_LED[1]
P5_LED[1]
P6_LED[1]
P7_LED[1]
P0_LED[2]
P1_LED[2]
P2_LED[2]
P3_LED[2]
P4_LED[2]
P5_LED[2]
P6_LED[2]
P7_LED[2]
P0_LED[3]
P1_LED[3]
P2_LED[3]
P3_LED[3]
P4_LED[3]
P5_LED[3]
P6_LED[3]
P7_LED[3]
LED_MODE[2]
/P3_LED[0]
LED_MODE[1]
/P2_LED[3]
LED_MODE[0]
/P2_LED[2]
Pin No.
111, 105,
101, 97,
91, 85,
81, 75
Type
Description
nd
Ipu/O Output after reset = used for the 2 LED.
Mode 7: Duplex+Collision (On=Full, Off=Half with no collision,
Flash = Collision)
Mode 6: Speed (On =100 Mbps, Off =10Mbps)
Mode 5: Duplex (On=Full, Off=Half)
Mode 4: Duplex (On=Full, Off=Half)
Mode 3: Duplex+Collision (On=Full, Off=Half with no collision,
Flash = Collision)
Mode 2: TxAct+10/100 (Flash every 120ms = 10Mbps Tx activity,
Flash every 43ms = 100Mbps Tx activity)
Mode 1: 10Link+Act (On=Link on 10Mbps, Off=No link on
10Mbps, Flash=10Mbps Tx or Rx activity)
Mode 0: Duplex+Collision (On=Full, Off=Half with no collision,
Flash = Collision)
110, 104, Ipu/O Output after reset = used for the 3rd LED.
Mode 7: Link+Act (On=Link, Off=No link, Flash=Tx or Rx activity)
100, 94,
Mode 6: Link (On=Link, Off=No link)
90, 84,
Mode 5: Link+Act (On=Link, Off=No link, Flash=Tx or Rx activity)
78, 74,
Mode 4: Link+Act+Speed (On=Link, Off=No link, Flash every
120ms=10Mbps activity, flash every 43ms=100Mbps)
Mode 3: Link+Act+Speed (On=Link, Off=No link, Flash every
120ms=10Mbps activity, flash every 43ms=100Mbps)
Mode 2: Link (On=Link, Off=No link)
Mode 1: 100Link+Act (On=Link on 100Mbps, Off=No link on
100Mbps, Flash=100Mbps Tx or Rx activity)
Mode 0: Bi-color Speed. Polarity depends on Bi-color Link+Activity
LED status. Refer to section 8.3.17 LEDs, page 87, for detailed
information.
109, 103, Ipu/O Output after reset = used for the 4th LED.
Mode 7: Reserved for internal use
99, 93,
Mode 6: Reserved for internal use
89, 83,
Mode 5: Reserved for internal use
77, 73
Mode 4: Reserved for internal use
Mode 3: 10/100 (On =100 Mbps, Off =10Mbps)
Mode 2: Reserved for internal use
Mode 1: Reserved for internal use
Mode 0: Reserved for internal use
98,
I/O
Input upon reset = Select LED display mode upon reset.
99,
LED_MODE[2:0]=111 -> Mode 7:
100
Speed, Duplex+Collision, Link+Act, Reserved
LED_MODE[2:0]=110 -> Mode 6:
Activity, Speed, Link, Reserved
LED_MODE[2:0]=101 -> Mode 5:
Speed, Duplex, Link+Act, Reserved
LED_MODE[2:0]=100 -> Mode 4:
Collision, Duplex, Link+Act+Speed, Reserved
LED_MODE[2:0]=011 -> Mode 3:
Reserved, Duplex+Collision, Link+Act+Speed, 10/100
LED_MODE[2:0]=010 -> Mode 2:
RxAct+10/100, TxAct+10/100, Link, Reserved
LED_MODE[2:0]=001 -> Mode 1:
Duplex+Collision, 10Link+Act, 100Link+Act, Reserved.
LEDM_ODE[2:0]=000 -> Mode 0:
Bi-color Speed, Duplex+Collision, Bi-color Link+Act, Reserved
Single-chip 9-port 10/100Mbps Switch Controller
10
Default
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
111
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Pin Name
Port_LED_LOC
/P7_LED[2]
LoopLED#
/EnEEPROM
Pin No.
74
113
Type
Description
Ipu/O Input upon reset = Per port LED pin location reversed.
1: For designs where LEDs are placed at the opposite side to the
phone jack
Port 0 LEDs are assigned at pins 109~112
Port 1 LEDs are assigned at pins 103~106
Port 2 LEDs are assigned at pins 99~102
Port 3 LEDs are assigned at pins 93, 94, 97, 98
Port 4 LEDs are assigned at pins 89~92
Port 5 LEDs are assigned at pins 83~86
Port 6 LEDs are assigned at pins 77, 78, 80, 81
Port 7 LEDs are assigned at pins 73~76
0: Suitable for designs where LEDs are placed on the same side as
the phone jack
Port 0 LEDs are assigned at pins 73~76
Port 1 LEDs are assigned at pins 77, 78, 80, 81
Port 2 LEDs are assigned at pins 83~86
Port 3 LEDs are assigned at pins 89~92
Port 4 LEDs are assigned at pins 93, 94, 97, 98
Port 5 LEDs are assigned at pins 99~102
Port 6 LEDs are assigned at pins 103~106
Port 7 LEDs are assigned at pins 109~112
Ipu/O Output after reset = LoopLED# used for LED.
If Loop detection is enabled, this pin indicates whether a Network
loop is detected or not. Otherwise, this pin has no function.
Note: The LED statuses are represented as active-low or high
depending on input strapping.
=> If Input=1: Output 0=Network loop is detected. 1=No loop.
=> If Input=0: Output 1=Network loop is detected. 0= No loop.
Default
1
1
5.5. Serial EEPROM and SMI Pins
Table 6. Serial EEPROM and SMI Pins
Pin Name
EnEEPROM
/LoopLED#
Pin No.
113
Type
Ipu/O
SCL_MDC
54
I/O
Description
Input upon reset = Enable loading of serial EEPROM upon reset.
1: Enable Serial EEPROM load upon reset
0: Disable Serial EEPROM load upon reset
EEPROM Serial Clock or MDC.
This pin is three state when pin RESET#=0.
When the RTL8309SB detects an EEPROM connected to it, this pin
becomes SCL (output) to load the serial EEPROM upon reset. Then
the pin changes to MDC (input) after reset. In this case, this pin
should be pulled high (VDDIO 2.5V/3.3V) by external register.
When the RTL8309SB does not detect an EEPROM connected to it,
this pin is MDC (input). In this case, it needs an external pull-high
resistor, unless it is floated.
Single-chip 9-port 10/100Mbps Switch Controller
11
Default
1
-
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Pin Name
SDA_MDIO
Pin No.
55
Type
I/O
Description
EEPROM Serial Data Input/Output or MDIO.
This pin is three state when pin RESET#=0.
When the RTL8309SB detects an EEPROM connected to it, this pin
becomes SDA (input/output) to load the serial EEPROM upon reset.
The pin changes to MDIO (input/output) after reset.
When the RTL8309SB does not detect an EEPROM connected to it,
this pin is MDIO (input/output). It should be pulled high by an
external resistor.
Default
-
5.6. Strapping Pins
Note: All strapping pins are dual function pins: output for LED and input for strapping. The table below covers strapping only.
See Port LED Pins, on page 9, for LED pin settings.
Table 7. Strapping Pins
Pin Name
En_ANEG
/P1_LED[2]
Pin No.
104
Type
En_FCTRL
/P1_LED[1]
105
Ipu
En_BKPRS
/P1_LED[0]
106
Ipu
Force_Duplex
/P0_LED[3]
109
Ipu
Force_Speed
/P0_LED[2]
110
Ipu
Ipu
Description
Input upon reset = Enable Auto-negotiation function.
1: Enable the auto-negotiation function (NWay mode) and set PHY
register 0.12
0: Disable the auto-negotiation function (force mode) and deselect
PHY register 0.12
Output after reset = used for LED.
Input upon reset = Enable flow control ability in full duplex mode.
1: In NWay mode, this pin sets PHY register 4.10, but the flow
control function is finally enabled based on the auto negotiation
result. In force mode, this pin will always enable the flow control
function
0: Disable the flow control function
Output after reset = used for LED.
Input upon reset = Enable backpressure ability in half duplex mode.
1: Enable backpressure
0: Disable backpressure
Output after reset = used for LED.
Force duplex mode.
This pin sets PHY Reg.0.8 and influences the contents of PHY
Reg.4.
1: Force full duplex if auto-negotiation is disabled
0: Force half duplex if auto-negotiation is disabled
Output after reset = used for LED.
Force operating speed.
This pin sets PHY Reg.0.13 and influences the contents of PHY
Reg.4.
1: Force 100Mbps speed if auto-negotiation is disabled
0: Force 10Mbps speed if auto-negotiation is disabled
Default
1
1
1
1
1
Output after reset = used for LED.
Single-chip 9-port 10/100Mbps Switch Controller
12
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Pin Name
En_BRD_CTRL
/P0_LED[1]
Pin No.
111
Type
Ipu
Description
Input upon reset = Disable Broadcast Storm Control.
1: Disable Broadcast Storm Control
Default
1
0: Enable Broadcast Storm Control
En_RST_BLNK
/P0_LED[0]
112
Ipu
Output after reset = used for LED.
Input upon reset = Enable blinking of LEDs upon reset.
1: Enable power-on LED blinking for diagnosis
0: Disable power-on LED blinking
En_AutoXover
/P1_LED[3]
103
Ipu
Output after reset = used for LED.
Input upon reset = Enable Auto crossover detection.
1: Enable auto crossover detection
0: Disable auto crossover detection. MDI only
Dis_FC_AtuoOff
/P7_LED[3]
73
Ipu
En_Forward
/P3_LED[2]
94
Ipu
En_Defer
/P3_LED[3]
93
Ipu
En_48pass1
/P4_LED[0]
92
Ipu
En_Agrs_Back
/P4_LED[1]
91
Ipu
Output after reset = used for LED.
Disable auto turn off of flow control ability.
1: Disable
0: Enable auto turn off flow control ability on the low priority queue
for 1~2 seconds whenever the port receives a high priority frame.
The flow control ability will be re-enabled if this port does not
receive another high priority frame during this 1~2 second duration
Output after reset = used for LED.
Input upon reset = Enable forwarding of 802.1D specified reserved
group MAC address frames.
1: Forward reserved control packets with DID=01-80-C2-00-00-03
to 01-80-C2-00-00-0F
0: Filter reserved control packets with DID=01-80-C2-00-00-03 to
01-80-C2-00-00-0F
Output after reset = used for LED.
Input upon reset = Enable carrier sense defering function.
1: Enable carrier sense deferring function for half duplex
backpressure
0: Disable carrier sense deferring function for half duplex
backpressure
Output after reset = used for LED.
Enable 48 pass 1 mechanism.
1: 48 pass 1. Continuously collides 48 input packets then passes 1
packet to retain system resources and avoid repeater partition when
buffer is full
0: Continuously collides input packets to avoid packet loss when
buffer is full
Output after reset = used for LED.
Input upon reset = Enable aggressive back-off mechanism.
1: Enable more aggressive back-off mechanism in half duplex mode
for performance enhancement. The back-off limitation will become 3
in this mode (default is 10)
0: Disable aggressive back-off mechanism in half duplex mode
1
1
1
1
1
1
1
Output after reset = used for LED.
Single-chip 9-port 10/100Mbps Switch Controller
13
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Pin Name
Max_Pkt_Len
/P4_LED[2]
Pin No.
90
Type
Max_Pause_Count
/P4_LED[3]
89
Ipu
Dis_Trunk
/P3_LED[1]
97
Ipu
Sel_PortPri[1:0]
/P5_LED[1:0]
85, 86
Ipu
Dis_VLAN_Pri
/P5_LED[2]
84
Ipu
Dis_DS_Pri
/P5_LED[3]
83
Ipu
81, 82
Ipu
QWeight[1:0]
/P6_LED[1:0]
Ipu
Description
Input upon reset = Select maximum frame length.
1: 1536 bytes
0: 1552 bytes
Output after reset = used for LED.
Input upon reset = Select the max Pause frame count during a
congested event.
1: Generates maximum of 32 pause frames, even if congestion still
exists
0: Continuously generates pause frames until congestion is resolved
Output after reset = used for LED.
Disable Two Port Trunking function.
1: Disable two port trunking function
0: Port 0 and port 1 are combined as one trunk
Output after reset = used for LED.
Input upon reset = Select high priority port for port-based priority
QoS.
11: Disable port-based priority function
10: Select port 0 as high priority port
01: Select port 2 as high priority port
00: Select port 3 as high priority port
Output after reset = used for LED.
Input upon reset = Disable 802.1p VLAN tag priority based QoS.
1: Disable 802.1p priority classification for ingress packets on each
port
0: Enable 802.1p priority classification for ingress packets on each
port. A User priority field in the VLAN tag greater or equal to 4 will
be considered a high priority packet
Output after reset = used for LED.
Input upon reset = Disable Diffserv priority based QoS.
1: Disable diffserv priority classification for ingress packets on each
port
0: Enable diffserv priority classification for ingress packets on each
port
Output after reset = used for LED.
Input upon reset = Weighted round robin ratio priority queue.
The frame service ratio between the high priority queue and low
priority queue is:
11=16:1
10=Always high priority queue first
01=8:1
00=4:1
Default
1
1
1
1
1
1
1
Output after reset = used for LED.
Single-chip 9-port 10/100Mbps Switch Controller
14
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Pin Name
Dis_VLAN
/P6_LED[2]
Pin No.
78
Type
Ipu
Dis_LeakyVLAN
/P6_LED[3]
77
Ipu
Dis_ARPVLAN
/P7_LED[0]
76
Ipu
LED_BLNK_TIME
/P7_LED[1]
75
Ipu
Description
Input upon reset = Disable VLAN.
1: Disable VLAN
0: Enable VLAN. The default VLAN membership configuration is
MII port overlapped with all the other ports to form 8 individual
VLANs. The default membership configuration may be modified by
setting internal registers via the SMI interface or EEPROM
Output after reset = used for LED.
Input upon reset = Disable Leaky VLAN.
1: Disable forwarding of unicast frames to other VLANs
0: Enable forwarding of unicast frames to other VLANs
Note: Broadcast and multicast frames adhere to the VLAN
configuration.
Output after reset = used for LED.
Input upon reset = Disable ARP broadcast to all VLANs.
1: Disable broadcast of ARP broadcast packets to all VLANs
0: Enable broadcast of ARP broadcast packets to all VLANs
Output after reset = used for LED.
Input upon reset = Select blinking speed of activity and collision
LED.
1: On 43ms then Off 43ms
0: On 120ms then Off 120ms
Note: This pin only affects LEDs that are configured in LED mode 1,
5, and 7.
Default
1
1
1
1
Output after reset = used for LED.
Single-chip 9-port 10/100Mbps Switch Controller
15
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
5.7. Power Pins
Table 8. Power Pins
Pin Name
VDDD
Type
P
VDDIO
Pin No.
52, 71,
79, 87,
95,107,
114
53, 72,
80, 88,
96, 108,
115
62
VSSIO
VSSD
Description
1.8V digital power.
Default
G
Digital ground.
P
2.5/3.3V digital VDD for MII interface.
63
G
Digital ground for MII interface.
VDDPLL
120
P
1.8V analog power for PLL.
VSSPLL
117
G
1.8V analog ground for PLL.
1, 8,
14, 20,
26, 32,
38, 44,
123
2, 5,
11, 17,
23, 29,
35, 41,
126
P
1.8V analog power (Used for transmitters and equalizers).
G
Analog ground.
VDDA
VSSA
Single-chip 9-port 10/100Mbps Switch Controller
16
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
6.
EEPROM Register Description
6.1. Global Control Registers
6.1.1.
Global Control Register0
Table 9. Global Control Register0
Name
EEPROM
existence
Accept Error
disable
IEEE 802.3x
transmit flow
control enable
IEEE 802.3x
receive flow
control enable
Byte.bit
0.7
0.6
0.5
0.4
Broadcast input
or output drop
Aging enable
0.3
Fast aging enable
0.1
Enable ISP MAC
Address
Translation
0.0
6.1.2.
0.2
Description
1: EEPROM does not exist
0: EEPROM exists
1: Filter bad packets in normal operation
0: Switch all packets including bad ones
1: Invoke transmit flow control based on auto-negotiation result
0: Switch will not enable transmit flow control
1: When the switch receives a pause control frame, it has the ability to stop
the next transmission of a normal frame until the timer has expired based
on the auto negotiation result
0: Receive flow control not enabled
1: Broadcast input drop is selected
0: Broadcast output drop is selected
1: Enable aging function in the switch
0: Disable aging function in the switch
1: An entry learned in the lookup table will be aged out if it is not updated
within an 800µs period
0: Disable fast aging function. The normal aging time of the RTL8309SB is
around 200~300 seconds
1: Enable ISP MAC Address Translation
0: Disable ISP MAC Address Translation
Default
0
1
1
1
1
1
0
0
Global Control Register1
Table 10. Global Control Register1
Name
LED Mode
Byte.bit
1.7~1.5
Reserved
Disable VLAN
1.4
1.3
Disable 802.1Q
tag aware VLAN
1.2
Description
Default
111 -> Mode 7: Speed, Duplex+Collision, Link+Act, SQI
111
110 -> Mode 6: Activity, Speed, Link, SQI
101 -> Mode 5: Speed, Duplex, Link+Act, SQI
100 -> Mode 4: Collision, Duplex, Link+Act+Speed, SQI
011 -> Mode 3: SQI, Duplex+Collision, Link+Act+Speed,10/100
010 -> Mode 2: RxAct+10/100, TxAct+10/100, Link, SQI
001 -> Mode 1: Duplex+Collision, 10Link+Act, 100Link+Act, SQI
000 -> Mode 0: Duplex+Collision, Bi-color Speed, Bi-color Link+Act, SQI
1
1: Disable VLAN
1
0: Enable VLAN
1: Disable the 802.1Q tagged-VID Aware function
0
0: Use tagged-VID VLAN mapping for tagged frames but still use
Port-Based VLAN mapping for priority-tagged and untagged frame
Single-chip 9-port 10/100Mbps Switch Controller
17
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Name
Disable VLAN
member set
ingress filtering
Disable VLAN
tag admit control
6.1.3.
Byte.bit
1.1
1.0
Description
1: The switch will not drop the received frame if the ingress port of this
packet is not included in the matched VLAN member set
0: The switch will drop the received frame if the ingress port of this packet
is not included in the matched VLAN member set
1: The switch accepts all frames received
0: The switch will only accept tagged frames and will drop untagged
frames
Default
1
1
Global Control Register2
Table 11. Global Control Register2
Name
Enable default
high priority
DiffServ code
point
Byte.bit
2.7
Reserved
2.6~2.0
6.1.4.
Description
1: The default DiffServ code point listed below will be considered a high
priority code point if DiffServ priority function is enabled
EF – 101110
AF – 001010, 010010, 011010, 100010
Network Control – 111000, 110000
0: The default DiffServ code point will be considered low priority
Default
1
1111
111
Global Control Register3
Table 12. Global Control Register3
Name
802.1p base
priority
Byte.bit
3.7~3.5
Trunking port
assignment
3.4
Queue weight
3.3~3.2
Disable IP
priority for IP
address [A]
3.1
Disable IP
priority for IP
address [B]
3.0
Description
Used to classify priority for incoming 802.1Q packets when 802.1p priority
classification is enabled. “User priority” compares against this value.
>=: Classify as high priority
<: Classify as low priority
1: Combine port 0 and 1 as one trunking port, if trunking is enabled by
strapping pin, Dis_Trunk
0: Combine port 6 and 7 as one trunking port, if trunking is enabled by
strapping pin, Dis_Trunk
The frame service ratio between the high priority queue and low priority
queue is:
11=16:1
10=always high priority queue first
01=8:1
00=4:1
1: The switch will compare both the source and destination IP addresses of
an incoming packet against the value, IP address [A] AND IP mask [A], to
classify priority for the packet
0: The switch will not compare the source or destination IP addresses of an
incoming packet against the value, IP address [A] AND IP mask [A]
1: The switch will compare both the source and destination IP addresses of
an incoming packet against the value, IP address [B] AND IP mask [B], to
classify priority for the packet
0: The switch will not compare the source and destination IP addresses of
an incoming packet against the value, IP address [B] AND IP mask [B]
Single-chip 9-port 10/100Mbps Switch Controller
18
Default
100
1
11
0
0
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
6.1.5.
Global Control Register4
Table 13. Global Control Register4
Name
Enable
Differential
Service Code
Point [B]
Reserved
Differential
Service Code
Point [B]
6.1.6.
Byte.bit
4.7
4.6
4.5~4.0
Description
1: If Differential Service Priority is enabled, this bit specifies differential
service code point [B] is high priority
0: If Differential Service Priority is enabled, this bit specifies differential
service code point [B] is low priority
Used to specify a high priority differential service code point B. For
example, if these bits are set to “000000”, all incoming packets with a TOS
field equal to “000000” will be considered high priority packets.
Default
0
1
111111
Global Control Register5
Table 14. Global Control Register5
Name
Enable
Differential
Service Code
Point [A]
Reserved
Differential
Service Code
Point [A]
6.1.7.
Byte.bit
5.7
5.6
5.5~5.0
Description
1: If Differential Service Priority is enabled, this bit specifies differential
service code point [A] is high priority
0: If Differential Service Priority is enabled, this bit specifies differential
service code point [A] is low priority
Used to specify a high priority differential service code point A. For
example, if these bits are set to “111111”, all incoming packets with a TOS
field equal to “000000” will be considered high priority packets.
Default
0
1
111111
Global Control Register6
Table 15. Global Control Register6
Name
Reserved
6.1.8.
Byte.bit
6.7~6.0
Description
Default
0000
0001
Global Control Register7
Table 16. Global Control Register7
Name
Enable drop for
48 pass 1
Reserved
TX IPG
compensation
Disable loop
detection
Reserved
Lookup table
accessible enable
Reserved
Byte.bit
7.7
7.6
7.5
7.4
7.3
7.2
Description
1: Enable drop packet when SRAM full for 48 pass 1
0: Disable drop packet when SRAM full for 48 pass 1. This will result in
SRAM run out
1
1
1: 90ppm TX IPG compensation
0: 65ppm TX IPG compensation
1: Disable loop detection function
0: Enable loop detection function
1
1: Lookup table is accessible via indirect access registers
0: Lookup table is not accessible
7.1~7.0
Single-chip 9-port 10/100Mbps Switch Controller
Default
1
1
0
11
19
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
6.2. Port 0~7 Control Pins
6.2.1.
Port 0 Control 0
Table 17. Port 0 Control 0
Name
Reserved
Speed and
Duplex ability
Byte.bit
8.7~8.6
8.5~
8.4
Description
In auto negotiation mode:
11=MII Reg0.13=1, 0.8=1, 4.8=1, 4.7=1, 4.6=1, 4.5=1
10=MII Reg0.13=1, 0.8=0, 4.8=0, 4.7=1, 4.6=1, 4.5=1
01=MII Reg0.13=0, 0.8=1, 4.8=0, 4.7=0, 4.6=1, 4.5=1
00=MII Reg0.13=0, 0.8=0, 4.8=0, 4.7=0, 4.6=0, 4.5=1
Default
11
11
In Force mode:
11=MII Reg0.13=1, 0.8=1, 4.8=1, 4.7=0, 4.6=0, 4.5=0
10=MII Reg0.13=1, 0.8=0, 4.8=0, 4.7=1, 4.6=0, 4.5=0
01=MII Reg0.13=0, 0.8=1, 4.8=0, 4.7=0, 4.6=1, 4.5=0
00=MII Reg0.13=0, 0.8=0, 4.8=0, 4.7=0, 4.6=0, 4.5=1
Reserved
Backpressure
enable
VLAN tag
insertion and
removal
6.2.2.
8.3
8.2
8.1~8.0
1: Enable port 0 half duplex backpressure
0: Disable port 0 half duplex backpressure
11=Do not insert or remove VLAN tags to/from packet.
10=Insert PVID to non-tagged packets.
01=Remove tag from tagged packets.
00=Replace the VID with a PVID for tagged packets and insert a PVID to
non-tagged packets.
1
1
11
Port 0 Control 1
Table 18. Port 0 Control 1
Name
Reserved
Local loopback
Byte.bit
9.7~9.6
9.5
Null VID
replacement
Discard Non
PVID packets
9.4
Disable 802.1p
priority
Disable Diffserv
priority
Disable portbased priority
9.2
9.3
9.1
9.0
Description
1: Perform ‘local loopback’, i.e. loop back MAC’s RX back to TX
0: Normal operation
1: The switch will replace a NULL VID with a port VID (12 bits)
0: No replacement for a NULL VID
1: If the received packets are tagged, the switch will discard packets whose
VID does not match the ingress port’s PVID
0: No packets will be dropped
1: Disable 802.1p priority classification for ingress packets on port 0
0: Enable 802.1p priority classification on port 0
1: Disable Diffserv priority classification for ingress packets on port 0
0: Enable Diffserv priority classification on Port 0
1: Disable port priority function
0: Enable port priority function. Ingress packets from port 0 will be
classified as high priority
Single-chip 9-port 10/100Mbps Switch Controller
20
Default
11
0
0
0
1
1
1
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
6.2.3.
Port 0 Control 2
Table 19. Port 0 Control 2
Name
Reserved
6.2.4.
Byte.bit
10.7~
10.0
Description
Default
1111
1000
Port 0 Control 3
Table 20. Port 0 Control 3
Name
Reserved
Transmission
enable
Reception enable
Byte.bit
11.7~
11.4
11.3
11.2
Learning enable
11.1
Reserved
11.0
VLAN ID [A]
membership Bit
[7:0]
6.2.5.
12.7~
12.0
Description
Default
1111
1: Enable packet transmission on port 0
0: Disable packet transmission on port 0
1: Enable packet reception on port 0
0: Disable packet reception on port 0
1: Enable switch address learning capability
0: Disable switch address learning capability
1
1
1
1
VLAN Entry [A]
This register along with byte 13.0 forms a 9-bit field that specifies which
ports are members of the VLAN. If a destination address look up fails,
packets associated with this VLAN will be forwarded to ports specified in
this field. E.g., 1 0000 0001 means port 8 and 0 are in this VLAN.
0000
0001
Port 0 Control 4
Table 21. Port 0 Control 4
Name
Port 0 VLAN
index [3:0]
Reserved
VLAN ID [A]
membership Bit
[8]
VLAN ID [A]
[7:0]
Reserved
VLAN ID [A]
[11:8]
Byte.bit
13.7~
13.4
13.3~
13.1
13.0
14.7~
14.0
15.7~
15.4
15.3~
15.0
Description
In a port-based VLAN configuration, this register indexes port 0’s ‘Port
VLAN Membership’, which may be defined in one of the registers ‘VLAN
ID [A] Membership’ to “VLAN ID [I] Membership”. Port 0 can only
communicate within the membership. This register also indexes to a default
Port VID (PVID) for each port. The PVID is used in tag insertion and
filtering if the tagged VID is not the same as the PVID.
Default
0000
111
This register along with byte 12.7~12.0 forms a 9-bit field that specifies
which ports are members of the VLAN. If a destination address look up
fails, packets associated with this VLAN will be forwarded to ports
specified in this field. E.g., 1 0000 0001 means port 8 and 0 are in this
VLAN.
VLAN Entry [A]
This register along with byte 15.3~15.0 defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN A.
This register along with byte 14.7~14.0 defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN A.
Single-chip 9-port 10/100Mbps Switch Controller
21
1
0000
0000
1111
0000
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
6.2.6.
IP Address
Table 22. IP Address
Name
Byte.bit
IP Address [A]
[16:23]
16.7~
16.0
IP Address [A]
[31:24]
17.7~
17.0
IP Address [A]
[7:0]
18.7~
18.0
IP Address [A]
[15:8]
19.7~
19.0
IP Address [B]
[16:23]
20.7~
20.0
IP Address [B]
[31:24]
21.7~
21.0
IP Address [B]
[7:0]
22.7~
22.0
IP Address [B]
[15:8]
23.7~
23.0
Description
Default
IP Address [A]
If IP priority for IP address [A] is enabled, the switch will compare the
source IP address of an incoming packet against the value, IP address [A]
AND IP mask [A], to classify priority for the packet.
IP Address [A]
If IP priority for IP address [A] is enabled, the switch will compare the
source IP address of an incoming packet against the value, IP address [A]
AND IP mask [A], to classify priority for the packet.
IP Address [A]
If IP priority for IP address [A] is enabled, the switch will compare the
source IP address of an incoming packet against the value, IP address [A]
AND IP mask [A], to classify priority for the packet.
IP Address [A]
If IP priority for IP address [A] is enabled, the switch will compare the
source IP address of an incoming packet against the value, IP address [A]
AND IP mask [A], to classify priority for the packet.
IP Address [B]
If IP priority for IP address [B] is enabled, the switch will compare the
source IP address of an incoming packet against the value, IP address [B]
AND IP mask [B], to classify priority for the packet.
IP Address [B]
If IP priority for IP address [B] is enabled, the switch will compare the
source IP address of an incoming packet against the value, IP address [B]
AND IP mask [B], to classify priority for the packet.
IP Address [B]
If IP priority for IP address [B] is enabled, the switch will compare the
source IP address of an incoming packet against the value, IP address [B]
AND IP mask [B], to classify priority for the packet.
IP Address [B]
If IP priority for IP address [B] is enabled, the switch will compare the
source IP address of an incoming packet against the value, IP address [B]
AND IP mask [B], to classify priority for the packet.
Single-chip 9-port 10/100Mbps Switch Controller
22
0xff
0xff
0xff
0xff
0xff
0xff
0xff
0xff
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
6.2.7.
Port 1 Control 0
Table 23. Port 1 Control 0
Name
Reserved
Speed and
Duplex ability
Byte.bit
24.7~
24.6
24.5~
24.4
Default
11
Description
In auto negotiation mode:
11=MII Reg0.13=1, 0.8=1, 4.8=1, 4.7=1, 4.6=1, 4.5=1
10=MII Reg0.13=1, 0.8=0, 4.8=0, 4.7=1, 4.6=1, 4.5=1
01=MII Reg0.13=0, 0.8=1, 4.8=0, 4.7=0, 4.6=1, 4.5=1
00=MII Reg0.13=0, 0.8=0, 4.8=0, 4.7=0, 4.6=0, 4.5=1
11
In Force mode:
11=MII Reg0.13=1, 0.8=1, 4.8=1, 4.7=0, 4.6=0, 4.5=0
10=MII Reg0.13=1, 0.8=0, 4.8=0, 4.7=1, 4.6=0, 4.5=0
01=MII Reg0.13=0, 0.8=1, 4.8=0, 4.7=0, 4.6=1, 4.5=0
00=MII Reg0.13=0, 0.8=0, 4.8=0, 4.7=0, 4.6=0, 4.5=1
Reserved
Backpressure
enable
VLAN tag
insertion and
removal
6.2.8.
24.3
24.2
24.1~
24.0
1: Enable port 1 half duplex backpressure
0: Disable port 1 half duplex backpressure
11=Do not insert or remove VLAN tags to/from packets.
10=Insert PVID to non-tagged packets.
01=Remove tag from tagged packets.
00=Replace the VID with a PVID for tagged packets and insert a PVID to
non-tagged packets.
1
1
11
Port 1 Control 1
Table 24. Port 1 Control 1
Name
Reserved
Local loopback
Null VID
replacement
Discard Non
PVID packets
Disable 802.1p
priority
Disable Diffserv
priority
Disable portbased priority
Byte.bit Description
25.7
~25.6
25.5
1: Perform ‘local loopback’, i.e. loop back MAC’s RX back to TX
0: Normal operation
25.4
1: The switch will replace a NULL VID with a port VID (12 bits)
0: No replacement for a NULL VID
25.3
1: If the received packets are tagged, the switch will discard packets whose
VID does not match the ingress port’s PVID
0: No packets will be dropped
25.2
1: Disable 802.1p priority classification for ingress packets on port 1
0: Enable 802.1p priority classification
25.1
1: Disable Diffserv priority classification for ingress packets on port 1
0: Enable Diffserv priority classification
25.0
1: Disable port priority function
0: Enable port priority function. Ingress packets from port 1 will be classified
as high priority
Single-chip 9-port 10/100Mbps Switch Controller
23
Default
11
0
0
0
1
1
1
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
6.2.9.
Port 1 Control 2
Table 25. Port 1 Control 2
Name
Reserved
6.2.10.
Byte.bit Description
26.7~
26.0
Default
1111
1000
Port 1 Control 3
Table 26. Port 1 Control 3
Name
Reserved
Byte.bit Description
27.7~
27.4
Transmission
27.3
1: Enable packet transmission on port 1
enable
0: Disable packet transmission on port 1
Reception enable
27.2
1: Enable packet reception on port 1
0: Disable packet reception on port 1
Learning enable
27.1
1: Enable switch address learning capability
0: Disable switch address learning capability
Reserved
27.0
VLAN Entry [B]
VLAN ID [B]
28.7~ This register along with byte 29.0 forms a 9-bit field that specifies which
membership Bit
28.0
ports are members of the VLAN. If a destination address look up fails,
[7:0]
packets associated with this VLAN will be forwarded to ports specified in
this field. E.g., 1 0000 0001 means port 8 and 0 are in this VLAN.
6.2.11.
Default
1111
1
1
1
1
0000
0010
Port 1 Control 4
Table 27. Port 1 Control 4
Name
Port 1 VLAN
index [3:0]
Reserved
VLAN ID [B]
membership Bit
[8]
VLAN ID [B]
[7:0]
Reserved
VLAN ID [B]
[11:8]
Byte.bit Description
29.7~ In a port-based VLAN configuration, this register indexes port 1’s ‘Port
29.4
VLAN Membership’, which may be defined in one of the registers ‘VLAN
ID [A] Membership’ to “VLAN ID [I] Membership”. Port 1 can only
communicate within the membership. This register also indexes to a default
Port VID (PVID) for each port. The PVID is used in tag insertion and
filtering if the tagged VID is not the same as the PVID.
29.3~
29.1
29.0
This register along with byte 28.7~28.0 forms a 9-bit field that specifies
which ports are members of the VLAN. If a destination address look up fails,
packets associated with this VLAN will be forwarded to ports specified in
this field. E.g., 1 0000 0001 means port 8 and 0 are in this VLAN.
VLAN Entry [B]
30.7~ This register along with byte 31.3~31.0 defines the IEEE 802.1Q 12-bit
30.0
VLAN identifier of VLAN B.
31.7~
31.4
31.3~ This register along with byte 30.7~30.0 defines the IEEE 802.1Q 12-bit
31.0
VLAN identifier of VLAN B.
Single-chip 9-port 10/100Mbps Switch Controller
24
Default
0001
111
1
0000
0001
1111
0000
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
6.2.12.
IP Mask
Table 28. IP Mask
Name
Byte.bit Description
IP Mask [A]
[16:23]
32.7~
32.0
IP Mask [A]
[31:24]
33.7~
33.0
IP Mask [A]
[7:0]
34.7~
34.0
IP Mask [A]
[15:8]
35.7~
35.0
IP Mask [B]
[16:23]
36.7~
36.0
IP Mask [B]
[31:24]
37.7~
37.0
IP Mask [B]
[7:0]
38.7~
38.0
IP Mask [B]
[15:8]
39.7~
39.0
6.2.13.
Default
IP Mask [A]
If IP priority for IP address [A] is enabled, the switch will compare the
source IP address of an incoming packet against the value, IP address [A]
AND IP mask [A], to classify priority for the packet.
IP Mask [A]
If IP priority for IP address [A] is enabled, the switch will compare the
source IP address of an incoming packet against the value, IP address [A]
AND IP mask [A], to classify priority for the packet.
IP Mask [A]
If IP priority for IP address [A] is enabled, the switch will compare the
source IP address of an incoming packet against the value, IP address [A]
AND IP mask [A], to classify priority for the packet.
IP Mask [A]
If IP priority for IP address [A] is enabled, the switch will compare the
source IP address of an incoming packet against the value, IP address [A]
AND IP mask [A], to classify priority for the packet.
IP Mask [B]
If IP priority for IP address [B] is enabled, the switch will compare the
source IP address of an incoming packet against the value, IP address [B]
AND IP mask [B], to classify priority for the packet.
IP Mask [B]
If IP priority for IP address [B] is enabled, the switch will compare the
source IP address of an incoming packet against the value, IP address [B]
AND IP mask [B], to classify priority for the packet.
IP Mask [B]
If IP priority for IP address [B] is enabled, the switch will compare the
source IP address of an incoming packet against the value, IP address [B]
AND IP mask [B], to classify priority for the packet.
IP Mask [B]
If IP priority for IP address [B] is enabled, the switch will compare the
source IP address of an incoming packet against the value, IP address [B]
AND IP mask [B], to classify priority for the packet.
0xff
0xff
0xff
0xff
0xff
0xff
0xff
0xff
Port 2 Control 0
Table 29. Port 2 Control 0
Name
Reserved
Speed and
Duplex ability
Byte.bit Description
40.7
~40.6
40.5~ In auto negotiation mode:
40.4
11=MII Reg0.13=1, 0.8=1, 4.8=1, 4.7=1, 4.6=1, 4.5=1
10=MII Reg0.13=1, 0.8=0, 4.8=0, 4.7=1, 4.6=1, 4.5=1
01=MII Reg0.13=0, 0.8=1, 4.8=0, 4.7=0, 4.6=1, 4.5=1
00=MII Reg0.13=0, 0.8=0, 4.8=0, 4.7=0, 4.6=0, 4.5=1
Default
11
11
In Force mode:
11=MII Reg0.13=1, 0.8=1, 4.8=1, 4.7=0, 4.6=0, 4.5=0
10=MII Reg0.13=1, 0.8=0, 4.8=0, 4.7=1, 4.6=0, 4.5=0
01=MII Reg0.13=0, 0.8=1, 4.8=0, 4.7=0, 4.6=1, 4.5=0
00=MII Reg0.13=0, 0.8=0, 4.8=0, 4.7=0, 4.6=0, 4.5=1
Single-chip 9-port 10/100Mbps Switch Controller
25
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Name
Reserved
Backpressure
enable
VLAN tag
insertion and
removal
6.2.14.
Byte.bit Description
40.3
40.2
1: Enable port 2 half duplex backpressure
0: Disable port 2 half duplex backpressure
40.1~ 11=Do not insert or remove VLAN tags to/from packets.
40.0
10=Insert PVID to non-tagged packets.
01=Remove tag from tagged packets.
00=Replace VID with PVID for tagged packets and insert PVID to nontagged packets.
Default
1
1
11
Port 2 Control 1
Table 30. Port 2 Control 1
Name
Reserved
Local loopback
Null VID
replacement
Discard Non
PVID packets
Disable 802.1p
priority
Disable Diffserv
priority
Disable portbased priority
6.2.15.
Byte.bit Description
Default
41.7~
11
41.6
41.5
1: Perform ‘local loopback’, i.e. loop back MAC’s RX back to TX
0
0: Normal operation
41.4
1: The switch will replace a NULL VID with a port VID (12 bits)
0
0: No replacement for a NULL VID
41.3
1: If the received packets are tagged, the switch will discard packets whose
0
VID does not match the ingress port’s PVID
0: No packets will be dropped
41.2
1: Disable 802.1p priority classification for ingress packets on port 2
1
0: Enable 802.1p priority classification
41.1
1: Disable Diffserv priority classification for ingress packets on port 2
1
0: Enable Diffserv priority classification
41.0
1: Disable port priority function
1
0: Enable port priority function. Ingress packets from port 2 will be classified
as high priority
Port 2 Control 2
Table 31. Port 2 Control 2
Name
Reserved
6.2.16.
Byte.bit Description
42.7~
42.0
Default
1111
1000
Port 2 Control 3
Table 32. Port 2 Control 3
Name
Reserved
Byte.bit Description
43.7~
43.4
Transmission
43.3
1: Enable packet transmission on port 2
enable
0: Disable packet transmission on port 2
Reception enable
43.2
1: Enable packet reception on port 2
0: Disable packet reception on port 2
Learning enable
43.1
1: Enable switch address learning capability
0: Disable switch address learning capability
Reserved
43.0
Single-chip 9-port 10/100Mbps Switch Controller
26
Default
1111
1
1
1
1
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Name
Byte.bit Description
VLAN ID [C]
membership Bit
[7:0]
6.2.17.
44.7~
44.0
Default
VLAN Entry [C]
This register along with byte 45.0 forms a 9-bit field that specifies which
ports are members of the VLAN. If a destination address look up fails,
packets associated with this VLAN will be forwarded to ports specified in
this field. E.g., 1 0000 0001 means port 8 and 0 are in this VLAN.
0000
0100
Port 2 Control 4
Table 33. Port 2 Control 4
Name
Port 2 VLAN
index [3:0]
Reserved
VLAN ID [C]
membership Bit
[8]
VLAN ID [C]
[7:0]
Reserved
VLAN ID [C]
[11:8]
6.2.18.
Byte.bit Description
Default
45.7~ In a port-based VLAN configuration, this register indexes port 2’s ‘Port
0010
45.4
VLAN Membership’, which may be defined in one of the registers ‘VLAN
ID [A] Membership’ to “VLAN ID [I] Membership”. Port 2 can only
communicate within the membership. This register also indexes to a default
Port VID (PVID) for each port. The PVID is used in tag insertion and
filtering if the tagged VID is not the same as the PVID.
45.3~
111
45.1
45.0
This register along with byte 44.7~44.0 forms a 9-bit field that specifies
1
which ports are members of the VLAN. If a destination address look up fails,
packets associated with this VLAN will be forwarded to ports specified in
this field. E.g., 1 0000 0001 means port 8 and 0 are in this VLAN.
VLAN Entry [C]
46.7~ This register along with byte 47.3~47.0 defines the IEEE 802.1Q 12-bit
0000
46.0
VLAN identifier of VLAN C.
0010
47.7~
1111
47.4
47.3~ This register along with byte 46.7~46.0 defines the IEEE 802.1Q 12-bit
0000
47.0
VLAN identifier of VLAN C.
Switch MAC Address
The Switch MAC address is used as the source address in MAC pause control frames.
Table 34. Switch MAC Address
Switch MAC
Address [47:40]
Switch MAC
Address [39:32]
Switch MAC
Address [31:24]
Switch MAC
Address [23:16]
Switch MAC
Address [15:8]
Switch MAC
Address [7:0]
48.7~
48.0
49.7~
49.0
50.7~
50.0
51.7~
51.0
52.7~
52.0
53.7~
53.0
Switch MAC Address
Switch MAC Address Byte 5.
0x52
Switch MAC Address Byte 4.
0x54
Switch MAC Address Byte 3.
0x4C
Switch MAC Address Byte 2.
0x83
Switch MAC Address Byte 1.
0x09
Switch MAC Address Byte 0.
0xB0
Single-chip 9-port 10/100Mbps Switch Controller
27
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
6.2.19.
Port 3 Control 0
Table 35. Port 3 Control 0
Name
Reserved
Speed and
Duplex ability
Byte.bit Description
54.7~
54.6
54.5~ In auto negotiation mode:
54.4
11=MII Reg0.13=1, 0.8=1, 4.8=1, 4.7=1, 4.6=1, 4.5=1
10=MII Reg0.13=1, 0.8=0, 4.8=0, 4.7=1, 4.6=1, 4.5=1
01=MII Reg0.13=0, 0.8=1, 4.8=0, 4.7=0, 4.6=1, 4.5=1
00=MII Reg0.13=0, 0.8=0, 4.8=0, 4.7=0, 4.6=0, 4.5=1
Default
11
11
In Force mode:
11=MII Reg0.13=1, 0.8=1, 4.8=1, 4.7=0, 4.6=0, 4.5=0
10=MII Reg0.13=1, 0.8=0, 4.8=0, 4.7=1, 4.6=0, 4.5=0
01=MII Reg0.13=0, 0.8=1, 4.8=0, 4.7=0, 4.6=1, 4.5=0
00=MII Reg0.13=0, 0.8=0, 4.8=0, 4.7=0, 4.6=0, 4.5=1
Reserved
Backpressure
enable
VLAN tag
insertion and
removal
6.2.20.
54.3
54.2
54.1~
54.0
1: Enable port 3 half duplex backpressure.
0: Disable port 3 half duplex backpressure.
11=Do not insert or remove VLAN tags to/from packets.
10=Insert PVID to non-tagged packets.
01=Remove tag from tagged packets.
00=Replace the VID with a PVID for tagged packets and insert a PVID to
non-tagged packets.
1
1
11
Port 3 Control 1
Table 36. Port 3 Control 1
Name
Reserved
Local loopback
Null VID
replacement
Discard Non
PVID packets
Disable 802.1p
priority
Disable Diffserv
priority
Disable portbased priority
Byte.bit Description
Default
55.7~
11
55.6
55.5
1: Perform ‘local loopback’, i.e. loop back MAC’s RX back to TX
0
0: Normal operation
55.4
1: The switch will replace a NULL VID with a port VID (12 bits)
0
0: No replacement for a NULL VID
55.3
1: If the received packets are tagged, the switch will discard packets whose
0
VID does not match the ingress port’s PVID
0: No packets will be dropped
55.2
1: Disable 802.1p priority classification for ingress packets on port 3
1
0: Enable 802.1p priority classification
55.1
1: Disable Diffserv priority classification for ingress packets on port 3
1
0: Enable Diffserv priority classification
55.0
1: Disable port priority function
1
0: Enable port priority function. Ingress packets from port 3 will be classified
as high priority
Single-chip 9-port 10/100Mbps Switch Controller
28
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
6.2.21.
Port 3 Control 2
Table 37. Port 3 Control 2
Name
Reserved
6.2.22.
Byte.bit Description
56.7~
56.0
Default
1111
1000
Port 3 Control 3
Table 38. Port 3 Control 3
Name
Reserved
Transmission
enable
Reception enable
Byte.bit
57.7~
57.4
57.3
57.2
Learning enable
57.1
Reserved
57.0
VLAN ID [D]
membership Bit
[7:0]
6.2.23.
58.7~
58.0
Default
1111
Description
1: Enable packet transmission on port 3
0: Disable packet transmission on port 3
1: Enable packet reception on port 3
0: Disable packet reception on port 3
1: Enable switch address learning capability
0: Disable switch address learning capability
1
1
1
1
VLAN Entry [D]
This register along with byte 59.0 forms a 9-bit field that specifies which
ports are members of the VLAN. If a destination address look up fails,
packets associated with this VLAN will be forwarded to ports specified in
this field. E.g., 1 0000 0001 means port 8 and 0 are in this VLAN.
0000
1000
Port 3 Control 4
Table 39. Port 3 Control 4
Name
Port 3 VLAN
index [3:0]
Reserved
VLAN ID [D]
membership Bit
[8]
VLAN ID [D]
[7:0]
Reserved
VLAN ID [D]
[11:8]
Byte.bit Description
Default
59.7~ In a port-based VLAN configuration, this register indexes port 3’s ‘Port
0011
59.4
VLAN Membership’, which may be defined in one of the registers ‘VLAN
ID [A] Membership’ to “VLAN ID [I] Membership”. Port 3 can only
communicate within the membership. This register also indexes to a default
Port VID (PVID) for each port. The PVID is used in tag insertion and
filtering if the tagged VID is not the same as the PVID.
59.3~
111
59.1
59.0
This register along with byte 58.7~58.0 forms a 9-bit field that specifies
1
which ports are members of the VLAN. If a destination address look up fails,
packets associated with this VLAN will be forwarded to ports specified in
this field. E.g., 1 0000 0001 means port 8 and 0 are in this VLAN.
VLAN Entry [D]
60.7~ This register along with byte 61.3~61.0 defines the IEEE 802.1Q 12-bit
0000
60.0
VLAN identifier of VLAN D.
0011
61.7~
1111
61.4
61.3~ This register along with byte 60.7~60.0 defines the IEEE 802.1Q 12-bit
0000
61.0
VLAN identifier of VLAN D.
Single-chip 9-port 10/100Mbps Switch Controller
29
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
6.2.24.
ISP MAC Address
The ISP MAC address is used as the source address in MAC address translation.
Table 40. ISP MAC Address
Name
ISP MAC Address [47:40]
ISP MAC Address [39:32]
ISP MAC Address [31:24]
ISP MAC Address [23:16]
ISP MAC Address [15:8]
ISP MAC Address [7:0]
6.2.25.
Byte.bit
62.7~62.0
63.7~63.0
64.7~64.0
65.7~65.0
66.7~66.0
67.7~67.0
Description
ISP MAC address byte 5.
ISP MAC address byte 4.
ISP MAC address byte 3.
ISP MAC address byte 2.
ISP MAC address byte 1.
ISP MAC address byte 0.
Default
0x05
0x42
0x2F
0x21
0x91
0x5C
Port 4 Control 0
Table 41. Port 4 Control 0
Name
Reserved
Speed and
Duplex ability
Byte.bit Description
68.7~
68.6
68.5~ In auto negotiation mode:
68.4
11=MII Reg0.13=1, 0.8=1, 4.8=1, 4.7=1, 4.6=1, 4.5=1
10=MII Reg0.13=1, 0.8=0, 4.8=0, 4.7=1, 4.6=1, 4.5=1
01=MII Reg0.13=0, 0.8=1, 4.8=0, 4.7=0, 4.6=1, 4.5=1
00=MII Reg0.13=0, 0.8=0, 4.8=0, 4.7=0, 4.6=0, 4.5=1
Default
11
11
In Force mode:
11=MII Reg0.13=1, 0.8=1, 4.8=1, 4.7=0, 4.6=0, 4.5=0
10=MII Reg0.13=1, 0.8=0, 4.8=0, 4.7=1, 4.6=0, 4.5=0
01=MII Reg0.13=0, 0.8=1, 4.8=0, 4.7=0, 4.6=1, 4.5=0
00=MII Reg0.13=0, 0.8=0, 4.8=0, 4.7=0, 4.6=0, 4.5=1
Reserved
Backpressure
enable
VLAN tag
insertion and
removal
6.2.26.
68.3
68.2
68.1~
68.0
1: Enable port 4 half duplex backpressure
0: Disable port 4 half duplex backpressure
11=Do not insert or remove VLAN tags to/from packet.
10=Insert PVID to non-tagged packets.
01=Remove tag from tagged packets.
00=Replace the VID with a PVID for tagged packets and insert a PVID to
non-tagged packets.
1
1
11
Port 4 Control 1
Table 42. Port 4 Control 1
Name
Reserved
Local loopback
Null VID
replacement
Discard Non
PVID packets
Disable 802.1p
priority
Byte.bit Description
69.7~
68,6
69.5
1: Perform ‘local loopback’, i.e. loop back MAC’s RX back to TX
0: Normal operation
69.4
1: The switch will replace a NULL VID with a port VID (12 bits)
0: No replacement for a NULL VID
69.3
1: If the received packets are tagged, the switch will discard packets whose
VID does not match the ingress port’s PVID
0: No packets will be dropped
69.2
1: Disable 802.1p priority classification for ingress packets on port 4
0: Enable 802.1p priority classification
Single-chip 9-port 10/100Mbps Switch Controller
30
Default
11
0
0
0
1
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Name
Disable Diffserv
priority
Disable portbased priority
6.2.27.
Byte.bit Description
69.1
1: Disable Diffserv priority classification for ingress packets on port 4
0: Enable Diffserv priority classification
69.0
1: Disable port priority function
0: Enable port priority function. Ingress packets on port 4 will be classified
as high priority
Default
1
1
Port 4 Control 2
Table 43. Port 4 Control 2
Name
Reserved
6.2.28.
Byte.bit Description
70.7~
70.0
Default
1111
1000
Port 4 Control 3
Table 44. Port 4 Control 3
Name
Reserved
Byte.bit Description
71.7~
71.4
Transmission
71.3
1: Enable packet transmission on port 4
enable
0: Disable packet transmission on port 4
Reception enable
71.2
1: Enable packet reception on port 4
0: Disable packet reception on port 4
Learning enable
71.1
1: Enable switch address learning capability
0: Disable switch address learning capability
Reserved
71.0
VLAN Entry [E]
VLAN ID [E]
72.7~ This register along with byte 73.0 forms a 9-bit field that specifies which
membership
72.0
ports are members of the VLAN. If a destination address look up fails,
Bit[7:0]
packets associated with this VLAN will be forwarded to ports specified in
this field. E.g., 1 0000 0001 means port 8 and 0 are in this VLAN.
6.2.29.
Default
1111
1
1
1
1
0001
0000
Port 4 Control 4
Table 45. Port 4 Control 4
Name
Port 4 VLAN
index [3:0]
Reserved
VLAN ID [E]
membership
Bit[8]
Byte.bit Description
Default
73.7~ In a port-based VLAN configuration, this register indexes port 4’s ‘Port
0100
73.4
VLAN Membership’, which could be defined in one of the registers ‘VLAN
ID [A] Membership’ to “VLAN ID [I] Membership”. Port 4 can only
communicate within the membership. This register also indexes to a default
Port VID (PVID) for each port. The PVID is used in tag insertion and
filtering if the tagged VID is not the same as the PVID.
73.3~
111
73.1
73.0
This register along with byte 72.7~72.0 forms a 9-bit field that specifies
1
which ports are members of the VLAN. If a destination address look up fails,
packets associated with this VLAN will be forwarded to ports specified in
this field. E.g., 1 0000 0001 means port 8 and 0 are in this VLAN.
Single-chip 9-port 10/100Mbps Switch Controller
31
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Name
Byte.bit Description
VLAN ID [E]
[7:0]
Reserved
VLAN ID [E]
[11:8]
74.7~
74.0
75.7~
75.4
75.3~
75.0
Default
VLAN Entry [E]
This register along with byte 75.3~75.0 defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN E.
This register along with byte 74.7~74.0 defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN E.
0000
0100
1111
0000
6.3. MII Port Control Pins
6.3.1.
MII Port Control 0
Table 46. MII Port Control 0
Name
Reserved
VLAN tag
insertion and
removal
6.3.2.
Byte.bit Description
76.7~
76.2
76.1~ 11=Do not insert or remove VLAN tags to/from packets.
76.0
10=Insert PVID to non-tagged packets.
01=Remove tag from tagged packets.
00=Replace the VID with a PVID for tagged packets and insert a PVID to
non-tagged packets.
Default
1111
11
11
MII Port Control 1
Table 47. MII Port Control 1
Name
Byte.bit Description
Default
Transmission
77.7
1: Enable packet transmission on MII interface
1
enable
0: Disable packet transmission on MII interface
Reception enable
77.6
1: Enable packet reception on MII interface
1
0: Disable packet reception on MII interface
Learning enable
77.5
1: Enable switch address learning capability
1
0: Disable switch address learning capability
Enable MII
77.4
1: Enable local loop back function. The switch will only forward local and
0
loopback
broadcast packets from the input of MII RX to the output of MII TX but drop
unicast packets from the input of MII RX. The other ports still can forward
packets to MII port
0: Disable local loop back function
Disable 802.1p
77.3
1: Disable 802.1p priority classification for ingress packets on MII port
1
priority
0: Enable 802.1p priority classification
Disable Diffserv
77.2
1: Disable Diffserv priority classification for ingress packets on MII port
1
priority
0: Enable Diffserv priority classification
Disable port77.1
1: Disable port priority function
1
based priority
0: Enable port priority function. Ingress packets from the MII port will be
classified as high priority
Reserved
77.0
0
VLAN Entry [I]
VLAN ID [I]
78.7~ This register along with byte 79.0 forms a 9-bit field that specifies which
1111
membership Bit
78.0
ports are members of the VLAN. If a destination address look up fails,
1111
[7:0]
packets associated with this VLAN will be forwarded to ports specified in
this field. E.g., 1 0000 0001 means port 8 and 0 are in this VLAN.
Single-chip 9-port 10/100Mbps Switch Controller
32
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
6.3.3.
MII Port Control 2
Table 48. MII Port Control 2
Name
Null VID
replacement
Discard Non
PVID packets
Reserved
Port 8 VLAN
index [3:0]
VLAN ID [I]
membership Bit
[8]
VLAN ID [I]
[7:0]
Reserved
VLAN ID [I]
[11:8]
6.3.4.
Byte.bit Description
Default
79.7
1: The switch will replace a NULL VID with a port VID (12 bits)
0
0: No replacement for a NULL VID
79.6
1: If the received packets are tagged, the switch will discard packets with a
0
VID that does not match the ingress port default VID, which is indexed by
port 8’s “Port-based VLAN index”
0: No packets will be dropped
79.5
1
79.4~ In a port-based VLAN configuration, this register indexes port 8’s ‘Port
1000
79.1
VLAN Membership’, which may be defined in one of the registers ‘VLAN
ID [A] Membership’ to ‘VLAN ID [I] Membership’. Port 8 can only
communicate within the membership. This register also indexes to a default
Port VID (PVID) for each port. The PVID is used in tag insertion and
filtering if the tagged VID is not the same as the PVID.
79.0
This register along with byte 78.7~78.0 forms a 9-bit field that specifies
1
which ports are members of the VLAN. If a destination address look up fails,
packets associated with this VLAN will be forwarded to ports specified in
this field. E.g., 1 0000 0001 means port 8 and 0 are in this VLAN.
VLAN Entry [I]
80.7~ This register along with byte 81.3~81.0 defines the IEEE 802.1Q 12-bit
0000
80.0
VLAN identifier of VLAN I.
1000
81.7~
1111
81.4
81.3~ This register along with byte 80.7~80.0 defines the IEEE 802.1Q 12-bit
0000
81.0
VLAN identifier of VLAN I.
CPU Port and WAN Port
Table 49. CPU Port and WAN Port
Name
WAN Port
CPU Port
Byte.bit Description
82.7~ Specifies the WAN port on the RTL8309SB.
82.4
1000=MII Port is WAN Port
0111=Port 7 is WAN Port 0110=Port 6 is WAN Port
0101=Port 5 is WAN Port 0100=Port 4 is WAN Port
0011=Port 3 is WAN Port 0010=Port 2 is WAN Port
0001=Port 1 is WAN Port 0000=Port 0 is WAN Port
82.3~ Specifies the CPU port on the RTL8309SB.
82.0
1000=MII Port is CPU Port
0111=Port 7 is CPU Port 0110=Port 6 is CPU Port
0101=Port 5 is CPU Port 0100=Port 4 is CPU Port
0011=Port 3 is CPU Port 0010=Port 2 is CPU Port
0001=Port 1 is CPU Port 0000=Port 0 is CPU Port
Single-chip 9-port 10/100Mbps Switch Controller
33
Default
0111
0000
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
6.4. Port 5~7 Control Pins
6.4.1.
Port 5 Control 0
Table 50. Port 5 Control 0
Name
Reserved
Speed and
Duplex ability
Reserved
Backpressure
enable
VLAN tag
insertion and
removal
6.4.2.
Byte.bit Description
83.7~
83.6
83.5~ In auto negotiation mode:
83.4
11=MII Reg0.13=1, 0.8=1, 4.8=1, 4.7=1, 4.6=1, 4.5=1
10=MII Reg0.13=1, 0.8=0, 4.8=0, 4.7=1, 4.6=1, 4.5=1
01=MII Reg0.13=0, 0.8=1, 4.8=0, 4.7=0, 4.6=1, 4.5=1
00=MII Reg0.13=0, 0.8=0, 4.8=0, 4.7=0, 4.6=0, 4.5=1
In Force mode:
11=MII Reg0.13=1, 0.8=1, 4.8=1, 4.7=0, 4.6=0, 4.5=0
10=MII Reg0.13=1, 0.8=0, 4.8=0, 4.7=1, 4.6=0, 4.5=0
01=MII Reg0.13=0, 0.8=1, 4.8=0, 4.7=0, 4.6=1, 4.5=0
00=MII Reg0.13=0, 0.8=0, 4.8=0, 4.7=0, 4.6=0, 4.5=1
83.3
83.2
1: Enable port 5 half duplex backpressure
0: Disable port 5 half duplex backpressure
83.1~ 11=Do not insert or remove VLAN tags to/from packet.
83.0
10=Insert PVID to non-tagged packets.
01=Remove tag from tagged packets.
00=Replace the VID with a PVID for tagged packets and insert a PVID to
non-tagged packets.
Default
11
11
1
1
11
Port 5 Control 1
Table 51. Port 5 Control 1
Name
Reserved
Local loopback
Null VID
replacement
Discard Non
PVID packets
Disable 802.1p
priority
Disable Diffserv
priority
Disable portbased priority
Byte.bit Description
Default
84.7~
11
84.6
84.5
1: Perform ‘local loopback’, i.e. loop back MAC’s RX back to TX
0
0: Normal operation
84.4
1: The switch will replace a NULL VID with a port VID (12 bits)
0
0: No replacement for a NULL VID
84.3
1: If the received packets are tagged, the switch will discard packets whose
0
VID does not match the ingress port’s PVID
0: No packets will be dropped
84.2
1: Disable 802.1p priority classification for ingress packets on port 5
1
0: Enable 802.1p priority classification
84.1
1: Disable Diffserv priority classification for ingress packets on port 5
1
0: Enable Diffserv priority classification
84.0
1: Disable port priority function
1
0: Enable port priority function. Ingress packets from port 5 will be classified
as high priority
Single-chip 9-port 10/100Mbps Switch Controller
34
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
6.4.3.
Port 5 Control 2
Table 52. Port 5 Control 2
Name
Reserved
6.4.4.
Byte.bit Description
85.7~
85.0
Default
1111
1000
Port 5 Control 3
Table 53. Port 5 Control 3
Name
Reserved
Byte.bit Description
86.7~
86.4
Transmission
86.3
1: Enable packet transmission on port 5
enable
0: Disable packet transmission on port 5
Reception enable
86.2
1: Enable packet reception on port 5
0: Disable packet reception on port 5
Learning enable
86.1
1: Enable switch address learning capability
0: Disable switch address learning capability
Reserved
86.0
VLAN Entry [F]
VLAN ID [F]
87.7~ This register, along with byte 88.0, forms a 9-bit field that specifies which
membership Bit
87.0
ports are members of the VLAN. If a destination address look up fails,
[7:0]
packets associated with this VLAN will be forwarded to ports specified in
this field. E.g., 1 0000 0001 means port 8 and 0 are in this VLAN.
6.4.5.
Default
1111
1
1
1
1
0010
0000
Port 5 Control 4
Table 54. Port 5 Control 4
Name
Port 5 VLAN index
[3:0]
Byte.bit
88.7~88.4
Reserved
VLAN ID [F]
membership Bit [8]
88.3~88.1
88.0
VLAN ID [F] [7:0]
89.7~89.0
Reserved
VLAN ID [F] [11:8]
90.7~90.4
90.3~90.0
Description
Default
In a port-based VLAN configuration, this register indexes port 5’s
0101
‘Port VLAN Membership’, which may be defined in one of the
registers ‘VLAN ID [A] Membership’ to ‘VLAN ID [I] Membership’.
Port 5 can only communicate within the membership. This register
also indexes to a default Port VID (PVID) for each port. The PVID is
used in tag insertion and filtering if the tagged VID is not the same as
the PVID.
111
This register along with byte 87.7~87.0 forms a 9-bit field that
1
specifies which ports are members of the VLAN. If a destination
address look up fails, packets associated with this VLAN will be
forwarded to ports specified in this field. E.g., 1 0000 0001 means
port 8 and 0 are in this VLAN.
VLAN Entry [F]
This register along with byte 90.3~90.0 defines the IEEE 802.1Q 120000
bit VLAN identifier of VLAN F.
0101
1111
This register along with byte 89.7~89.0 defines the IEEE 802.1Q 120000
bit VLAN identifier of VLAN F.
Single-chip 9-port 10/100Mbps Switch Controller
35
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
6.4.6.
Port 6 Control 0
Table 55. Port 6 Control 0
Name
Reserved
Speed and Duplex
ability
Byte.bit
91.7~91.6
91.5~91.4
Description
In auto negotiation mode:
11=MII Reg0.13=1, 0.8=1, 4.8=1, 4.7=1, 4.6=1, 4.5=1
10=MII Reg0.13=1, 0.8=0, 4.8=0, 4.7=1, 4.6=1, 4.5=1
01=MII Reg0.13=0, 0.8=1, 4.8=0, 4.7=0, 4.6=1, 4.5=1
00=MII Reg0.13=0, 0.8=0, 4.8=0, 4.7=0, 4.6=0, 4.5=1
Default
11
11
In Force mode:
11=MII Reg0.13=1, 0.8=1, 4.8=1, 4.7=0, 4.6=0, 4.5=0
10=MII Reg0.13=1, 0.8=0, 4.8=0, 4.7=1, 4.6=0, 4.5=0
01=MII Reg0.13=0, 0.8=1, 4.8=0, 4.7=0, 4.6=1, 4.5=0
00=MII Reg0.13=0, 0.8=0, 4.8=0, 4.7=0, 4.6=0, 4.5=1
Reserved
Backpressure enable
91.3
91.2
VLAN tag insertion
and removal
91.1~91.0
6.4.7.
1: Enable port 6 half duplex backpressure
0: Disable port 6 half duplex backpressure
11=Do not insert or remove VLAN tags to/from packet.
10=Insert PVID to non-tagged packets.
01=Remove tag from tagged packets.
00=Replace the VID with a PVID for tagged packets and insert a
PVID to non-tagged packets.
1
1
11
Port 6 Control 1
Table 56. Port 6 Control 1
Name
Reserved
Local loopback
Byte.bit
Description
92.7~92.6
92.5
1: Perform ‘local loopback’, i.e. loop back MAC’s RX back to TX
0: Normal operation
Null VID
92.4
1: The switch will replace a NULL VID with a port VID (12 bits)
replacement
0: No replacement for a NULL VID
Discard Non
92.3
1: If the received packets are tagged, the switch will discard packets
PVID packets
whose VID does not match the ingress port’s PVID
0: No packets will be dropped
Disable 802.1p
92.2
1: Disable 802.1p priority classification for ingress packets on port 6
priority
0: Enable 802.1p priority classification
Disable Diffserv
92.1
1: Disable Diffserv priority classification for ingress packets on port 6
priority
0: Enable Diffserv priority classification
Disable port-based
92.0
1: Disable port priority function
priority
0: Enable port priority function. Ingress packets from port 6 will be
classified as high priority
6.4.8.
Default
11
0
0
0
1
1
1
Port 6 Control 2
Table 57. Port 6 Control 2
Name
Reserved
Byte.bit
Description
93.7~93.0
Single-chip 9-port 10/100Mbps Switch Controller
Default
1111
1000
36
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
6.4.9.
Port 6 Control 3
Table 58. Port 6 Control 3
Name
Byte.bit
Reserved
94.7~94.4
Transmission enable
94.3
Reception enable
94.2
Learning enable
94.1
Reserved
94.0
VLAN ID [G]
membership Bit
[7:0]
6.4.10.
95.7~95.0
Description
Default
1111
1
1: Enable packet transmission on port 6
0: Disable packet transmission on port 6
1: Enable packet reception on port 6
0: Disable packet reception on port 6
1: Enable switch address learning capability
0: Disable switch address learning capability
1
1
0
VLAN Entry [G]
This register along with byte 96.0 forms a 9-bit field that specifies
which ports are members of the VLAN. If a destination address look
up fails, packets associated with this VLAN will be forwarded to ports
specified in this field. E.g., 1 0000 0001 means port 8 and 0 are in this
VLAN.
0100
0000
Port 6 Control 4
Table 59. Port 6 Control 4
Name
Port 6 VLAN index
[3:0]
Byte.bit
96.7~96.4
Reserved
VLAN ID [G]
membership Bit [8]
96.3~96.1
96.0
VLAN ID [G] [7:0]
97.7~97.0
Reserved
VLAN ID [G]
[11:8]
98.7~98.4
98.3~98.0
Description
Default
In a port-based VLAN configuration, this register indexes port 6’s
0110
‘Port VLAN Membership’, which may be defined in one of the
registers ‘VLAN ID [A] Membership’ to “VLAN ID [I]
Membership”. Port 6 can only communicate within the membership.
This register also indexes to a default Port VID (PVID) for each port.
The PVID is used in tag insertion and filtering if the tagged VID is not
the same as the PVID.
111
This register along with byte 95.7~95.0 forms a 9-bit field that
1
specifies which ports are members of the VLAN. If a destination
address look up fails, packets associated with this VLAN will be
forwarded to ports specified in this field. E.g., 1 0000 0001 means
port 8 and 0 are in this VLAN.
VLAN Entry [G]
This register along with byte 98.3~98.0 defines the IEEE 802.1Q 120000
bit VLAN identifier of VLAN G.
0110
1111
This register along with byte 97.7~97.0 defines the IEEE 802.1Q 120000
bit VLAN identifier of VLAN C.
Single-chip 9-port 10/100Mbps Switch Controller
37
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
6.4.11.
Port 7 Control 0
Table 60. Port 7 Control 0
Name
Reserved
Speed and Duplex
ability
Byte.bit
99.7~99.6
99.5~99.4
Description
In auto negotiation mode:
11=MII Reg0.13=1, 0.8=1, 4.8=1, 4.7=1, 4.6=1, 4.5=1
10=MII Reg0.13=1, 0.8=0, 4.8=0, 4.7=1, 4.6=1, 4.5=1
01=MII Reg0.13=0, 0.8=1, 4.8=0, 4.7=0, 4.6=1, 4.5=1
00=MII Reg0.13=0, 0.8=0, 4.8=0, 4.7=0, 4.6=0, 4.5=1
Default
11
11
In Force mode:
11=MII Reg0.13=1, 0.8=1, 4.8=1, 4.7=0, 4.6=0, 4.5=0
10=MII Reg0.13=1, 0.8=0, 4.8=0, 4.7=1, 4.6=0, 4.5=0
01=MII Reg0.13=0, 0.8=1, 4.8=0, 4.7=0, 4.6=1, 4.5=0
00=MII Reg0.13=0, 0.8=0, 4.8=0, 4.7=0, 4.6=0, 4.5=1
Reserved
Backpressure enable
99.3
99.2
VLAN tag insertion
and removal
99.1~99.0
6.4.12.
1: Enable port 7 half duplex backpressure
0: Disable port 7 half duplex backpressure
11=Do not insert or remove VLAN tags to/from packet.
10=Insert PVID to non-tagged packets.
01=Remove tag from tagged packets.
00= Replace the VID with a PVID for tagged packets and insert a
PVID to non-tagged packets.
1
1
11
Port 7 Control 1
Table 61. Port 7 Control 1
Name
Reserved
Local loopback
Null VID
replacement
Discard Non PVID
packets
Disable 802.1p
priority
Disable Diffserv
priority
Disable port-based
priority
6.4.13.
Byte.bit
Description
Default
100.7~100.6
11
100.5
1: Perform ‘local loopback’, i.e. loop back MAC’s RX back to TX
0
0: Normal operation
100.4
1: The switch will replace a NULL VID with a port VID (12 bits)
0
0: No replacement for a NULL VID
100.3
1: If the received packets are tagged, the switch will discard packets
0
whose VID does not match ingress port’s PVID
0: No packets will be dropped
100.2
1: Disable 802.1p priority classification for ingress packets on port 7
1
0: Enable 802.1p priority classification
100.1
1: Disable Diffserv priority classification for ingress packets on port 7
1
0: Enable Diffserv priority classification
100.0
1: Disable port priority function
1
0: Enable port priority function. Ingress packets from port 7 will be
classified as high priority
Port 7 Control 2
Table 62. Port 7 Control 2
Name
Reserved
Byte.bit Description
101.7~
101.0
Single-chip 9-port 10/100Mbps Switch Controller
Default
1111
1000
38
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
6.4.14.
Port 7 Control 3
Table 63. Port 7 Control 3
Name
Reserved
Byte.bit Description
102.7~
102.4
Transmission
102.3 1: Enable packet transmission on port 7
enable
0: Disable packet transmission on port 7
Reception enable 102.2 1: Enable packet reception on port 7
0: Disable packet reception on port 7
Learning enable
102.1 1: Enable switch address learning capability
0: Disable switch address learning capability
Reserved
102.0
VLAN Entry [H]
VLAN ID [H]
103.7~ This register along with byte 104.0 forms a 9-bit field that specifies which
membership Bit
103.0 ports are members of the VLAN. If a destination address look up fails,
[7:0]
packets associated with this VLAN will be forwarded to ports specified in
this field. E.g., 1 0000 0001 means port 8 and 0 are in this VLAN.
6.4.15.
Default
1111
1
1
1
1
1000
0000
Port 7 Control 4
Table 64. Port 7 Control 4
Name
Port 7 VLAN
index [3:0]
Reserved
VLAN ID [H]
membership Bit
[8]
VLAN ID [H]
[7:0]
Reserved
VLAN ID [H]
[11:8]
Byte.bit Description
Default
104.7~ In a port-based VLAN configuration, this register indexes port 7’s ‘Port
0111
104.4 VLAN Membership’, which may be defined in one of the registers ‘VLAN
ID [A] Membership’ to “VLAN ID [I] Membership”. Port 7 can only
communicate within the membership. This register also indexes to a default
Port VID (PVID) for each port. The PVID is used in tag insertion and
filtering if the tagged VID is not the same as the PVID.
104.3~
111
104.1
104.0 This register along with byte 103.7~103.0 forms a 9-bit field that specifies
1
which ports are members of the VLAN. If a destination address look up fails,
packets associated with this VLAN will be forwarded to ports specified in
this field. E.g., 1 0000 0001 means port 8 and 0 are in this VLAN.
VLAN Entry [H]
105.7~ This register along with byte 106.3~106.0 defines the IEEE 802.1Q 12-bit
0000
105.0 VLAN identifier of VLAN H.
0111
106.7~
1111
106.4
106.3~ This register along with byte 105.7~105.0 defines the IEEE 802.1Q 12-bit
0000
106.0 VLAN identifier of VLAN H.
Single-chip 9-port 10/100Mbps Switch Controller
39
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
7.
PHY Registers Description
“Mode” codes used in the following tables:
RO
Read Only
LH
Latch High until clear
RW
Read/Write
SC
Self Clearing
LL
Latch Low until clear
7.1. PHY 0 Registers
7.1.1.
PHY 0 Register 0: Control
Table 65. PHY 0 Register 0: Control
Reg.bit
0.15
0.14
Name
Reset
Loopback
(digital loopback)
Mode
RW/SC
RW
0.13
Speed Select
RW
0.12
Auto Negotiation
Enable
RW
0.11
Power Down
RW
0.10
Isolate
RW
0.9
Restart Auto
Negotiation
Duplex Mode
0.8
0.[7:0]
RW/SC
RW
Description
1: PHY reset. This bit is self-clearing.
1: Enable loopback. This will loopback TXD to RXD and
ignore all activity on the cable media
0: Normal operation
1: 100Mbps
0: 10Mbps
When NWay is enabled, this bit reflects the result of autonegotiation (Read only).
When NWay is disabled, this bit is strap option
‘Force_Speed’ and can be configured through SMI
(Read/Write).
1: Enable auto-negotiation process
0: Disable auto-negotiation process
This bit can be set through SMI (Read/Write).
1: Power down. All functions will be disabled except SMI
function
0: Normal operation
1: Electrically isolates the PHY from RMII/SMII.
PHY is still able to respond to MDC/MDIO
0: Normal operation
1: Restart Auto-Negotiation process
0: Normal operation
1: Full duplex operation
0: Half duplex operation
When NWay is enabled, this bit reflects the result of autonegotiation (Read only).
When NWay is disabled, this bit is strap option
‘Force_Duplex’ and can be configured through SMI
(Read/Write).
Reserved
Single-chip 9-port 10/100Mbps Switch Controller
Default
0
0
1
Pin
En_ANEG
strap option
0
0
0
1
0
40
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
7.1.2.
PHY 0 Register 1: Status
Table 66. PHY 0 Register 1: Status
Reg.bit
1.15
1.14
Name
100Base_T4
100Base_TX_FD
Mode
RO
RO
1.13
100Base_TX_HD
RO
1.12
10Base_T_FD
RO
1.11
10Base_T_HD
RO
1.[10:7]
1.6
Reserved
MF Preamble
Suppression
RO
RO
1.5
Auto-negotiate
Complete
RO
1.4
Remote Fault
RO/LH
1.3
1.2
Auto-Negotiation
Ability
Link Status
RO/LL
1.1
Jabber Detect
RO/LH
1.0
Extended
Capability
RO
RO
Description
0: No 100Base-T4 capability
1: 100Base-TX full duplex capable
0: Not 100Base-TX full duplex capable
1: 100Base-TX half duplex capable
0: Not 100Base-TX half duplex capable
1: 10Base-TX full duplex capable
0: Not 10Base-TX full duplex capable
1: 10Base-TX half duplex capable
0: Not 10Base-TX half duplex capable
The RTL8309SB will accept management frames with
preamble suppressed.
The RTL8309SB accepts management frames without
preamble. 32 minimum preamble bits are required for the
first SMI read/write transaction after reset. One idle bit is
required between any two management transactions as
defined in the IEEE 802.3u specifications.
1: Auto-negotiation process completed. MII Reg.4, 5 are
valid if this bit is set
0: Auto-negotiation process not completed
1: Remote fault condition detected
0: No remote fault
1: NWay auto-negotiation capable (permanently=1)
1: Link is established. If the link fails, this bit will be 0 until
after reading this bit again
0: Link has failed
1: Jabber detect enabled
0: Jabber detect disabled
The jabber function is disabled in 100Base-TX operation.
Jabber occurs when a predefined excessively long packet is
detected for 10Base-T. When the duration of TXEN exceeds
the jabber timer (21ms), the transmission and loopback
function are disabled and the COL LED starts blinking. After
TXEN goes low for more than 500 ms, the transmitter will be
re-enabled and the COL LED will stop blinking. Jabber
detect is supported only in 10Base-T operation.
1: Extended register capable (permanently=1)
Single-chip 9-port 10/100Mbps Switch Controller
41
Default
0
1
1
1
1
0
1
0
0
1
0
0
1
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
7.1.3.
PHY 0 Register 4: Auto-Negotiation Advertisement
Note: Whenever the link ability of the RTL8309SB is reconfigured, the auto-negotiation process should be executed again to
allow the configuration to take effect.
Table 67. PHY 0 Register 4: Auto-Negotiation Advertisement
Reg.bit
4.15
4.14
4.13
Name
Next Page
Acknowledge
Remote Fault
4.[12:11]
4.10
Mode
RO
RO
RW
Reserved
Pause
RO
RW
4.9
4.8
100Base-T4
100Base-TX-FD
RO
RW
4.7
100Base-TX
RW
4.6
10Base-T-FD
RW
4.5
10Base-T
RW
Selector Field
RO
4.[4:0]
7.1.4.
Description
0: Next Page disabled (Permanently=0)
Permanently=0.
1: Advertises that the RTL8309SB has detected a remote fault
0: No remote fault detected
1: Advertises that the RTL8309SB possesses 802.3x flow
control capability
0: No flow control capability
Technology not supported (Permanently=0).
1: 100Base-TX full duplex capable
0: Not 100Base-TX full duplex capable
1: 100Base-TX half duplex capable
0: Not 100Base-TX half duplex capable
1: 10Base-TX full duplex capable
0: Not 10Base-TX full duplex capable
1: 10Base-TX half duplex capable
0: Not 10Base-TX half duplex capable
[00001]=IEEE 802.3.
Default
0
0
0
0
Pin
En_FCTRL
strap option
0
1
1
1
1
00001
PHY 0 Register 5: Auto-Negotiation Link Partner Ability
Table 68. PHY 0 Register 5: Auto-Negotiation Link Partner Ability
Reg.bit
5.15
Name
Next Page
Mode
RO
5.14
Acknowledge
RO
5.13
Remote Fault
RO
Reserved
Pause
RO
RO
5.9
100Base-T4
RO
5.8
100Base-TX-FD
RO
5.7
100Base-TX
RO
5.[12:11]
5.10
Description
1: Link partner desires Next Page transfer
0: Link partner does not desire Next Page transfer
1: Link Partner acknowledges reception of Fast Link Pulse
(FLP) words
0: Not acknowledged by Link Partner
1: Remote Fault indicated by Link Partner
0: No remote fault indicated by Link Partner
1: Flow control supported by Link Partner
0: Flow control not supported by Link Partner
1: 100Base-T4 supported by Link Partner
0: 100Base-T4 not supported by Link Partner
1: 100Base-TX full duplex supported by Link Partner
0: 100Base-TX full duplex not supported by Link Partner
Note: If auto negotiation is disabled and this bit is set, Reg0.13
and Reg0.8 will be set to 1 after link is established.
1: 100Base-TX half duplex supported by Link Partner
0: 100Base-TX half duplex not supported by Link Partner
Note: If auto negotiation is disabled and this bit is set, Reg0.13
will be set to 1 and Reg0.8 will be set to 0 after link is
established.
Single-chip 9-port 10/100Mbps Switch Controller
42
Default
0
0
0
0
0
0
0
0
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Reg.bit
5.6
Name
10Base-T-FD
5.5
5.[4:0]
7.1.5.
Mode
RO
10Base-T
RO
Selector Field
RO
Description
1: 10Base-TX full duplex supported by Link Partner
0: 10Base-TX full duplex not supported by Link Partner
Note: If auto negotiation is disabled and this bit is set, Reg0.13
will be set to 0 and Reg0.8 will be set to 1 after link is
established.
1: 10Base-TX half duplex supported by Link Partner
0: 10Base-TX half duplex not supported by Link Partner
Note: If auto negotiation is disabled and this bit is set, Reg0.13
and Reg0.8 will be set to 0 after a link is established.
[00001]=IEEE802.3.
Default
0
0
00001
PHY 0 Register 6: Auto-Negotiation Expansion
Table 69. PHY 0 Register 6: Auto-Negotiation Expansion
Reg.bit
6.[15:5]
6.4
Name
Reserved
Parallel
Detection Fault
Mode
RO
RO
6.3
Link Partner
Next Pageable
Local Next
Pageable
Page Received
RO
Link Partner
AutoNegotiation Able
RO
6.2
6.1
6.0
7.1.6.
RO
RO
Description
1: A fault has been detected via the Parallel Detection function
0: A fault has not been detected via the Parallel Detection
function
0: Link Partner is not Next Pageable (permanently=0)
1: The RTL8309SB is Next Pageable
0: The RTL8309SB is not Next Pageable
1: A New Page has been received
0: A New Page has not been received
If NWay is enabled, this bit means:
1: Link Partner is Auto-Negotiation able
0: Link Partner is not Auto-Negotiation able
Default
0
0
0
0
0
0 (NWay)
or
1 (Force)
PHY 0 Register 16: Global Control 0
Table 70. PHY 0 Register 16: Global Control 0
Reg.bit
Name
16.[15:13] LED Mode
16.12
Software Reset
Mode
RW
RW/
SC
Description
111 -> Mode 7: Speed, Duplex+Collision, Link+Act, SQI
110 -> Mode 6: Activity, Speed, Link, SQI
101 -> Mode 5: Speed, Duplex, Link+Act, SQI
100 -> Mode 4: Collision, Duplex, Link+Act+Speed, SQI
011 -> Mode 3: SQI, Duplex+Collision,
Link+Act+Speed,10/100.
010 -> Mode 2: RxAct+10/100, TxAct+10/100, Link, SQI
001 -> Mode 1: Duplex+Collision, 10Link+Act,
100Link+Act, SQI
000 -> Mode 0: Duplex+Collision, Bi-color Speed,
Bi-color Link+Act, SQI.
1: Soft reset. This bit is self-clearing
If this bit is set to 1, the RTL8309SB will reset all registers in it
except PHY registers and will not load configurations from
EEPROM or strapping pins. Software reset is designed to
provide a convenient way for users to change the configuration
via SMI. After changing register values in the RTL8309SB
(except PHY registers) via SMI, the external device must
execute a soft reset in order to update the configuration by
setting this bit to 1.
Single-chip 9-port 10/100Mbps Switch Controller
43
Default
111
0
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Reg.bit
16.11
16.10
16.9
Name
Disable VLAN
Disable 802.1Q tag
aware VLAN
Disable VLAN
member set ingress
filtering
Mode
RW
RW
RW
16.8
Disable VLAN tag
admit control
RW
16.7
EEPROM
existence
RO
16.6
Accept Error
disable
RW
16.5
IEEE 802.3x
transmit flow
control enable
RW
16.4
IEEE 802.3x
receive flow
control enable
RW
16.3
Broadcast input or
output drop
Aging enable
RW
16.2
RW
Description
1: Disable VLAN
0: Enable VLAN. The default VLAN membership configuration
by internal register is MII port overlapped with all the other
ports to form 8 individual VLANs. This default membership
configuration may be modified by setting internal registers via
the SMI interface or EEPROM.
1: Disable 802.1Q tagged-VID Aware function. The
RTL8309SB will not check the tagged VID on received frames
to perform tagged-VID VLAN mapping. Under this
configuration, the RTL8309SB only uses the per port VLAN
index register to perform Port-Based VLAN mapping
0: Enable the Member Set Filtering function of VLAN Ingress
Rule. The RTL8309SB checks the tagged VID on received
frames with the VIDA[11:0]~VIDH[11:0] to index to a member
set, then performs VLAN mapping. The RTL8309SB uses
tagged-VID VLAN mapping for tagged frames but still uses
port-based VLAN mapping for priority-tagged and untagged
frames
1: The switch will not drop a received frame if the ingress port
of this packet is not included in the matched VLAN member
set. It will still forward the packet to the VLAN members
specified in the matched member set. This setting works on
both port-based and tag-based VLAN configurations
0: The switch will drop the received frame if the ingress port of
this packet is not included in the matched VLAN member set
1: The switch accepts all frames it receives whether tagged or
untagged
0: The switch will only accept tagged frames and will drop
untagged frames
1: EEPROM does not exist (pin EnEEPROM=0 or pin
EnEEPROM=1 but EEPROM does not exist)
0: EEPROM exists (pin EnEEPROM=1 and EEPROM exists)
1: Filter bad packets in normal operation
0: Switch all packets including bad ones. This bit is intended for
debugging purposes only
1: Determines when to invoke flow control based on
auto negotiation results
0: Will not enable transmit flow control no matter what the
auto negotiation result is
1: When the RTL8309SB receives a pause control frame, it has
the ability to stop the next transmission of a normal frame until
the timer is expired based on the auto negotiation result
0: Will not receive flow control no matter what the
auto negotiation result is
1: Broadcast input drop is selected
0: Broadcast output drop is selected
1: Enable aging function
0: Disable aging function. The addresses learned in the lookup
table will not be aged out. If the table is full, the last entry in the
table will be deleted to make room for the new entry
Single-chip 9-port 10/100Mbps Switch Controller
44
Default
1
0
1
1
0
1
1
1
1
1
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Reg.bit
16.1
Name
Fast aging enable
Mode
RW
16.0
Enable ISP MAC
Address
Translation
RW
7.1.7.
Description
1: Enable fast aging function. The entry learned in the lookup
table will be aged out if it is not updated within an 800µs period
0: Disable fast aging function
1: Enable ISP MAC Address Translation function
0: Disable ISP MAC Address Translation function
Default
0
0
PHY 0 Register 17: Global Control 1
Table 71. PHY 0 Register 17: Global Control 1
Reg.bit
Name
17.[15:13] 802.1p base
priority
17.12
Mode
RW
Trunking port
assignment
RW
17.[11:10] Queue weight
RW
17.9
Disable IP priority
for IP address [A]
RW
17.8
Disable IP priority
for IP address [B]
RW
17.7
Enable default high
priority DiffServ
code point
RW
Description
Classifies priority for incoming 802.1Q packets, if 802.1p
priority classification is enabled. ‘User priority’ is compared
against this value.
>=: Classify as high priority
<: Classify as low priority
1: Combine port 0 and 1 as one trunking port, if trunking is
enabled via strapping pin ‘Dis_Trunk’
0: Combine port 6 and 7 as one trunking port, if trunking is
enabled via strapping pin ‘Dis_Trunk’
The frame service ratio between the high priority queue and low
priority queue is:
11=16:1
10=always high priority queue first
01=8:1
00=4:1
1: Compare both the source and destination IP address of
incoming packets against the value, IP address [A] AND IP
mask [A], to classify packet priority
0: Do not compare the source or destination IP address of
incoming packets against the value ‘IP address [A] AND IP
mask [A]’
1: Compare both the source and destination IP address of
incoming packets against the value, IP address [B] AND IP
mask [B], to classify packet priority
0: Do not compare the source or destination IP address of
incoming packets against the value ‘IP address [B] AND IP
mask [B]’
1: The default DiffServ code point listed below will be
considered as high priority code point if the DiffServ priority
function is enabled.
EF – 101110
AF – 001010, 010010, 011010, 100010
Network Control – 111000, 110000
Default
100
1
11
0
0
1
0: The default DiffServ code point will be considered low
priority
17.[6:0]
Reserved
Single-chip 9-port 10/100Mbps Switch Controller
1111111
45
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
7.1.8.
PHY 0 Register 18: Global Control 2
Table 72. PHY 0 Register 18: Global Control 2
Reg.bit
18.15
Name
Enable differential
service code point
[A]
18.14
Reserved
18.[13:8] Differential service
code point [A]
18.7
Enable differential
service code point
[B]
18.6
18.[5:0]
Reserved
Differential service
code point [B]
7.1.9.
Mode
RW
RW
RW
RW
Description
1: If differential service priority is enabled, this bit specifies
differential service code point [A] is high priority
0: If differential service priority is enabled, this bit specifies
differential services code point [A] is low priority
Used to specify the high priority differential service code
point A. For example, if these bits are set to 111111, incoming
packets with a TOS field equal to 111111 will be considered
high priority packets.
1: If differential service priority is enabled, this bit specifies
differential services code point [B] is high priority
0: If differential service priority is enabled, this bit specifies
differential services code point [B] is low priority
Used to specify a high priority differential service code point B.
For example, if these bits are set to 000000, incoming packets
with a TOS field equal to 000000 will be considered high
priority packets.
Default
0
1
111111
0
1
111111
PHY 0 Register 19: Global Control 3
Table 73. PHY 0 Register 19: Global Control 3
Reg.bit
19.15
19.14
19.13
19.12
19.11
19.10
19.[9:0]
7.1.10.
Name
Enable drop for 48
pass 1
Reserved
TX IPG
compensation
Disable loop
detection
Lookup table
accessible enable
Reserved
Reserved
Mode
RW
RW
RW
RW
Description
1: Enable drop packet after SRAM full for 48 pass 1
0: Disable drop packet after SRAM full for 48 pass 1. This will
result in SRAM run out
1: 90ppm TX IPG (InterPacketGap) compensation
0: 65ppm TX IPG (InterPacketGap) compensation
1: Disable loop detection function
0: Enable loop detection function
1: Lookup table is accessible via indirect access registers
0: Lookup table is not accessible
Default
1
1
1
1
0
1
11 1100 0001
PHY 0 Register 22: Port 0 Control 0
Table 74. PHY 0 Register 22: Port 0 Control 0
Reg.bit
Name
22.[15:14] Reserved
22.13
Local loopback
22.12
Null VID
replacement
Mode
RW
RW
RW
Description
Reserved.
1: Perform ‘local loopback’, i.e. loop MAC’s RX back to TX
0: Normal operation
1: The switch will replace a NULL VID with a port VID (12
bits)
0: No replacement for a NULL VID
Single-chip 9-port 10/100Mbps Switch Controller
46
Default
11
0
0
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Reg.bit
22.11
22.10
Name
Discard Non PVID
packets
Disable 802.1p
priority
Mode
RW
RW
22.9
Disable Diffserv
priority
RW
22.8
Disable port-based
priority
RW
Reserved
VLAN tag
insertion and
removal
RW
RW
22.[7:2]
22[1:0]
Description
1: If the received packets are tagged, the switch will discard
packets with a VID that does not match the ingress port default
VID, which is indexed by port 0’s ‘Port-based VLAN index’
0: No packets will be dropped
1: Disable 802.1p priority classification for ingress packets on
port 0
0: Enable 802.1p priority classification
Default
0
Pin
Dis_VLAN_Pri
strap option
Default = 1
1: Disable Diffserv priority classification for ingress packets on
Pin
port 0
Dis_DS_Pri
0: Enable Diffserv priority classification
strap option
Default = 1
1: Disable port priority function
Pin
0: Enable port priority function. Ingress packets from port 0 will Sel_Port_Pri
be classified as high priority
strap option
Default = 1
1111111
11
11=Do not insert or remove VLAN tags to/from packets sent
out from this port.
10=The switch will add VLAN tags to packets if they are not
tagged. The switch will not add tags to packets already tagged.
The inserted tag is the ingress port’s ‘Default tag’, which is
indexed by port 0’s ‘Port-based VLAN index’.
01=The switch will remove VLAN tags from packets, if they
are tagged when these packets are send out from port 0. The
switch will not modify packets received without tags.
00=The switch will remove VLAN tags from packets then add
new tags to them. The inserted tag is the ingress port’s ‘Default
tag’, which is indexed by port 0’s ‘Port-based VLAN index’.
This is a replacement processing for tagged packets and an
insertion for untagged packets.
Single-chip 9-port 10/100Mbps Switch Controller
47
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
7.1.11.
PHY 0 Register 23: Port 0 Control 1
Table 75. PHY 0 Register 23: Port 0 Control 1
Reg.bit
Name
23.[15:12] Reserved
23.11
Transmission
enable
23.10
Reception enable
Mode
RW
RW
23.9
Learning enable
RW
23.8
Loop status
RO
23[7:4]
Link quality
RO
23[3:0]
Reserved
7.1.12.
Description
1: Enable packet transmission on port 0
0: Disable packet transmission on port 0
1: Enable packet reception on port 0
0: Disable packet reception on port 0
1: Enable switch address learning capability
0: Disable switch address learning capability
1: A loop has been detected on port 0
0: No loop exists on port 0
4-bit field indicating the link quality of the receive twisted-pair
or fiber link.
0000: Highest link quality
1111: Lowest link quality
Default
1111
1
1
1
0
1000
PHY 0 Register 24: Port 0 Control 2 & VLAN Entry [A]
Table 76. PHY 0 Register 24: Port 0 Control 2 & VLAN Entry [A]
Reg.bit
Name
Mode
24[15:12] Port 0 VLAN index
[3:0]
24.[11~9] Reserved
24.[8:0] VLAN ID [A]
Membership Bit
[8:0]
7.1.13.
RW
Description
In a port-based VLAN configuration, this register indexes port
0’s ‘Port VLAN Membership’, which can be defined in one of
the registers ‘VLAN ID [A] Membership’ to ‘VLAN ID [I]
Membership’. Port 0 can only communicate within the
membership. This register also indexes to a default Port VID
(PVID) for each port. The PVID is used in tag insertion and
filtering if the tagged VID is not the same as the PVID.
This 9-bit field specifies which ports are members of VLAN A.
If a destination address look up fails, the packet associated with
this VLAN will be broadcast to ports specified in this field. Bit
0 stands for port 0, bit 1 stands for port 8.
E.g., 1 0000 0001 means port 8 and 0 are in this VLAN.
Default
0000
111
1
0000
0001
PHY 0 Register 25: VLAN Entry [A]
Table 77. PHY 0 Register 25: VLAN Entry [A]
Reg.bit
Name
25.[15:12] Reserved
25[11:0] VLAN ID [A]
Mode
RW
Description
Defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN A.
Single-chip 9-port 10/100Mbps Switch Controller
48
Default
1111
0000
0000
0000
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
7.2. PHY 1 Registers
7.2.1.
PHY 1 Register 0: Control
This register has the same definition as PHY 0 Register 0: Control, page 40.
7.2.2.
PHY 1 Register 1: Status
This register has the same definition as PHY 0 Register 1: Status, page 41.
7.2.3.
PHY 1 Register 4: Auto-Negotiation Advertisement
This register has the same definition as PHY 0 Register 4: Auto-Negotiation Advertisement, page 42.
7.2.4.
PHY 1 Register 5: Auto-Negotiation Link Partner Ability
This register has the same definition as PHY 0 Register 5: Auto-Negotiation Link Partner Ability, page 42.
7.2.5.
PHY 1 Register 6: Auto-Negotiation Expansion
This register has the same definition as PHY 0 Register 6: Auto-Negotiation Expansion, page 43.
7.2.6.
PHY 1 Register 16~17: IP Priority Address [A]
Table 78. PHY 1 Register 16~17: IP Priority Address [A]
Reg.bit
16
17
7.2.7.
Name
IP Address [A]
[31:16]
Mode
RW
IP Address [A]
[15:0]
RW
Description
The switch will compare both the source and destination IP
addresses of an incoming packet against the value, IP address
[A] AND IP mask [A], to classify priority for the packet.
The switch will both compare the source and destination IP
addresses of an incoming packet against the value, IP address
[A] AND IP mask [A], to classify priority for the packet.
Default
0xFFFF
0xFFFF
PHY 1 Register 18~19: IP Priority Address [B]
Table 79. PHY 1 Register 18~19: IP Priority Address [B]
Reg.bit Name
18
IP Address [B]
[31:16]
19
IP Address [B]
[15:0]
Mode Description
RW The switch will compare both the source and destination IP
addresses of an incoming packet against the value, IP address
[B] AND IP mask [B], to classify priority for the packet, if IP
priority for IP address [B] is enabled.
RW The switch will compare both the source and destination IP
addresses of an incoming packet against the value, IP address
[B] AND IP mask [B], to classify priority for the packet, if IP
priority for IP address [B] is enabled.
Single-chip 9-port 10/100Mbps Switch Controller
49
Default
0xFFFF
0xFFFF
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
7.2.8.
PHY 1 Register 22: Port 1 Control 0
This register has the same definition as PHY 0 Register 22: Port 0 Control 0, page 46.
Note: Reg 22.8 is not pin Sel_PortPri strap option for port 1. Default value for 22.8 is 1.
7.2.9.
PHY 1 Register 23: Port 1 Control 1
This register has the same definition as PHY 0 Register 23: Port 0 Control 1, page 48.
7.2.10.
PHY 1 Register 24: Port 1 Control 2 & VLAN Entry [B]
Table 80. PHY 1 Register 24: Port 1 Control 2 & VLAN Entry [B]
Reg.bit
Name
Mode
24[15~12] Port 1 VLAN index RW
[3:0]
24.[11:9] Reserved
24.[8:0] VLAN ID [B]
Membership Bit
[8:0]
7.2.11.
RW
Description
In a port-based VLAN configuration, this register indexes port
1’s ‘Port VLAN Membership’, which could be defined in one of
the registers ‘VLAN ID [A] Membership’ to ‘VLAN ID [I]
Membership’. Port 1 can only communicate within the
membership. This register also indexes to a default Port VID
(PVID) for each port. The PVID is used in tag insertion and
filtering if the tagged VID is not the same as the PVID.
This 9-bit field specifies which ports are members of VLAN B.
If a destination address look up fails, packets associated with
this VLAN will be forwarded to ports specified in this field.
E.g., 1 0000 0001 means port 8 and 0 are in this VLAN.
Default
0001
111
1
0000
0010
PHY 1 Register 25: VLAN Entry [B]
Table 81. PHY 1 Register 25: VLAN Entry [B]
Reg.bit
Name
25.[15:12] Reserved
25[11:0] VLAN ID [B]
Mode
RW
Description
Defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN B.
Default
1111
0000
0000
0001
7.3. PHY 2 Registers
7.3.1.
PHY 2 Register 0: Control
This register has the same definition as PHY 0 Register 0: Control, page 40.
7.3.2.
PHY 2 Register 1: Status
This register has the same definition as PHY 0 Register 1: Status, page 41.
7.3.3.
PHY 2 Register 4: Auto-Negotiation Advertisement
This register has the same definition as PHY 0 Register 4: Auto-Negotiation Advertisement, page 42.
Single-chip 9-port 10/100Mbps Switch Controller
50
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
7.3.4.
PHY 2 Register 5: Auto-Negotiation Link Partner Ability
This register has the same definition as PHY 0 Register 5: Auto-Negotiation Link Partner Ability, page 42.
7.3.5.
PHY 2 Register 6: Auto-Negotiation Expansion
This register has the same definition as PHY 0 Register 6: Auto-Negotiation Expansion, page 43.
7.3.6.
PHY 2 Register 16~17: IP Priority Mask [A]
Table 82. PHY 2 Register 16~17: IP Priority Mask [A]
Reg.bit
16
17
7.3.7.
Name
IP Mask [A]
[31:16]
Mode
RW
IP Mask [A] [15:0]
RW
Description
The switch will compare both the source and destination IP
addresses of an incoming packet against the value, IP address
[A] AND IP mask [A], to classify priority for the packet.
The switch will compare both the source and destination IP
addresses of an incoming packet against the value, IP address
[A] AND IP mask [A], to classify priority for the packet.
Default
0xFFFF
0xFFFF
PHY 2 Register 18~19: IP Priority Mask [B]
Table 83. PHY 2 Register 18~19: IP Priority Mask [B]
Reg.bit
18
19
7.3.8.
Name
IP Mask [B]
[31:16]
IP Mask [B] [15:0]
Mode
RW
RW
Description
The switch will compare both the source and destination IP
addresses of an incoming packet against the value, IP address
[B] AND IP mask [B], to classify priority for the packet, if IP
priority for IP address [B] is enabled.
The switch will compare both the source and destination IP
addresses of an incoming packet against the value, IP address
[B] AND IP mask [B], to classify priority for the packet, if IP
priority for IP address [B] is enabled.
Default
0xFFFF
0xFFFF
PHY 2 Register 22: Port 2 Control 0
This register has the same definition as PHY 0 Register 22: Port 0 Control 0, page 46.
Note: Reg 22.8 is pin Sel_PortPri strap option for port 2. Default value for 22.8 is 1.
7.3.9.
PHY 2 Register 23: Port 2 Control 1
This register has the same definition as PHY 0 Register 23: Port 0 Control 1, page 48.
Single-chip 9-port 10/100Mbps Switch Controller
51
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
7.3.10.
PHY 2 Register 24: Port 2 Control 2 & VLAN Entry [C]
Table 84. PHY 2 Register 24: Port 2 Control 2 & VLAN Entry [C]
Reg.bit
Name
24[15:12] Port 2 VLAN
Index [3:0]
24[11~9] Reserved
24.[8:0] VLAN ID [C]
Membership Bit
[8:0]
7.3.11.
Mode
RW
RW
Description
In a port-based VLAN configuration, this register indexes
port 2’s ‘Port VLAN Membership’, which can be defined in one
of the registers ‘VLAN ID [A] Membership’ to ‘VLAN ID [I]
Membership’. Port 2 can only communicate within the
membership. This register also indexes to a default Port VID
(PVID) for each port. The PVID is used in tag insertion and
filtering if the tagged VID is not the same as the PVID.
This bytes are reserved for not used
This 9-bit field specifies which ports are members of VLAN C.
If a destination address look up fails, packets associated with
this VLAN will be forwarded to ports specified in this field.
E.g., 1 0000 0001 means port 8 and 0 are in this VLAN.
Default
0010
111
1
0000
0100
PHY 2 Register 25: VLAN Entry [C]
Table 85. PHY 2 Register 25: VLAN Entry [C]
Reg.bit
Name
25.[15:12] Reserved
25[11:0] VLAN ID [C]
Mode
RW
Description
Defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN C.
Default
1111
0000
0000
0010
7.4. PHY 3 Registers
7.4.1.
PHY 3 Register 0: Control
This register has the same definition as PHY 0 Register 0: Control, page 40.
7.4.2.
PHY 3 Register 1: Status
This register has the same definition as PHY 0 Register 1: Status, page 41.
7.4.3.
PHY 3 Register 4: Auto-Negotiation Advertisement
This register has the same definition as PHY 0 Register 4: Auto-Negotiation Advertisement, page 42.
7.4.4.
PHY 3 Register 5: Auto-Negotiation Link Partner Ability
This register has the same definition as PHY 0 Register 5: Auto-Negotiation Link Partner Ability, page 42.
7.4.5.
PHY 3 Register 6: Auto-Negotiation Expansion
This register has the same definition as PHY 0 Register 6: Auto-Negotiation Expansion, page 43.
7.4.6.
PHY 3 Register 16~18: Switch MAC Address
The Switch MAC address is used as the source address in MAC pause control frames.
Single-chip 9-port 10/100Mbps Switch Controller
52
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Table 86. PHY 3 Register 16~18: Switch MAC Address
Reg.bit
16
17
18
7.4.7.
Name
Switch MAC
Address [47:32]
Switch MAC
Address [31:16]
Switch MAC
Address [15:0]
Mode
RW
RW
RW
Description
16.[15:8] = Switch MAC Address Byte 4.
16.[7:0] = Switch MAC Address Byte 5.
17.[15:8] = Switch MAC Address Byte 2.
17.[7:0] = Switch MAC Address Byte 3.
18.[15:8] = Switch MAC Address Byte 0.
18.[7:0] = Switch MAC Address Byte 1.
Default
0x5452
0x834C
0xB009
PHY 3 Register 22: Port 3 Control 0
This register has the same definition as PHY 0 Register 22: Port 0 Control 0, page 46.
Note: Reg 22.8 is pin Sel_PortPri strap option for port 3. Default value for 22.8 is 1.
7.4.8.
PHY 3 Register 23: Port 3 Control 1
This register has the same definition as PHY 0 Register 23: Port 0 Control 1, page 48.
7.4.9.
PHY 3 Register 24: Port 3 Control 2 & VLAN Entry [D]
Table 87. PHY 3 Register 24: Port 3 Control 2 & VLAN Entry [D]
Reg.bit
Name
Mode
24[15:12] Port 3 VLAN index RW
[3:0]
24[11~9] Reserved
24.[8:0] VLAN ID [D]
Membership Bit
[8:0]
7.4.10.
RW
Description
In a port-based VLAN configuration, this register indexes
port 3’s ‘Port VLAN Membership’, which may be defined in
one of the registers ‘VLAN ID [A] Membership’ to ‘VLAN ID
[I] Membership’. Port 3 can only communicate within the
membership. This register also indexes to a default Port VID
(PVID) for each port. The PVID is used in tag insertion and
filtering if the tagged VID is not the same as the PVID.
This 9-bit field specifies which ports are members of VLAN D.
If a destination address look up fails, packets associated with
this VLAN will be forwarded to ports specified in this field.
E.g., 1 0000 0001 means port 8 and 0 are in this VLAN.
Default
0011
111
1
0000
1000
PHY 3 Register 25: VLAN Entry [D]
Table 88. PHY 3 Register 25: VLAN Entry [D]
Reg.bit
Name
25.[15:12] Reserved
25[11:0] VLAN ID [D]
Mode
RW
Description
Defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN D.
Single-chip 9-port 10/100Mbps Switch Controller
53
Default
1111
0000
0000
0011
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
7.5. PHY 4 Registers
7.5.1.
PHY 4 Register 0: Control
This register has the same definition as PHY 0 Register 0: Control, page 40.
7.5.2.
PHY 4 Register 1: Status
This register has the same definition as PHY 0 Register 1: Status, page 41.
7.5.3.
PHY 4 Register 4: Auto-Negotiation Advertisement
This register has the same definition as PHY 0 Register 4: Auto-Negotiation Advertisement, page 42.
7.5.4.
PHY 4 Register 5: Auto-Negotiation Link Partner Ability
This register has the same definition as PHY 0 Register 5: Auto-Negotiation Link Partner Ability, page 42.
7.5.5.
PHY 4 Register 6: Auto-Negotiation Expansion
This register has the same definition as PHY 0 Register 6: Auto-Negotiation Expansion, page 43.
7.5.6.
PHY 4 Register 16~18: ISP MAC Address
The ISP’s MAC address is used as the source address in MAC address translation functions.
Table 89. PHY 4 Register 16~18: ISP MAC Address
Reg.bit
16
17
18
7.5.7.
Name
ISP MAC Address
[15:0]
ISP MAC Address
[31:16]
ISP MAC Address
[47:32]
Mode
RW
RW
RW
Description
16.[15:8] = ISP MAC Address Byte 1.
16.[7:0] = ISP MAC Address Byte 0.
17.[15:8] = ISP MAC Address Byte 3.
17.[7:0] = ISP MAC Address Byte 2.
18.[15:8] = ISP MAC Address Byte 5.
18.[7:0] = ISP MAC Address Byte 4.
Default
0x4205
0x212F
0x5C91
PHY 4 Register 22: Port 4 Control 0
This register has the same definition as PHY 0 Register 22: Port 0 Control 0, page 46.
Note: Reg 22.8 is not pin Sel_PortPri strap option for port 4. Default value for 22.8 is 1.
7.5.8.
PHY 4 Register 23: Port 4 Control 1
This register has the same definition as PHY 0 Register 23: Port 0 Control 1, page 48.
Single-chip 9-port 10/100Mbps Switch Controller
54
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
7.5.9.
PHY 4 Register 24: Port 4 Control 2 & VLAN Entry [E]
Table 90. PHY 4 Register 24: Port 4 Control 2 & VLAN Entry [E]
Reg.bit
Name
24[15:12] Port 4 VLAN
Index
24.[11~9] Reserved
24.[8:0] VLAN ID [E]
Membership Bit
[8:0]
7.5.10.
Mode
RW
Description
In a port-based VLAN configuration, this register indexes
port 4’s ‘Port VLAN Membership’, which may be defined in
one of the registers ‘VLAN ID [A] Membership’ to ‘VLAN ID
[I] Membership’. Port 4 can only communicate within the
membership. This register also indexes to a default Port VID
(PVID) for each port. The PVID is used in tag insertion and
filtering if the tagged VID is not the same as the PVID.
RW
This 9-bit field specifies which ports are members of VLAN E.
If a destination address look up fails, packets associated with
this VLAN will be forwarded to ports specified in this field.
E.g., 1 0000 0001 means port 8 and 0 are in this VLAN.
Default
0100
111
1
0001
0000
PHY 4 Register 25: VLAN Entry [E]
Table 91. PHY 4 Register 25: VLAN Entry [E]
Reg.bit
Name
25.[15:12] Reserved
25.[11:0] VLAN ID [E]
Mode
RW
Description
Default
1111
Defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN E.
0000
0000
0100
7.6. PHY 5 Registers
7.6.1.
PHY 5 Register 0: Control
This register has the same definition as PHY 0 Register 0: Control, page 40.
7.6.2.
PHY 5 Register 1: Status
This register has the same definition as PHY 0 Register 1: Status, page 41.
7.6.3.
PHY 5 Register 4: Auto-Negotiation Advertisement
This register has the same definition as PHY 0 Register 4: Auto-Negotiation Advertisement, page 42.
7.6.4.
PHY 5 Register 5: Auto-Negotiation Link Partner Ability
This register has the same definition as PHY 0 Register 5: Auto-Negotiation Link Partner Ability, page 42.
7.6.5.
PHY 5 Register 6: Auto-Negotiation Expansion
This register has the same definition as PHY 0 Register 6: Auto-Negotiation Expansion, page 43.
Single-chip 9-port 10/100Mbps Switch Controller
55
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
7.6.6.
PHY 5 Register 16: MII Port Control 0
Table 92. PHY 5 Register 16: MII Port Control 0
Reg.bit
16.15
Mode
RW
16.14
Name
Transmission
enable
Reception enable
16.13
Learning enable
RW
16.12
Enable MII
loopback
RW
16.11
Disable 802.1p
priority
RW
RW
16.10
Disable Diffserv
priority
RW
16.9
Disable port-based
priority
RW
16.8
16.[7:2]
16.[1:0]
Reserved
Reserved
VLAN tag
insertion and
removal
RW
Description
1: Enable packet transmission on MII interface
0: Disable packet transmission on MII interface
1: Enable packet reception on MII interface
0: Disable packet reception on MII interface
1: Enable switch address learning capability
0: Disable switch address learning capability
1: Enable local loop back function. The switch will only
forward local and broadcast packets from the input of MII RX
to the output of MII TX, and will drop unicast packets from the
input of MII RX. The other ports still can forward packets to the
MII port
0: Disable local loop back function
1: Disable 802.1p priority classification for ingress packets on
port 8
0: Enable 802.1p priority classification
Default
1
1
1
0
Pin
Dis_VLAN_Pri
strap option
Default = 1
1: Disable Diffserv priority classification for ingress packets on
Pin
port 8
Dis_DS_Pri
0: Enable Diffserv priority classification
strap option
Default = 1
1: Disable port priority function
Pin
0: Enable port priority function. Ingress packets from port 8 will Sel_Port_Pri
be classified as high priority
strap option
Default = 1
0
111111
11
11=Do not insert or remove VLAN tags to/from packets sent
out from this port.
10=The switch will add VLAN tags to packets if they are not
tagged. The switch will not add tags to packets already tagged.
The inserted tag is the ingress port’s ‘Default tag’, which is
indexed by the MII port’s ‘Port-based VLAN index’.
01=The switch will remove VLAN tags from packets, if they
are tagged when these packets are send out from MII port. The
switch will not modify packets received without tags.
00=The switch will remove VLAN tags from packets then add
new tags to them. The inserted tag is the ingress port’s ‘Default
tag’, which is indexed by MII port’s ‘Port-based VLAN index’.
This is a replacement processing for tagged packets and an
insertion for untagged packets.
Single-chip 9-port 10/100Mbps Switch Controller
56
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
7.6.7.
PHY 5 Register 17: MII Port Control 1 & VLAN Entry [I]
Table 93. PHY 5 Register 17: MII Port Control 1 & VLAN Entry [I]
Reg.bit
17.15
17.14
Name
Null VID
replacement
Mode
RW
Discard NonPVID packets
RW
17.13
Reserved
17.[12~9] Port 8 VLAN index
[3:0]
17.[8:0]
7.6.8.
VLAN ID [I]
Membership Bit
[8:0]
RW
Description
1: The switch will replace a NULL VID with a port VID
(12 bits)
0: No replacement for a NULL VID
1: If the received packets are tagged, the switch will discard
packets with a VID that does not match the ingress port default
VID, which is indexed by the MII port’s ‘Port-based VLAN
index’
0: No packets will be dropped
In port-based VLAN configuration, this register indexs to port
8’s ‘Port VLAN Membership’, which can be defined in register
‘VLAN ID [A] Membership’ to ‘VLAN ID [I] Membership’.
Port 8 can only communicate within the membership. This
register also indexes to a default Port VID (PVID) for each port.
The PVID is used in tag insertion and filtering if the tagged
VID is not the same as the PVID.
This 9-bit field specifies which ports are members of VLAN I.
If a destination address look up fails, packets associated with
this VLAN will be forwarded to ports specified in this field.
E.g., 1 0000 0001 means port 8 and 0 are in this VLAN.
Default
0
0
1
1000
1
1111
1111
PHY 5 Register 18: VLAN Entry [I]
Table 94. PHY 5 Register 18: VLAN Entry [I]
Reg.bit
Name
18.[15:12] Reserved
18.[11:0] VLAN ID [I]
7.6.9.
Mode
RW
Description
Defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN I.
Default
1111
0000
0001
0000
PHY 5 Register 19: CPU Port & WAN Port
Table 95. PHY 5 Register 19: CPU Port & WAN Port
Reg.bit
Name
19.[15:8] Reserved
19.[7:4] WAN Port
19.[3:0]
CPU Port
Mode
RW
RW
Description
Specify the WAN port on the RTL8309SB.
1000=MII Port is WAN Port
0111=Port 7 is WAN Port 0110=Port 6 is WAN Port
0101=Port 5 is WAN Port 0100=Port 4 is WAN Port
0011=Port 3 is WAN Port 0010=Port 2 is WAN Port
0001=Port 1 is WAN Port 0000=Port 0 is WAN Port
Specify the CPU port on the RTL8309SB.
1000=MII Port is CPU Port
0111=Port 7 is CPU Port 0110=Port 6 is CPU Port
0101=Port 5 is CPU Port 0100=Port 4 is CPU Port
0011=Port 3 is CPU Port 0010=Port 2 is CPU Port
0001=Port 1 is CPU Port 0000=Port 0 is CPU Port
Single-chip 9-port 10/100Mbps Switch Controller
57
Default
0xFF
0111
0000
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
7.6.10.
PHY 5 Register 22: Port 5 Control 0
This register has the same definition as PHY 0 Register 22: Port 0 Control 0, page 46.
Note: Reg 22.8 is not pin Sel_PortPri strap option for port 5. Default value for 22.8 is 1.
7.6.11.
PHY 5 Register 23: Port 5 Control 1
This register has the same definition as PHY 0 Register 23: Port 0 Control 1, page 48.
7.6.12.
PHY 5 Register 24: Port 5 Control 2 & VLAN Entry [F]
Table 96. PHY 5 Register 24: Port 5 Control 2 & VLAN Entry [F]
Reg.bit
Name
24.[15:12] Port 5 VLAN
Index [3:0]
24.[11~9] Reserved
24.[8:0] VLAN ID [F]
Membership Bit
[8:0]
7.6.13.
Mode
RW
Description
In a port-based VLAN configuration, this register indexes
port 5’s ‘Port VLAN Membership’, which may be defined in
one of the registers ‘VLAN ID [A] Membership’ to ‘VLAN ID
[I] Membership’. Port 5 can only communicate within the
membership. This register also indexes to a default Port VID
(PVID) for each port. The PVID is used in tag insertion and
filtering if the tagged VID is not the same as the PVID.
RW
This 9-bit field specifies which ports are members of VLAN F.
If a destination address look up fails, packets associated with
this VLAN will be forwarded to ports specified in this field.
E.g., 1 0000 0001 means port 8 and 0 are in this VLAN.
Default
0101
111
1
0010
0000
PHY 5 Register 25: VLAN Entry [F]
Table 97. PHY 5 Register 25: VLAN Entry [F]
Reg.bit
Name
25.[15:12] Reserved
25.[11:0] VLAN ID [F]
Mode
RW
Description
Default
1111
Defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN F.
Single-chip 9-port 10/100Mbps Switch Controller
58
0000
0000
0101
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
7.7. PHY 6 Registers
7.7.1.
PHY 6 Register 0: Control
This register has the same definition as PHY 0 Register 0: Control, page 40.
7.7.2.
PHY 6 Register 1: Status
This register has the same definition as PHY 0 Register 1: Status, page 41.
7.7.3.
PHY 6 Register 4: Auto-Negotiation Advertisement
This register has the same definition as PHY 0 Register 4: Auto-Negotiation Advertisement, page 42.
7.7.4.
PHY 6 Register 5: Auto-Negotiation Link Partner Ability
This register has the same definition as PHY 0 Register 5: Auto-Negotiation Link Partner Ability, page 42.
7.7.5.
PHY 6 Register 6: Auto-Negotiation Expansion
This register has the same definition as PHY 0 Register 6: Auto-Negotiation Expansion, page 43.
7.7.6.
PHY 6 Register 22: Port 6 Control 0
This register has the same definition as PHY 0 Register 22: Port 0 Control 0, page 46.
Note: Reg 22.8 is not pin Sel_PortPri strap option for port 6. Default value for 22.8 is 1.
7.7.7.
PHY 6 Register 23: Port 6 Control 1
This register has the same definition as PHY 0 Register 23: Port 0 Control 1, page 48.
Single-chip 9-port 10/100Mbps Switch Controller
59
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
7.7.8.
PHY 6 Register 24: Port 6 Control 2 & VLAN Entry [G]
Table 98. PHY 6 Register 24: Port 6 Control 2 & VLAN Entry [G]
Reg.bit
Name
Mode
24[15:12] Port 6 VLAN index RW
[3:0]
24.[11~9] Reserved
24.[8:0] VLAN ID [G]
Membership Bit
[8:0]
7.7.9.
RW
Description
In a port-based VLAN configuration, this register indexes
port 6’s ‘Port VLAN Membership’, which may be defined in
one of the registers ‘VLAN ID [A] Membership’ to ‘VLAN ID
[I] Membership’. Port 6 can only communicate within the
membership. This register also indexes to a default Port VID
(PVID) for each port. The PVID is used in tag insertion and
filtering if the tagged VID is not the same as the PVID.
This 9-bit field specifies which ports are members of VLAN G.
If a destination address look up fails, packets associated with
this VLAN will be forwarded to ports specified in this field.
E.g., 1 0000 0001 means port 8 and 0 are in this VLAN.
Default
0110
111
1
0100
0000
PHY 6 Register 25: VLAN Entry [G]
Table 99. PHY 6 Register 25: VLAN Entry [G]
Reg.bit
Name
25.[15:12] Reserved
25[11:0] VLAN ID [G]
Mode
RW
Description
Defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN G.
Single-chip 9-port 10/100Mbps Switch Controller
60
Default
1111
0000
0000
0110
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
7.8. PHY 7 Registers
7.8.1.
PHY 7 Register 0: Control
This register has the same definition as PHY 0 Register 0: Control, page 40.
7.8.2.
PHY 7 Register 1: Status
This register has the same definition as PHY 0 Register 1: Status, page 41.
7.8.3.
PHY 7 Register 4: Auto-Negotiation Advertisement
This register has the same definition as PHY 0 Register 4: Auto-Negotiation Advertisement, page 42.
7.8.4.
PHY 7 Register 5: Auto-Negotiation Link Partner Ability
This register has the same definition as PHY 0 Register 5: Auto-Negotiation Link Partner Ability, page 42.
7.8.5.
PHY 7 Register 6: Auto-Negotiation Expansion
This register has the same definition as PHY 0 Register 6: Auto-Negotiation Expansion, page 43.
7.8.6.
PHY 7 Register 16: indirect Access Control
PHY 7 register 16 is used for reading or writing data to the MAC address table.
Table 100. PHY 7 Register 16: Indirect Access Control
Reg.bit
Name
16[15:2] Reserved
16.1
16.0
Command
execution
Read or write
operation
Mode
RW
RW
Description
1: Trigger a command to read or write the lookup table
0: Indicates this command has completed
1: Read cycle
0: Write cycle
Single-chip 9-port 10/100Mbps Switch Controller
61
Default
1111
1111
1111
11
0
0
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
7.8.7.
PHY 7 Register 17~20: Indirect Access Data
Table 101. PHY 7 Register 17~20: Indirect Access Data
Reg.bit
17
Name
Indirect Data
[63:48]
Mode
RW
18
Indirect Data
[47:32]
RW
19
Indirect Data
[31:16]
RW
20
Indirect Data
[15:0]
RW
Description
Bit 63~48 of indirect data.
Indirect Data [54] = If this bit is 1, indicates this entry is static
and will never be aged out. If this bit is 0, indicates this entry is
dynamically learned, aged, updated, and deleted.
Indirect Data [53:52] = 2-bit counter for internal aging.
Indirect Data [51:48] = The source port of this Source MAC
Address is learned.
Bit 47~32 of indirect data.
Indirect Data [47:40] = Source MAC Address [39:32].
Indirect Data [39:32] = Source MAC Address [47:40].
Bit 31~16 of indirect data.
Indirect Data [31:24] = Source MAC Address [23:16].
Indirect Data [23:16] = Source MAC Address [31:24].
Bit 15~0 of indirect data.
Indirect Data [15:8] = Source MAC Address [7:0].
Indirect Data [7:0] = Source MAC Address [15:8].
Default
0x00
0x00
0x00
0x00
Bits 1~0 and Bits 15~8 of this register also determine the
address of data in the lookup table.
In a write cycle: Bits 1~0 and Bits 15~8 indirectly map to an
entry in the lookup table. The written data should be filled in
Indirect Data [63:0]
In a read cycle: Bits 1~0 and Bits 15~8 indirectly map to an
entry in the lookup table. The read back data will be shown in
Indirect Data [63:0].
7.8.8.
PHY 7 Register 22: Port 7 Control 0
This register has the same definition as PHY 0 Register 22: Port 0 Control 0, page 46.
Note: Reg 22.8 is not pin Sel_PortPri strap option for port 7. Default value for 22.8 is 1.
7.8.9.
PHY 7 Register 23: Port 7 Control 1
This register has the same definition as PHY 0 Register 23: Port 0 Control 1, page 48.
7.8.10.
PHY 7 Register 24: Port 7 Control 2 & VLAN Entry [H]
Table 102. PHY 7 Register 24: Port 7 Control 2 & VLAN Entry [H]
Reg.bit
Name
Mode
24[15:12] Port 7 VLAN index RW
[3:0]
Description
In a port-based VLAN configuration, this register indexes
port 7’s ‘Port VLAN Membership’, which can be defined in one
of the registers ‘VLAN ID [A] Membership’ to ‘VLAN ID [I]
Membership’. Port 7 can only communicate within the
membership. This register also indexes to a default Port VID
(PVID) for each port. The PVID is used in tag insertion and
filtering if the tagged VID is not the same as the PVID.
24.[11~9] Reserved
Single-chip 9-port 10/100Mbps Switch Controller
Default
0111
111
62
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Reg.bit
24.[8:0]
7.8.11.
Name
VLAN ID [H]
Membership Bit
[8:0]
Mode
RW
Description
This 9-bit field specifies which ports are members of VLAN H.
If a destination address look up fails, packets associated with
this VLAN will be forwarded to ports specified in this field.
E.g., 1 0000 0001 means port 8 and 0 are in this VLAN.
Default
1
1000
0000
PHY 7 Register 25: VLAN Entry [H]
Table 103. PHY 7 Register 25: VLAN Entry [H]
Reg.bit
Name
25.[15:12] Reserved
25.[11:0] VLAN ID [H]
Mode
RW
Description
Defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN H.
Default
1111
0000
0000
0111
7.9. PHY 8 Registers
7.9.1.
PHY 8 Register 0: Control
Note: This register only works in MII PHY and SNI PHY mode. In MII MAC mode, these registers have no meaning.
Table 104. PHY 8 Register 0: Control
Reg.bit
0.15
0.14
0.13
Name
Mode
Reset
RO
Loopback
RO
(digital loopback)
Speed Select
RW
0.12
Auto Negotiation
Enable
RW
0.11
0.10
0.9
Power Down
Isolate
Restart Auto
Negotiation
Duplex Mode
RO
RO
RO
0.8
0.[7:0]
RW
Description
0: No reset allowed (permanently=0)
0: Normal operation (permanently=0)
Default
0
0
1: 100Mbps
0: 10Mbps
When NWay is enabled, this bit reflects the result of autonegotiation (Read only).
When NWay is disabled, this bit can be set through SMI
(Read/Write).
1: Enable auto-negotiation process
0: disable auto-negotiation process
This bit can be set through SMI (Read/Write).
0: Normal operation (permanently=0)
0: Normal operation (permanently=0)
0: Normal operation (permanently=0)
Pin MII_SPD
_STA strap
option
1: Full duplex operation
0: Half duplex operation
When NWay is enabled, this bit reflects the result of autonegotiation (Read only).
When NWay is disabled, this bit may be set through SMI
(Read/Write).
Pin MII_DUP
_STA strap
option
Reserved
Single-chip 9-port 10/100Mbps Switch Controller
1
0
0
0
0
63
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
7.9.2.
PHY 8 Register 1: Status
Note: This register only works in MII PHY and SNI PHY mode. In MII MAC mode, these registers have no meaning.
Table 105. PHY 8 Register 1: Status
Reg.bit
1.15
1.14
1.13
1.12
1.11
1.[10:7]
1.6
Name
Mode
100Base_T4
RO
100Base_TX_FD
RO
100Base_TX_HD
RO
10Base_T_FD
RO
10Base_T_HD
RO
Reserved
RO
MF Preamble
RO
Suppression
Auto-negotiate
RO
Complete
Remote Fault
RO
Auto-Negotiation
RO
Ability
Link Status
RO
1.5
1.4
1.3
1.2
1.1
1.0
7.9.3.
Jabber Detect
Extended
Capability
RO
RO
Description
0: No 100Base-T4 capability
1: 100Base-TX full duplex capable (permanently=1)
1: 100Base-TX half duplex capable (permanently=1)
1: 10Base-TX full duplex capable (permanently=1)
1: 10Base-TX half duplex capable (permanently=1)
The RTL8309SB will accept management frames with
preamble suppressed (permanently=1)
1: Auto-negotiation process completed. MII Reg.4, 5 are valid if
this bit is set (permanently=1)
0: No remote fault (permanently=0)
1: NWay auto-negotiation capable (permanently=1)
Default
0
1
1
1
1
0
1
1
0
1
1: Link is established. If the link should ever fail, this bit will be Pin MII_LNK
0 until after reading this bit again
_STA# strap
0: Link failed
option
0: No Jabber detected (permanently=0)
0
1: Extended register capable (permanently=1)
1
PHY 8 Register 4: Auto-Negotiation Advertisement
Note: This register only works in MII PHY and SNI PHY mode. In MII MAC mode, these registers have no meaning.
Table 106. PHY 8 Register 4: Auto-Negotiation Advertisement
Reg.bit
4.15
4.14
4.13
Name
Next Page
Mode
RO
Acknowledge
Remote Fault
RO
RO
Reserved
Pause
RO
RW
4.9
4.8
100Base-T4
100Base-TX-FD
RO
RW
4.7
100Base-TX
RW
4.6
10Base-T-FD
RW
4.5
10Base-T
RW
Selector Field
RO
4.[12:11]
4.10
4.[4:0]
Description
1: Next Page enabled
0: Next Page disabled (Permanently=0)
Permanently=0
1: Advertises that the RTL8309S has detected a remote fault
0: No remote fault detected
1: Advertises that the RTL8309SB possesses 802.3x flow
control capability
0: No flow control capability
Technology not supported (Permanently=0).
1: 100Base-TX full duplex capable
0: Not 100Base-TX full duplex capable
1: 100Base-TX half duplex capable
0: Not 100Base-TX half duplex capable
1: 10Base-TX full duplex capable
0: Not 10Base-TX full duplex capable
1: 10Base-TX half duplex capable
0: Not 10Base-TX half duplex capable
[00001]=IEEE 802.3.
Single-chip 9-port 10/100Mbps Switch Controller
64
Default
0
0
0
0
Pin
MII_FCTRL
_STA strap
option
0
1
1
1
1
00001
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
7.9.4.
MII Port NWay Mode
Table 107. MII Port NWay Mode
Condition
Upon Reset
After Reset
Description
Strapping MII_SPD_STA=1 and MII_DUP_STA=1 Reg0.13=1, Reg0.8=1
Strapping MII_SPD_STA=1 and MII_DUP_STA=0 Reg0.13=1, Reg0.8=0
Strapping MII_SPD_STA=0 and MII_DUP_STA=1 Reg0.13=0, Reg0.8=1
Strapping MII_SPD_STA=0 and MII_DUP_STA=0 Reg0.13=0, Reg0.8=0
Defau1t value of Reg4.10 is strapped from pin MII_FCTRL_STA
Default value of Reg1.2 is strapped from pin MII_LNK_STA#.
MII_LNK_STA# pulled down Reg1.2=1.
MII_LNK_STA# pulled up Reg1.2=0.
If PHY 8 register 4 is configured as Reg4.8=1, Reg4.7=1, Reg4.6=1, Reg4.5=1, the RTL8309SB
will reflect this configuration in PHY 8 register 0 as Reg0.13=1 and Reg0.8=1.
If PHY 8 register 4 is configured as Reg4.8=0, Reg4.7=1, Reg4.6=1, Reg4.5=1, the RTL8309SB
will reflect this configuration in PHY 8 register 0 as Reg0.13=1 and Reg0.8=0.
If PHY 8 register 4 is configured as Reg4.8=0, Reg4.7=0, Reg4.6=1, Reg4.5=1, the RTL8309SB
will reflect this configuration in PHY 8 register 0 as Reg0.13=0 and Reg0.8=1.
If PHY 8 register 4 is configured as Reg4.8=0, Reg4.7=0, Reg4.6=0, Reg4.5=1, the RTL8309SB
will reflect this configuration in PHY 8 register 0 as Reg0.13=0 and Reg0.8=0.
If the CPU polls register 5, the RTL8309SB replies with the contents in register 4.
If the CPU polls register 4, the RTL8309SB replies with the contents in register 4.
7.9.5.
MII Port Force Mode
Table 108. MII Port Force Mode
Condition
Upon Reset
After Reset
Description
Strapping MII_SPD_STA=1 and MII_DUP_STA=1 Reg0.13=1, Reg0.8=1
Strapping MII_SPD_STA=1 and MII_DUP_STA=0 Reg0.13=1, Reg0.8=0
Strapping MII_SPD_STA=0 and MII_DUP_STA=1 Reg0.13=0, Reg0.8=1
Strapping MII_SPD_STA=0 and MII_DUP_STA=0 Reg0.13=0, Reg0.8=0
Defau1t value of Reg4.10 is strapped from pin MII_FCTRL_STA.
Default value of Reg1.2 is strapped from pin MII_LNK_STA#.
MII_LNK_STA# pulled down Reg1.2=1.
MII_LNK_STA# pulled up Reg1.2=0.
The CPU only writes register 0.13 and 0.8 to configure a link status, then reads register 1.2 to
determine whether the link partner can link with this status.
Single-chip 9-port 10/100Mbps Switch Controller
65
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
8.
Functional Description
8.1. Physical Layer Transceiver Functional Overview
8.1.1.
Auto Negotiation for UTP
The RTL8309SB obtains the states of duplex, speed, and flow control ability for each port in UTP mode through the autonegotiation mechanism defined in the IEEE 802.3u specifications. During auto-negotiation, each port advertises its ability to its
link partner and compares its ability with advertisements received from its link partner. By default, the RTL8309SB advertises
full capabilities (100Full, 100Half, 10Full, 10Half) together with flow control ability.
If the link partner to the RTL8309SB is forced to bypass auto negotiation, or auto negotiation is not supported, the link status
of the RTL8309SB is determined by observing the signal at the receiver.
8.1.2.
100Base-Tx Transmit Function
The 100Base-TX transmit function performs parallel to serial conversion, 4B/5B coding, scrambling, NRZ/NRZI conversion,
and MLT-3 encoding. The 5-bit serial data stream after 4B/5B coding is then scrambled as defined by the TP-PMD Stream
Cipher function to flatten the power spectrum energy such that EMI effects can be reduced significantly.
The scrambled seed is based on PHY addresses and is unique for each port. After scrambling, the bit stream is driven onto the
network media in the form of MLT-3 signaling. The MLT-3 multi-level signaling technology moves the power spectrum
energy from high frequency to low frequency, which also benefits EMI emission.
8.1.3.
100Base-Tx Receive Function
The 100Base-TX receive mechanism includes an adaptive equalizer, DC restoration, MLT3 to NRZI conversion, data and
clock recovery, NRZI to NRZ conversion, de-scrambling, 4B/5B decoding, and serial to parallel conversion. The process starts
with the adaptive equalizer and DC restoration circuits to compensate for the distortion in the MLT-3 signal. This variable
equalizer makes an estimate by comparing the received signal strength against some known cable characteristic, then tunes
itself for optimization. This on-going process allows the RTL8309SB to adjust itself to environmental changes such as
temperature variations. The equalized data then goes through a DC restoration circuit to compensate for the effects of base line
wander in order to improve the dynamic range.
After restoration, the MLT-3 to NRZI, NRZI to NRZ converters then convert the analog signal to a digital bit-stream. The
clock recovery circuit extracts the 125MHz clock from the edges of the NRI signal. A De-scrambler, 5B/4B decoder and serialto-parallel conversion circuits follow. Finally, the converted parallel data is fed into the MAC.
Single-chip 9-port 10/100Mbps Switch Controller
66
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
8.1.4.
10Base-T Transmit Function
The output 10Base-T waveform is Manchester-encoded before it is driven into the network media with a typical 2.3V
amplitude. The internal filter shapes the driven signals to reduce EMI emission, eliminating the need for an external filter. The
harmonic contents are at least 27dB below the fundamental when the RTL8309SB drives an all-ones Manchester-encoded
signal.
8.1.5.
10Base-T Receive Function
The Manchester decoder converts the incoming serial stream to NRZ data when the squelch circuit detects the signal level is
above squelch level.
The squelch circuit eliminates signals with an amplitude lower than 400mV, or with short pulse width, to prevent the decoder
being abnormally triggered by noise at the differential pairs. When the received signal exceeds the squelch level, the internal
PLL locks the input signal and the RTL8309SB will decode a data frame.
8.1.6.
Link Monitor
The 10Base-T link pulse detection circuit continually monitors the RXIP/RXIN pins for the presence of valid link pulses.
Auto-polarity is implemented to correct the detected reverse polarity of RXIP/RXIN signal pairs.
8.1.7.
Power Saving Mode
In power saving mode, the power for the MAC and parts of the PHY transceiver are turned off. The RTL8309SB implements
power saving mode on a per-port basis. A port automatically enters power saving mode 10 seconds after the cable is
disconnected from it. Once a port enters power saving mode, it transmits normal link pulses only on its TXOP/TXON pins and
continues to monitor the RXIP/RXIN pins to detect incoming signals, which might be the 100Base-TX MLT-3 idle pattern,
10Base-T link pulses, or Auto-Negotiation’s FLP (Fast Link Pulse). After it detects an incoming signal, it wakes up from
power saving mode and operates in normal mode according to the result of the connection.
8.1.8.
Power-Down Mode
The RTL8309SB implements power-down mode on a per-port basis. Setting MII Reg.0.11 forces the corresponding port of the
RTL8309SB to enter power-down mode. This disables all transmit/receive functions, except SMI (Serial Management
Interface: MDC/MDIO, also known as MII Management Interface).
Single-chip 9-port 10/100Mbps Switch Controller
67
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
8.1.9.
Auto Crossover Detection
During the link setup phase, the RTL8309SB checks whether it receives active signals on every port in order to determine if a
connection can be established. In cases where the receiver data pin pair is connected to the transmitter data pin pair of the peer
device and vice versa, the RTL8309SB will automatically change its configuration to swap receiver data pins with transmitter
data pins. In other words, the RTL8309SB adapts automatically to a peer device’s configuration. If a port is connected with a
crossover cable to a NIC with an MDI-X interface, the RTL8309SB will reconfigure the port to ensure proper connection. This
effectively replaces the DIP switch commonly used for reconfiguring a port on a hub or switch.
By pulling-up EN_AUTOXOVER, the RTL8309SB identifies the type of connected cable and sets the port to MDI or MDIX.
When switching to MDI mode, the RTL8309SB uses TXOP/N as transmit pairs; when switching to MDIX mode, the
RTL8309SB uses RXIP/N as transmit pairs. This function is port-based. Pulling-down EN_AUTOXOVER disables this
function and the RTL8309SB operates in MDI mode, in which TXOP/N represents transmit pairs and RXIP/N represents
receive pairs.
IEEE 802.3 compliant forced mode 100M ports with auto crossover have link issues with NWay (Auto-Negotiation) ports. It is
recommended to not use auto crossover for forced 100M.
8.2. Switch Core Functional Overview
8.2.1.
Address Search, Learning, and Aging
When a packet is received, the RTL8309SB uses the least 10 bits of the destination MAC address to index the 1024-entry lookup table, and at the same time compares the destination MAC address with the contents of the 16-entry CAM. If the indexed
entry is valid or the CAM comparison is matched, the received packet will be forwarded to the corresponding destination port.
Otherwise, the RTL8309SB will broadcast the packet. This is the ‘Address Search’.
The RTL8309SB then extracts the least 10 bits of the source MAC address to index the 1024-entry look-up table. If the entry is
not already in the table it will record the source MAC address and add switching information. If this is an occupied entry, it
will update the entry with new information. This is called ‘Learning’. If the indexed location has been occupied by a different
MAC address (hash collision), the new source MAC address will be recorded into the 16-entry CAM. The 16-entry CAM
reduces address hash collisions and improves switching performance.
Address aging is used to keep the contents of the address table correct in a dynamic network topology. The look-up engine will
update the time stamp information of an entry whenever the corresponding source MAC address appears. An entry will be
invalid (aged out) if it’s time stamp information is not refreshed by the address learning process during the aging time period.
The aging time of the RTL8309SB is around 300 seconds.
Single-chip 9-port 10/100Mbps Switch Controller
68
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
8.2.2.
Flow Control
The RTL8309SB supports standard IEEE 802.3x full duplex flow control ability on both transmit and receive sides. If the
RTL8309SB recognizes that the resources of the destination port of this packet are being used up, it will issue a ‘pause on’
frame to the source port of this packet with a maximum time as defined in IEEE 802.3x. Once the resource is available, the
RTL8309SB sends a ‘pause off’ frame with zero pause time to turn on transmissions.
On the receive side, when the RTL8309SB receives a pause control packet on a port, it stops transmitting any packets to this
port, except flow control packets, for a period of time specified in the received pause control frame. If it receives another pause
control packet in this period of time on the same port, the timer will be updated with the new value specified in the latest pause
control packet. The RTL8309SB will re-start transmitting packets on this port after the timer has expired.
8.2.3.
Half Duplex Operation
In half duplex mode, the CSMA/CD media access method is the means by which two or more stations share a common
transmission medium. To transmit, a station waits (defers) for a quiet period on the medium (that is, no other station is
transmitting) and then sends the intended message in bit-serial form. If the message collides with that of another station, then
each transmitting station intentionally transmits for an additional predefined period to ensure propagation of the collision
throughout the system. The station remains silent for a random amount of time (backoff) before attempting to transmit again.
When a transmission attempt has terminated due to a collision, it is retried until it is successful. A controlled randomization
process called “truncated binary exponential backoff” determines the scheduling of the retransmissions. At the end of
enforcing a collision (jamming), the switch delays before attempting to retransmit the frame. The delay is an integer multiple
of slotTime (512 bit times). The number of slot times to delay before the nth retransmission attempt is chosen as a uniformly
distributed random integer ‘r’ in the range:
0
r < 2k
where:
k =min (n, backoffLimit). IEEE 802.3 defines the backoffLimit as 10.
Single-chip 9-port 10/100Mbps Switch Controller
69
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
8.2.4.
Backpressure
The RTL8309SB provides two methods of preventing packet congestion when resources are about to be used up. The first is
by colliding incoming packets when the packets are going to a congested port. The second is by sending preambles to defer
other station’s transmissions.
Backpressure: When the switch is overloaded it will assert a jam pattern to collide incoming packets until the congestion
condition of the destination port is resolved. The 48 pass 1 mechanism prevents the port being partitioned by excessive
collisions. The RTL8309SB will forward one packet successfully after 48 forced collisions. This method carries some risk
since the resource may not be available after 48 forced collisions. If the 48 pass 1 function is turned off, the RTL8309SB will
always collide incoming packets with a jam pattern.
By deferring, the RTL8309SB sends preambles to defer other stations’ transmissions. To avoid jabber and excessive deference
as defined in IEEE 803.3, the RTL8309SB will pull down the carrier sense signal for a short time and then raise it up it
quickly. This short silence time is to prevent other stations seizing the medium and sending packets out. If there are packets to
send out during the carrier sense rising up period, carrier sense flow control will be replaced by those packets. After the
packets are sent, carrier sense rises up again, repeating the pattern until the system is available.
8.2.5.
UTP Port Status Configuration
The RTL8309SB supports flexible status configuration via strapping pins for each PHY, En_ANEG, En_FCTRL,
Force_Duplex, and Force_Speed, on a group basis. These pins are used to assign the initial values to PHY register 0 and 4
upon reset. The configuration parameters set by these four strapping pins globally control the abilities of each port. For
advanced applications requiring configuration on a per-port basis, a serial EEPROM should be attached.
If auto negotiation is enabled by strapping pin ‘En_ANEG’, the link status is determined by the result of the auto negotiation
process. The default configuration of the RTL8309SB is all abilities enabled (the content of the PHY registers will be
Reg0.12=1, Reg4.5=1, Reg4.6=1, Reg4.7=1, Reg4.8=1, and Reg4.10=1). If auto negotiation is disabled by EN_ANEG, the
link speed and duplex mode is forced by strapping pins, Force_Duplex and Force_Speed. These two pins have no effect if auto
negotiation is enabled.
8.2.6.
MII Port (The 9th Port)
The RTL8309SB is an 8-port Fast Ethernet switch with one extra MII port for specific applications. It integrates embedded
SRAM for packet storage, nine MAC, and eight physical layer transceivers for 10Base-T and 100Base-TX, into a single chip.
MII Port Operating Mode
The MII port only provides a MAC part to support the MII interface for connection with an external MAC or PHY. Two
strapping pins, MII_MODE[1:0], are used to configure this interface to act as MII PHY mode, SNI PHY mode, or MII MAC
mode to work with the external MAC of a routing engine, PHY of a HomePNA, or other physical layer transceivers.
Single-chip 9-port 10/100Mbps Switch Controller
70
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
If the MII port connects with an external MAC, such as the processor of a router application, it will act as a PHY. This is PHY
mode MII, or PHY mode SNI. In PHY mode MII or PHY mode SNI, the MII port uses the MAC part only, and provides an
external MAC interface to connect MACs of external devices. In order to connect both MACs, the MII of the switch MAC
should be reversed into PHY mode.
If the MII port connects with an external PHY, such as the PHY of a HomePNA application, it will act as a MAC. This is
MAC mode MII. In MAC mode MII, the MII port uses its MAC to connect to an external PHY and ignores the internal PHY
part.
The following figures illustrate various utilizations of the ninth port by setting strapping pins. They consist of the following
general system applications:
•
•
•
•
General standalone 8-port switch applications.
Router applications.
HomePNA applications.
Other PHY applications.
Router Application
HomePNA or Other PHY Application
RTL8309SB
10Base-T or
100Base-TX
PHYceiver
10/100
MAC 0
RX+-[1]
TX+-[1]
10Base-T or
100Base-TX
PHYceiver
10/100
MAC 1
RX+-[7]
TX+-[7]
10Base-T or
100Base-TX
PHYceiver
10/100
MAC 7
Mode
Select
PHY
Mode
10/100
MAC 8
8 LAN
Ports
RX+-[0]
TX+-[0]
10Base-T or
100Base-TX
PHYceiver
10/100
MAC 0
RX+-[1]
TX+-[1]
10Base-T or
100Base-TX
PHYceiver
10/100
MAC 1
RX+-[7]
TX+-[7]
10Base-T or
100Base-TX
PHYceiver
10/100
MAC 7
Mode
Select
MAC
Mode
Interface
ADSL or Cable
Modem
(MII Interface PHY)
MAC
Mode
Interface
13
13
/
MAC
13
/
MAC
1 WAN
Interface
Router
/
1 WAN
Interface
10/100
MAC 8
PHY
Mode
Switch Fabric, V LAN, QoS, Trunking
RX+-[0]
TX+-[0]
Switch Fabric, V LAN, QoS, Trunking
8 LAN
Ports
RTL8309SB
HomePNA or
Other PHYs
Figure 3. MII Port Application
MII Interface
In order to act as a PHY when the MII port is in PHY mode, some pins of the external MAC interface must be changed. For
example, TXC are input pins for MAC but output pins for PHY; so the pin MTXC/PRXC is input for MAC mode and output
for PHY mode. Refer to Figure 4, on page 72 to check the relationship between the RTL8309SB and the external device.
Note: Connect the input of the RTL8309SB to the output of the external device. The RTL8309SB has no RXER, TXER, and CRS
pins for MII signaling. Because the RTL8309SB does not support pin CRS, it is necessary to connect the MTXEN/PRXDV
(output) of PHY mode to both CRS and RXDV (input) of the external device.
Single-chip 9-port 10/100Mbps Switch Controller
71
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
MII Port Status Pins
Four signaling pins (MII_LNK_STA#, MII_SPD_STA, MII_DUP_STA, MII_FCTRL_STA) are used to provide operating
status to the MII port MAC in real time after reset. This means the external MAC or PHY must be forced to the same port
status as the MII port. The MII port automatically detects the link status both from the TXC of the external PHY and
MII_LNK_STA#.
RTL8309SB
x
Floating=High
Floating=High
Pull-down=Link On
Note 1
Note 2
Note 3
25M/2.5MHz
102 MII_MODE[0]
65 MRXC/PTXC
101 MII_MODE[1]
66 MRXDV/PTXEN
51 MII_LNK_STA#
70~67 MRXD[3:0]/PTXD[3:0]
49 MII_SPD_STA
50 MII_DUP_STA
56 MTXC/PRXC
48 MII_FCTRL_STA
4
57 MTXEN/PRXDV
4
61~58 MTXD[3:0]/PRXD[3:0]
64 MCOL/PCOL
RXC
CRS
RXDV
RXD[3:0]
TXC
TXEN
TXD[3:0]
COL
VDSL/
HomePNA/
Single PHY
MAC mode MII
RTL8309SB
x
Floating=High
Pull-down=Link On
Note 1
Note 2
Note 3
25M/2.5MHz
102 MII_MODE[0]
56 MTXC/PRXC
101 MII_MODE[1]
57 MTXEN/PRXDV
51 MII_LNK_STA#
61~58 MTXD[3:0]/PRXD[3:0]
49 MII_SPD_STA
50 MII_DUP_STA
48 MII_FCTRL_STA
4
65 MRXC/PTXC
66 MRXDV/PTXEN
70~67 MRXD[3:0]/PTXD[3:0]
4
64 MCOL/PCOL
RXC
CRS
RXDV
RXD[3:0]
TXC
TXEN
TXD[3:0]
COL
CPU/
Processor/
Routing Engine
MII PHY mode
RTL8309SB
Floating=High
Pull-down=Link On
Pull-down
Note 2
Note 3
10MHz
102 MII_MODE[0]
56 MTXC/PRXC
101 MII_MODE[1]
57 MTXEN/PRXDV
51 MII_LNK_STA#
58 MTXD[0]/ PRXD[0]
49 MII_SPD_STA
1
65 MRXC/PTXC
50 MII_DUP_STA
48 MII_FCTRL_STA
66 MRXDV/PTXEN
67 MRXD[0]/ PTXD[0]
1
64 MCOL/PCOL
RXC
CRS
RXDV
RXD
TXC
TXEN
TXD
COL
CPU/
Processor/
Routing Engine
SNI PHY mode
Note 1: Pulled high or floating sets the speed to 100Mbps. Pulled down sets the speed to 10Mbps.
Note 2: Pulled high or floating enables full duplex. Pulled down sets half duplex.
Note 3: Pulled high or floating enables flow control or backpressure. Pulled down disables flow control or backpressure.
Figure 4. MII Port Operating Mode Overview
Single-chip 9-port 10/100Mbps Switch Controller
72
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
MII PHY Mode/SNI PHY Mode
In routing applications, the RTL8309SB cooperates with a routing engine to communicate with the WAN (Wide Area
Network) through MII/SNI.
In MII PHY mode, pulling MII_SPD_STA up results in the MII port operating at 100Mbps with MTXC, and MRXC running
at 25MHz. Pulling MII_SPD_STA down results in the MII port operating at 10Mbps with MTXC, and MRXC running at
2.5MHz.
In SNI PHY mode, MII_SPD_STA has no effect and should be pulled down. SNI mode operates at 10Mbps only, with MTXC
and MRXC running at 10MHz. In SNI mode, the RTL8309SB does not loop back a RXDV signal as a response to TXEN and
does not support the heartbeat function (asserting COL signal for each complete TXEN signal). This interface is a bit-wide
data interface used with some controllers to function as a network layer protocol in half duplex operation.
MII MAC Mode
In HomePNA or other PHY applications, the RTL8309SB provides an MII interface to the underlying HomePNA or other
physical devices so as to communicate with other types of LAN media. In such applications, MII_MODE[1:0] should be
pulled high or be floated upon reset.
In HomePNA applications, MII_DUP_STA must be pulled down since HomePNA is half-duplex only. The link speed of the
RTL8309SB is determined by RXC and TXC from the PHY of the HomePNA (running at 1Mbps). Thus, the MII_SPD_STA
has no effect and should be pulled down for compatibility with HomePNA’s PHY. The link state of HomePNA is unstable (a
characteristic of the HomePNA 1.0 standard) such that MII_LNK_STA# must be pulled down instead of being wired to the
LINK LED pin of the HomePNA.
Because the HomePNA PHY physical layer is half duplex and can only detect a collision event during the AID header interval
(the time when transmitting the Ethernet preamble), the backpressure flow control algorithm is not suitable for a HomePNA
network and MII_FCTRL_STA should be pulled down.
For other PHY applications, the strap status set by MII_SPD_STA, MII_DUP_STA, and MII_FCTRL_STA depends on the
particular application.
MII Port PHY Register
The external MAC automatically polls and accesses the internal PHY registers in the RTL8309SB when the MII port is
operated in MII PHY mode with auto negotiation enabled. For the auto negotiation process in the CPU to function properly,
the RTL8309SB provides PHY register 0, 1, and 4, to virtually provide the MII port’s PHY status to the external MAC.
Because the MII port of the RTL8309SB does not have a true PHY in it, it does not process the auto negotiation. The contents
of PHY registers 4 and 5 should be the same for both terminals of the MII bus when operating on the same link status. Thus,
the RTL8309SB does not provide PHY register 5; it only emulates it. If the CPU polls PHY register 5, the RTL8309SB returns
the contents of PHY register 4 since it cannot execute the auto negotiation process. If the CPU polls PHY register 4, the
RTL8309SB returns the contents of PHY register 4.
Single-chip 9-port 10/100Mbps Switch Controller
73
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
8.3. Advanced Functionality Overview
8.3.1.
Port-Based VLAN
If the VLAN function is enabled by pulling down the Dis_VLAN strapping pin, the default VLAN membership configuration
by internal register is the MII port overlapped with all the other ports to form nine individual VLANs. Via an attached serial
EEPROM or via SMI, the default configuration may be modified to allow the input ports to join any of the nine VLAN groups:
VLAN A, B, C, D, E, F, G, H, and I. Each input port can be a member of more than one VLAN group.
Port-based VLAN mapping is the simplest implicit mapping rule. Each incoming frame is assigned to a VLAN based on the
input port into which it arrived at the switch. It is not necessary to parse and inspect frames in real-time to determine their
VLAN mapping. All frames received on a given input port will be forwarded to members of that port’s VLAN group. The
RTL8309SB supports nine VLAN indexes to individually index received packets to one of the nine VLAN membership
registers. These nine groups of VLAN membership registers, VLAN ID [A] membership bit [8:0] ~ VLAN ID [I] membership
bit [8:0], determine which ports are members of this VLAN. The RTL8309SB forwards frames to members of this VLAN only
(excluding the input port of this frame). VLAN membership registers descript which port are members in a VLAN member set.
A port that is not specified in this port’s member set should generally not be receiving and/or transmitting frames for that
VLAN.
Single-chip 9-port 10/100Mbps Switch Controller
74
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Figure 5 illustrates a typical application. VLAN indexes and VLAN member definitions are set to form three different VLAN
groups.
VLAN 1
Port 0 VLAN index=0000
P0
Port 1 VLAN index=0000
P1
Port 2 VLAN index=0000
P2
VLAN 2
P3
000000111
MemberB
000111000
MemberC
011000000
MemberD
111000000
MemberE
110000000
MemberF
000000000
MemberG
000000000
MemberH
000000000
MemberI
000000000
Port 3 VLAN index=0001
P4
Port 4 VLAN index=0001
P5
Port 5 VLAN index=0001
P6
MemberA
Port 6 VLAN index=0010
P7
Port 7 VLAN index=0011
VLAN 3
P8
Port 8 VLAN index=0100
RTL8309SB
VLAN 4
Figure 5. VLAN Grouping Example
In cases where VLAN and trunking are both enabled at the same time, a situation may occur where a packet is forwarded to a
trunk but one of the members of this trunk is not in the same VLAN group associated with the source port. In this situation, the
VLAN function has higher priority than the trunking operation. The packet will not be forwarded to the port of this trunk.
For non-VLAN tagged frames, the RTL8309SB performs port-based VLAN. It will use Port n VLAN index [3:0] to index to a
VLAN membership. The VLAN ID associated with this indexed VLAN membership is the Port VID (PVID) of this port.
Single-chip 9-port 10/100Mbps Switch Controller
75
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
8.3.2.
802.1Q Tagged-VID based VLAN
802.1Q tagged-VID based VLAN mapping uses a 12-bit explicit identifier in the VLAN tag to associate received packets with
a VLAN. Nine groups of VLAN membership registers, VLAN ID [A] membership [8:0] ~ VLAN ID [I] membership [8:0],
consist of ports that are in the same VLAN corresponding to the registers defined in VLAN ID [A] [11:0] ~ VLAN ID [I]
[11:0]. If the VID of a VLAN-tagged frame does not hit the VLAN ID [A] [11:0] ~ VLAN ID [I] [11:0], then the RTL8309SB
performs port-based VLAN mapping to the member set indexed by the Port n VLAN index [3:0]. Otherwise, the RTL8309SB
compares the explicit identifier in the VLAN tag with the nine VLAN registers to determine the VLAN association of this
frame, then forwards it to the member set of this VLAN. Two VIDs are reserved for special purposes. One of them is all ones
and is currently unused. The other is all zeros and indicates a priority tag, which is treated as an untagged frame.
When 802.1Q tag aware VLAN is enabled, the RTL8309SB performs 802.1Q tag-based VLAN mapping for tagged frames,
but performs port-based VLAN mapping for untagged frames. If 802.1Q tag-aware VLAN is disabled, the RTL8309SB
performs only port-based VLAN mapping both for non-tagged and tagged frames. Figure 6 illustrates the processing flow
when 802.1Q tag aware VLAN is disabled.
Un-tagged
Tagged
Length/Type
SA
DA
Length/Type 802.1Q Tag
SA
DA
------
------
P0
P0VLANIndex=0000
P1
P2
P3
Search
VID table
P4
P5
P6
VIDA=12'h001
MemberA 1 0 0 0 0 0 0 0 1
VIDB=12'h0ff
MemberB 1 0 0 0 0 0 0 1 0
VIDC=12'h1ff
MemberC 1 0 0 0 0 0 1 0 0
VIDD=12'h2ff
MemberD 1 0 0 0 0 1 0 0 0
VIDE=12'h3ff
MemberE 1 0 0 0 1 0 0 0 0
VIDF=12'h4ff
MemberF 1 0 0 1 0 0 0 0 0
VIDG=12'h5ff
MemberG 1 0 1 0 0 0 0 0 0
VIDH=12'h6ff
MemberH 1 1 0 0 0 0 0 0 0
VIDI=12'h7ff
MemberI 1 1 1 1 1 1 1 1 1
P7
Length/Type
SA
DA
Length/Type 802.1Q Tag
SA
DA
------
RTL8309SB
P8
------
Figure 6. Tagged and Untagged Packet Forwarding When 802.1Q Tag Aware VLAN is Disabled
Two VLAN ingress filtering functions are supported by the RTL8309SB in registers. One is the ‘admit VLAN tagged frame’
function, which provides the ability to receive VLAN-tagged frames only. Untagged or priority tagged (VID=0) frames will be
dropped. The other is the ‘ingress member set filtering’, which will drop frames if the receive port is not in the member set.
There are also two optional egress filtering functions supported by the RTL8309SB through strapping. One is ‘Leaky VLAN’,
which enables inter-VLAN unicast packet forwarding. That is, if the layer 2 look-up table search has a hit, then the unicast
packet will be forwarded to the egress port, ignoring the egress rule. The other is ‘ARP VLAN’, which broadcasts ARP packets
to all other ports, ignoring the egress rule.
Single-chip 9-port 10/100Mbps Switch Controller
76
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
8.3.3.
QoS Operation
The RTL8309SB can recognize the QoS priority information of incoming packets to give a different egress service priority.
The RTL8309SB identifies the packets as high priority based on several types of QoS priority information:
•
Port-based priority
•
802.1p/Q VLAN priority tag
•
TCP/IP's TOS/DiffServ (DS) priority field
•
IP Address
There are two priority queues; a high-priority queue and a low-priority queue. The queue service rate is based on the Weighted
Round Robin algorithm. The packet-based service weight ratio of the high-priority queue and low-priority queue can be set to
4:1, 8:1, 16:1 or ‘Always high priority first’ by hardware pins upon reset, or internal register via SMI after reset.
Port-Based Priority
When port-based priority is applied, packets received from the high-priority port are sent to the high-priority queue of the
destination port. High priority ports can be partially set by hardware pins, and wholly configured in internal registers.
802.1p-Based Priority
When 802.1p VLAN tag priority applies, the RTL8309SB recognizes the 802.1Q VLAN tag frames and extracts the 3-bit User
Priority information from the VLAN tag. The RTL8309SB sets the threshold of User Priority as 3. Therefore, VLAN tagged
frames with User Priority value = 4~7 will be treated as high priority frames, other User Priority values (0~3) as low priority
frames (follows 802.1p standard). The threshold value can be modified in internal registers via an SMI interface or configured
in EEPROM.
DiffServ-Based Priority
When TCP/IP’s TOS/DiffServ(DS) based priority is applied, the RTL8309SB recognizes TCP/IP Differential Services Code
Point (DSCP) priority information from the DS-field defined in RFC2474. The DS field byte for the IPv4 is a Type-of-Service
(TOS) octet. The recommended DiffServ Code Point is defined in RFC2597 to classify the traffic into different service classes.
The RTL8309SB extracts the codepoint value of DS-fields from IPv4 packets and identifies the priority of the incoming IP
packet following the definition below:
High priority: where the DS-field = (EF, Expected Forwarding:) 101110
(AF, Assured Forwarding:) 001010; 010010; 011010; 100010
(Network Control:) 110000 and 111000
Differential service code point [A] specified in internal register;
Differential service code point [B] specified in internal register;
Low priority: where the DS-field = other values.
The VLAN tagged frame and 6-bit DS-field in the IPv4 frame format is shown below:
Single-chip 9-port 10/100Mbps Switch Controller
77
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Table 109. 802.1Q VLAN Tag Frame Format
6 bytes
DA
6 bytes
SA
2 bytes
81-00
3 bits
User-Priority
(0~3:Low-pri; 4~7: High-pri)
----
Table 110. IPv4 Frame Format
6 bytes
DA
6 bytes
SA
4 bytes
802.1Q Tag
(optional)
2 bytes
08-00
4 bits
Version IPv4=
0100
4 bits
6 bits
IHL TOS[0:5]= DSfield
----
IP-Based Priority
When IP-based based priority is applied, any incoming packets with IP priority equal to IP address [A] AND IP mask [A] or IP
address [B] AND IP mask [B] will be treated as high priority packets. IP priority [A] and IP priority [B] may be enabled or
disabled independently.
Flow Control Auto Turn Off
The RTL8309SB can be configured to turn off 802.3x flow control and backpressure flow control for 1~2 seconds whenever
the port receives VLAN-tagged or TOS/DS high priority frames. Flow control is re-enabled when no priority frame is received
for a 1~2 second duration. The purpose of this function is to avoid head-of-line blocking on priority classification.
8.3.4.
Insert/Remove VLAN Priority Tag
The RTL8309SB supports four types of insertion/removal of VLAN tags in packet, controlled by internal registers on a perport basis. They are classified as follows:
Type 11: Do not change packets (Default).
Type 10: Insert input port’s PVID for non-tagged packets. Do not change packets if they are already tagged.
Type 01: Remove VLAN tags from tagged packets. Do not change packets if they are not tagged.
Type 00: Remove VLAN tags from tagged packets then insert the input port’s PVID. For non-tagged packets, insert the input
port’s PVID.
In Type 10, if Null VID replacement is enabled, this function has higher priority than type 10. If both type 10 is selected and
Null VID replacement is enabled, the RTL8309SB inserts a PVID to non-tagged packets and replaces a null VID with a PVID
for tagged packets, and does nothing in tagged packets with a non-null VID.
If the tag removed frame is less than 64 bytes, it will be padded with an 0x20 pattern before the packet’s CRC field to fit the
64-byte minimum packet length of the IEEE 802.3 spec. The RTL8309SB will recalculate the FCS (Frame Check Sequence) if
the frame has been changed.
Single-chip 9-port 10/100Mbps Switch Controller
78
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
8.3.5.
Port VID (PVID)
In a router application, the router may want to know which input port this packet came from. The RTL8309SB supports Port
VID (PVID) for each port to insert a PVID in the VLAN tag on an egress packet. The VID information carried in the VLAN
tag will be changed to a PVID. The RTL8309SB also provides an option to admit VLAN-tagged packets with a specific PVID
only. When this function is enabled, packets with an incorrect PVID and non-tagged packets will be dropped.
The RTL8309SB uses an internal register, ‘Port n VLAN index [3:0]’ to index to a VLAN membership. The VLAN ID
associated with this indexed VLAN membership is the PVID for this port. Users may select VLAN insert/remove type 10 or 00
to insert a PVID on egress packets.
On 802.1Q tag-based VLANs do not use a port-based VLAN in PVID applications, as the VID information carried in the
VLAN tag will be replaced with a PVID.
8.3.6.
Port Trunking
The RTL8309SB can combine two UTP ports into one trunking port (with a balancing mechanism). The default configuration
is to combine port 0 and 1 as one trunk, even if they are operating with different duplex or speed settings. If port 0 and/or port
1 are assigned as a high priority port, this trunk will also be considered as a high priority trunk when the trunking function is
enabled. The RTL8309SB also provides the option to set port 6 and port 7 as a trunk by configuring the ‘trunking port
assignment’ bit in the internal register.
8.3.7.
ISP MAC Address Translation
Some Internet Service Providers only provide service to a single pre-registered MAC address. To share the Internet Service
with more than one station, the RTL8309SB translates the MAC address of multiple NICs to the ISP registered MAC address.
Figure 7, page 80, illustrates an outbound process. When station G tries to send a packet to the WAN, it broadcasts or unicasts
this packet to the CPU port with a NIC MAC address. After the CPU receives this packet, it translates this MAC address to the
ISP registered MAC address and stores this information in its mapping table. It then forwards this packet to the WAN port
through the CPU port. The RTL8309SB will not learn this packet into it’s forwarding table. This is a special learning
mechanism, which states that any frame coming from the CPU port with a source MAC address equal to internal register ‘ISP
MAC [47:0]’ will not be learned. This function must be correctly configured in the VLAN configuration, otherwise the
RTL8309SB will drop such packets.
Single-chip 9-port 10/100Mbps Switch Controller
79
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Router CPU
MII I/F
Special Learning
CPU
Port
RTL8309SB
VLAN 1
VLAN 2
P1
P2
P3
P4
P5
P6
P7
P8
WAN
Port
ISP
Server
WAN
MAC
ISP
MAC
Data
PC A PC B PC C PC D PC E PC F PC G
WAN
CPU
MAC
PC G
MAC
Data
Figure 7. ISP MAC Outbound Process
In the inbound process, when the RTL8309SB receives a packet from the WAN port, it will be directly forwarded to the CPU
port according to the VLAN 1 configuration. The CPU looks up the mapping table to reverse translate the destination MAC
address from the ISP MAC to the MAC address of the station G NIC. Figure 8 illustrates this inbound process.
Router CPU
Special Forwarding
MII I/F
CPU
Port
VLAN 1
P1
WAN
Port
ISP
Server
Data
WAN
MAC
RTL8309SB
VLAN 2
P2
P3
P4
P5
P6
P7
P8
ISP
MAC
PC A PC B PC C PC D PC E PC F PC G
WAN
Data
CPU
MAC
PC G
MAC
Figure 8. ISP MAC Inbound Process
Single-chip 9-port 10/100Mbps Switch Controller
80
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
8.3.8.
Lookup Table Access
The RTL8309SB supports registers for the CPU to read/write to an internal 1024-entry lookup table via the SMI interface.
Before reading/writing from/to the internal forwarding table, the contents of internal register ‘Indirect Access Control [15:0]’
should be filled correctly.
In a write cycle, the user must assign the write data in register ‘Indirect Access Data [63:0]’ first. Bits 1~0 along with bits 15~8
form a 10-bit field that indirectly maps to an entry in the lookup table. To execute a write access, bit 0 in the ‘Indirect Access
Control’ register should be set to 0, and bit 1 should be set to 1. The CPU will poll bit 1 in ‘Indirect Access Control’ to
determine whether the write access is complete or not.
The 10-bit field composed of bits 1~0 and bits 15~8 in PHY7 Reg.20 indirectly maps to an entry in the lookup table for
reading. The read back data is shown in PHY7 Reg.17~20. To execute read access, bit 0 in the ‘Indirect Access Control’
register should be set to 1, and bit 1 should be set to 1 to trigger this command. The CPU will poll bit 1 in ‘Indirect Access
Control’ to determine whether read access is complete or not.
8.3.9.
Serial Management Interface (SMI)
SMI is also known as the MII Management Interface. It consists of two signals (MDIO and MDC) that allow an external
device in SMI master mode (MDC is output) to control the state of PHY, and in SMI slave mode (MDC is input) to control the
internal register. MDC is an input clock for the RTL8309SB to latch MDIO on its rising edge. The clock can run from 0MHz
to 25MHz. MDIO is a bi-directional signal that is used to write data to, or read data from, the RTL8309SB. Table 111 shows
the read and write cycle format of the RTL8309SB.
Table 111. SMI Read/Write Cycles
Read
Write
Preamble
(32 bits)
1……..1
1……..1
Start
(2 bits)
01
01
OP Code
(2 bits)
10
01
PHYAD
(5 bits)
A4A3A2A1A0
A4A3A2A1A0
REGAD
(5 bits)
R4R3R2R1R0
R4R3R2R1R0
Turn Around
Data
(2 bits)
(16 bits)
Z0
D15…….D0
10
D15…….D0
Idle
Z*
Z*
*Z: high-impedance. During idle time, an external 1.5KΩ pull-up resistor determines MDIO state.
The RTL8309B supports Preamble Suppression, which allows the MAC to issue Read/Write Cycles without preamble bits.
However, for the first cycle of MII management after power-on reset, a 32-bit preamble is needed.
To guarantee the first successful SMI transaction after power-on reset, an external device should delay at least 1 second before
issuing the first SMI Read/Write Cycle relative to the rising edge of reset. The output voltage level of the RTL8309SB is
configurable by supplying different voltages to pin VDDIO. VDDIO can be supplied with either 2.5V or 3.3V power.
Single-chip 9-port 10/100Mbps Switch Controller
81
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
8.3.10.
Broadcast Storm Control
After 64 consecutive broadcast packets (DID=FFFF-FFFF-FFFF) have been received by a particular port, any following
incoming broadcast packets will be discarded by this port for approximately 800ms. Any non-broadcast packet can reset the
time window and broadcast counter such that the scheme restarts.
Note: Trigger condition is consecutive 64 DID = FFFF-FFFF-FFFF packets. Release condition: receive non-broadcast packet
on or after 800ms.
8.3.11.
Broadcast In/Out Drop
If some destination ports are blocking and the buffer is full, broadcast frames are dropped according to the internal
configuration. There are two options:
Broadcast Input Drop
Forwards any broadcast packet to any output port and will drop packets at the source port directly. Although this function
effectively reduces the loading on the RTL8309SB, packets broadcast to non-congested ports will also be dropped.
Broadcast Output Drop
Only forwards broadcast packets to non-congested ports. But if a dropped packet is re-transmitted by a higher protocol in the
congested port, the non-congested port will receive duplicate packets. Figure 9 illustrates this concept.
1.
Input Drop: Drop the frame directly. Do not forward to any port
2.
Output Drop: Forward only to non-blocking ports (broadcast becomes multicast)
1. Broadcast packet from Port 0
2. Buffer of Port 7 is full, others are not full
Output Drop:
Input Drop:
Port 0
1
2
3
4
5
6
Port 0
7
1
2
3
4
5
6
7
Full
Full
Rx:
Rx:
Figure 9. Input Drop vs. Output Drop
Single-chip 9-port 10/100Mbps Switch Controller
82
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
8.3.12.
EEPROM Configuration Interface
The EEPROM interface is a 2-wire serial EEPROM interface providing 2K bits of storage space. The external device
connected to the RTL8309SB should be 2.5V or 3.3V depending on the VDDIO setting.
8.3.13.
24LC02 Device Operation
Clock and Data transitions: The SDA pin is normally pulled high with an external resistor. Data on the SDA pin may change
only during SCL low periods. Data changes during SCL high periods will indicate a start or stop condition as defined below.
Start Condition: A high-to-low transition of SDA with SCL high is the start condition and must precede any other command.
Stop Condition: A low-to-high transition of SDA with SCL high is a stop condition.
Acknowledge: All addresses and data are transmitted serially to and from the EEPROM in 8-bit words. The 24LC02 sends a
zero to acknowledge that it has received each word. This happens during the ninth clock cycle.
Random Read: A random read requires a ‘dummy’ byte write sequence to load in the data word address.
Sequential Read: For the RTL8309SB, the sequential reads are initiated by a random address read. After the 24LC02 receives
a data word, it responds with an acknowledgement. As long as the 24LC02 receives an acknowledgement, it will continue to
increment the data word address and clock out sequential data words in series.
SDA
SCL
Start
Stop
Figure 10. Start and Stop Definition
Single-chip 9-port 10/100Mbps Switch Controller
83
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
SCL
1
8
9
Data In
Data Out
Start
Acknowledge
Figure 11. Output Acknowledge
Start
Write
Device
Address
Start
Word
Address n
Stop
Read
Device
Address
SDA
Data n
R/W
ACK
ACK
ACK
NO ACK
Dummy Write
Figure 12. Random Read
Read
ACK
Stop
ACK
Device
Address
SDA
Data n
R/W
Data n+1
ACK
ACK
Data n+x
ACK
NO ACK
Figure 13. Sequential Read
8.3.14.
Head-of-Line Blocking
The RTL8309SB incorporates an advanced mechanism to prevent Head-Of-Line blocking problems when flow control is
disabled. When the flow control function is disabled, the RTL8309SB first checks the destination address of the incoming
packet. If the destination port is congested, the RTL8309SB will discard this packet to avoid blocking the next packet, which is
going to a non-congested port.
Single-chip 9-port 10/100Mbps Switch Controller
84
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
8.3.15.
MII Port Diagnostic Loopback
The RTL8309SB provides a MAC loopback function on the MII port to detect cable problems or far end existence. When this
function is enabled, the RTL8309SB will forward local and broadcast packets from the input of the MII port to the output of
the MII port, and drop unicast packets from the input of the MII port. The other port can still forward broadcast or unicast
packets to the MII port. This is especially useful for router application mass production tests.
Example1: LoopBack in External MAC Mode
RTL8309SB
CPU
MII
Example2: LoopBack in UTP Mode
RTL8309SB
UTP
RTL8139
PCI
CPU
Figure 14. MII Port Loopback
Single-chip 9-port 10/100Mbps Switch Controller
85
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
8.3.16.
Loop Detection
Loops should be avoided between switch applications. The simplest loop as shown below results in: 1) Unicast frame
duplication; 2) Broadcast frame multiplication; 3) Address table non-convergence. Frames may be transmitted from Switch1 to
Switch2 via Link1, then returned to Switch1 via Link2.
Switch 1
Link1
Link2
Switch 2
Figure 15. Loop Example
When the loop detection function is enabled, the RTL8309SB periodically sends out a broadcast packet every 3~5 minutes and
automatically detects whether there is a network loop (or bridge loop). If a loop is detected the LoopLED# will be ON (active
low or high). The LED goes out when the network loop no longer exists. The Loop frame length is 64 bytes and its format is
shown below.
FFFF FFFF FFFF
Table 112. Loop Frame Format
SID
8899
0300 000…0000
CRC
In order to achieve loop detection, each switch device needs a unique SID (the source MAC address). If the EEPROM is not
used, a unique SID should be assigned via SMI after reset, and the default SID (0x52 54 4c83 09 b0) should not be used.
Single-chip 9-port 10/100Mbps Switch Controller
86
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
8.3.17.
LEDs (Light Emitting Diodes)
The RTL8309SB supports four parallel LEDs for each port, and one special LED (LOOPLED#). Each port has four LED
indicator pins. Each pin may have different indicator meanings set by pins LED_MODE[2:0]. Refer to the pin descriptions for
details (see Port LED Pins, on page 9). Upon reset, the RTL8309SB supports chip diagnostics and LED functions by blinking
all LEDs once for 320ms. This function can be disabled by asserting EN_RST_BLNK to 0. LED_BLNK_TIME determines the
LED blinking period for activity and collision (1 = 43ms and 0 = 120ms).
All LED pins are dual function pins: input operation for configuration upon reset, and output operation for LED after reset. If
the pin input is floating upon reset, the pin output is active low after reset. Otherwise, if the pin input is pulled down upon
reset, the pin output is active high after reset. Below is an example circuit for LEDs. The typical value for pull-down resistors
is 10KΩ.
Floating
Pull-down
1.8V
LED Pin
RTL8309SB
10K
ohm
RTL8309SB
LED Pin
Figure 16. Floating and Pull-down of LED Pins
For two-pin Bi-color LED mode, Bi-color Link/Act and Speed can be used for one Bi-color LED package, which is a single
LED package with two LEDs connected in parallel with opposite polarity. As all LED pins are dual function pins, strapping
LED pins to high or low will affect their active status. In Bi-color LED mode, the Link/Act and Speed LED pins may both be
strapped to high or low but their active status will be opposed.
Note: For Bi-color LEDs, the 1.8V supply voltage may not be sufficient to turn the LED on. The application schematic in
Figure 19, on page 89, illustrates how to directly utilize 7.5 ~ 12V from the DC adapter as the power source for Bi-color LEDs.
Single-chip 9-port 10/100Mbps Switch Controller
87
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Table 113. Speed and Bi-Color Link/Act Truth Table
Indication
No Link
100M Link
10M Link
100M Act
10M Act
Speed:Input=Floating, Active Low.
Bi-Color Link/Act: the active status of
LED_ADD is the opposite of LED_SPD
and does not interact with input upon
reset.
Bi-Color State
Speed
Link/Act
Both Off
1
1
Green On
0
1
Yellow On
1
0
Green Flash
0
Flash
Yellow Flash
1
Flash
Speed:Input=Pull-down, Active High.
Bi-Color Link/Act: the active status of
LED_ADD is the opposite of LED_SPD
and does not interact with input upon
reset.
Speed
Link/Act
0
0
1
0
0
1
1
Flash
0
Flash
Yellow
Speed
LED
Link/Act
LED
Green
Figure 17. Two-Pin Bi-Color LED for SPD Floating or Pull-high
Yellow
Speed
LED
Link/Act
LED
Green
Figure 18. Two-Pin Bi-Color LED for SPD Pull-down
Single-chip 9-port 10/100Mbps Switch Controller
88
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Strapping High
Strapping Low
7.5 ~12V
0.5K
7.5 ~12V
0.5K
0.5K
Bi-color LED
Speed
LED
BJT
BJT
0.5K
Bi-color LED
Link/Act
LED
Speed
LED
BJT
BJT
Link/Act
LED
50
Figure 19. Bi-Color LED Reference Schematic
Single-chip 9-port 10/100Mbps Switch Controller
89
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
9.
Characteristics
9.1. Absolute Maximum Ratings
WARNING: Absolute maximum ratings are limits beyond which permanent damage may be caused to the device, or device
reliability may be affected. All voltages are specified reference to GND unless otherwise specified.
Table 114. Absolute Maximum Ratings
Parameter
Storage Temperature
Supply Voltage Referenced to GND: VDDD, VDDA,
and 1.8V VDDIO
Supply Voltage Referenced to GND: 2.5V VDDIO
Supply Voltage Referenced to GND: 3.3V VDDIO
Digital Input Voltage
DC Output Voltage
Min
-55
GND-0.5
Max
+150
+2.16
Units
°C
V
GND-0.5
GND-0.5
GND-0.5
GND-0.5
+3.00
+3.96
VDDD
VDDD
V
V
V
V
Min
0
1.71
Max
+70
1.89
Units
°C
V
2.375
3.15
2.625
3.45
V
V
9.2. Operating Range
Table 115. Operating Range
Parameter
Ambient Operating Temperature (Ta)
1.8V VDDD, VDDA, and VDDIO Supply
Voltage Range
2.5V VDDIO Supply Voltage Range
3.3V VDDIO Supply Voltage Range
9.3. DC Characteristics
Table 116. DC Characteristics
Parameter
Power Supply Current for
1.8V
Total Power Consumption
for all ports
TTL Input High Voltage
SYM Condition
Icc
10Base-T, idle
10Base-T, Peak continuous 100% utilization
100Base-TX, idle
100Base-TX, Peak continuous 100%
utilization
Power saving
Power down
PS
10Base-T, idle
10Base-T, Peak continuous 100% utilization
100Base-TX, idle
100Base-TX, Peak continuous 100%
utilization
Power saving
Power down
Vih VDDIO = 1.8V
VDDIO = 3.3V
Single-chip 9-port 10/100Mbps Switch Controller
90
Min
117.4
928.2
718.3
721.6
Typical
130.5
943.1
743.4
743.8
Max
143.6
958.0
765.2
769.3
115.9
140.9
198.4
1584.6
1223.6
1230.0
126.8
134.9
234.9
1697.6
1338.1
1338.8
137.7
146.9
271.4
1810.6
1446.2
1454.0
196.1
253.6
1.5
2.0
228.2
242.8
-
260.3
264.4
-
Units
mA
mW
V
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Parameter
TTL Input Low Voltage
TTL Input Current
TTL Input Capacitance
Output High Voltage
Output Low voltage
Output Three State
Leakage Current
SYM Condition
Vil
VDDIO = 1.8V
VDDIO = 3.3V
Iin
Cin
Voh VDDIO = 1.8V
VDDIO = 3.3V
Vol VDDIO = 1.8V
VDDIO = 3.3V
|IOZ|
Min
-10
1.7
2.6
0.0
0.0
-
Typical
3
-
Max
0.8
0.8
10
3.6
0.4
0.4
10
Units
V
-
-
40
mA
0
-
-
uA
-
-
100
mA
0
-
-
µA
-
1.8
-
V
-
2.4
-
kΩ
-
2.4
-
kΩ
uA
pF
V
V
µA
Transmitter, 100Base-TX (1:1 Transformer Ratio)
TX+/- Output Current
High
TX+/- Output Current
Low
IOH
IOL
Transmitter, 10Base-T (1:1 Transformer Ratio)
TX+/- Output Current
High
TX+/- Output Current
Low
IOH
IOL
Receiver, 100Base-TX
RX+/- Common-mode
input voltage
RX+/- Differential input
resistance
Receiver, 10Base-T
Differential Input
Resistance
9.4. AC Characteristics
Table 117. AC Characteristics
Parameter
SYM
Differential Output
Voltage, Peak-to-Peak
Differential Output
Voltage Symmetry
Differential Output
Overshoot
Rise/Fall Time
Rise/Fall Time Imbalance
VOD
VOS
VOO
tr ,tf
Min
Typical
Max
Units
0.997
1.002
1.008
V
100.8
101.3
101.9
%
Percent of Vp+ or Vp-
3.20
3.68
4.31
%
10-90% of Vp+ or Vp-
3.61
10
3.73
30
3.82
80
ns
ps
20
40
90
ps
675
825
900
ns
2.30
2.31
2.32
V
15.72
15.73
15.76
ms
|tr - tf|
Duty Cycle Distortion
Timing Jitter
Differential Output
Voltage, Peak-to-Peak
TP_IDL Silence Duration
Condition
Transmitter, 100Base-TX
50Ω from each output to Vcc, Best-fit over 14
bit times
50Ω from each output to Vcc, |Vp+|/ |Vp-|
VOD
Deviation from best-fit time-grid, 010101 …
Sequence
Idle pattern
Transmitter, 10Base-T
50Ω from each output to Vcc, all pattern
Period of time from start of TP_IDL to link
pulses or period of time between link pulses
Single-chip 9-port 10/100Mbps Switch Controller
91
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Parameter
TD Short Circuit Fault
Tolerance
TD Differential Output
Impedance (return loss)
TD Common-Mode
Output Voltage
Transmitter Output Jitter
RD Differential Output
Impedance (return loss)
Harmonic Content
SYM
Ecm
Condition
Peak output current on TD short circuit for 10
seconds.
Return loss from 5MHz to 10MHz for
reference resistance of 100 Ω.
Terminate each end with 50Ω resistive load.
Return loss from 5MHz to 10MHz for
reference resistance of 100 Ω.
dB below fundamental, 20 cycles of all ones
data
Min
245
Typical
254
Max
273
Units
mA
24.0
24.5
25.0
dB
40.2
44.3
45.1
mV
6.4
24.0
8.5
24.5
11.5
25.0
ns
dB
28.0
28.3
28.5
dB
9.5. Digital Timing Characteristics
MRXC/PTXC,
MDC
Th
Ts
MRXD/PTXD[3: 0],
MRXDV/PTXEN,
MCOL,
MDIO
Figure 20. Reception Data Timing of MII/SNI/SMI Interface
MRXC/PTXC,
MDC
Tcyc
Tos
Toh
MRXD/PTXD[3: 0],
MRXDV/PTXEN,
MCOL,
MDIO
Figure 21. Transmission Data Timing of MII/SNI/SMI Interface
Single-chip 9-port 10/100Mbps Switch Controller
92
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Table 118. Digital Timing Characteristics
Parameter
100BaseT MTXC/MRXC,
MRXC/PTXC
10BaseT MTXC/MRXC,
MRXC/PTXC
MTXD[3:0]/PRXD[3:0],
MTXEN/PRXDV Output
Setup Time
MTXD[3:0]/PRXD[3:0],
MTXEN/PRXDV Output
Hold Time
MRXD[3:0]/PTXD[3:0],
MRXDV/PTXEN,
MCOL/PCOL Setup Time
MRXD/PTXD,
MRXDV/PTXEN,
MCOL/PCOL Hold Time
Parameter
SYM
I/O
Tcyc
Condition
MAC Mode MII Timing
MTXC/MRXC, MRXC/PTXC clock cycle time
Min
Type
O
22
40±50
ppm
400±50
ppm
24
Tcyc
MTXC/MRXC, MRXC/PTXC clock cycle time
I
Tos
Output Setup time from REFCLK rising edge to
MTXD[3:0]/PRXD[3:0], MTXEN/PRXDV
26
ns
Toh
Output Hold time from REFCLK rising edge to
MTXD[3:0]/PRXD[3:0], MTXEN/PRXDV
O
14
16
18
ns
Ts
MTXD[3:0]/PRXD[3:0], MRXDV/PTXEN to
REFCLK rising edge setup time
I
4
ns
Th
MTXD[3:0]/PRXD[3:0], MRXDV/PTXEN to
REFCLK rising edge hold time
I
2
ns
SYM
Condition
PHY Mode MII Timing
MTXC/MRXC, MRXC/PTXC, PHY2PTXC,
PHY2PRXC clock cycle time
MTXC/MRXC, MRXC/PTXC, PHY2PTXC,
PHY2PRXC clock cycle time
I/O
Min
100BaseT MTXC/MRXC,
MRXC/PTXC,
10BaseT
MTXC/PRXC,
MRXC/PTXC,
MTXD/PRXD[3:0],
MTXEN/PRXDV,
MCOL/PCOL, Output
Setup Time
MTXD/PRXD[3:0],
MTXEN/PRXDV,
MCOL/PCOL, Output
Hold Time
MRXD/PTXD[3:0],
MRXDV/PTXEN, Setup
Time
MRXD/PTXD[3:0],
MRXDV/PTXEN, Hold
Time
Tcyc
MTXC/MRXC,
MRXC/PTXC
MTXD/PRXD[0],
MTXEN/PRXDV,
MCOL/PCOL Output
Setup Time
MTXD/PRXD[0],
MTXEN/PRXDV,
MCOL/PCOL Output
Hold Time
MRXD/PTXD[0],
MRXDV/PTXEN Setup
Time
Tcyc
Tcyc
Tos
I
O
Type
Max Units
ns
ns
Max
ns
40±50
ppm
400±50
ppm
O
Units
ns
Output Setup time from REFCLK rising edge to
MTXD[3:0]/PRXD[3:0], PHY2PRXD[3:0],
MTXEN/PRXDV, PHY2PRXDV
MCOL/PCOL, PHY2PCOL
Output Hold time from REFCLK rising edge to
MTXD[3:0]/PRXD[3:0], MTXEN/PRXDV,
MCOL/PCOL
O
14
16
18
ns
O
22
24
26
ns
Ts
MTXD[3:0]/PRXD[3:0], MRXDV/PTXEN to
REFCLK rising edge setup time
I
4
ns
Th
MTXD[3:0]/PRXD[3:0], MRXDV/PTXEN to
REFCLK rising edge hold time
I
2
ns
Toh
PHY Mode SNI Timing
MTXC/PRXC, MRXC/PTXC clock cycle time
O
Tos
Output Setup time from REFCLK rising edge to
MTXD[0]/PRXD[0], MTXEN/PRXDV,
MCOL/PCOL
O
28
100±50
ppm
30
Toh
Output Hold time from REFCLK rising edge to
MTXD[0]/PRXD[0], MTXEN/PRXDV,
MCOL/PCOL
O
68
70
Ts
MTXD[0]/PRXD[0], MRXDV/PTXEN to
REFCLK rising edge setup time
I
4
Single-chip 9-port 10/100Mbps Switch Controller
93
ns
32
ns
72
ns
ns
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Parameter
MTXD/PRXD[0],
MTXEN/PRXDV,
MCOL/PCOL Hold Time
LED On Time
LED Off Time
SYM
Condition
Th
MTXD[0]/PRXD[0], MRXDV/PTXEN to
REFCLK rising edge hold time
I/O
I
Min
2
Type
O
O
43
43
-
LED Timing
tLEDon While LED blinking
tLEDoff While LED blinking
Max Units
ns
120
120
ms
ms
9.6. Thermal Characteristics
Heat generated by the chip causes a temperature rise of the package. If the temperature of the chip (Tj, junction temperature) is
beyond the design limits, there will be negative effects on operation and the life of the IC package. Heat dissipation, either
through a heat sink or electrical fan, is necessary to provide a reasonable environment (Ta, ambient temperature) in a closed
case. As power density increases, thermal management becomes more critical. A method to estimate the possible Ta is outlined
below.
Thermal parameters are defined as below according to JEDEC standard JESD 51-2, 51-6:
1.
2.
θja (Thermal resistance from junction to ambient), represents resistance to heat flow from the chip to ambient air. This is
an index of heat dissipation capability. A lower θja means better thermal performance.
θja = (Tj - Ta) / Ph
Where Tj is the junction temperature
Ta is the ambient temperature
Ph is the power dissipation
θjc (Thermal resistance from junction to case), represents resistance to heat flow from the chip to the package top case.
θjc is important when an external heat sink is attached on the package top.
θjc = (Tj - Tc) / Ph, where Tj is the junction temperature
Ta
Tc
Tj
Figure 22. Cross-section of 128-Pin PQFP
Table 119. Thermal Operating Range
Parameter
Junction operating
temperature
Ambient operating
temperature
SYM
Tj
Condition
Ta
Single-chip 9-port 10/100Mbps Switch Controller
Min
0
0
94
Typical Max
25
125
25
70
Units
°C
°C
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Table 120. Thermal Resistance
Parameter
Thermal resistance:
junction to ambient
Thermal resistance:
junction to case
SYM
θja
θjc
Condition
2 layer PCB, 0 ft/s airflow, ambient
temperature 25°C
2 layer PCB, 0 ft/s airflow, ambient
temperature 25°C
Min
-
Typical Max
36.7
16.7
-
Units
°C/W
°C/W
* PCB conditions (JEDEC JESD51-7). Dimensions: 85 x 11mm. Thickness: 1.6mm
10. System Applications
Broadband gateway/firewall/VPN
Wireless LAN access point + gateway
Home networking expansion
Standalone 10/100 switch
Small workgroup switch
VoIP infrastructure switch
Single-chip 9-port 10/100Mbps Switch Controller
95
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
11. Design and Layout Guide
In order to achieve maximum performance using the RTL8309SB, good design attention is required throughout the design and
layout process. The following are some recommendations on how to implement a high performance system.
General Guidelines
•
Provide a good power source, minimizing noise from switching power supply circuits (<50mV).
•
Keep power and ground noise levels below 50mV.
•
Verify the ability of critical components, e.g., clock source and transformer, to meet application requirements.
•
Use bulk capacitors (4.7µF-10µF) between the power and ground planes.
•
Use 0.1µF de-coupling capacitors to reduce high-frequency noise on the power and ground planes.
•
Keep de-coupling capacitors as close as possible to the RTL8309SB.
Differential Signal Layout Guidelines
•
Keep differential pairs as close as possible and route both traces as identically as possible.
•
Avoid vias and layer changes if possible.
•
Keep transmit and receive pairs away from each other. Run orthogonal or separate by a ground plane.
•
Keep each different pair on the same plane.
Clock Circuit
•
The clock should be 25M 100ppm with jitter less than 0.5ns.
•
If possible, surround the clock by ground trace to minimize high-frequency emissions.
Power Planes
•
Divide the power plane into 1.8V digital, 1.8V analog.
•
Use 0.1µF decoupling capacitors and bulk capacitors between each power plane and ground plane.
•
Place two 47µF bulk capacitors on the device-side (primary) center tap of the transformer.
Ground Plane
•
Keep the system ground region as one continuous, unbroken plane that extends from the primary side of the transformer
to the rest of the board.
•
Place a moat (gap) between the system ground and chassis ground.
•
Ensure the chassis ground area is voided at some point such that no ground loop exists on the chassis ground area.
Single-chip 9-port 10/100Mbps Switch Controller
96
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Transformer Options
The RTL8309SB can use a transformer that supports auto MDIX with a 1:1 turn ratio on both transmit and receive paths.
There are many venders improving their transformer design to meet the RTL8309SB’s requirement.
Vendor
Pulse
Magnetic 1
BothHand
Macronics
Quad
H1164
ML164
40ST1041AX
HS2275
The center taps on the primary side of the transmit and receive paths in the transformer should be connected together inside the
transformer and provide one common external pin (Figure 23). This common pin should connect to 1.8V directly and connect
to ground via a 0.1µF capacitor as shown in Figure 23. This schematic will force the signal on the primary side to bias at 1.8V.
RXIP
RXIN
Transformer
1:1
50Ω
1%
50Ω
1%
RJ-45
1
2
0.1µF
AGND
3
1.8V
4
RTL8309SB
TXOP
TXON
5
0.1µF
AGND
1:1
50Ω
1%
6
7
0.1µF
50Ω
1% AGND
8
75Ω
IBREF
75Ω
75Ω
2ΚΩ, 1%
0.01µF/1KV
AGND
Chassis GND
Figure 23. Application for Transformer with Connected Central Tap
Single-chip 9-port 10/100Mbps Switch Controller
97
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
Bob Smith Termination
‘Bob Smith’ termination is often provided for the unused signal pairs of RJ-45 pins 4 & 5, and 7 & 8 to minimize the common
mode noise induced from RJ-45 pins 1 & 2, and 3 & 6.
RJ-45
1:1
1
2
3
4
5
1:1
6
7
8
75Ω
75Ω
75Ω
0.1µF/3KV
Chassis GND
Figure 24. Bob Smith Termination
Single-chip 9-port 10/100Mbps Switch Controller
98
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
12. Mechanical Dimensions
See the Mechanical Dimensions notes on the next page.
Single-chip 9-port 10/100Mbps Switch Controller
99
Track ID: JATR-1076-21 Rev. 1.4
RTL8309SB
Datasheet
12.1. Notes for 128-Pin LQFP Dimensions
Symbol
A
A1
A2
b
c
D
E
e
HD
HE
L
L1
y
θ
Dimensions in inches
Min Typical Max
0.134
0.004 0.010 0.036
Dimensions in mm
Min Typical Max
3.40
0.10
0.25
0.91
0.102
0.005
0.002
0.541
0.778
0.010
0.665
0.902
0.027
0.053
0°
2.60
0.12
0.05
13.75
19.75
0.25
16.90
22.90
0.68
1.35
0°
0.112
0.009
0.006
0.551
0.787
0.020
0.677
0.913
0.035
0.063
-
0.122
0.013
0.010
0.561
0.797
0.030
0.689
0.925
0.043
0.073
0.004
12°
2.85
0.22
0.15
14.00
20.00
0.5
17.20
23.20
0.88
1.60
-
1. Dimensions D & E do not include interlead flash.
2. Dimension b does not include dambar rotrusion/intrusion.
3. Controlling dimension: Millimeter
4. General appearance spec. Should be based on final
visual inspection.
3.10
0.32
0.25
14.25
20.25
0.75
17.50
23.50
1.08
1.85
0.10
12°
APPROVE
CHECK
TITLE:
-CU L/F, FOOTPRINT 3.2 mm
LEADFRAME MATERIAL:
DOC. NO.
VERSION
PAGE
DWG NO.
DATE
REALTEK SEMICONDUCTOR CORP.
Realtek Semiconductor Corp.
Headquarters
No. 2, Industry East Road IX, Science-based
Industrial Park, Hsinchu, 300, Taiwan, R.O.C.
Tel: 886-3-5780211 Fax: 886-3-5776047
www.realtek.com.tw
Single-chip 9-port 10/100Mbps Switch Controller
100
Track ID: JATR-1076-21 Rev. 1.4